
ARKGraph: All-Range Approximate K-Nearest-Neighbor Graph
Chaoji Zuo

Rutgers University

chaoji.zuo@rutgers.edu

Dong Deng

Rutgers University

dong.deng@rutgers.edu

ABSTRACT
Given a collection of vectors, the approximate K-nearest-neighbor

graph (KGraph for short) connects every vector to its approximate

K-nearest-neighbors (KNN for short). KGraph plays an important

role in high dimensional data visualization, semantic search, mani-

fold learning, andmachine learning. The vectors are typically vector

representations of real-world objects (e.g., images and documents),

which often come with a few structured attributes, such as times-

tamps and locations. In this paper, we study the all-range approxi-

mate K-nearest-neighbor graph (ARKGraph) problem. Specifically,

given a collection of vectors, each associated with a numerical

search key (e.g., a timestamp), we aim to build an index that takes

a search key range as the query and returns the KGraph of vectors

whose search keys are within the query range. ARKGraph can facil-

itate interactive high dimensional data visualization, data mining,

etc. A key challenge of this problem is the huge index size. This

is because, given 𝑛 vectors, a brute-force index stores a KGraph
for every search key range, which results in 𝑂 (K𝑛3) index size as
there are 𝑂 (𝑛2) search key ranges and each KGraph takes 𝑂 (K𝑛)
space. We observe that the KNN of a vector in nearby ranges are

often the same, which can be grouped together to save space. Based

on this observation, we propose a series of novel techniques that

reduce the index size significantly to just 𝑂 (K𝑛 log𝑛) in the aver-

age case. Furthermore, we develop an efficient indexing algorithm

that constructs the optimized ARKGraph index directly without

exhaustively calculating the distance between every pair of vectors.

To process a query, for each vector in the query range, we only

need 𝑂 (log log𝑛 + K logK) to restore its KNN in the query range

from the optimized ARKGraph index. We conducted extensive ex-

periments on real-world datasets. Experimental results show that

our optimized ARKGraph index achieved a small index size, low

query latency, and good scalability. Specifically, our approach was

1000x faster than the baseline method that builds a KGraph for all

the vectors in the query range on-the-fly.

PVLDB Reference Format:
Chaoji Zuo and Dong Deng. ARKGraph: All-Range Approximate

K-Nearest-Neighbor Graph. PVLDB, 16(10): 2645 - 2658, 2023.

doi:10.14778/3603581.3603601

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/rutgers-db/range-knn-code.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.

doi:10.14778/3603581.3603601

1 INTRODUCTION
Large-scale high dimensional dense vectors are ubiquitous nowa-

days due to the rapid development of deep learning and repre-

sentation learning. For example, many machine learning mod-

els, such as word2vec [43, 46], doc2vec [34], node2vec [24], and

graph2vec [26, 45] are developed to effectively represent real-world

objects (e.g., images, documents, and graphs) as high dimensional

dense vectors. A common operation over the vectors is approximate

K-nearest-neighbor graph (KGraph for short) construction [16],

which, given a set of vectors, connects each vector with its approx-

imate K-nearest neighbors (KNN for short). It finds applications in

high dimensional data visualization [51], semantic search (a.k.a.,

neural search and approximate nearest neighbor search) [19], data

mining [13], machine learning [12], and manifold learning [58].

We observe that real-world objects are often associated with

structured attributes, such as prices, timestamps, and locations.

Thus, in this paper, we propose to study the all-range approximate K-

nearest-neighbor graph (ARKGraph for short) problem. Specifically,

given a set of vectors, each associated with a search key value (e.g.,

a timestamp), we aim to build an index that takes a search key

range as the query and produces the KGraph over and only over

those vectors whose search keys are within the query range. It can

facilitate data mining and data visualization, as illustrated below.

Motivation Example 1. Consider the surveillance cameras de-

ployed on the roads. Each camera continuously detects vehicles

passing by it and assigns a timestamp to the vehicle. At the same

time, a feature vector is extracted from each detected vehicle. Fig-

ure 1 shows all the vehicles captured by the cameras, along with the

detection time. Then, we can build an ARKGraph over the vehicle

feature vectors to infer the trajectories of all vehicles during any

specific time period. For example, we can query the ARKGraph
using the query range 12:00:00-18:00:00, which generates a KGraph
as shown in the figure. Vehicles with similar feature vectors are

connected to each other and they may refer to the same vehicle.

Thus each clique in the KGraph (in red color) probably corresponds

to the trajectory of a vehicle between 12:00:00 and 18:00:00, since

the locations of cameras and the detection time are both available.

Motivation Example 2. t-SNE [55] and its variants are the de facto
high dimensional data visualization methods. The first step of t-SNE

is constructing a KGraph over the vectors to be visualized [51, 54].

Thus we can use ARKGraph to help explore the visualizations of

feature vectors in user-specific ranges (e.g., visualizing the feature

vectors of news articles published during the outrage of pandemic).

A key challenge here is the huge size of the ARKGraph. To see

this, consider a set of 𝑛 feature vectors and search keys with a total

order. A raw ARKGraph contains a KGraph for each of the 𝑂 (𝑛2)
search key ranges. In addition, each KGraph contains𝑂 (𝑛) adjacent
lists of fixed-length K (each adjacent list is a KNN). Thus the total
size of the raw ARKGraph is 𝑂 (K𝑛3), which is prohibitively large.

To address this issue, we observe that the KNN of a vector in nearby

2645

https://www.acm.org/publications/policies/artifact-review-and-badging-current

15:45:00

13:00:00

17:45:00

15:00:00

14:00:0014:30:00

19:30:00

20:30:00
20:00:00

23:30:00

23:00:00
22:00:00

21:00:00

08:00:00

09:00:00

11:00:00
17:30:00 15:30:00

16:00:00

14:45:00

Figure 1: A motivation example.

search key ranges (e.g., [𝑖, 𝑗] and [𝑖, 𝑗 + 1]) are likely to be the same.

Thus, for each vector, we propose to group the search key ranges

in which its KNN remain the same and store the KNN (i.e., adjacent

list) only once. It can reduce the index size to 𝑂 (K2𝑛2).
The index size can be further reduced. Specifically, consider a

vector 𝑣 with search key value 𝑐 and a search key range [𝑖, 𝑗], where
𝑖 ≤ 𝑐 ≤ 𝑗 . We observe that the KNN of 𝑣 in the range [𝑖, 𝑗] can
be derived from the KNN of 𝑣 in [𝑖, 𝑐 − 1] and the KNN of 𝑣 in

[𝑐 + 1, 𝑗]. This is because the K vectors nearest to 𝑣 in the two KNN
lists must be the KNN of 𝑣 in [𝑖, 𝑗] (note the KNN of 𝑣 does not

include itself). Moreover, there are (𝑐 − 1) (𝑛 − 𝑐) possible ranges
[𝑖, 𝑗] and KNN lists for 𝑣 in these ranges. In comparison, there are

only 𝑛 − 1 possible “partial ranges” [𝑖, 𝑐 − 1] and [𝑐 + 1, 𝑗] and KNN
lists for 𝑣 in these partial ranges. Based on these observations, we

propose to replace the KNN of the vector 𝑣 in the range [𝑖, 𝑗] with
the two KNN of 𝑣 in the two partial ranges [𝑖, 𝑐 − 1] and [𝑐 + 1, 𝑗].
After applying the grouping technique discussed earlier, the index

size can be significantly reduced. Formally, we prove that storing

the (grouped) KNN in partial ranges can reduce the index size to

𝑂 (K𝑛2) in the worst case and 𝑂 (K2𝑛 log𝑛) in the average case.

Furthermore, we find that, even if theKNN lists of a vector are not

entirely the same in two consecutive partial ranges, their differences

are small (differ by one neighbor at most). Thus we propose to

store the delta of KNN in consecutive partial ranges (a.k.a., delta

compression [44]). We formally prove that after applying delta

compression our optimizedARKGraph index takes only𝑂 (K𝑛 log𝑛)
space on average. In comparison, a single KGraph over all the

vectors takes 𝑂 (K𝑛) space, in both the average and the worst case.

Another key challenge is how to construct the above optimized

ARKGraph index efficiently without exhaustively calculating the

distance between every pair of vectors. We find that certain distance

calculations can be avoided. For example, consider a vector 𝑣 with

search key 𝑐 . Suppose the KNN of 𝑣 in [𝑐 +1, 𝑛] is obtained. Let 𝑢 be

the K-th nearest neighbor of 𝑣 in [𝑐 + 1, 𝑛] and 𝑗 be its search key.

Then, the KNN of 𝑣 in [𝑐 + 1, 𝑗], [𝑐 + 1, 𝑗 + 1], · · · , [𝑐 + 1, 𝑛 − 1] must

be the same as that in [𝑐 + 1, 𝑛]. Thus it is unnecessary to calculate

the distance between 𝑣 and any vector with search key in [𝑗 + 1, 𝑛].
Based on this observation, we propose to visit the vectors in the

ascending order of their distances to 𝑣 such that many vectors can

be skipped. Finally, we design an efficient query processing method.

It takes a query range as input and restores the KNN of every vector

in the query range using merely 𝑂 (log log𝑛 + K logK) time.

In summary, we make the following contributions in this paper.

(1) We formalize the all-range approximate K-nearest-neighbor

graph ARKGraph problem.

1 2 3 4 5 6 7 8 9

search key window: [5, 12]

entry point

an approximate 2-NN graph in the query range

entry point

query

traverse path

query range [4,13]

K = 2

entry point

KNN graph index

all the vectors ordered by their search key values:
v1 v4v2 v3 v5 v8v6 v7 v9 v12v10v11 v13 v16v14v15 v17 v20v18v19

Figure 2: An example of the range KGraph query [4, 13].

(2) We propose a series of novel techniques that reduce the

index size from𝑂 (K𝑛3) (the raw ARKGraph) to𝑂 (K𝑛 log𝑛)
(the optimized ARKGraph) in the average case.

(3) We develop an efficient indexing algorithm that construct

the optimized ARKGraph index directly, as well as query

processing algorithms that restore the KGraph in any query

range instantly.

(4) We conduct experiments on real-world datasets. Experimen-

tal results show our optimized ARKGraph index achieved

small index size, low query latency, and high scalability.

The rest of the paper is organized in the following way. Section 2

defines the problem and introduces the brute-force index. Section 3

and Section 4 present our grouping techniques. We discuss query

processing in Section 5. Section 6 shows the experimental results,

Section 7 surveys related works, and Section 8 concludes the paper.

2 PRELIMINARIES
2.1 Problem Definition
We first formally define the approximate K-nearest-neighbor graph.

Definition 1. An approximate K-nearest-neighbor graph (KGraph)
of a set D of vectors consists of an adjacent list 𝐿(𝑣) for each vector
𝑣 ∈ D. The adjacent list 𝐿(𝑣) contains K vectors inD \ {𝑣}. Let 𝑁 (𝑣)
be the K vectors in D \ {𝑣} nearest to 𝑣 . The accuracy of the graph is

1

|D|
∑︂
𝑣∈D

|𝐿(𝑣) ∩ 𝑁 (𝑣) |
K

.

The distance of two vectors are measured by the Euclidean dis-

tance. Next, we formally define the range approximate K-nearest-

neighbor graph query (range KGraph query) as below.

Definition 2 (Range K-Nearest-Neighbor Graph Query).

Given a set D of vectors, where each vector 𝑣𝑖 ∈ D is associated with
a search key value 𝑖 , a range KGraph query is a range [𝑥,𝑦]. It returns
a KGraph over the subset {𝑣𝑖 ∈ D | 𝑥 ≤ 𝑖 ≤ 𝑦} of vectors of D.

Example 1. Consider the set of vectors D = {𝑣1, 𝑣2, · · · , 𝑣20} as
shown in Figure 2 and let K = 2. The range approximate 2-nearest-

neighbor graph query [4, 13] returns the (highlighted) approximate

2-nearest-neighbor graph with 10 nodes and 20 directed edges.

2646

Algorithm 1: BruteForceIndex(D, K)

Input: D = {𝑣1, · · · , 𝑣𝑛}: a set of data vectors; K: an integer.

Output: G: a raw ARKGraph index that takes 𝑂 (K𝑛3) space.
begin1

foreach data vector 𝑣𝑖 ∈ D do2

foreach 1 ≤ 𝑥 < 𝑖 and 𝑖 < 𝑦 ≤ 𝑛 do3

Calculate the KNN of 𝑣𝑖 in the range [𝑥,𝑦] \ {𝑖}4

and store them in the adjacent list G[𝑥,𝑦] [𝑣𝑖];

return G;5

end6

2.2 Raw ARKGraph Index
In this section, we present a brute-force method that constructs a

raw ARKGraph index. It enumerates every search key range and

builds a KGraph over the vectors in the enumerated range. Thus

the raw ARKGraph index consists of a KGraph for each search key

range. Note, for simplicity, we refer to the vectors whose search

keys are in a range as vectors in that range.

Algorithm 1 shows the pseudo-code of the brute-force method. It

takes a set of vectorsD = {𝑣1, 𝑣2, · · · , 𝑣𝑛} (each 𝑣𝑖 is associated with
a search key value 𝑖) and an integer K as input. It first enumerates

every vector 𝑣𝑖 in D (Line 2). Then it enumerates every search key

range [𝑥,𝑦] containing 𝑣𝑖 where 1 ≤ 𝑥 < 𝑖 and 𝑖 < 𝑦 ≤ 𝑛 (Line 3).

Next, it calculates the KNN of 𝑣𝑖 in [𝑥,𝑦] \{𝑖} and stores them in the

adjacent list G[𝑥,𝑦] [𝑣𝑖] (Line 4). Note that in the corner case where

there are less than K vectors in the range [𝑥,𝑦] \ {𝑖}, we simply

include all the vectors in it in the adjacent list. This corner case

is handled in the same way hereinafter. Furthermore, we assume

the distance to 𝑣𝑖 from every other vector is distinct (order by their

search keys if two vectors have the same distance to 𝑣𝑖). In addition,

when the context is clear, we refer to the range [𝑥,𝑦] \ {𝑖} simply

as [𝑥,𝑦]. Finally, the raw ARKGraph index G is returned (Line 5).

Example 2. Consider the set of 20 vectors at the top of Figure 3.

Let the integers under the vectors be their distance to the vector 𝑣9.

As shown in Figure 3 in the middle left, for the vector 𝑣9 and K = 2,

the brute-force method would enumerate every range [𝑥,𝑦] where
1 ≤ 𝑥 < 9 and 9 < 𝑦 ≤ 20. In total, 88 ranges and the corresponding

2NN of 𝑣9 in them are indexed as adjacent lists. This process is

repeated for each of the rest of 19 vectors. During the online query

phase, we can derive the 2NN graph over any query range 𝑠 on

demand because for every vector 𝑣 in 𝑠 , we have its 2NN in 𝑠 in the

raw ARKGraph index represented by the adjacent list G𝑠 [𝑣].

Complexity Analysis. For each vector, there are 𝑂 (𝑛2) ranges
containing it where 𝑛 is the total number of vectors. In total,𝑂 (𝑛3)
adjacent lists are generated, each contains 𝑂 (K) neighbors. Thus
the size of the raw ARKGraph index is𝑂 (K𝑛3). The time complexity

of the brute-force method is 𝑂 (𝑛2𝑑 + 𝑛4 logK + 𝑛3K), where 𝑑 is

the dimensionality of the vectors. This is because it takes 𝑂 (𝑛2𝑑)
to calculate the distance of all pairs of vectors beforehand and for

each vector 𝑣𝑖 , it enumerates𝑂 (𝑛2) ranges. For each range, it takes

𝑂 (𝑛 logK) to get the KNN of 𝑣𝑖 and 𝑂 (K) to produce the adjacent

list. Clearly, two key challenges in our framework are the huge index
size and excessively long indexing time. Next, we discuss how to

significantly reduce both of them.

3 COMPACT GRAPH INDEX
3.1 Compact Adjacent List
Our key observation is that, for each vector 𝑣𝑖 , in many nearby

ranges (i.e., those with similar starting and ending positions), the

KNN of 𝑣𝑖 are exactly the same. For example, consider the vector 𝑣9
in Figure 3. The 2NN of 𝑣9 in the four ranges [1, 11], [2, 11], [2, 12],
and [3, 12] are exactly the same, which are {𝑣11, 𝑣6}. Actually, as one
can verify, in every range [𝑥,𝑦], where 1 ≤ 𝑥 ≤ 6 and 11 ≤ 𝑦 ≤ 12,

the 2NN of 𝑣9 are the same, i.e., G[𝑥,𝑦] [𝑣9] = {𝑣11, 𝑣6}. Based on

this observation, for each vector 𝑣𝑖 , we propose to group all the

search key ranges across 𝑖 by the KNN of 𝑣𝑖 in them. That is, we

propose to aggregate all the ranges [𝑥,𝑦] where 1 ≤ 𝑥 < 𝑖 < 𝑦 ≤ 𝑛
with the same adjacent listG[𝑥,𝑦] [𝑣𝑖]. For this purpose, we formally

define the compact range and compact adjacent list of a vector.

Definition 3 (Compact Range). The compact range ⟨𝑏, 𝑒⟩ of a
vector 𝑣𝑖 consists of two intervals 𝑏 = [𝑏𝑙 , 𝑏𝑟] and 𝑒 = [𝑒𝑙 , 𝑒𝑟] where
𝑏𝑟 < 𝑖 < 𝑒𝑙 . It represents all the ranges [𝑥,𝑦] where 𝑏𝑙 ≤ 𝑥 ≤ 𝑏𝑟 and
𝑒𝑙 ≤ 𝑦 ≤ 𝑒𝑟 , i.e., starting from 𝑏 and ending within 𝑒 .

Definition 4 (Compact Adjacent List). The compact adjacent
list G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = 𝐶 of a vector 𝑣𝑖 in its compact range ⟨𝑏, 𝑒⟩, if exists,
is the list 𝐶 of K search keys in [𝑏𝑟 , 𝑒𝑙] \ {𝑖} such that

(1) 𝐶 is the KNN of 𝑣𝑖 in [𝑏𝑙 , 𝑒𝑟] \ {𝑖}.
(2) 𝑏𝑟 = 𝐶𝑚𝑖𝑛 : the smallest search key value in 𝐶 ∪ {𝑖 − 1};
(3) 𝑒𝑙 = 𝐶𝑚𝑎𝑥 : the largest search key value in 𝐶 ∪ {𝑖 + 1};
(4) ∃ 𝑝 ∈ 𝐶 s.t. 𝑑 (𝑣𝑝 , 𝑣𝑖) > 𝑑 (𝑣𝑏𝑙−1, 𝑣𝑖), if 𝑏𝑙 ≠ 1;
(5) ∃ 𝑝 ∈ 𝐶 s.t. 𝑑 (𝑣𝑝 , 𝑣𝑖) > 𝑑 (𝑣𝑒𝑟+1, 𝑣𝑖), if 𝑒𝑟 ≠ 𝑛.

For ease of presentation, we refer to a vector 𝑣𝑖 and its search

key value 𝑖 interchangeably when the context is clear. Thus 𝐶

denotes both a list of K search key values and the corresponding

list of K vectors. The first condition in Definition 4 implies that the

KNN of 𝑣𝑖 in every range [𝑥,𝑦] in the compact range ⟨𝑏, 𝑒⟩ where
𝑥 ∈ 𝑏 and 𝑦 ∈ 𝑒 is 𝐶 . This is because 𝐶 consists of the K vectors

nearest to 𝑣𝑖 among all the vectors in [𝑏𝑙 , 𝑒𝑟], while 𝐶 ⊆ [𝑏𝑟 , 𝑒𝑙] ⊆
[𝑥,𝑦] ⊆ [𝑏𝑙 , 𝑒𝑟]. The last four conditions ensure the compact range

is “maximal”, i.e., expanding either interval 𝑏 or 𝑒 makes the first

condition no longer hold.

Example 3. Consider the set of vectors {𝑣1, 𝑣2, · · · , 𝑣20} in Fig-

ure 3. The two intervals 𝑏 = [𝑏𝑙 = 1, 𝑏𝑟 = 6] and 𝑒 = [𝑒𝑙 = 11, 𝑒𝑟 =

12] compose a compact range ⟨𝑏, 𝑒⟩ of 𝑣9 as 𝑏𝑟 < 𝑖 = 9 < 𝑒𝑙 . Let

K = 2. There is a compact adjacent list of 𝑣9 in the compact range

⟨𝑏, 𝑒⟩, which is G⟨𝑏,𝑒 ⟩ [𝑣9] = 𝐶 = {𝑣11, 𝑣6}. This is because (1) the
2NN of 𝑣9 in the range [𝑏𝑙 , 𝑒𝑟] = [1, 12] is 𝐶 = {𝑣11, 𝑣6}; (2) the
smallest search key value𝐶𝑚𝑖𝑛 in𝐶 ∪ {𝑖 − 1} is 6 and 𝑏𝑟 = 6; (3) the

largest search key value 𝐶𝑚𝑎𝑥 in 𝐶 ∪ {𝑖 + 1} is 11 and 𝑒𝑙 = 11; (4)

𝑏𝑙 = 1; and (5) 𝑣13 is closer to 𝑣9 than 𝑣𝑝 ∈ 𝐶 for 𝑝 = 6 (and 𝑝 = 11).

Note that not every compact range of a vector has a compact

adjacent list. The total number of compact adjacent lists in a vector

is much less than the total number of its (ordinary) adjacent lists.

Actually, the compact adjacent lists can be seen as a lossless com-
pression of the ordinary adjacent lists generated by the brute-force

index method. This is because every ordinary adjacent list is in one

and only one compact adjacent list as formalized below.

2647

1 2 3 4 5 6 7 8 9

search key window: [5, 12]

entry point

query

traverse path

enumerate every possible search key range [a,b] and its
corresponding KNN in the range of the current data vector

all data vectors ordered by their search keys:

KNN graph index

2NN adjacent list
v1

group by
2NN

17

G[x,y][v9]:
v4

[1,10]: {v6,v2}
[1,11]: {v11,v6}
[1,12]: {v11,v6}
[1,13]: {v13,v11}

…
[2,10]: {v6,v2}
[2,11]: {v11,v6}
[2,12]: {v11,v6}
[2,13]: {v13,v11}

…
[8,20]: {v13,v19}

(v2, v3)
range r1

range r2

(v2, v3)
compact range:
(lb, rb, le, re)

v2 v3 v5 v8v6 v7 v9 v12v10v11 v13 v16v14 v15 v17 v20v18v19

8 11 18 19 7 9 13 10 5 12 1 4 3 15 6 14 2 16

1 ≤ x < 9

[1,8]-[19,20]: {v13,v19}
[1,8]-[15,18]: {v13,v15}
[1,8]-[14,14]: {v13,v14}
[1,8]-[13,13]: {v13,v11}
[1,6]-[11,12]: {v11,v6}
[1,2]-[10,10]: {v6,v2}
[3,6]-[10,10]: {v6,v7}
[7,7]-[11,12]: {v11,v7}
[7,7]-[10,10]: {v7,v10}
[8,8]-[11,12]: {v11,v10}
[8,8]-[10,10]: {v10,v8}

[bl ,br]-[el ,er]

2NN

① naive method:
88 adjacent lists

② compact ranges:
11 compact adjacent lists

[1,2]: {v2,v6}
[3,6]: {v6,v7}
[7,7]: {v7,v8}

[19,20]: {v13,v19}
[15,18]: {v13,v15}
[14,14]: {v13,v14}
[13,13]: {v11,v13}
[12,11]: {v10,v11}

[1,2]: {v2, v6}
[3,6]: -v2, +v7
[7,7]: -v6, +v8

[19,20]: {v13, v19}
[15,18]: -v19, +v15
[14,14]: -v15, +v14
[13,13]: -v14, +v11
[12,11]: -v13, +v10

delta
encoding

③ partial ranges:
8 compact adjacent lists

④ delta compression:
compressed K/2 times

d(vi, v9):

9 < y ≤ 20

[x, y] G[x,y][v9] G<b,e>[v9]

[bl ,br] G[v9]

[el ,er] G<e>[v9]

[bl ,br] G[v9]

[el ,er] G<e>[v9]

left
side

right
side

Figure 3: An example of four index methods.

Feature Vector Feature Vector Feature Vector Feature Vector case 2when i < j < Rmax : update R and generate

(2) br = i = Cmin = min in {i, j}

range

range

global NN
global NN is in the range and must be the local NN

none

range

range

vi vj
as eras bl

global NN

vi

C

global NN is out of the range and cannot be the local NN

sorted

range

range
vj

vivx vy

j < x

b = (x, j]
e = [i, y)

do nothing G<b,e> = { vj }

j, y)>

x < j ≤ i i ≤ j < y j > y
do nothing

x = j

G<b,e> = { vj }
b = (x, i]
e = [j, y)
y = j

generate G<b,e>[vi] = C where b = (Lo-1, Lo], e = [Rp, Rp+1) and

(3) el = j = Cmax = max in {i, j}
(4) bl-1 = x and vx is closer to vi than vj
(5) er-1 = y and vy is closer to vi than vj

j∉ C as the K visited vectors in R are all closer to vi than vj

vx

Rmax

case 1when j > Rmax : do nothing

R⊆ [i, j]⊆[bl, er]

R
bl er

i

vj

sliding window C = {Lo, Lo+1 … j … Rp-1, Rp} of width K over L ⋃{ j }⋃ R

…

vi

j
Lo RpLo-1 Rp+1

sliding windows
of fixed-width K

vi vj

G<b,e>[vi] = C = {Lo, Lo+1 … j … Rp-1, Rp}
where b = (Lo-1, Lo] and e = [Rp, Rp+1)

for each sliding window

Figure 4: Two cases when visiting next vector 𝑣 𝑗 in sequence.

Lemma 1. For every adjacent list G[𝑥,𝑦] [𝑣𝑖] of a vector 𝑣𝑖 , where
𝑥 < 𝑖 < 𝑦, there is one and only one compact range ⟨𝑏, 𝑒⟩ such that
G⟨𝑏,𝑒 ⟩ [𝑣𝑖] is a compact adjacent list and G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = G[𝑥,𝑦] [𝑣𝑖].

3.2 Compact Adjacent List Generation
In this section, we discuss how to generate all the compact adjacent

lists of a data vector. Given a data vector 𝑣𝑖 , to generate all its

compact adjacent lists, we sort all the data vectors in D \ {𝑣𝑖 } by
their distance to 𝑣𝑖 in ascending order and visit them in sequence.

Each time we visit a data vector 𝑣 𝑗 , we aim to generate all the compact
adjacent lists 𝐶 (if there is any) where 𝑣 𝑗 ∈ 𝐶 is the farthest to
𝑣𝑖 among the K data vectors in 𝐶 . We observe that all the visited

vectors are closer to 𝑣𝑖 than all the unvisited vectors. Thus the

target 𝐶 must consist of K visited vectors including 𝑣 𝑗 . Based on

this observation, we propose to maintain two lists L and R of

visited vectors. Specifically, among the visited vectors whose search

keys are smaller than 𝑖 (i.e., on the left side of 𝑣𝑖), we keep the K

largest ones inL. Similarly, among the visited vectors whose search

keys are larger than 𝑖 (i.e., on the right side of 𝑣𝑖), we keep the K

smallest ones in R. Moreover, the search keys inL and R are sorted

in ascending order. For ease of presentation, we denote the 𝑝-th

search key in L and R as L𝑝 and R𝑝 . In addition, we denote the

minimum search key in L as L𝑚𝑖𝑛 and the maximum search key in

R as R𝑚𝑎𝑥 . Let 𝑣 𝑗 be the next vector to visit in sequence (note 𝑗 ≠ 𝑖

and 𝑗 ∉ L ∪ R). We consider the two cases when 𝑗 > R𝑚𝑎𝑥 and

when 𝑖 < 𝑗 < R𝑚𝑎𝑥 as shown in Figure 4 (note at the beginning,

when L and R are empty, we define L𝑚𝑖𝑛 = 0 and R𝑚𝑎𝑥 = 𝑛 + 1).

Case 1: 𝑗 > R𝑚𝑎𝑥 . Our goal is to generate all the compact adjacent

listsG⟨𝑏,𝑒 ⟩ [𝑣𝑖] = 𝐶 (if there is any) where the current visiting vector

𝑣 𝑗 ∈ 𝐶 is farthest to 𝑣𝑖 among the K data vectors in 𝐶 . We prove no

such compact adjacent list exists when 𝑗 > R𝑚𝑎𝑥 by contradiction.

Suppose there exists one such compact adjacent list G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = 𝐶 .
Based on Definition 4, the search keys in 𝐶 , including 𝑗 , are all in

[𝑏𝑟 , 𝑒𝑙]. Thus 𝑗 ≤ 𝑒𝑙 . Based on the definitions of R and compact

range, we have 𝑏𝑙 ≤ 𝑏𝑟 < 𝑖 < R𝑚𝑎𝑥 < 𝑗 ≤ 𝑒𝑙 ≤ 𝑒𝑟 . Thus the range
[𝑏𝑙 , 𝑒𝑟] must contain all the K visited vectors in R, which are all

closer to 𝑣𝑖 than 𝑣 𝑗 , as shown in Figure 4 at the top. Thus 𝐶 cannot

be the KNN of 𝑣𝑖 in [𝑏𝑙 , 𝑒𝑟] as 𝑣 𝑗 ∈ 𝐶 , which contradicts with the

first condition in Definition 4. Thus no target compact adjacent list

exists and we do nothing when 𝑗 > R𝑚𝑎𝑥 .
Case 2: 𝑖 < 𝑗 < R𝑚𝑎𝑥 . In this case, we first update R, which
consists of the K smallest search keys of visited vectors that are

greater than 𝑖 . Since the search key 𝑗 > 𝑖 of the current visiting

vector 𝑣 𝑗 is smaller than R𝑚𝑎𝑥 , we insert 𝑗 into R and remove

R𝑚𝑎𝑥 from R if there are more than K search keys in R.
Next, we generate all the compact adjacent lists G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = 𝐶

where the current visiting vector 𝑣 𝑗 ∈ 𝐶 is furthest to 𝑣𝑖 among the

K data vectors in 𝐶 . As all the visited vectors are closer to 𝑣𝑖 than

𝑣 𝑗 , while all the unvisited vectors are farther to 𝑣𝑖 than 𝑣 𝑗 , the K

data vectors in 𝐶 must be K visited vectors including 𝑣 𝑗 . However,

we can prove 𝐶 cannot contain any visited vector other than those

in L or R by contradiction. Without loss of generality, suppose 𝐶

contains a visited vector 𝑣𝑝 where 𝑝 > 𝑖 and 𝑣𝑝 ∉ L ∪ R. As R are

the K smallest search keys of visited vectors greater than 𝑖 , we have

𝑝 > R𝑚𝑎𝑥 . Then there are at least K vectors in R ∪ {𝑣𝑝 } visited
before 𝑣 𝑗 and thus closer to 𝑣𝑖 than 𝑣 𝑗 . Thus𝐶 cannot be the KNN of

[𝑏𝑙 , 𝑒𝑟] as 𝑣 𝑗 ∈ 𝐶 and R ∪ {𝑣𝑝 } ⊆ [𝑏𝑟 , 𝑒𝑙] ⊆ [𝑏𝑙 , 𝑒𝑟] (this is because
𝑒𝑙 = 𝐶𝑚𝑎𝑥 ≥ 𝑝 ∈ 𝐶 and 𝑏𝑟 < 𝑖 < R𝑚𝑖𝑛 based on Definition 4),

which contradicts with the first condition in Definition 4. Thus the K

data vectors in𝐶 must be fromL∪R and must include 𝑣 𝑗 . Similarly,

2648

Algorithm 2: CompactGraphIndex(D, K)

Input: D = {𝑣1, · · · , 𝑣𝑛}: a set of data vectors; K: the degree.
Output: G: the compact graph index of D.

foreach data vector 𝑣𝑖 ∈ D do1

S = SortByDistance(D, 𝑣𝑖);2

foreach 𝑣 𝑗 ∈ S in sequence do3

if 𝑗 < 𝑖 then4

if 𝑗 > L𝑚𝑖𝑛 then5

Insert 𝑗 into L;6

if |L| == K + 1 then7

Remove L𝑚𝑖𝑛 from L;8

Slide a window of fixed-width K containing 𝑗9

over L ∪ R;
For each sliding window 𝐶 = {L𝑜 , · · · ,R𝑝 },10

build a compact adjacent list G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = 𝐶
where 𝑏 = (L𝑜−1,L𝑜] and 𝑒 = [R𝑝 ,R𝑝+1);
if |L| == K then11

Build compact adjacent list G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = L,12

where 𝑏=(L𝑚𝑖𝑛−1,L𝑚𝑖𝑛], 𝑒=[𝑖−1,R𝑚𝑖𝑛]
and L𝑚𝑖𝑛−1 is the previous L𝑚𝑖𝑛 in L.

else if 𝑗 > 𝑖 then13

if 𝑗 < R𝑚𝑎𝑥 then14

// symmetric process to Lines 6-12

return G;15

we can prove the K data vectors in 𝐶 must be consecutive. Thus, as

shown in Figure 4 in the bottom, we propose to slide a window of

fixed-length K over the list L ∪ R. For each sliding window 𝐶 =

{L𝑜 , · · · , 𝑗, · · · ,R𝑝 } containing 𝑣 𝑗 , we generate a compact adjacent

list G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = 𝐶 where 𝑏 = (L𝑜−1,L𝑜] and 𝑒 = [R𝑝 ,R𝑝+1]. In
addition, as a corner case, if |R | = K, we generate an additional

compact adjacent list G⟨𝑏,𝑒 ⟩ [𝑣𝑖] = R where 𝑏 = (L𝑚𝑎𝑥 , 𝑖 − 1] and
𝑒 = [R𝑚𝑎𝑥 ,R𝑚𝑎𝑥+1], where R𝑚𝑎𝑥+1 is the previous R𝑚𝑎𝑥 in R.

The other two cases symmetric to the twowe discussed above can

be handled similarly. Specifically, when 𝑗 < L𝑚𝑖𝑛 , we do nothing.

In case L𝑚𝑖𝑛 < 𝑗 < 𝑖 , we update L with 𝑗 and generate a compact

adjacent list for each sliding window of fixed-width K over the list

L ∪ R given that the sliding window contains 𝑗 .

Algorithm 2 shows the pseudo-code of our compact adjacent

list generation algorithm. It takes a set D of data vectors and an

integer K as input and outputs a compact graph G of D index for

ARKGraph query processing. For each data vector 𝑣𝑖 ∈ D, it first

sorts all the other data vectors in D by their distance to 𝑣𝑖 (Line 2)

and then visits them in sequence (Line 3). For each visit, if the

visiting vector 𝑣 𝑗 is to the left of 𝑣𝑖 , it checks if its search key 𝑗 is

among the K largest search keys smaller than 𝑖 of visited vectors

(Lines 4 to 5). If so, it first updates L with 𝑗 (Lines 6 to 8) and then

slides a window of fixed-width K containing 𝑗 over L ∪ R (Line 9).

Next, for each sliding window, it generates a compact adjacent

list (Line 10). Finally, it generate a compact adjacent list for the

corner case if there are K visited vectors in L (Line 12). When the

visiting vector 𝑣 𝑗 is to the right of 𝑣𝑖 and its search key 𝑗 is among

the K smallest ones greater than 𝑖 of visited vectors, the algorithm

performs symmetrically to the above process (Lines 13 to 14). Lastly,

the compact graph index G in the format of compact adjacent lists

is returned (Line 15).

Example 4. As shown in Figure 3, consider the data vector 𝑣9 and
K = 2. We will sort and visit 𝑣13, 𝑣19, 𝑣15, 𝑣14, 𝑣11, 𝑣17, 𝑣6, 𝑣2, 𝑣7, 𝑣10,

𝑣3, 𝑣12, 𝑣8, 𝑣18, 𝑣16, 𝑣20, 𝑣1, 𝑣4, 𝑣5 in sequence. In the first visit 𝑣13, as

𝑗 = 13 > 𝑖 = 9 and 𝑗 < R𝑚𝑎𝑥 = 𝑛+1 = 21, we insert 𝑗 to R and have

|R | = 1 < K + 1. There is no sliding window over L ∪ R = {13} of
width K = 2 and we do not generate any compact adjacent list. Next,

it visits 𝑣19, 𝑣15, and 𝑣14 in the next three times. R becomes {13, 19},
{13, 15}, and {13, 14} after each of the three visits, while L remains

empty. Then, it visits 𝑣11. Since 𝑗 = 11 > 𝑖 and 𝑗 < R𝑚𝑎𝑥 = 14,

we update R as {11, 13}. Next we slide a window of width 2 over

L∪R = {11, 13}. There is no sliding window starting from a search

key in L = ∅ and no compact adjacent list is generated. However,

as |R | = 2 = K, for the corner case, we generate a compact adjacent

list G⟨𝑏,𝑒 ⟩ [𝑣9] = R = {11, 13} where 𝑏 = (L𝑚𝑖𝑛 = 0, 𝑖 − 1 = 9]
and 𝑒 = [R𝑚𝑎𝑥 = 13,R𝑚𝑎𝑥+1 = 14) (note R𝑚𝑎𝑥+1 is the previous
R𝑚𝑎𝑥 = 14 before updating). In total, it only indexes 11 compact

adjacent lists instead of 88 adjacent lists in the naive method, which

significantly reduces the index size.

Theorem 5. Algorithm 2 is sound and correct, i.e., it generates
and only generates all the compact adjacent lists of every data vector.

Complexity Analysis.We first analyze the index size. For each

data vector, we visit all the other 𝑛 − 1 data vectors in sequence.

Each visit produces 𝑂 (K) compact adjacent lists. In total, 𝑂 (𝑛2K)
compact adjacent lists are generated. As each compact adjacent list

takes𝑂 (K) space, the size of the compact graph index in the format

of compact adjacent lists is 𝑂 (K2𝑛2). Let the time complexity of

sorting data vectors be 𝑂 (S). The total index time complexity is

𝑂 (S + K
2𝑛2). This is because, for each data vector, it visits the rest

𝑛 − 1 data vectors. In each visit, it takes 𝑂 (K) to update the list L
or R and 𝑂 (K2) to generate the compact adjacent lists.

The above analysis considers the worst case. However, when

visiting a data vector 𝑣 𝑗 , it is skipped and results in no compact ad-

jacent list whenever 𝑗 < L𝑚𝑖𝑛 or 𝑗 > R𝑚𝑎𝑥 . A natural question to

ask is how many data vectors are skipped in expectation? Without

loss of generality, consider 𝑗 < 𝑖 . We observe that, when visiting 𝑣 𝑗 ,

if there are at least K visited vectors whose search keys are larger

than 𝑗 and smaller than 𝑖 , 𝑗 < L𝑚𝑖𝑛 and 𝑣 𝑗 is skipped. Similarly,

when 𝑗 > 𝑖 , if there are at least K visited vectors whose search keys

are larger than 𝑖 and smaller than 𝑗 , 𝑗 > R𝑚𝑎𝑥 and 𝑣 𝑗 is skipped.

Based on the discussion above, we calculate the expected number

of skipped data vectors for the data vector 𝑣𝑖 . Let 𝑥1, 𝑥2, · · · , 𝑥𝑖−1 be
the search keys of 𝑣1, 𝑣2, · · · , 𝑣𝑖−1 ordered by their corresponding

data vectors’ distance to 𝑣𝑖 . Then in the ℎ-th visit, the data vector

𝑣𝑥ℎ is visited. This data vector is skipped iff. there are at least K

of 𝑥1, 𝑥2, · · · , 𝑥ℎ−1 that are greater than 𝑥ℎ . Suppose the distance
between two data vectors is independent to their search keys. The

probability this data vector is not skipped is
K

ℎ
. Thus the expected

number of data vectors that are not skipped is

E[# 𝑣𝑖𝑠𝑖𝑡𝑠] =
𝑖−1∑︂
ℎ=K

K

ℎ
+
𝑛−𝑖∑︂
ℎ=K

K

ℎ
= 𝑂 (K log𝑛) . (1)

2649

all data vectors ordered by search keys:
∈ MNN of vi ∉ MNN of vi

Lmin Rmax

safe to skip
vi

K data vectors in MNN safe to skipK data vectors in MNN

need to sort

Lmin Rmax
safe to skip

vi

safe to skip

need to sort

∈ 2-hop-neighbors of viuse 2-hop-neighbors:

K data vectors in 2-hop-neighbors of MNN
Figure 5: Skip a few data vectors using the MNN of 𝑣𝑖 .

Based on the discussion above, we have the followings.

Lemma 2. The KNNG-based compact graph index has an average
size of 𝑂 (K3𝑛 log𝑛) assuming the distance of two vectors and their
search keys are independent.

Proof. In expectation,𝑂 (K log𝑛) visits are not skipped for each
data vector. Each visit not skips results in 𝑂 (K) compact adjacent

lists. Thus the index size is 𝑂 (K3𝑛 log𝑛) on average. □

3.3 Efficient Vector Sorting with Cost Model
To efficiently implement the procedure SortByDistance, we pro-

pose to partially sort all the data vectors in advance using NNDes-

cent [16]. It generates an approximate M-nearest neighbor graph

(MNNG for short) over all the data vectors efficiently. That is, ev-

ery data vector 𝑣𝑖 ∈ D is connected to its approximate M-nearest

neighbors in D \ {𝑖}.
For each data vector 𝑣𝑖 , we visit the other vectors in the ascending

order of their distance to 𝑣𝑖 . Thus the MNN of 𝑣𝑖 are visited first.

We observe that, when visiting a data vector 𝑣 𝑗 , we do nothing

if 𝑗 < L𝑚𝑖𝑛 or 𝑗 > R𝑚𝑎𝑥 . Thus, after visiting the MNN of 𝑣𝑖 , as

shown in Figure 5 at the top, we can skip all the data vectors whose

search keys are smaller than L𝑚𝑖𝑛 or larger than R𝑚𝑎𝑥 without

calculating their distance to 𝑣𝑖 as they do not result in any compact

adjacent list. Moreover, based on the definitions, L𝑚𝑖𝑛 must be the

K-th largest search key smaller than 𝑖 in the MNN of 𝑣𝑖 , while R𝑚𝑎𝑥
must be the K-th smallest search key greater than 𝑖 in the MNN

of 𝑣𝑖 . Thus, for each data vector 𝑣𝑖 , we first visit the MNN of 𝑣𝑖 in

sequence. Then we sort all the data vectors by their distance to 𝑣𝑖
in the rage (L𝑚𝑖𝑛 , R𝑚𝑎𝑥) \ {𝑖} and visit them in sequence.

For the partial sort to be effective, we need to set M ≥ K. Fur-

thermore, in the MNNG produced by NNDescent, the neighbors

of 𝑣𝑖 ’s neighbors (i.e., 2-hop neighbors) are also likely to be close

to 𝑣𝑖 . Thus we can make an assumption that the 𝑥-hop neighbors

of 𝑣𝑖 are closer to 𝑣𝑖 than the (𝑥 + 1)-hop neighbors. Based on

this assumption, we can sort all the neighbors of 𝑣𝑖 within 𝑥-hop

to get an approximate X-nearest-neighbors of 𝑣𝑖 where X is the

number of neighbors within 𝑥-hop. Figure 5 on the bottom shows

how the 2-hop-neighbor helps to reduce the number of distances

calculations.

Clearly, the more hops we go, the more neighbors we need to

visit, while the smaller the range (L𝑚𝑖𝑛 , R𝑚𝑎𝑥) \ {𝑖} we need to

scan. To strike a good balance, we propose a simple cost model.

Specifically, we increase the hop 𝑥 one by one and stop whenever

R𝑚𝑎𝑥 − L𝑚𝑖𝑛 (the number of data vectors need to be scanned) is

smaller than the total number of (𝑥 + 1)-hop neighbors.

4 ARKGRAPH INDEX
Though the index size in the format of compact adjacent lists is

reduced in comparewith the raw format, it is still prohibitively large.

Next, we discuss how to further reduce the index size significantly.

4.1 Compact Partial Ranges
Given a data vector 𝑣𝑖 , we observe that the KNN of 𝑣𝑖 in any range

[𝑥,𝑦] \ {𝑖} can be derived from the KNN of 𝑣𝑖 in the “partial range”

[𝑥, 𝑖) and the KNN of 𝑣𝑖 in the “partial range” (𝑖, 𝑦] as [𝑥,𝑦] \ {𝑖} =
[𝑥, 𝑖) ∪ (𝑖, 𝑦]. Specifically, after merging the two KNNs, the first K

data vectors ranked by their distance to 𝑣𝑖 are obviously the KNN of

𝑣𝑖 in the range [𝑥,𝑦] \ {𝑖}. Based on this observation, we propose to

index the KNN of 𝑣𝑖 in every range [𝑥, 𝑖) and (𝑖, 𝑦] where 1 ≤ 𝑥 < 𝑖

and 𝑖 < 𝑦 ≤ 𝑛 in the adjacent list G𝑥 [𝑣𝑖] and G𝑦 [𝑣𝑖]. During the

online querying phase, given a query range 𝑠 = [𝑥,𝑦], to find the

KNN of a data vector 𝑣𝑖 in the query range, we merge the two

adjacent lists G𝑥 [𝑣𝑖] and G𝑦 [𝑣𝑖] and retrieve the top-K of them.

For this purpose, given a data vector 𝑣𝑖 , we define the range

ending with 𝑖 − 1 or starting from 𝑖 + 1 as a partial range of 𝑣𝑖 .
Clearly, in total there are only 𝑂 (𝑛) partial ranges for every data

vector 𝑣𝑖 . In comparison, the naive index method generates 𝑂 (𝑛2)
adjacent lists for 𝑣𝑖 , one for each range [𝑥,𝑦] (where 𝑥 < 𝑖 < 𝑦).

By indexing the adjacent lists of the partial ranges instead, the

KNNG-based compact graph index size is reduced to 𝑂 (K𝑛2) as
summarized in Table 1. Moreover, we can also aggregate the partial

ranges with common adjacent lists into “compact partial ranges” to
further reduce the index size and time. Next, we discuss the details.

Aggregating partial ranges with the same adjacent lists.Given
a data vector 𝑣𝑖 , without loss of generality, we consider all the

search keys smaller than 𝑖 . All of our discussions and conclusions

naturally apply to the search keys larger than 𝑖 in a symmetric

way. To aggregate partial ranges with the same adjacent lists, we

formally define the compact partial range as below.

Definition 5 (Compact Partial Range). Given a data vector 𝑣𝑖 ,
its compact partial range is an interval 𝑏 = [𝑏𝑙 , 𝑏𝑟] where 1 ≤ 𝑏𝑙 ≤
𝑏𝑟 < 𝑖 . It represents all the partial ranges [𝑥, 𝑖) where 𝑏𝑙 ≤ 𝑥 ≤ 𝑏𝑟 . Its
compact adjacent list G⟨𝑏 ⟩ [𝑣𝑖] = 𝐶 , if exists, is the list 𝐶 of K search
keys in [𝑏𝑟 , 𝑖) such that

(1) 𝐶 is the KNN of 𝑣𝑖 in [𝑏𝑙 , 𝑖);
(2) 𝑏𝑟 = 𝐶𝑚𝑖𝑛 : the smallest search key in 𝐶 ;
(3) ∃ 𝑝 ∈ 𝐶 s.t. 𝑑 (𝑣𝑝 , 𝑣𝑖) > 𝑑 (𝑣𝑏𝑙−1, 𝑣𝑖), if 𝑏𝑙 ≠ 1.

Example 6. Consider the data vectors in Figure 3 and K = 2. The

interval 𝑏 = [𝑏𝑙 = 3, 𝑏𝑟 = 6] is a compact partial range of 𝑣9 as

𝑏𝑟 < 𝑖 = 9. It has a compact adjacent list G⟨𝑏 ⟩ [𝑣9] = 𝐶 = {𝑣6, 𝑣7}.
This is because (1) the 2NN of 𝑣9 in the range [𝑏𝑙 , 𝑖) = [3, 8] is
𝐶 = {𝑣6, 𝑣7}; (2) the smallest search key 𝐶𝑚𝑖𝑛 in 𝐶 is 6 and 𝑏𝑟 = 6;

and (3) 𝑣2 is closer to 𝑣9 than 𝑣𝑝 ∈ 𝐶 for 𝑝 = 7.

2650

Algorithm 3: ARKGraphIndex(D, K)

// Replace Lines 8-12 by the below in Algorithm 2.

if |L| == K + 1 then1

L𝑚𝑖𝑛−1 = L𝑚𝑖𝑛 ;2

Remove L𝑚𝑖𝑛 from L; // note L𝑚𝑖𝑛 is updated;3

Build a compact adjacent list G⟨𝑏 ⟩ [𝑣𝑖] = L where4

𝑏 = (L𝑚𝑖𝑛−1,L𝑚𝑖𝑛];
// Symmetric process after Line 14 of Algorithm 2.

Similarly, we can prove that all the compact adjacent lists in a

data vector’s compact partial ranges are a lossless compression of

all the adjacent lists in its partial ranges as formalized below.

Lemma 3. For every adjacent list G𝑥 [𝑣𝑖] of a data vector 𝑣𝑖 , there
is one and only one compact partial range 𝑏 such that it has a compact
adjacent list G⟨𝑏 ⟩ [𝑣𝑖] and G⟨𝑏 ⟩ [𝑣𝑖] = G𝑥 [𝑣𝑖].

The proof is similar to the proof of Lemma 1. Due to space limit,

we omit it here. Next we discuss how to generate all the compact

adjacent lists of the compact partial ranges in a given data vector.

4.2 ARKGraph Index Construction
Given a data vector 𝑣𝑖 , we visit all the data vectors whose search

keys are smaller than 𝑖 (i.e., 𝑣1, 𝑣2, · · · , 𝑣𝑖−1) in the ascending order

of their distance to 𝑣𝑖 . Sam as before, when visiting 𝑣 𝑗 , we aim to
generate all the compact adjacent lists 𝐶 where 𝑣 𝑗 ∈ 𝐶 is farthest to
𝑣𝑖 among the K data vectors in 𝐶 . For this purpose, we keep the K

largest search keys of visited vectors smaller than 𝑖 in L and denote

L𝑚𝑖𝑛 as the smallest search key in L. At the beginning, L𝑚𝑖𝑛 = 0.

We consider the following two cases.

Case 1: 𝑗 < L𝑚𝑖𝑛 . In this case, the K data vectors in L are all closer

to 𝑣𝑖 than 𝑣 𝑗 and their search keys are all larger than 𝑗 . Thus for

any partial range [𝑥, 𝑖), where 𝑥 ≤ 𝑗 , the KNN of 𝑣𝑖 in it cannot

contain 𝑣 𝑗 . Thus there does not exist any compact adjacent lists 𝐶

where 𝑣 𝑗 ∈ 𝐶 in any compact partial range 𝑏 as 𝐶 is the KNN of 𝑣𝑖
in [𝑏𝑙 , 𝑖) contradicts with 𝑏𝑙 ≤ 𝑏𝑟 = 𝐶𝑚𝑖𝑛 ≤ 𝑗 . Thus we do nothing.

Case 2: L𝑚𝑖𝑛 < 𝑗 < 𝑖.We first update L as the search key 𝑗 < 𝑖 of

the current visiting vector 𝑣 𝑗 is greater than L𝑚𝑖𝑛 , the K-th largest

search key of visited vectors smaller than 𝑖 . To this end, we insert 𝑗

to L and remove L𝑚𝑖𝑛 from L if there are K + 1 search keys in L.

Next, we generate the compact adjacent lists. Specifically, if

there are K search keys in L, we generate a compact adjacent

list G⟨𝑏 ⟩ [𝑣𝑖] = L where 𝑏 = (L𝑚𝑖𝑛−1,L𝑚𝑖𝑛] and L𝑚𝑖𝑛−1 is the
previous L𝑚𝑖𝑛 just removed from L.

Algorithm 3 shows the pseudo-code of the index construction

algorithm. For every visit, it is almost the same as Algorithm 2

except that it does not need to slide a fixed-width window and

generates a compact adjacent list for each sliding window. It only

needs to generate one compact adjacent list when there are K+1 data
vectors in L after inserting 𝑗 (Line 1). Specifically, it first removes

the additional data vector L𝑚𝑖𝑛 from L and keep it as L𝑚𝑖𝑛−1
(a dummy variable for ease of presentation). Then it generates

G⟨𝑏 ⟩ [𝑣𝑖] = Lwhere𝑏 = (L𝑚𝑖𝑛−1,L𝑚𝑖𝑛] (Lines 2 to 4). The process
for 𝑗 > 𝑖 is symmetric. The rests are the same as in Algorithm 2.

Table 1: Space complexities of different indexes.

index methods worst average

AL (adjacent list, brute-force index) 𝑂 (K𝑛3) 𝑂 (K𝑛3)
AL + PR (partial ranges) 𝑂 (K𝑛2) 𝑂 (K𝑛2)
CAL (compact graph index) 𝑂 (K2𝑛2) 𝑂 (K3𝑛 log𝑛)
CAL + PR (ARKGraph) 𝑂 (K𝑛2) 𝑂 (K2𝑛 log𝑛)
CAL + PR + DC (delta ARKGraph) 𝑂 (𝑛2) 𝑂 (K𝑛 log𝑛)

Example 7. As shown in Figure 3, consider the left side of the

data vector 𝑣9 and K = 2. We will visit 𝑣6, 𝑣2, 𝑣7, 𝑣3, 𝑣8, 𝑣1, 𝑣4, 𝑣5 in

sequence. Initially, we have L = {0} and L𝑚𝑖𝑛 = 0. During the

second visit, we have L𝑚𝑖𝑛−1 = 0 and L𝑚𝑖𝑛 = 2. A compact adja-

cent list G⟨𝑏 ⟩ [𝑣9] = {𝑣2, 𝑣6} where 𝑏 = [1, 2] is generated. During
the third visit, we have L𝑚𝑖𝑛−1 = 2 and L𝑚𝑖𝑛 = 6. A compact

adjacent list G⟨𝑏 ⟩ [𝑣9] = {𝑣6, 𝑣7} where 𝑏 = [3, 6] is generated. The
fourth visit results in no compact adjacent list as 𝑗 = 3 < L𝑚𝑖𝑛 = 6.

During the fifth visit, we have L𝑚𝑖𝑛−1 = 6 and L𝑚𝑖𝑛 = 7. A com-

pact adjacent list G⟨𝑏 ⟩ [𝑣9] = {𝑣7, 𝑣8} where 𝑏 = [7, 7] is generated.
Finally, the sixth, seventh, and eighth visits all lead no compact

adjacent list. In total, 3 compact adjacent lists are generated on the

left and 5 on the right. In comparison, 11 compact adjacent lists are

generated without using the compact partial range.

Theorem 8. Algorithm 3 is correct and sound. It generates and
only generates all the compact adjacent lists in every data vector.

Complexity Analysis. For each visit, the algorithm generates at

most one compact adjacent list, which takes 𝑂 (K) time and space.

Thus the index size complexity is𝑂 (K𝑛2), as summerized in Table 1.

Moreover, based on Equation 1, for each data vector, only𝑂 (K log𝑛)
data vectors are not skipped in expectation. Thus the expected index

size is 𝑂 (K2𝑛 log𝑛).

4.3 Delta Compression
For each data vector 𝑣𝑖 , consider two consecutive visits 𝑣ℎ and 𝑣 𝑗
that result in two consecutive compact adjacent lists. As we can

see from Algorithm 3, the two compact adjacent lists are almost

identical. The latter compact adjacent list can be derived from

the former one by adding 𝑗 and removing L𝑚𝑖𝑛 . Based on this

observation, we propose to use delta compression to reduce the

size of the compact adjacent list. Specifically, instead of generating

the complete compact adjacent list for each visit, we keep the delta

only, which are two numbers, 𝑗 for insertion and L𝑚𝑖𝑛 for deletion.

Note for this purpose, we need to keep track of and maintain the

variable L𝑚𝑖𝑛 in each visit. In this way, our compact graph index

is further reduced by K/2 times. The index size and time (w/o

sorting) complexities are both 𝑂 (𝑛2) after using delta compression.

Furthermore, based on Equation 1, after delta compression, the

expected index size is 𝑂 (K𝑛 log𝑛).
Example 9. Figure 3 on the bottom-right shows the 8 compact

adjacent lists generated by Algorithm 3 after delta compression.

5 QUERY PROCESSING
To process an ARKGraph query 𝑠 , we only need to go over each

vector 𝑣𝑖 where 𝑖 ∈ 𝑠 and restore its KNN in 𝑠 . Next we discuss

2651

how to restore the KNN of a vector 𝑣𝑖 in a range 𝑠 = [𝑥,𝑦] where
𝑥 ≤ 𝑖 ≤ 𝑦 from the compact graph index, the ARKGraph index, and

the delta-compressed ARKGraph index.

Compact Graph Index. To restore the KNN of 𝑣𝑖 in [𝑥,𝑦] from the

compact graph index, we only need to fetch the compact adjacent

list G⟨𝑏,𝑒 ⟩ [𝑣𝑖] where 𝑥 ∈ 𝑏 and 𝑦 ∈ 𝑒 . Based on Lemma 1, there is

one of only one such compact range and compact adjacent list. To fa-

cilitate this, we propose to build a two-dimensional segment tree for

every vector 𝑣 . Specifically, for each compact adjacent listG⟨𝑏,𝑒 ⟩ [𝑣],
we index the interval 𝑏 in the first dimension and the interval 𝑒 in

the second dimension of the segment tree of 𝑣 , along withG⟨𝑏,𝑒 ⟩ [𝑣].
To fetch G[𝑥,𝑦] [𝑣𝑖], we query 𝑣𝑖 ’s segment tree using 𝑥 and 𝑦 in the

first and second dimensions, respectively. Based on Lemma 1, it will

hit one and only one compact range and the associated compact

adjacent list is returned. As discussed in Section 3, in expectation,

each vector generates 𝑂 (K2
log𝑛) compact adjacent lists. Thus the

size of each segment tree is 𝑂
(︁
K
2
log𝑛 log2 (K2

log𝑛)
)︁
and each

fetch takes 𝑂
(︁
log

2 (K2
log𝑛) + |𝑠 |

)︁
in expectation.

ARKGraph Index. To restore the KNN of 𝑣𝑖 in [𝑥,𝑦] from the

ARKGraph index, we only need to fetch the compact adjacent lists

G⟨𝑏 ⟩ [𝑣] and G⟨𝑒 ⟩ [𝑣] where 𝑥 ∈ 𝑏 and 𝑦 ∈ 𝑒 and merge them.

For this purpose, for each vector 𝑣 , we store the compact adjacent

lists on the left and right sides of 𝑣 in two arrays ordered by their

compact partial ranges. Then, we can perform binary searches in

the two arrays to find the compact partial range containing 𝑥 and

𝑦. Then we merge the two compact adjacent lists and use the top-K

as the restored KNN. Based on the discussion in Section 4, the size

of each array is 𝑂 (K log𝑛) and each restoring takes 𝑂 (log log𝑛 +
K logK + |𝑠 |) in expectation,

Delta Compressed ARKGraph Index. It is the same as above

except an additional decompression step. Once we find the slot

in the left array containing the target compact partial range, we

checks the precedent slots one by one. We maintain an insertion list

𝐴 and a deletion list 𝑅. For each insertion number, if it is not in 𝑅,

we add it to𝐴. For each deletion number, we add it to 𝑅. In addition,

if it is in 𝐴, we remove it from 𝐴. When there are K numbers in 𝐴,

we stop and return 𝐴 for merging. The index size remains the same.

In expectation, each fetch takes 𝑂 (log log𝑛 + K log𝑛 + K logK).
The above procedure decompresses the compact adjacent lists

backwards. We can also decompress it forwards. In this way, we

actually do not need to perform the binary search at the beginning.

Furthermore, the deletion list is also unnecessarily, which saves

the index size by a half. However, it needs to maintain the top-

K vectors when decompressing forwards and it may visit many

compact partial ranges, which brings significant overhead.

Another alternative way for decompressing indexes the compact

partial ranges and their delta in a segment tree. For each search key

𝑗 , suppose it is added to the compact adjacent list of the compact

partial range 𝑏 = [𝑏𝑙 , 𝑏𝑟] and removed from the compact adjacent

list of the compact partial range 𝑏′ = [𝑏′
𝑙
, 𝑏′𝑟]. Then, 𝑗 must reside

in the compact adjacent list if the query range is within [𝑏𝑙 , 𝑏′𝑙).
Thus we propose to build a segment tree and index the interval

[𝑏𝑙 , 𝑏′𝑙) together with the search key 𝑗 in the segment tree. To fetch

G[𝑥,𝑦] [𝑣𝑖], we query the segment tree of 𝑣𝑖 using 𝑥 and it must

hit and only hit exactly K intervals. The K search keys associated

with the K intervals compose the KNN of 𝑣 in [𝑥, 𝑖). The size of the
segment tree pair is 𝑂

(︁
K log𝑛 · log(K log𝑛)

)︁
and each fetch takes

𝑂 (log log𝑛 + K logK + |𝑠 |) in expectation.

6 EXPERIMENTS
6.1 Setup
Datasets. We used two large-scale datasets. (1) DEEP1B is an im-

age descriptor dataset [9]. It consists of the projected, PCAed, and

normalized activations from the last fully-connected layer of the

GoogLeNet model [50], which was pre-trained on the ImageNet

classification task [15]. It contains 1 billion 96 dimensional dense

vectors. (2) BigGraph is a graph embedding dataset pre-trained on

the full Wikidata graph (with 78 million entities) using the PBG

model [2, 35]. The dimensionality of the embeddings is 200.

Parameters. There are two primary parameters in our index. First,

𝐾 is the degree of the all-range approximate K-nearest-neighbor

graph. Second, M is the degree of the graph constructed beforehand

by NNDescent [16] as discussed in Section 3.3. There are also a

couple of parameters during query processing, such as |𝑠 |, the width
of the query range. In addition, the dataset size 𝑛 is also a parameter.

Environment. All the experiments were conducted on a machine

with Intel(R) Xeon(R) Gold 6212U CPU @ 2.40GHz and 64GB mem-

ory running Ubuntu 18.04LTS. All methods were implemented in

C++ and compiled using g++ 7.5 with -O3 optimization and used

OpenMP for parallel computing using 24 threads for all methods.

6.2 Evaluating Index Construction
In this section, we evaluate the index construction. Specifically,

we implemented three methods. (1) CompactGraph corresponds

to Algorithm 2, which generates all the compact adjacent lists in

the compact ranges as the compact graph index; (2) ARKGraph
corresponds to Algorithm 3, which generates all the compact adja-

cent lists in the compact partial ranges as the ARKGraph index; (3)

ARKGraphDelta improves ARKGraph by using delta compression

to compress the consecutive compact adjacent lists; Note that, we

did not include the brute-force index here as it was too large and

too time consuming to build. We vary 𝐾 and the dataset size 𝑛 and

report the index time and index size.

CompactGraph vs. ARKGraph. We first evaluate the numbers of

compact adjacent lists generated byCompactGraph and ARKGraph.
Figure 6 shows the results. As we can see from the figure,ARKGraph
generated much less number of compact adjacent lists than Com-
pactGraph. For example, on DEEP1B dataset, when 𝐾 = 16 and 𝑛

increase from 1000 to 4000, ARKGraph generated 73,549 and 494,641
compact adjacent lists correspondingly, while CompactGraph gen-

erated 905,898 and 5,216,177 compact adjacent lists, which is 10𝑥

much than ARKGraph. This is because the compact adjacent lists

in consecutive compact partial ranges tend not to change and thus

are more effective in grouping. Moreover, the gap between Com-
pactGraph and ARKGraph steadily grew when 𝐾 increased. For

example, on DEEP1B dataset, when 𝑛 = 4000 and 𝐾 increase from

8 to 64, ARKGraph’s compact adjacent list increases by 2.4 times

and CompactGraph’s compact adjacent list increases by 10.1 times.

This is consistent with our complexity analysis, which shows that

the number of compact adjacent lists in CompactGraph is 𝐾 times

2652

1000 2000 4000

0

2

4

×106

CompactGraph
ARKGraph

Dataset Size n

of

 C
om

pa
ct

 A
dj

ac
en

t L
is

ts

(a) DEEP1B (𝐾 = 16, 𝑀 = 16)

8 16 32 64

0.01

0.1

1

×107

CompactGraph
ARKGraph

Index K

of

 C
om

pa
ct

 A
dj

ac
en

t L
is

ts

(b) DEEP1B (𝑛 = 4000, 𝑀 = 16)

1000 2000 4000

0

1

2

3

4

×106

CompactGraph
ARKGraph

Dataset Size n

of

 C
om

pa
ct

 A
dj

ac
en

t L
is

ts

(c) BigGraph (𝐾 = 16, 𝑀 = 16)

8 16 32 64

0.01

0.1

1

×107

CompactGraph
ARKGraph

Index K

of

 C
om

pa
ct

 A
dj

ac
en

t L
is

ts

(d) BigGraph (𝑛 = 4000, 𝑀 = 16)

1000 2000 4000

0

1

2

3

CompactGraph
ARKGraph

Dataset Size n

In
de

x
Si

ze
 (G

B)

(e) DEEP1B (𝐾 = 16, 𝑀 = 16)

8 16 32 64

0.1

1

10

CompactGraph
ARKGraph

Index K

In
de

x
Si

ze
 (G

B)

(f) DEEP1B (𝑛 = 4000, 𝑀 = 16)

1000 2000 4000

0

1

2

CompactGraph
ARKGraph

Dataset Size n

In
de

x
Si

ze
 (G

B)

(g) BigGraph (𝐾 = 16, 𝑀 = 16)

8 16 32 64

0.1

1

10

CompactGraph
ARKGraph

Index K

In
de

x
Si

ze
 (G

B)

(h) BigGraph (𝑛 = 4000, 𝑀 = 16)

1000 2000 4000

0

5

10

15

CompactGraph
ARKGraph

Dataset Size n

In
de

x
Ti

m
e

(s
)

(i) DEEP1B (𝐾 = 16, 𝑀 = 16)

8 16 32 64

0.1

1

10

CompactGraph
ARKGraph

Index K

In
de

x
Ti

m
e

(s
)

(j) DEEP1B (𝑛 = 4000, 𝑀 = 16)

1000 2000 4000

0

5

10

CompactGraph
ARKGraph

Dataset Size n

In
de

x
Ti

m
e

(s
)

(k) BigGraph (𝐾 = 16, 𝑀 = 16)

8 16 32 64

0.1

1

10

CompactGraph
ARKGraph

Index K

In
de

x
Ti

m
e

(s
)

(l) BigGraph (𝑛 = 4000, 𝑀 = 16)

Figure 6: Evaluating index construction of CompactGraph and ARKGraph.

of that in ARKGraph. Next we evaluate the index sizes of Com-
pactGraph and ARKGraph. Figures 6(e, f, g, h) shows the results.
We can see similar trends as for the number of compact adjacent

lists. This is because the index size is proportional to the number

of compact adjacent lists. Moreover, the index size of ARKGraph
scaled super linearly with 𝐾 and 𝑛. The growth was faster with 𝐾

than with 𝑛. For example, on DEEP1B dataset, when 𝐾 increases

by 4 times from 16 to 64, the index size increase by 10.9 times.

As contrast, when 𝑛 increases by 4 times from 1000 to 4000 and

𝐾 = 16, the index size only increases by 6.7 times. This is consistent

with our analysis, where the index size of ARKGraph on average is

𝑂 (𝐾2𝑛 log𝑛). Finally, we evaluated the index time (excluding the

vector sorting time). Figure 6(i, j, k, l) shows the results. As we can

see from the figure, the index time of ARKGraph was consistently

and significantly smaller than that of CompactGraph by up to 2

orders of magnitudes. For example, on DEEP1B dataset, when the

𝐾 = 16, 𝑛 = 4000, ARKGraph costs 0.27s to build the index while

CompactGraph costs 18.31s. This is because the number of compact

partial ranges is much more than the number of compact ranges (K

times smaller to be specific).

Evaluating Cost Model for Vector Sorting. Next we evaluate our cost
model for efficient vector sorting by distances as discussed in Sec-

tion 3.3. We implemented the fixed-hop method, which takes an

integer 𝑥 as input and explores all the vectors within 𝑥 hops. We

also implemented our cost model based method CostModel that
explores the neighbors dynamically. Figures 7 shows the total index

time of ARKGraph equipped with different vector sorting methods.

As we can see from the figure our proposed cost model almost

always achieved the smallest index time compared with fixed-hop

methods with various 𝑥 . For example, on DEEP1B dataset, when

𝑀 = 16, 𝐾 = 16, our cost model method costs 14.28s to build the

index, and its average hops is 2.49. In contrast, the fixed-2-hops

method costs 18.77s and the fixed-3-hops method costs 21.00s. This

is because, using a small fixed hop will increase the number of

vectors to be scanned later, while using a large fixed hop will incur

a long time for exploring the neighbors. Our cost model effectively

chooses the number of hops dynamically for every vector (i.e., each

vector has a different hop). For example, when 𝐾 = 16, 𝑀 = 16, the

average hops in our cost model method was 2.50.

Evaluating the Impact of𝑀 . We observe that the index time of our

CostModel method remained roughly the same under different𝑀 .

For example, as shown in Figures 7(b), on the DEEP1B dataset, when

𝐾 = 16, the index time for 𝑀 = 8 and 𝑀 = 16 were respectively

13.31 seconds and 15.26 seconds. This is because our CostModel
method can adaptively choose the number of hops to explore in the

MNNG based on the value of𝑀 . For instance, on average, our cost

model explored 2.82 and 2.12 hops of the MNNG respectively for

𝑀 = 8 and𝑀 = 16.

Next, we evaluate the impact of𝑀 . For this purpose, we vary𝑀

in [8, 16, 32, 64] and report the query latency and query accuracy.

Figure 8 shows the result. As we can see, the query latency using

indexes constructed by different𝑀 were roughly the same, while

2653

8 16 32 64

0

100

hop=0
hop=2
hop=4

hop=1
hop=3
CostModel

Index K

In
de

x
Ti

m
e

(s
)

(a) DEEP1B (𝑛 = 10
5, 𝑀 = 16)

8 16 32 64

0

100

200

hop=0
hop=2
hop=4

hop=1
hop=3
CostModel

M

In
de

x
Ti

m
e

(s
)

(b) DEEP1B (𝑛 = 10
5, 𝐾 = 16)

8 16 32 64

0

100

200

hop=0
hop=2
hop=4

hop=1
hop=3
CostModel

Index K

In
de

x
Ti

m
e

(s
)

(c) BigGraph (𝑛 = 10
5, 𝑀 = 16)

8 16 32 64

0

100

200

hop=0
hop=2
hop=4

hop=1
hop=3
CostModel

M

In
de

x
Ti

m
e

(s
)

(d) BigGraph (𝑛 = 10
5, 𝐾 = 16)

Figure 7: Evaluating the cost model for vector sorting.

the query accuracy increased a bit with the growth of 𝑀 . For ex-

ample, on the DEEP1B dataset, when 𝐾 = 16 and |𝑠 | = 100%, the

query latency for 𝑀 = 8 and 𝑀 = 64 were 11.43ms and 11.26ms

respectively, while the query accuracy were respectively 0.974 and

0.995. In a nutshell, the impact of𝑀 to the index time, query latency,

and query accuracy were small. For simplicity, we set𝑀 as 𝐾 for

the rest of experiments.

Evaluating Delta Compression.Next, we evaluate the delta compres-

sion. We additionally implemented two alternative ways to or-

ganize the deltas as discussed in Section 5. ARKGraphDeltaRaw
decompresses the compact adjacent lists forwards, while ARK-
GraphDeltaST indexes the compact partial ranges and the deltas

in a segment tree. Both of them have lower time complexity for

query processing while entailing some overheads. Figure 9 shows

the index time and index size of the four methods, ARKGraph (with-

out delta compression), ARKGraphDelta, ARKGraphDeltaRaw, and
ARKGraphDeltaST. The index time of the fourmethods was roughly

the same, meaning that the delta compression did not incur sig-

nificant overhead. Moreover, the index time of ARKGraphDelta
was a bit less than that of ARKGraph. This is because the delta

compression saves data copying time (copying the common part of

compact adjacent lists in two consecutive compact partial ranges).

As for the index size, we can see, with delta compression, the index

size was significantly reduced. For example, on the DEEP1B dataset,

when 𝐾 = 64, ARKGraph needs 20GB to store the index and ARK-
GraphDelta just needs 0.72GB, which is 27.8 times smaller. This is

because delta compression avoids storing the same neighbors again

and again. Moreover, we observe the gap of the index sizes between

ARKGraph and ARKGraphDelta grew linearly with 𝐾 . For example,

on the DEEP1B dataset, when 𝐾 = 16, ARKGraph’s index size is 3.6
times larger than ARKGraphDelta, but the gap comes to 27.8 when

𝐾 = 64. This is consistent with our complexity analysis as shown

in Table 1. In addition, the index size of ARKGraphDeltaST was

much larger than that of ARKGraphDelta. This is because the addi-
tional segment tree structure takes a lot of space. The index size of

ARKGraphDeltaRaw was roughly half of that of ARKGraphDelta
as it does not need to store the deletion list.

6.3 Evaluating Range KGraph Query
In this section, we evaluate the range KGraph query processing

using different indexes. Specifically, we compared ARKGraph (i.e.,

without delta compression), ARKGraphDelta, ARKGraphDeltaRaw,
and ARKGraphDeltaST with a baseline method KGraph. The base-
line method NNDescent [16], a popular approximate K-nearest-

neighbor graph construction algorithm, constructs a KGraph of

vectors in the query range on-the-fly (i.e., it has no index). We vary

𝐾 , the dataset size 𝑛, and the query range width |𝑠 |, and report the

query latency and query accuracy as defined in Definition 1.

Figures 10 show the query latency results. As we can see, all of

our methods had a much lower query latency than the baseline

method. On DEEP1B dataset, when 𝐾 = 16 and |𝑠 | = 25%, ARK-
Graph needs 1.42ms to restore the KNN while the baseline method

needs 1921.69ms, ARKGraph is 1353 times faster. This is because

the baseline did not use any index. Among our methods, ARKGraph
had the lowest query latency, followed by ARKGraphDelta, while
ARKGraphDeltaST had the highest query latency. This is because it

does not need to decompress the compact adjacent lists first to re-

store the KNN. Although the time complexity of ARKGraphDeltaST
and ARKGraphDeltaRaw are lower than ARKGraphDelta, they had

significant overhead compared with ARKGraphDelta in decom-

pressing. Specifically, ARKGraphDeltaRaw needs to scan from the

beginning of the list and maintain the top-K nearest neighbors,

while ARKGraphDeltaST needs to query the segment tree. Thus

they took longer time than ARKGraphDelta. The difference be-

tween ARKGraphDelta and ARKGraph was small. For example, on

DEEP1B dataset, when 𝐾 = 16 and |𝑠 | = 100%, ARKGraphDelta
needs 9.86ms to restore the KNN and ARKGraph needs 6.44ms.

Thus the decompressing overhead was affordable, especially the

total query latency was very small and the index size after delta

compression was significantly reduced (by up to 100 times).

Figure 11 shows the query accuracy results. Note that all of

our four methods generate exactly the same KGraph all the time.

Thus we only plot one of them, ARKGraphDelta, in the figures.

As we can see, the quality of the KGraph produced by our index

was comparable to that of the baseline method. Both of them were

close 100%. For example on DEEP1B dataset, when 𝐾 = 16, 𝑛 = 10
5

and |𝑠 | = 75%, the restored KGraph accuracy of ARKGraphDelta
and baseline were respectively 0.977 and 0.980. This is because our

ARKGraph index is a lossless compression of the brute-force index,

which consists of a KGraph for every search key range.

6.4 Scalability
In this section, we evaluate the scalability of our best index ARK-
GraphDelta and compare it with the baseline method. We vary 𝑛

the number of vectors in the dataset in [104, 105, 106] and report

the index time, index size, query latency, and query accuracy. The

results are shown in Figures 12 and 13. As we can see, with the

increase in the dataset size, the index time and index size scaled

very well. For example, on DEEP1B dataset, when 𝐾 = 16 and 𝑛

2654

25% 50% 75% 100%

0

2.5

5

7.5

10

M = 8
M = 16
M = 32
M = 64

Query Range Width

Q
ue

ry
 L

at
en

cy
 (m

s)

(a) DEEP1B (𝑛 = 10
5, 𝐾 = 16)

25% 50% 75% 100%

0.6

0.8

1

M = 8
M = 16
M = 32
M = 64

Query Range Width

Ac
cu

ra
cy

(b) DEEP1B (𝑛 = 10
5, 𝐾 = 16)

25% 50% 75% 100%

0

2.5

5

7.5

10

M = 8
M = 16
M = 32
M = 64

Query Range Width

Q
ue

ry
 L

at
en

cy
 (m

s)

(c) BigGraph (𝑛 = 10
5, 𝐾 = 16)

25% 50% 75% 100%

0.6

0.8

1

M = 8
M = 16
M = 32
M = 64

Query Range Width

Ac
cu

ra
cy

(d) BigGraph (𝑛 = 10
5, 𝐾 = 16)

Figure 8: Evaluating MNNG𝑀 on KGraph query processing.

8 16 32 64

0

20

40

60

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw

Index K

In
de

x
Ti

m
e

(s
)

(a) DEEP1B (𝑛 = 10
5, 𝑀 = 16)

8 16 32 64

0.1

1

10

100

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw

Index K

In
de

x
Si

ze
 (G

B)

(b) DEEP1B (𝑛 = 10
5, 𝑀 = 16)

8 16 32 64

0

100

200

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw

Index K

In
de

x
Ti

m
e

(s
)

(c) BigGraph (𝑛 = 10
5, 𝑀 = 16)

8 16 32 64

0.1

1

10

100

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw

Index K

In
de

x
Si

ze
 (G

B)

(d) BigGraph (𝑛 = 10
5, 𝑀 = 16)

Figure 9: Evaluating delta compression methods.

25% 50% 75% 100%

0.1

10

1000

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw
NNDescent

Query Range Width

Q
ue

ry
 L

at
en

cy
 (m

s)

(a) DEEP1B (𝑛 = 10
5, 𝐾 = 16)

25% 50% 75% 100%

0.6

0.8

1

ARKGraphDelta
NNDescent

Query Range Width

Ac
cu

ra
cy

(b) DEEP1B (𝑛 = 10
5, 𝐾 = 16)

8 16 32 64

0.1

10

1000

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw
NNDescent

Index K

Q
ue

ry
 L

at
en

cy
 (m

s)

(c) DEEP1B (𝑛 = 10
5, |𝑠 | = 75%)

8 16 32 64

0.6

0.8

1

ARKGraphDelta
NNDescent

Index K

Ac
cu

ra
cy

(d) DEEP1B (𝑛 = 10
5, |𝑠 | = 75%)

Figure 10: Evaluating range KGraph query processing on DEEP1B.

25% 50% 75% 100%

0.1

10

1000

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw
NNDescent

Query Range Width

Q
ue

ry
 L

at
en

cy
 (m

s)

(a) BigGraph (𝑛 = 10
5, 𝐾 = 16)

25% 50% 75% 100%

0.6

0.8

1

ARKGraphDelta
NNDescent

Query Range Width

Ac
cu

ra
cy

(b) BigGraph (𝑛 = 10
5, 𝐾 = 16)

8 16 32 64

0.1

10

1000

ARKGraph
ARKGraphDelta
ARKGraphDeltaST
ARKGraphDeltaRaw
NNDescent

Index K

Q
ue

ry
 L

at
en

cy
 (m

s)

(c) BigGraph (𝑛 = 10
5, |𝑠 | = 75%)

8 16 32 64

0.6

0.8

1

ARKGraphDelta
NNDescent

Index K

Ac
cu

ra
cy

(d) BigGraph (𝑛 = 10
5, |𝑠 | = 75%)

Figure 11: Evaluating range KGraph query processing on BigGraph.

104 105 106

1

10

100

1000

K=8
K=16
K=32
K=64

Dataset Size n

In
de

x
Ti

m
e

(s
)

(a) DEEP1B (𝑀 = 𝐾)

104 105 106

0.01

0.1

1

10

K=8
K=16
K=32
K=64

Dataset Size n

In
de

x
Si

ze
 (G

B)

(b) DEEP1B (𝑀 = 𝐾)

104 105 106

1

10

100

1000

K=8
K=16
K=32
K=64

Dataset Size n

In
de

x
Ti

m
e

(s
)

(c) BigGraph (𝑀 = 𝐾)

104 105 106

0.01

0.1

1

10

K=8
K=16
K=32
K=64

Dataset Size n

In
de

x
Si

ze
 (G

B)

(d) BigGraph (𝑀 = 𝐾)

Figure 12: Evaluating scalability of ARKGraphDelta index construction.

2655

104 105 106

10−1

101

103

105

ARKGraphDelta - 25%
NNDescent - 25%
ARKGraphDelta - 75%
NNDescent - 75%

Dataset Size n

Q
ue

ry
 L

at
en

cy
 (m

s)

(a) DEEP1B (𝐾 = 16)

104 105 106

0.6

0.8

1

ARKGraphDelta - 25%
NNDescent - 25%
ARKGraphDelta - 75%
NNDescent - 75%

Dataset Size n

Ac
cu

ra
cy

(b) DEEP1B (𝐾 = 16)

104 105 106

10−1

101

103

105

ARKGraphDelta - 25%
NNDescent - 25%
ARKGraphDelta - 75%
NNDescent - 75%

Dataset Size n

Q
ue

ry
 L

at
en

cy
 (m

s)

(c) BigGraph (𝐾 = 16)

104 105 106

0.6

0.8

1

ARKGraphDelta - 25%
NNDescent - 25%
ARKGraphDelta - 75%
NNDescent - 75%

Dataset Size n

Ac
cu

ra
cy

(d) BigGraph (𝐾 = 16)

Figure 13: Evaluating scalability of range KGraph query processing using ARKGraphDelta.

increases from 10
5
to 10

6
, the index time for ARKGraphDelta in-

creases from 14.22s to 864.28s and the index size increases from

0.21GB to 2.71GB. This is consistent with our complexity analy-

sis. Moreover, the query accuracy was close to 100% for different

dataset sizes 𝑛 and different query widths |𝑠 |. With the increase

of the dataset size 𝑛 or the increase of the query width, the query

accuracy almost remained unchanged. For example, on DEEP1B

dataset, when 𝐾 = 16, |𝑠 | = 75%, and 𝑛 increases from 10
5
to 10

6
,

the corresponding restored KGraph accuracy is 0.972 and 0.974.

In the meanwhile, the query latency scaled almost linearly with

the dataset size 𝑛. For example, under the same conditions as the

last example, the corresponding query latency for 𝑛 = 10
5
and

𝑛 = 10
6
is 7.66ms and 11.81ms. The good scalability is attributed

to the effectiveness of our index algorithm and query processing

algorithm.

7 RELATEDWORK

Approximate K-Nearest-Neighbor Graph Construction. There
are a few works on KGraph construction [16, 18, 51, 59]. The most

popular one is NNDescent [16]. It starts with a random KGraph
and then repeatedly refines each vector’s neighbors with its neigh-

bors’ neighbors. When the process converges, the KGraph is re-

turned. [16] until converge. Tang et al. [51] improves NNDescent

for visualizing large-scale high dimensional vectors. Instead of start-

ing with a random KGraph, it proposes to use random projection

trees to construct an initial KGraph. EFANNA proposes to use the

KD-tree [11] to find an initial KGraph for NNDescent [18]. Zhang

et al. [59] proposes to use locality sensitive hashing for KGraph
construction.

Approximate Nearest Neighbor Search (ANNS).Due to the well-
known “curse of dimensionality” phenomenal [29], tree-structured

indexes for multi-dimensional data such as the KD-tree [11], R-

tree [25], TV-tree [36], and Quad-tree [17, 48] would not work in

high dimensional space. Locality Sensitive Hashing (LSH) [4, 5, 14,

20, 22, 28, 29, 38, 49, 52, 53], product quantization (PQ) [3, 6, 21,

31, 37, 42], and proximity graphs [19, 40] are the cornerstone of

almost all the existing index structures and algorithms for ANNS.

LSH uses specific hash functions to hash the vectors such that

nearby vectors are more likely to be placed in the same bucket

than far away vectors [29]. Product quantization (PQ) compresses

the high dimensional vectors to small “codes” and the distance of

two vectors can be efficiently estimated with their PQ codes by

table lookup [6, 10, 21, 23, 31, 32, 37, 42]. The graph-based methods

build a graph as the index and use the best-first search [47] to find

the approximate nearest neighbors of a query [7, 19, 27, 30, 33, 39,

40]. The most popular graph index is hierarchical navigable small-

world graph (HNSW) index [33], which achieves the state-of-the-art

performance [1, 8].

Multi-ModalApproximateNearestNeighbor Search.Themulti-

modal ANNS query is referred to as the “hybrid query” in AnalyticDB-

V [57], “attribute-filtering query” in Milvus (a.k.a., Zilliz) [56], and

“subset search query” in Rii [41]. AnalyticDB-V [57] proposes four

query plans for the hybrid query and uses a cost model to choose an

optimal one. The four query plans are simple permutations of index

scan (on the search key) and two variant product quantization (PQ)

scans (on the vector attribute). Milvus [56] is a vector database sys-

tem. In addition to the four query plans developed in AnalyticDB-V,

it also implements a partition-based query plan, which partitions

the dataset and uses a cost-model to choose an optimal plan from

the four query plans for each partition. Matsui et. al [41] propose

reconfigurable inverted index (Rii). It scans all the PQ codes in the

query range if the query range is smaller than a threshold; other-

wise, it uses the traditional inverted index to filter the PQ codes first

and then checks the search keys. All these systems follow two triv-

ial strategies, ANNS-first and range-first. ANNS-first is inefficient

when the query range is small, while range-first takes a prolonged

time when the query range is large.

8 CONCLUSION
We study the all-range approximate K-nearest-neighbor graph in

this paper. Given a set of vectors, each associated with a search key

value, we aim to build an index that takes a search key range as the

query and produces an approximate K-nearest-neighbor graph of

vectors in the query range. We develop a series of novel techniques

to reduce the index size. We formally prove our ARKGraph index

size is 𝑂 (𝐾𝑛 log𝑛) on average where 𝑛 is the number of vectors.

We develop efficient indexing algorithm to directly construct the

ARKGraph index. It can process range KGraph queries in almost

real-time. Extensive experiments on real-world datasets show that

ARKGraph index significantly outperformed the baseline method

and achieved small index size, low query latency, and good scala-

bility.

ACKNOWLEDGEMENTS
This workwas supported by the National Science Foundation grants

#2152908, #2212629 and a research gift from Adobe.

2656

REFERENCES
[1] [n.d.]. ANN Benchmark. http://ann-benchmarks.com/index.html.

[2] [n.d.]. Facebook BigGraph. https://github.com/facebookresearch/PyTorch-

BigGraph.

[3] [n.d.]. FAISS. https://github.com/facebookresearch/faiss.

[4] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. In FOCS. 459–468.
[5] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig

Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In NeurIPS.
1225–1233.

[6] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache

locality is not enough: High-Performance Nearest Neighbor Search with Product

Quantization Fast Scan. PVLDB 9, 4 (2015), 288–299.

[7] Sunil Arya and David M. Mount. 1993. Approximate Nearest Neighbor Queries

in Fixed Dimensions. In ACM/SIGACT-SIAM. 271–280.

[8] Martin Aumüller, Erik Bernhardsson, and Alexander John Faithfull. 2020. ANN-

Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.

Inf. Syst. 87 (2020). https://doi.org/10.1016/j.is.2019.02.006

[9] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale

datasets of deep descriptors. In CVPR. 2055–2063.
[10] Artem Babenko and Victor S. Lempitsky. 2012. The inverted multi-index. In

CVPR. 3069–3076.
[11] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-

ciative Searching. Commun. ACM 18, 9 (1975), 509–517.

[12] Oren Boiman, Eli Shechtman, and Michal Irani. 2008. In defense of Nearest-

Neighbor based image classification. In 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage,
Alaska, USA. IEEE Computer Society. https://doi.org/10.1109/CVPR.2008.4587598

[13] Maria R Brito, Edgar L Chávez, Adolfo J Quiroz, and Joseph E Yukich. 1997.

Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier

detection. Statistics & Probability Letters 35, 1 (1997), 33–42.
[14] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.

Locality-sensitive hashing scheme based on p-stable distributions. In SoCG. 253–
262.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

agenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255.

[16] Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neighbor graph

construction for generic similarity measures. In WWW. 577–586.

[17] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure for

Retrieval on Composite Keys. Acta Inf. 4 (1974), 1–9.
[18] Cong Fu and Deng Cai. 2016. Efanna: An extremely fast approximate nearest

neighbor search algorithm based on knn graph. arXiv preprint arXiv:1609.07228
(2016).

[19] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. PVLDB 12,

5 (2019), 461–474.

[20] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive

hashing scheme based on dynamic collision counting. In SIGMOD. 541–552.
[21] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product

Quantization for Approximate Nearest Neighbor Search. In CVPR. 2946–2953.
[22] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In PVLDB. 518–529.
[23] Yunchao Gong and Svetlana Lazebnik. 2011. Iterative quantization: A procrustean

approach to learning binary codes. In CVPR. 817–824.
[24] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning

for Networks. In KDD (KDD ’16). 855–864.
[25] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-

ing. In SIGMOD. 47–57.
[26] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning

on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40, 3 (2017), 52–74.
[27] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest

Neighbour Graphs. In CVPR. 5713–5722.
[28] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.

Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor

Search. PVLDB 9, 1 (2015), 1–12.

[29] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In STOC. 604–613.
[30] Jerzy Jaromczyk and G.T. Toussaint. 1992. Relative neighborhood graphs and

their relatives. Proc. IEEE 80 (10 1992), 1502 – 1517.

[31] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128.

[32] Yannis Kalantidis and Yannis Avrithis. 2014. Locally Optimized Product Quanti-

zation for Approximate Nearest Neighbor Search. In CVPR. 2329–2336.
[33] Jon M. Kleinberg. 2000. Navigation in a small world. Nature 406, 6798 (2000),

845–845.

[34] Quoc V. Le and Tomás Mikolov. 2014. Distributed Representations of Sentences

and Documents. In ICML (JMLR Workshop and Conference Proceedings), Vol. 32.
JMLR.org, 1188–1196. http://proceedings.mlr.press/v32/le14.html

[35] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit

Bose, and Alex Peysakhovich. 2019. PyTorch-BigGraph: A Large-scale Graph

Embedding System. In Proceedings of the 2nd SysML Conference. Palo Alto, CA,

USA.

[36] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. 1994. The TV-Tree: An Index

Structure for High-Dimensional Data. VLDB J. 3, 4 (1994), 517–542.
[37] Yingfan Liu, Hong Cheng, and Jiangtao Cui. 2017. PQBF: I/O-Efficient Approxi-

mate Nearest Neighbor Search by Product Quantization. In CIKM. 667–676.

[38] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-

Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In PVLDB.
950–961.

[39] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

2014. Approximate nearest neighbor algorithm based on navigable small world

graphs. Inf. Syst. 45 (2014), 61–68.
[40] Yury A. Malkov and D. A. Yashunin. 2016. Efficient and robust approximate

nearest neighbor search using Hierarchical Navigable Small World graphs. CoRR
abs/1603.09320 (2016). arXiv:1603.09320 http://arxiv.org/abs/1603.09320

[41] Yusuke Matsui, Ryota Hinami, and Shin’ichi Satoh. 2018. Reconfigurable Inverted

Index. In ACM Multimedia Conference on Multimedia Conference. ACM, 1715–

1723. https://doi.org/10.1145/3240508.3240630

[42] Yusuke Matsui, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2015. PQTable: Fast

Exact Asymmetric Distance Neighbor Search for Product Quantization Using

Hash Tables. In ICCV. 1940–1948.
[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

2013. Distributed Representations of Words and Phrases and their Composition-

ality. In NeurIPS. 3111–3119.
[44] Jeffrey C Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishnamurthy.

1997. Potential benefits of delta encoding and data compression for HTTP. In

Proceedings of the ACM SIGCOMM’97 conference on Applications, technologies,
architectures, and protocols for computer communication. 181–194.

[45] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning Distributed

Representations of Graphs. CoRR abs/1707.05005 (2017). arXiv:1707.05005 http:

//arxiv.org/abs/1707.05005

[46] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:

Global Vectors for Word Representation. In EMNLP. 1532–1543.
[47] Stuart J. Russell and Peter Norvig. 2003. Artificial intelligence - a modern approach,

2nd Edition. Prentice Hall.
[48] Hanan Samet. 1984. The Quadtree and Related Hierarchical Data Structures.

ACM Comput. Surv. 16, 2 (1984), 187–260.
[49] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:

Solving c-Approximate Nearest Neighbor Queries in High Dimensional Euclidean

Space with a Tiny Index. PVLDB 8, 1 (2014), 1–12.

[50] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going deeper with convolutions. In CVPR. 1–9.
[51] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. 2016. Visualizing

Large-scale and High-dimensional Data. In Proceedings of the 25th International
Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016.
ACM, 287–297. https://doi.org/10.1145/2872427.2883041

[52] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2009. Quality and efficiency in

high dimensional nearest neighbor search. In SIGMOD. 563–576.
[53] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2010. Efficient and accurate

nearest neighbor and closest pair search in high-dimensional space. ACM Trans.
Database Syst. 35, 3 (2010), 20:1–20:46.

[54] Laurens van der Maaten. 2014. Accelerating t-SNE using tree-based algorithms.

J. Mach. Learn. Res. 15, 1 (2014), 3221–3245. https://doi.org/10.5555/2627435.

2697068

[55] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using

t-SNE. Journal of machine learning research 9, 11 (2008).

[56] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,

Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing

Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang,

Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A

Purpose-Built Vector Data Management System. In SIGMOD. ACM, 2614–2627.

https://doi.org/10.1145/3448016.3457550

[57] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,

and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards

Query Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12
(2020), 3152–3165. https://doi.org/10.14778/3415478.3415541

[58] Shuicheng Yan, Dong Xu, Benyu Zhang, HongJiang Zhang, Qiang Yang, and

Stephen Lin. 2007. Graph Embedding and Extensions: A General Framework for

Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1 (2007),
40–51. https://doi.org/10.1109/TPAMI.2007.250598

2657

[59] Yan-Ming Zhang, Kaizhu Huang, Guanggang Geng, and Cheng-Lin Liu. 2013.

Fast kNN graph construction with locality sensitive hashing. InMachine Learning
and Knowledge Discovery in Databases - European Conference. Springer, 660–674.

2658

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Problem Definition
	2.2 Raw ARKGraph Index

	3 COMPACT GRAPH INDEX
	3.1 Compact Adjacent List
	3.2 Compact Adjacent List Generation
	3.3 Efficient Vector Sorting with Cost Model

	4 ARKGRAPH INDEX
	4.1 Compact Partial Ranges
	4.2 ARKGraph Index Construction
	4.3 Delta Compression

	5 QUERY PROCESSING
	6 EXPERIMENTS
	6.1 Setup
	6.2 Evaluating Index Construction
	6.3 Evaluating Range KGraph Query
	6.4 Scalability

	7 RELATED WORK
	8 CONCLUSION
	ACKNOWLEDGEMENTS
	References

