
LMSFC: A Novel Multidimensional Index based on Learned
Monotonic Space Filling Curves

Jian Gao

UNSW, Australia

jian.gao2@unsw.edu.au

Xin Cao

UNSW, Australia

xin.cao@unsw.edu.au

Xin Yao

Huawei Theory Lab, China

yao.xin1@huawei.com

Gong Zhang

Huawei Theory Lab, China

nicholas.zhang@huawei.com

Wei Wang
1,2

1
DSA & Guangzhou Municipal Key

Laboratory of Materials Informatics,

HKUST (Guangzhou), China

2
HKUST, HKSAR, China

weiwcs@ust.hk

ABSTRACT
The recently proposed learned indexes have attracted much atten-

tion as they can adapt to the actual data and query distributions to

attain better search efficiency. Based on this technique, several exist-

ing works build up indexes for multi-dimensional data and achieve

improved query performance. A common paradigm of these works

is to (i) map multi-dimensional data points to a one-dimensional

space using a fixed space-filling curve (SFC) or its variant and (ii)

then apply the learned indexing techniques. We notice that the first

step typically uses a fixed SFCmethod, such as row-major order and

𝑧-order. It definitely limits the potential of learned multi-dimen-

sional indexes to adapt variable data distributions via different

query workloads.

In this paper, we propose a novel idea of learning a space-filling

curve that is carefully designed and actively optimized for efficient

query processing. We also identify innovative offline and online

optimization opportunities common to SFC-based learned indexes

and offer optimal and/or heuristic solutions. Experimental results

demonstrate that our proposed method, LMSFC, outperforms state-

of-the-art non-learned or learned methods across three commonly

used real-world datasets and diverse experimental settings.

PVLDB Reference Format:
Jian Gao, Xin Cao, Xin Yao, Gong Zhang and Wei Wang. LMSFC: A Novel

Multidimensional Index based on Learned Monotonic Space Filling Curves.

PVLDB, 16(10): 2605 - 2617, 2023.

doi:10.14778/3603581.3603598

1 INTRODUCTION
Nowadays, there are large volumes and a huge variety of multi-

dimensional data. For example, in traditional data warehouses and

analytical databases, the majority of key data is stored in the multi-
dimensional fact table. The wide deployments of location-based

services and sensors, such as Google Maps, generate huge amounts

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.

doi:10.14778/3603581.3603598

of multi-dimensional data. The data is typically two or three spatial

dimensions, and one or several dimensions for various measure-

ments. The common and dominant type of query over these multi-

dimensional datasets is the window query, which imposes range

constraints on several or all the dimensions.

Multi-dimensional indexes are essential in answering window

queries efficiently for a large volume of multi-dimensional datasets.

Previous studies have proposed many traditional indexes, includ-

ing 𝑅-tree [12], kd-tree [3], and Quadtree [9]. They are all based

on spatial partitioning, while the major difference is whether the

overlapping between partitions exists or not.

A space-filling curve is one of the most commonly used methods

in multi-dimensional indexes [16, 29]. This is because SFCs have

excellent proximity-preserving properties, making them ideal for

linearizing data objects. SFCs can be classified into two categories:

monotonic SFCs and non-monotonic SFCs. Monotonic SFCs, such

as 𝑧-order [25], enable quick location of the search range. However,

non-monotonic SFCs may result in more computational overhead

during query processing. For instance, Hilbert curve [14] requires

the enumeration of all values on the boundary of the query window

to determine the search range. Therefore, it is more difficult to

perform range searches when using non-monotonic SFCs as the

linearization method.

Recently, initiated by the seminal work [19], there is a surge in

optimizing database indexing via machine learning. It takes unique

advantage of optimizing for specific data and query workload in-

stances. As a result, several works have investigated the learned

multi-dimensional index. The prevalent approach is to map the

multi-dimensional data points into one dimension, and further ap-

ply a learned index on the one-dimensional space.

However, they have the following limitations: (1) The unique

and critical part of multi-dimensional indexes is mapping from

multi-dimensional space to one-dimensional space, while this is not

learned or well-learned. Most methods [28, 35] exploit an existing

SFC, such as 𝑧-order [25], as it possesses good proximity-preserving

capabilities. However, a fixed SFC does not necessarily work the

best on a given dataset instance. Other works, such as Flood [26],

only learn to select a special dimension and then follow the fixed

row-major orders on the rest of the 𝑑−1 dimensions, hence missing

the opportunity to better preserve local proximities. (2) The physical

2605

https://doi.org/10.14778/3603581.3603598
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603598

layout of the linearized data points, which are stored as disk pages, is

not fully optimized. Existing methods typically pack a fixed amount

of data points into each page, which may cause the Minimum

Bounding Rectangles (MBRs) of the resulting pages to contain much

dead space or heavily overlap with each other [32]. (3) Even if

the above two issues can be mitigated at index construction time,

existing query processing methods still need to visit many pages

because their MBRs or 𝑧-address ranges inevitably overlap with

that of the query.

In this paper, we provide a thorough and rigorous investigation

of learned multi-dimensional indexes and propose LMSFC to ad-

dress the above limitations. (i) It is a challenging task to formulate a

suitable family of parameterized SFCs that can be efficiently learned

and possess salient properties for efficient query processing. For

this, we design a learnable monotonic SFC family. Based on the

proposed SFC family, we devise an effective solution based on the

SMBO to learn an optimal/sub-optimal SFC to adapt to different

data distributions and workloads. (ii) We study the physical stor-

age optimization issue of packing multi-dimensional data points

into size-limited disk pages in a principled fashion. Thanks to the

linearization due to the (learned) SFC, we are able to solve the oth-
erwise NP-hard problem optimally by dynamic programming. We

further propose a heuristic algorithm that trades the optimality for

improved practical speed, which is suitable for large-scale datasets.

(iii) In addition to the above offline optimization techniques, we

further exploit the unique online query optimization opportunity

by proposing a query splitting strategy. We demonstrate that our

learned SFC lends itself to an efficient algorithm of splitting the

query into two such that the total access to false negative data pages

is minimized; this algorithm is then extended to allowmultiple splits

via recursion.

The contributions of the paper are summarized below:

(1) As far as we are aware, LMSFC is the first work to consider

learning a space-filling curve that is directly optimized for the

least cost query processing on a given instance of the dataset

and query workload.

(2) Based on the learned SFC, we propose both offline and online

optimization techniques. For the offline optimization, we can

optimally or sub-optimally pack multi-dimensional data points

into pages that minimize a density based cost function. For the

online optimization, we propose recursively splitting the query

into sub-queries such that it minimizes the access to pages that

do not contain any potential data points for a query.

(3) We compare LMSFCwith previous state-of-the-art multi-dimen-

sional indexes in our experimental evaluation. LMSFC achieves

the best query performance on three real-world datasets under

varying query selectivity, data size, and query aspect ratio.

LMSFC can achieve up to 38.2×, 7.2×, and 2.0× speedup against

𝑅∗-tree, ZM-index, and Flood, respectively.

The rest of this paper is organized as follows. In Section 2, we

define the problem setting and introduce some key notations and

concepts. Then we review the related literature in Section 3. Sec-

tion 4 starts by investigating the requirement of range query pro-

cessing for an SFC-based index and motivates a parameterized SFC

family. We then overview the proposed LMSFC index based on the

parameterized SFC family and introduce key steps in its construc-

tion in Section 5. We motivate and introduce our query processing

method with the novel query splitting strategy in Section 6. Sec-

tion 7 presents our experimental results and analyses. Finally, we

conclude the paper and discuss a few extensions in Section 8.

2 PRELIMINARIES
2.1 Problem Definition
In this paper, we mainly focus on exact query processing of window

queries on a multi-dimensional dataset.

Definition 1 (Multi-dimensional Dataset). A multi-dimen-
sional dataset 𝐷 consists of 𝑛 points in a 𝑑-dimensional Euclidean
space. Each point 𝑥 ∈ 𝐷 can be denoted as (𝑥 (1) , · · · , 𝑥 (𝑑)) where
𝑥 (𝑖) ∈ R𝑑 is the 𝑖-th dimensional value of 𝑥 .

Without loss of generality, we assume that, with proper scaling,

the domain of each coordinate is an integer within [0, 2𝐾 −1], hence
every dimension value can be represented using 𝐾 binary bits.

A multi-dimensional window is a hyper-rectangle in the 𝑑-di-

mensional space, or formally as𝑤 = [𝑥 (1)
𝐿
, 𝑥

(1)
𝑈

] ×· · ·× [𝑥 (𝑑)
𝐿

, 𝑥
(𝑑)
𝑈

],
where 𝑥

(𝑖)
𝐿

≤ 𝑥 (𝑖)
𝑈

.

Definition 2 (Multi-dimensional Window Query). Given
a multi-dimensional dataset 𝐷 , a multi-dimensional window query
𝑞 with the window constraint 𝑞.𝑤 returns the set of points 𝑥 from
𝐷 that is located inside the window 𝑞.𝑤 , i.e. 𝑅(𝑞) = { 𝑥 | 𝑥 ∈ 𝐷 ∧
∀1 ≤ 𝑖 ≤ 𝑑, 𝑞.𝑤 (𝑖)

𝐿
≤ 𝑥 (𝑖) ≤ 𝑞.𝑤 (𝑖)

𝑈
}.

As a query is uniquely characterized by its query window, we

will use 𝑞 and 𝑞.𝑤 interchangeably hereafter.

2.2 Notations
Given a multi-dimensional window 𝑤 , it is uniquely character-

ized by (𝑤𝐿,𝑤𝑈), i.e., the lower-bound and upper-bound points

are defined as 𝑤𝐿 = (𝑥 (1)
𝐿
, · · · , 𝑥 (𝑑)

𝐿
) and 𝑤𝑈 = (𝑥 (1)

𝑈
, · · · , 𝑥 (𝑑)

𝑈
),

respectively. These apply to the window constraint of the query

window of 𝑞 too, and we will use the shorthand 𝑞𝐿 to denote 𝑞.𝑤𝐿 .

Given a set of points, we define the multi-dimensionalal Mini-
mum Bounding Rectangle (MBR) as the smallest window that en-

closes the set of points.

For a binary integer 𝑣 , we denote the 𝑗-th bit of the binary repre-

sentation of 𝑣 as 𝑣 𝑗 . Note that 𝑗 starts from 0, which corresponds to

the right-most bit of 𝑣 . The most significant bit of 𝑣 is the bit set to 1

and with the maximum bit index. For example, let 𝑣 = (00101101)2
(we use ()2 to represents binary strings), 𝑣2 = 1 and the most

significant bit of 𝑣 is 5.

Table 1 lists frequently used notations.

3 RELATEDWORK
Indexes are essential for processing queries on large datasets. Tradi-

tional indexes are optimized for the worst-case performance. More

importantly, they miss the opportunity to exploit statistical infor-

mation about the data and query workloads to optimize their index

structure and physical layout. Recently, many Machine Learning-

based indexes have been proposed, which achieve smaller index

sizes and/or faster query processing speed. RMI [19] is awell-known

2606

Table 1: Table of Notations

Notation Description

𝐷 A set of multi-dimensional data records

𝑑 The dimensionality of 𝐷

𝑥 , 𝑥
(𝑖)
𝑗

A multi-dimensional data point, and the 𝑗-th bit of the 𝑖-th

dimension value of 𝑥

𝑞, 𝑞𝐿, 𝑞𝑈 Amulti-dimensional window query, and its lower-bounding

and upper-bounding points, respectively

𝑓 A learned SFC’s mapping function

𝜃 The parameters of 𝑓

𝐾 The maximum number of bits to represent coordinate values

of 𝑥

work that first notices the similarity between the exact search on

one-dimensional array of non-descending values and the classic

regression problem. It then proposes several instances of learned

indexes, which use a complex model to predict the logical location

of the targeted key and then perform a local search to fix possi-

ble errors bought by the ML model. Later works further improve

the model’s performance or consider other variants. For instance,

PGM [8] lets the user specify the error bound a priori and then

uses simpler linear regression models with optimal segmentation

algorithms to construct the learned index. Fiting-tree [10] also uses

a tunable error parameter to tradeoff the index size for lookup

performance. Given a dataset, Fiting-tree applies a cost model to

estimate the space consumption and latency to find a suitable error

bound. Radix Spline [18] considers a linear spline to approximate

CDF. The prefixes of the selected spline points are stored in an

auxiliary radix table to accelerate the search process. ALEX [5]

and LIPP [37] supports data updates. LIPP further eliminates the

local search via a novel adjustment strategy to redistribute keys in

each node. SOSD [17, 23] proposes some benchmarks to evaluate

different learned indexes.

Existing learned index techniques cannot be directly applied

to multi-dimensional data, as there is no natural ordering among

multi-dimensional data points. Currently, the prevalent approach

is to apply a linearization method to convert the problem into a

one-dimensional search problem, on which existing learned indexes

can then be applied. 𝑧-order [28, 35] and row-major order [22, 26]

are most widely used. Other linearization methods use learned

linear or non-linear mapping [21], e.g., clustering followed by the

distance to the cluster center [4]. To reduce the challenges of query

skewness and data correlations, Tsunami [6] extends Flood via par-

titioning data space and modeling conditional CDFs. Qd-tree [38]

utilizes Reinforcement Learning to optimize the space partitioning.

SPRIG [39] uses a spatial interpolation function to locate the search

range in the grid. [30] learns a quadtree structure and applies a

𝑧-order variant on each node.

Similar to most space-filling curve-based approaches, an orthog-

onal aspect for learned multi-dimensional indexes is to preprocess

the data using simple linear transformations or sophisticated non-

linear transformations, such as the Rank Space transformation [28].

Traditional multi-dimensional indexes often recursively decom-

pose the space into disjoint or overlapping partitions. Grid File [27],

kd-tree [3] and Quadtree [9] are typical examples of the former cat-

egory, and 𝑅-tree [12] and its variants [2, 16, 31] are typical for the

latter category. Since 𝑅-tree [12] variants have been widely adopted

in commercial systems, there are also proposals to integrate learn-

ing into 𝑅-tree. AI+R [1] employs an ML model to predict the set

of leaf nodes for a window query, together with a backup 𝑅-tree.

[11] aims at learning the key subtree splitting routine in 𝑅-tree

construction and adapts to the problem instance. In order to reduce

the search range on each leaf node, [13] embeds an ML model on

the selected sort dimension to accelerate the search procedure.

There are other ways of integrating learning into database in-

dexing. [7] uses ML models to learn a balanced space partition that

preserves spatial proximity well. LIMS [33] adopts an ML-based

data clustering method to solve similarity search in metric spaces.

4 A FRAMEWORK FOR LEARNED SFCS
In this section, we first summarize window query processing issues

for an SFC to motivate us to design a family of parameterized SFCs

that possess salient properties for query processing.

4.1 Window Query Processing with SFCs
A space-filling curve (SFC) is a method of mapping the multi-dimen-

sional data space into the one-dimensional data space. Aswe assume

the data points have integer coordinate values within [0, 2𝐾 − 1],
this naturally leads to a regular partitioning of multi-dimensional

space into 2
𝐾𝑑

possible points, or cells (SFCs can also be applied on

a coarser granularity. E.g., Flood [26] can be deemed as using a fixed

SFC on grids). an SFC is a bijective function 𝑓 between these cells

and integers within [0, 2𝐾𝑑 − 1]. We call 𝑥 in the multi-dimensional

space the original address and 𝑓 (𝑥) as its corresponding 𝑧-address
with respect to an SFC 𝑓 . Intuitively, as 𝑓 (𝑥) is a one-dimensional

integer, it specifies a way to traverse all the cells exactly once.

SFCs are known for their ability to preserve the multi-dimensional

proximity in the linear order [20]. Hence, they are widely used,

especially in applications with a need to linearize multi-dimensional

data such as images, tables and spatial data. Some well-known SFCs

are Hilbert curve, Z-order curve, and Gray curve.

To answer a range query 𝑞 on 𝐷 , assuming that points in 𝐷 have

been mapped to the corresponding 𝑧-addresses, we can (i) compute

the query’s one-dimensional 𝑧-address range 𝑞𝑧 , (ii) retrieve every

point whose 𝑧-address falls within the interval 𝑞𝑧 , and (iii) filter out

those points that do not fall into the query window 𝑞. The tightest

𝑧-address range can be defined as: [min𝑥∈𝑞 𝑓 (𝑥),max𝑥∈𝑞 𝑓 (𝑥)].
However, computing these extreme values is difficult in general. In

the worst case, we may need to enumerate all 𝑥 within 𝑞, hence

with a cost proportional to the volume of the query and beating the

purpose of efficient query processing. For certain SFCs with better

properties, such as the Hilbert curve, we still need to enumerate

all 𝑥 on the boundary of the query window, hence inducing a cost

proportional to the circumference of the query.
Nevertheless, we identify a subclass of SFCs such that the above

minimization and maximization can be computed efficiently in

𝑂 (𝑑) time and hence do not depend on the size of the query.

4.2 Monotonic Space-Filling Curves
We will first define the criterion that the mapping function of an

SFC is monotonic, and show that the tightest 𝑧-address range can

2607

be computed from the lower and upper bounding points of the

query window.

Definition 3 (Monotonic Function in a Multi-dimensional

Space). Let 𝑎 ⪯ 𝑏 defined as true if and only if ∀𝑖, 𝑎 (𝑖) ≤ 𝑏 (𝑖) . Then a
function 𝑔 is monotonic, if for all 𝑎 and 𝑏, if 𝑎 ⪯ 𝑏, then 𝑔(𝑎) ≤ 𝑔(𝑏).

Theorem 1. If an SFC corresponds to a monotonic mapping func-
tion 𝑓 , given a spatial query rectangle 𝑞, the query result 𝑟 ⊆ { 𝑥 | 𝑥 ∈
𝐷 ∧ 𝑓 (𝑞𝐿) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑞𝑈) }. In other words, the tightest 𝑧-address
range of 𝑞 can be efficiently computed as [𝑓 (𝑞𝐿), 𝑓 (𝑞𝑈)].

Proof. Let 𝑞min

def

= min{ 𝑥 ∈ 𝑞 } with respect to ⪯ (i.e., 𝑞min

is 𝑞𝐿). Then by definition for any 𝑥 ∈ 𝑞, 𝑞min ⪯ 𝑥 . As 𝑓 is mono-

tonic, then 𝑓 (𝑞min) ≤ 𝑓 (𝑥). Similarly, we can show that 𝑞max

def

=

max{ 𝑥 ∈ 𝑞 } (i.e., 𝑞max is 𝑞𝑈) and for any 𝑥 ∈ 𝑞, 𝑓 (𝑥) ≤ 𝑓 (𝑞max).
□

Example 1. Among three commonly used SFCs, only the 𝑧-order
curve has the monotonic property. We give counter-examples for the
Hilbert curve and the Gray curve in Figure 1.

Gray Curve Hilbert CurveZ-order Curve

0

1

4

2

6

7

1

0

5

4

2

3

10

11

13

12

9

8

14

15

4

5

3

0

7

6

2

1

8

9

13

14

11

10

12

15

5 7 13 15

119

146

3

8 10

12

Figure 1: Hilbert and Gray Curves are not Monotonic (Bold
Black Rectangle is the QueryWindow; the Tightest 𝑧-address
Ranges are Marked in Bold Font)

4.3 Parameterized Z-Order SFCs
Inspired by the monotone property of the 𝑧-order curve, we identify

a family of monotonic SFCs that generalizes the 𝑧-order curve. In

addition, any instance within the family has favorable properties

to enable efficient query processing.

We consider the following SFC parameterized by a parameter

𝜃 = [𝜃 (1) , . . . , 𝜃 (𝑑)]:

𝑓 (𝑥 ;𝜃) =
𝑑∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝜃
(𝑖)
𝑗

· 𝑥 (𝑖)
𝑗
, (1)

where each 𝜃 (𝑖) is a 𝐾-dimensional vector, 𝑥
(𝑖)
𝑗

represents the 𝑗-th

bit of the 𝑖-th dimension value of 𝑥 , 𝑑 is the dimensionality and 𝐾 is

themaximumnumber of bits for 𝑥 (𝑖) . In fact, 𝜃 (𝑖)
𝑗

= 2
𝑙
indicates that

𝑥
(𝑖)
𝑗

will be mapped to the (𝑙 +1)-th bit of the binary representation

of 𝑓 (𝑥 ;𝜃). If the content is clear, we use 𝑓 (𝑥) for short instead of

𝑓 (𝑥 ;𝜃).
Example 2. Figure 2 demonstrates several instances of the SFCs

within our parameterized family. Figure 2(a) shows the ordered bit-
interleaving way of 𝑧-order to compute 𝑓 (𝑥) for the 2-dimensional

1 0 0 1 1 0

1 1 1 0 0 0

(a) Original Z-order

1 0 0 1 1 0

1 0 1 1 0 0

(b) Generalized Z-order

1 0 0 1 1 0

1 0 0 1 1 0

(c) Column-major order

Figure 2: 𝑧-address Calculation for Several SFCs within our
Parameterized SFC Family

data point𝑥 = (4, 6). Here,𝐾 = 3, and its parameter𝜃𝑧 = [𝜃 (1) , 𝜃 (2)] =
[[1, 4, 16], [2, 8, 32]], and the resulting 𝑧-address is 56. Figure 2(b)
demonstrates a new SFC for the same data point, but with 𝜃𝑔 =

[[1, 16, 32], [2, 4, 8]], 𝑓 (𝑥 ;𝜃𝑔) = 44. Finally, Figure 2(c) demonstrates
yet another SFC, which is known as the column-major order, with
𝜃𝑐 = [[8, 16, 32], [1, 2, 4]], 𝑓 (𝑥 ;𝜃𝑐) = 38.

To ensure the family of SFCs preserves the monotonic and bijec-

tive properties, it suffices to impose the following constraints on

𝜃
(𝑖)
𝑗

s:

(1) 𝜃
(𝑖)
𝑗

∈ { 20, . . . , 2𝐾𝑑−1 }.
(2) ∀𝑖, 𝑗, 𝑖′, 𝑗 ′, 𝑖 ≠ 𝑖′ ∨ 𝑗 ≠ 𝑗 ′, then 𝜃 (𝑖)

𝑗
≠ 𝜃

(𝑖′)
𝑗 ′ .

(3) ∀𝑗 < 𝑗 ′, 𝜃 (𝑖)
𝑗

< 𝜃
(𝑖)
𝑗 ′ .

Both bijective and monotonic properties are important conscious
choices in our work to balance (1) the potential of exploiting the

spatial locality via learning an SFC and (2) retaining properties that

facilitate efficient query processing. Violating any constraint breaks

the properties of the mapping function. As an example, consider

𝜃 = [[1, 4], [2, 10]], where the first constraint is violated. Take

𝑓 (𝑥) = 8. There is no point that can be mapped to this z-address,

indicating that the mapping function is injective but not bijective.

In another example, when 𝜃 = [[1, 4], [2, 2]], the second constraint

is not satisfied. Consider data points 𝐴 = (1, 1) and 𝐵 = (1, 2), then
𝑓 (𝐴) = 𝑓 (𝐵) = 3. Therefore, the mapping function is not bijective.

Lastly, when 𝜃 = [[1, 4], [8, 2]], the third constraint is violated.

Given 𝐴 = (1, 1) and 𝐵 = (2, 2), then 𝑓 (𝐴) = 9 > 𝑓 (𝐵) = 6, but

𝐴 ⪯ 𝐵 according to Definition 3. Therefore, the mapping function

is not monotonic.

We note that the Z-order curve is hence a special instance of

the above monotonic SFC. Specifically, it corresponds to 𝜃
(𝑖)
𝑗

=

2
(𝑗−1) ·𝑑+(𝑖−1)

. We also note that computing the above 𝑓 (·) is effi-

cient as 𝑓 (𝑥) can be computed by “scrambling” the bits of 𝑥 accord-

ing to 𝜃 using bit operations efficiently.

As different SFCs induce different linear ordering of the data

points in the dataset, they will result in different query processing

costs for a given workload. This motivates our learning of a good

SFC (detailed in the next Section). Below we provide an example

with visualizations to demonstrate this.

Example 3. In Figure 3, we build and visualize query processing
costs on five indexes based on different linearization methods on the
same dataset and query workload. We generated a set of random

points in a 2D space, and used the two randomly generated queries
(denoted as thick black boxes) as the query workload.

2608

(a) Row-major Order (b) Column-major Order (c) 𝑧-order (i.e., ZM-index)

(d) Learned Grid + Row-major Order (i.e.,

Flood)
(e) Learned Monotonic SFC (i.e., LMSFC)

Figure 3: Visualizing Five SFC-based Indexes (Thick black boxes are queries, and data pages accessed during query processing
are shaded in red)

Figures 3(a) and Figures 3(b) are the usual row-major and column-
major order, respectively. Figure 3(c) uses the 𝑧-order, which results in
the ZM-index. Figure 3(d) is the Flood, which is based on learnable grid
partitioning of the space, and then orders the grids using a row-major
order (with a rearranged dimension order). Finally, Figure 3(e) shows
our proposed method LMSFC, which is based on a learned monotonic
SFC. We shade the data points accesses during the query processing in
red.1 As we can see from Figure 3, learned indexes, i.e., Flood and our
LMSFC, access fewer data points thanks to the learning on the specific
instance.

5 LMSFC INDEX CONSTRUCTION
5.1 Overview

Le
ar

ne
d

In
de

x

 Header point, point, ...76

 Header point, point, ...89

 Header point, point, ...100

 Header point, point, ...128

 Header point, point, ...145

...
...

...
...

-address = 130?

Figure 4: Overview of LMSFC Index Construction

Based on the parameterized SFC family defined in the previous

section, we propose a novel multi-dimensional index, LMSFC, based

on Learned Monotonic Space Filling Curves.

1
For all the methods in the figure, we pack a fixed number of data points into each

page and the shaded area are based on pages whose MBRs overlap with the query

window, hence the seemingly irregular shape of the shaded areas.

We give a high-level sketch of our LMSFC method in Figure 4.

In our method, we first learn a good monotonic SFC, 𝑓 (𝑥 ;𝜃) in
Figure 4, which minimizes the query processing cost of the sampled

query workload. The learned SFC gives us a total order for the multi-

dimensional data points. We then propose both an optimal dynamic

programming-based and a sub-optimal yet faster heuristic paging

algorithm to load data points into pages (the thick red rectangles

in Figure 4). Finally, we extract the smallest 𝑧-addresses from each

page to form a sorted array, and employ a state-of-the-art learned

index (e.g., pgm [8]) on that, which facilitates the lookup from

𝑧-addresses to pages.

In addition, we also include several optimizations to speed up

the query processing. Specifically, we present a novel query split-

ting strategy to minimize the access to spurious pages due to the

dimension reduction effect of the SFC mapping. We also extend the

sort dimension optimization [26] to the page-level granularity.

In the rest of this section, we focus on the three steps (i.e., learn-

ing an optimal SFC, Cost-based Paging and Page-level Sort Di-

mension) in this section and leave the query processing related

techniques to the next Section.

5.2 Learning an Optimal SFC
The goal of learning a parameterized SFC is to find the 𝜃∗ such that

the resulting query processing cost is minimized, i.e., we formulate

this as an optimization problem as:

𝜃∗ = argmin

𝜃

E𝑞∼QJQueryTime (𝐷,𝑞;𝜃)K (2)

where Q represents the distribution of the query workload, 𝑞 is

an i.i.d. sample from the distribution, and 𝑄𝑢𝑒𝑟𝑦𝑇𝑖𝑚𝑒 () function
returns the actual query execution time on the given dataset.

2609

To optimize Equation (2), we can first apply the finite sample

approximation, i.e., by taking sampled queries from Q and replac-

ing the expectation with the sample average. Nevertheless, the

𝑄𝑢𝑒𝑟𝑦𝑇𝑖𝑚𝑒 function is hard to model or approximate accurately as

it includes various complex optimizations. Furthermore, directly

evaluating the 𝑄𝑢𝑒𝑟𝑦𝑇𝑖𝑚𝑒 function incurs exorbitant costs.

Also, note that 𝜃 is a high-dimensional discrete parameter (with

constraints), the number of choices of 𝜃 (and hence 𝑓 (·)) is exponen-
tial both in the dimensionality 𝑑 and in 𝐾 , rendering it impossible

to solve the optimization problem via brute force in practice.

Lemma 1. The number of differentmonotonic SFCs for𝑑-dimensional
space is Ω(𝑑!)𝐾 .

Due to the discrete nature, gradient descent style algorithms,

used in previous learned index work [26], cannot be applied to solve

this optimization problem either. Furthermore, the finite-sample

approximate also introduces a small yet avoidable noise to the

optimization.

In view of the above challenges, we adopt the state-of-the-art

Bayesian optimization algorithm, SMBO [15], to approximately

solve the above optimization problem and return a high-quality

SFC that has a low average query time. SMBO builds a surrogate

model to approximate the relationship between the parameters and

the actual objective function value.

The learning process follows the standard SMBO learning frame-

work. We use the Random Forest model as the surrogate model

instead of the typical Gaussian Process model, which improves the

learning speed and does not rely on the multi-dimensional Gauss-

ian assumption and the choice of the kernel function. One of the

advantages of using a surrogate model is that it is cheap to evalu-

ate while also capturing the approximation noise in the objective

function. Firstly, the surrogate model is built between the initial

candidates and their performance based on the 𝑄𝑢𝑒𝑟𝑦𝑇𝑖𝑚𝑒 evalu-

ation results. We evaluate the objective function by building the

index on sampled datasets to save the evaluation time. By default,

we conservatively use the 5% sampled dataset, which can maintain

both low query time and learning cost. More learning process ex-

periments are presented in Section 7.9. Then, the SMBO algorithm

uses an acquisition function (e.g., the Expected Improvement [15])

computed on the surrogate model to suggest other candidates for

evaluation in the next iteration by automatically balancing exploita-

tion and exploration. The surrogate model gets updated during

each iteration. Finally, we choose the candidate with the least cost

in terms of the objective function.

5.3 Cost-based Paging
In order to accommodate external I/Os and allow for extra optimiza-

tions
2
, we need to perform paging, which partitions the dataset 𝐷

into multiple pages. As usual, we assume that each page has a max-

imum size of 𝐵 bytes and must satisfy a min fill factor constraint

specified by 𝑓 ∈ (0, 1]. 3 That is, the number of bytes used in each

page must be within the range of [𝑓 𝐵, 𝐵] bytes.
Finding optimal paging for multi-dimensional dataset is NP-

hard [38], hence existing multi-dimensional indexing methods usu-

ally perform paging based on some heuristics, e.g., 𝑅-tree and its

2
e.g., optimizations based on the MBR and/or the sort dimension of the pages.

3
Technically, we do allow at most one page to occupy less than 𝑓 𝐵 bytes.

variants used the heuristics to minimize the margin, dead space

and overlap area of the MBRs of the resulting pages [2, 31]. Not

surprisingly, this practice is inherited by multi-dimensional indexes

based on SFCs. For example, RSMI [28] simply loads the maximum

number of points into each page, which we term as fixed-sized
paging.

We observe that paging is important and actually can be solved

optimally for SFC-based multi-dimensional indexes. This is because

we can record the MBRs of the data points within each page and use

the MBR to further optimize the query processing. On one hand, a

page can be skipped if a page’s MBR is disjoint with a query; on the

other hand, if a page’s MBR is contained in a query, we can process

the data points on the page sequentially without other filtering

overhead. In both cases, such optimizations are more likely if the

MBR of a page is small. Default one-dimensional paging methods,

such as the fixed-size paging method, are not aware of the MBR of

the pages and cannot perform active optimizations for it.

Based on the above observations, we design a scoring function

𝑆 (𝑃) that is intuitively the density of a page 𝑃 , or 𝑆 (𝑃) = 𝑣𝑜𝑙 (𝑃)
𝑠𝑖𝑧𝑒 (𝑃) ,

where 𝑣𝑜𝑙 (𝑃) and 𝑠𝑖𝑧𝑒 (𝑃) gives the volume of MBR of the page 𝑃

and the number of data points in the page 𝑃 , respectively.

We then formulate the optimal cost-based paging problem as

finding a paging solution, i.e., a partitioning 𝑃
def

= { 𝑃1, . . . , 𝑃𝑘 (𝑃) }
over 𝐷 (where 𝑘 (𝑃) denotes the number of resulting pages), such

that the total score of the solution 𝑃 is minimized, i.e.,

𝑃∗ = argmin

𝑃

∑︁
𝑗 ∈{ 1,...,𝑘 (𝑃) }

𝑆 (𝑃 𝑗), subject to 𝑠𝑖𝑧𝑒 (𝑃 𝑗) ∈ [𝑓 𝐵, 𝐵]

In the following, we first give an algorithm to solve the above

problem optimally based on Dynamic Programming (DP), and then

give a sub-optimal but fast heuristic paging algorithm. Both meth-

ods achieve a better paging layout than the fixed-sized paging and

hence improve the query performance.

5.3.1 Dynamic Programming Paging Method. Thanks to the SFC

which provides a linear order for the data points, we are able to

circumvent the NP-hardness of the multi-dimensional paging prob-

lem by solving the one-dimensional paging problem optimally via

dynamic programming.

Let𝑂𝑃𝑇 [𝑖] be the optimal cost obtained by an optimal cost-based

paging algorithm for the first 𝑖 data points. Then we can derive the

following recurrent equations:

𝑂𝑃𝑇 [𝑖] = 𝑆 (𝑃𝑎𝑔𝑒 (𝐷 [1 . . 𝑖])) , 𝑖 <
𝑓 𝐵

4𝑑

𝑂𝑃𝑇 [𝑖] = min

𝑠∈ [𝑓 𝐵
4𝑑

, 𝐵
4𝑑

]
(𝑂𝑃𝑇 [𝑖 − 𝑠] + 𝑆 (𝑃𝑎𝑔𝑒 (𝐷 [𝑖 − 𝑠 + 1 . . 𝑖])) , otherwise

where 𝑃𝑎𝑔𝑒 (𝑧) denotes the page formed by a set of points de-

noted as 𝑧 and we assume each integer takes 4 bytes. Obviously,

𝑂𝑃𝑇 [𝑛] gives the cost of the optimal paging for the entire dataset,

and it is easy to use backtracking to report the optimal paging solu-

tion 𝑃∗. The time complexity of the dynamic programming paging

method is 𝑂 (𝑛𝐵
4𝑑

) as the scoring function 𝑆 can be computed in

𝑂 (1) time via incremental computation.

5.3.2 Heuristic Paging Method. Although the DP algorithm is lin-

ear in 𝑛, it is still time-consuming in practice as 𝐵 is typically a

large constant (e.g., 𝐵 = 8192 in our experiment). There, we further

2610

propose a heuristic paging method, which can achieve comparable

query performance and faster construction time compared with the

DP method.

The heuristic algorithm is a greedy packing algorithm, which

packs as many data points into the current page as possible until

some condition is violated. The condition stipulates that the new

MBR (formed by adding the current data point into the page) should

not enlarge the old MBR by more than 𝛼 times (𝛼 > 1 is a hyper-

parameter). This condition reduces the chance that the MBR of the

resulting page becomes too large (with respect to the number of

data points within), where a large MBR may cause much dead space

and increase the chance of intersecting with the queries.

5.4 Page-level Sort Dimension
Following Flood [26], we maintain the points in each page sorted

in a chosen dimension named sort dimension. Unlike Flood where

the sort dimension is fixed for all pages, we allow using different

sort dimensions in different pages, which provides more skipping

opportunities to filter as many irrelevant points as possible when

processing intersecting pages. This is because different sort dimen-

sions may result in various sizes of the search area after refinement.

Thus, we can choose the sort dimension that can achieve the least

search cost for each page. In a similar vein, we utilize the query

workload information to choose the sort dimension for each page

as follows: for each page, we collect the set of intersecting queries

in the query workload. We estimate the query cost using each of

the 𝑑 dimensions as the sorting dimension, and choose the one with

the least query cost. If there are no intersecting queries for a page,

we use a default order, which is determined in the same way as

Flood.
Once we have determined the sort dimension for each page, we

order the data points in the page by increasing order of the sort

dimension. When we need to scan a page, we can first refine the

search range (or physical storage range) according to the corre-

sponding sort dimension. Specifically, given a window query 𝑞, the

range constraint over sort dimension 𝑑∗ is 𝑞 (𝑑
∗)

𝐿
≤ 𝑥 (𝑑

∗) ≤ 𝑞 (𝑑
∗)

𝑈
.

The points in each page are stored contiguously in increasing or-

der of the corresponding sort dimension. Thus, we can use binary

search or a one-dimensional index model to accelerate the search

via finding the lower-bound position of 𝑞
(𝑑∗)
𝐿

and the upper-bound

position of 𝑞
(𝑑∗)
𝑈

in the physical storage range. As a result, points

that do not satisfy the range constraint on the sort dimension are

filtered out, which reduces the scanning overhead.

Besides, sort dimension can also reduce the computation cost

during verification. Once we determine the search range, we can

guarantee the points in this range are satisfied the query’s con-

straint over the sort dimension. Therefore, there is no need to verify

the value on the sort dimension, resulting in saved computation

overhead.

6 QUERY PROCESSING
As alluded to in Section 4, to answer a query 𝑞 using an SFC-based

index, it takes two steps:

(1) Projection: given a spatial query rectangle 𝑞, we determine its

scan range in the 𝑧-addresses as [𝑓 (𝑞𝐿), 𝑓 (𝑞𝑈)] according to

Theorem 1.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

qL

qU

(a) Learned Z-order w/o query splitting

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

qL

U

L

qU

(b) Learned Z-order with query splitting

Figure 5: Example of query partition (black rectangle is a
query window, yellow part only contains relevant points
within the search range, blue part only contains irrelevant
points within the search range)

(2) Scan with filtering: All pages whose 𝑧-addresses fall within

the range need to be scanned. We can locate these pages using

the forward index. Additionally, as we maintain the MBR and

page-specific sort dimension information for each page, we

can perform folklore optimizations such as skipping irrelevant

pages, and scanning only the relevant portion of the page.

The main limitation of the above framework is that it ignores

the potentially large numbers of false positive data points within

the 𝑧-address range due to the SFC mapping.

Example 4. Consider the query (the black rectangle) in Figure 5(a).
The corresponding 𝑧-address range can be decomposed into the blue
parts (false positives) and the yellow parts. Scanning the whole range,
even with filtering, incur much unnecessary overhead in accessing
and filtering pages that contain only false positive points.

This phenomenon was also observed in a few methods such as

UB-Tree [29], and a lazy skipping strategy was used. In this strategy,

instead of scanning all the pages in the 𝑧-address range, it invokes

a skipping function, FindNextZaddress, after scanning the current

page, to compute the next page that contains the first true positive
point with respect to 𝑞. While this strategy is guaranteed to skip all
the false positive pages, it has the following drawbacks: (i) It incurs
significant overhead as this function has to be invoked for every

true positive page. FindNextZaddress, technically, will compute the

next 𝑧-address (which may be virtual and does not correspond to

any data point) after that of the last point in the current page, and

translate it to a page. This will require accessing the forward index.

As we employ a learned index, this incurs a non-trivial overhead

for model estimation and local search. Even if we employ a 𝐵+-tree,
it may require accessing internal or leaf pages of the index. (ii) The

skipping function may only skip very few pages; in fact, in many

cases, it will just return the next page.

Instead, we propose a novel proactive skipping strategy based

on query splitting, which is especially efficient on monotonic SFCs

such as ours. We illustrate its idea in the following example.

Example 5. Consider the same query (the black rectangle) in Fig-
ure 5(a). We can split the query into two parts by cutting it at the
value 8 on the 𝑥-axis, as illustrated in Figure 5(b). We still plot the

2611

false positive parts in blue. It reduces the number of false positive
parts compared with the case without query splitting — e.g., the part
[4, 7] × [12, 15] is eliminated.

6.1 Recursive Query Splitting
We start by introducing a procedure to compute the best way to split

a query into exactly two sub-queries (i.e., optimal 1-split), and then

we generalize it to obtain multiple sub-queries based on recursive

splitting.

Optimal 1-Split Algorithm. Consider a query 𝑞 that corresponds

to a 𝑧-address range [𝑓 (𝑞𝐿), 𝑓 (𝑞𝑈)]. Without loss of generality,

assume that we split at the value 𝑣 on the 𝛿-th dimension. This

will split the query into two sub-queries, with the corresponding

𝑧-address ranges as [𝑓 (𝑞𝐿), 𝑓 (𝑈)] and [𝑓 (𝐿), 𝑓 (𝑞𝑈)], respectively
(See Figure 5(b)). We define the cost of the split as 𝑓 (𝑈) − 𝑓 (𝑞𝐿) +
𝑓 (𝑞𝑈) − 𝑓 (𝐿), or intuitively, the sum of the 𝑧-address ranges of

the two resulting sub-queries. This cost function is chosen as it is

highly correlated with the actual query processing cost after the

split and can be easily computed without accessing the data points.

Then we formulate the optimal 1-split problem as finding the

split (i.e., the dimension and the value) such that the cost of such

split is the minimum.

Or formally,

(𝛿∗, 𝑣∗) = argmin

𝛿∈[1,𝑑],𝑣∈[𝑞 (𝛿)
𝐿
,𝑞

(𝛿)
𝑈

]
𝑓 (𝑈) − 𝑓 (𝑞𝐿) + 𝑓 (𝑞𝑈) − 𝑓 (𝐿)

Note that both𝑈 and 𝐿 are determined by 𝛿 and 𝑣 , but we omit the

notational dependency for the easy of exposition.

As 𝑓 (𝑞𝐿) and 𝑓 (𝑞𝑈) are constants for the fixed query 𝑞, the

above minimization is equivalent to the following maximization

problem, i.e., finding the maximum “gap” between 𝑓 (𝑈) and 𝑓 (𝐿):
argmax

𝛿∈[1,𝑑],𝑣∈[𝑞 (𝛿)
𝐿
,𝑞

(𝛿)
𝑈

]
𝑓 (𝐿) − 𝑓 (𝑈)

Plugging in the definition of 𝑓 (·), it becomes:

argmax

𝛿∈[1,𝑑],𝑣∈[𝑞 (𝛿)
𝐿
,𝑞

(𝛿)
𝑈

]

𝑑∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝜃
(𝑖)
𝑗

· (𝐿 (𝑖)
𝑗

−𝑈 (𝑖)
𝑗

) (3)

For a fixed 𝛿 ∈ [1, 𝑑], we can find the optimal split value 𝑣∗ as:

𝑣∗ = argmax

𝑣∈[𝑞 (𝛿)
𝐿
,𝑞

(𝛿)
𝑈

]

𝐾∑︁
𝑗=1

𝜃
(𝛿)
𝑗

· (𝐿 (𝛿)
𝑗

−𝑈 (𝛿)
𝑗

) +𝐶

= argmax

𝑣∈[𝑞 (𝛿)
𝐿
,𝑞

(𝛿)
𝑈

]

𝐾∑︁
𝑗=1

𝜃
(𝛿)
𝑗

· (𝐿 (𝛿)
𝑗

−𝑈 (𝛿)
𝑗

) (4)

where 𝐶 =

(∑𝑑
𝑖≠𝛿

∑𝐾
𝑗=1 𝜃

(𝑖)
𝑗

· (𝐿 (𝑖)
𝑗

−𝑈 (𝑖)
𝑗

)
)
is a constant.

Lemma 2. A solution to the optimization problem of Equation 4
is (𝑞 (𝛿)

𝑈
>>𝑙)<<𝑙 , where 𝑙 is the most significant bit of 𝑞 (𝛿)

𝐿
⊕ 𝑞 (𝛿)

𝑈
,

where ⊕ denotes XOR.

Therefore, we can solve the optimal 1-split problem by finding

the optimal cut value for each of the 𝑑 dimensions, hence, the

complexity is only 𝑂 (𝑑).
We note that Lemma 2 holds because of the fact that 𝑈 (𝛿) +

1 = 𝑣 = 𝐿 (𝛿) and the fact that 𝜃 𝑗+1 ≥ 2𝜃 𝑗 (derived easily from

the constraints introduced to guarantee the monotonic property).

If the monotonic property does not hold, then one may need to

check every possible 𝑣 value to perform the optimization, hence

taking 𝑂 (∥𝑞𝑈 − 𝑞𝐿 ∥1) time complexity, which means the resulting

procedure may be more expensive for “large” queries.

Example 6. Consider the example in Figure 5(a) again. The query
𝑞 = [4, 11]× [4, 11], and the learned SFC corresponds to the parameter

𝜃 = [[20, 23, 25, 27], [21, 22, 24, 26]]
Hence,𝑞’s 𝑧-address range is [𝑓 (𝑞𝐿), 𝑓 (𝑞𝑈)] = [48, 207]. Our optimal
1-split algorithm will first consider the 𝑥-axis. In this case, the most
significant bit 𝑙 = 3 as (0100)2 ⊕ (1011)2 = (1111)2. Then the 𝑣∗ on
the axis is (1011)2 >> 3 << 3 = (1000)2 = 8, and then the cost of
splitting at 8 on the 𝑥-axis can be calculated.

Recursive Splitting. As one split is often insufficient to reduce the

number of irrelevant pages, we adopt our optimal 1-split algorithm

recursively to divide the query window into multiple parts. In our

implementation, the stopping condition is set as either reaching a

recursion depth of𝑘
maxsplit

or when there is no gap to split.𝑘
maxsplit

is a parameter that can balance the number of index accesses with

the skipping opportunity of disjoint pages. A higher 𝑘
maxsplit

can

effectively filter out disjoint pages but causes more index access

overhead. Conversely, a lower 𝑘
maxsplit

saves the cost on index

access but may not eliminate enough irrelevant pages.

7 EXPERIMENTS
7.1 Experimental Settings
Datasets We use three real-world datasets with different charac-

teristics in our experiments (See Table 2) and they are also used in

the previous work. We preprocess the datasets to scale up all coor-

dinates to integers and remove duplicates. OSM is a spatial dataset

consisting of 250M records randomly sampled from North America

in the OpenStreetMap dataset
4
. We use the GPS coordinates (i.e.,

longitude and latitude) to form a 2D dataset. NYC is randomly

sampled from records of yellow taxi trips in New York City in 2018

and 2019
5
. We used the pick-up locations, trip distances, and total

amounts to form a 3D dataset. STOCK consists of daily historical

stock prices from 1970 to 2018
6
. We select four features: the high

price, the low price, the adjusted close price, and trading volume.

Table 2: Dataset Characteristics

𝑛 (#-of-Points) 𝑑 (#-of-Dimensions) Size (GB)

OSM 250M 2 1.95

NYC 30M 3 0.35

STOCK 30M 4 0.47

Query Workload As the datasets do not come with their query

workloads, we generate the default query workloads as follows.

A query is parameterized by its center and its range in every

dimension. We generate query centers in one of the two modes:

4
https://download.geofabrik.de/

5
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

6
https://www.kaggle.com/ehallmar/daily-historical-stock-prices-1970-2018

2612

https://download.geofabrik.de/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.kaggle.com/ehallmar/daily-historical-stock-prices-1970-2018

(i) Skewed, in which query centers are randomly sampled data

points. (ii) Uniform, in which query centers are randomly sampled

within the data space. The width of the queries in each dimension

is uniformly sampled from zero to the width of the data space of

that dimension scaled by 0.05. All query windows are clipped to be

within the data space.

Following [36], the final query workload is obtained by mixing

90% of the skewed queries with 10% uniform queries. The resulting

selectivities for the three datasets are about 0.7%, 0.07%, 0.01%,

respectively. For each dataset, we generate a training and a test

query workload of sizes 1000 independently. All queries use the

COUNT aggregate function, i.e., reporting the number of data points

within the query window.

Algorithms We compare our proposed LMSFC with the follow-

ing algorithms:

• ZM-index [35] combines the fixed 𝑧-order curve and learned

index, together with the fixed-size paging.

• 𝑅∗-tree [2] is a traditional and widely-used multi-dimensional

index. We use the implement 𝑅∗-tree in the Boost C++ Libraries

(https://www.boost.org).

• Flood [26] is another state-of-the-art learned index for multi-

dimensional data, which learns an optimal configuration of multi-

dimensional grids for a given data and query workload. It can be

approximately viewed as a variable-size SFC that follows row-

major order for an appropriate permutation of the 𝑑 dimensions.

We adapt the Flood method with fixed-size paging for a fair

comparison.

We note that these algorithms represent prior state-of-the-art in-

dexes in different categories. For example, Flood has outperformed

other multi-dimensional indexes, such as Grid File [27], kd-tree [3],

UB-tree [29] and Hyperoctree [24], in their experimental evaluation.

We do not consider other learnedmulti-dimensional indexes such as

LISA[22] , RSMI[28], as the original codes have various limitations

or did not achieve competitive performance in our experiments.

[30] is another related work, which learns a quadtree and ap-

plies a 𝑧-order variant on each node to adapt query workload. One

difference is that LMSFC learns the mapping between data points

and addresses, so we can directly locate the search range rather

than traversing a tree structure. In addition, we use a BO algorithm

to learn better ordering. Another difference is that we directly use

the actual query time as the metric rather than the number of false

positive points used in [30]. Since the performance of [30] is even

worse than the baseline model (i.e., ZM-index), we do not include

it in our experiment.

We experimented with Tsunami[6] but did not report its perfor-

mance here, because its splitting algorithm does not result in any

split in any dimension on our query workloads
7
, in which case,

Tsunami’s performance degrades to that of Flood.
We use C++ to implement all the methods. To compare these

methods fairly, we run all the experiments either in the in-memory

mode (for those that do not support external I/O) or in the warm

buffer mode (for those that support external I/O). The page size

is set to 𝐵 = 8192 bytes, and the min fill factor 𝑓 = 0.25. For the

one-dimensional space mapped from all SFCs (𝑧-order or learned

SFCs), we use 64 bits, and 𝐾 =
⌊
64

𝑑

⌋
. And we empirically choose

7
The skewness of our workload is based on data distribution while Tsunami is not.

𝑘
maxsplit

= 4 in recursive query splitting. For more details on the

implementation of the proposed algorithms, please refer to the

extended version of this paper
8
, which includes the relevant pseudo-

code and experiments for data updates.

For learned indexes, we use the PGM [8] as a one-dimensional

learned index since PGM achieves the competitive range query

performance in the static dataset and is easily embedded in the dif-

ferent learned multi-dimensional indexes. The error bound in PGM

is empirically set to 128, which is robust for different configurations

and datasets.

All the experiments are performed on a machine with i9-7900X

CPU @ 3.30GHz and 64 GB main memory running Ubuntu 20.04.4.

7.2 Query Performance

Figure 6: Query Performance

In this section, we compare LMSFC with a traditional multi-

dimensional index and other learned multi-dimensional indexes for

multi-dimensional range queries.

Figure 6 reports the query time for different indexes on each

dataset. LMSFC outperforms all other indexes across all the datasets.

LMSFC achieves between 1.52× and 1.96× speedup on query time

compared with the runner-up. The main advantage of LMSFC over

the baseline (i.e., the Z-order curve) is that the learned SFC preserves

multi-dimensional locality better after the mapping into the one-

dimension address space. Consequently, close-by points in themulti-

dimensional space are more likely assigned into the same page.

This leads to pages with smaller/compact MBRs, hence fewer page

accesses when answering range queries. We note that LMSFC is

much faster than the ZM-index, achieving 3.8× speedup on the

OSM dataset. This demonstrates the huge potential of a learned

SFC versus a fixed SFC as this is the key difference between the two

indexes. All learned multi-dimensional indexes are significantly

superior to the traditional multi-dimensional index 𝑅∗-tree. This
confirms that there is a need to incorporate ML-based methods into

database components to improve the performance.

In addition, we further investigate false positive (FP) records

scanned by each index. In OSM dataset, the number of scanned FP

points by 𝑅∗-tree, ZM-index, Flood and LMSFC are 60940, 72291,

25947, and 19067 separately per query. ZM-index scans more FP

points than 𝑅∗-tree since 𝑅∗-tree utilizes a heuristic method to

achieve good clustering during packing. By using a query workload

as prior knowledge, Flood and LMSFC can adapt their structures to

8
https://arxiv.org/abs/2304.12635

2613

https://www.boost.org

access fewer FP points. Besides, LMSFC applies page optimizations

to further reduce FP points. Thus, LMSFC achieves the smallest

number of false positive points being scanned. In the other two

higher dimensional datasets, LMSFC shows superiority in this met-

ric, which are 17.4× and 11.1× less than 𝑅∗-tree, 3.8× and 5.0× less

than Flood, and 10.1× and 6.4× less than ZM-index. This is because
data points are sparse in the higher dimensional data space, result-

ing in poor clustering during paging. Thus, paging optimization

needs to be considered in multi-dimensional indexes.

7.3 Selectivity

Figure 7: Varying Query Se-
lectivity

Figure 8: Varying Dataset
Size

Next, we study the performances of all the methods with respect

to query selectivity. We vary the selectivity from 0.0001% to 1% by

uniformly scaling the query windows accordingly.

Figure 7 shows the result on the OSM dataset (and similar results

are present in other datasets), where both axes are in logarithmic

scales. For all the methods, the query times grow approximately

linearly with the query selectivity since more data points are ac-

cessed. We notice a deterioration with the 𝑅∗-tree when the query

selectivity becomes large; this may be due to the fact that when

the query window grows, it is more likely to intersect with more

pages, and hence more page access and backtracking.

Conceptually, learned indexes only need to scan pages within

a certain 𝑧-address range, and there is no complex intersecting

MBR test or back-tracking. However, 𝑅-tree and its variants need

to perform more complex MBR intersection queries per inner node

and may result in many back-tracking (esp., for higher dimensional

cases).

ZM-index achieves similar performance with 𝑅∗-tree, but per-
forms consistently across the selectivity range. Flood has a sig-

nificant improvement consistently over ZM-index, while LMSFC

further improves the query performance consistently, demonstrat-

ing the wide applicability of learned indexes.

7.4 Dataset Scalability
To investigate the scalability, we sub-sample the OSM dataset to

create datasets of the same distribution but with varying sizes.

Figure 8 shows the result, where both axes are in logarithmic scales.

We can see that all the indexes scale approximately linearly with

the data size, whereas LMSFC performs the best, followed by Flood,
ZM-index, and finally 𝑅∗-tree. We also investigated the reason why

Flood behaves noticeably worse than expected for 10M data points.

It is partly due to the sub-optimal configuration it learned from the

sampled dataset. If we allow Flood to learn from, e.g., 30% of the

dataset, the resulting performance matches the approximate linear

trend much more closely.

7.5 Aspect Ratio
We investigate how the performance varies with the aspect ratio

of the query window. We fix the selectivity to be 1% and then vary

the aspect ratio from 0.125 to 8.0. The aspect ratio is defined as

the ratio of the width of two dimensions of the query window. For

datasets of more than 2D (i.e., NYC and STOCK), we randomly

select one dimension, called variable dimension, for a given dataset

to enforce the aspect ratio. We then start with a query window of

equal size on all dimensions, and then modify the length of the

variable dimension to satisfy the ratio constraint. Finally, with the

aspect ratio fixed, we scale the query window to enforce the same

selectivity. For example, the three sides of a 3D query window with

ratio of 4 and 0.25 will have a side length ratio of 4:1:1 and 0.25:1:1,

respectively, assuming the first dimension is the variable dimension.

As shown in Figure 9, LMSFC offers the fastest query speed

among all the indexes. The two learned indexes, LMSFC and Flood
show much more stable performance than the other two non-

learned indexes, demonstrating that learned indexes can adapt

well to the query workload to achieve consistent and superior per-

formance. Furthermore, we notice that LMSFC outperforms Flood
across all settings, especially in the STOCK dataset, which is partly

due to the fact that Flood has to learn a (𝑑 − 1)-dimensional grid,

which is harder for larger 𝑑 . Finally, we notice that there are cases

where non-learned indexes behave significantly worse even for

“symmetric” aspect ratios. E.g., on the NYC dataset, 𝑅∗-tree’s per-
formance is almost 3x at aspect ratio of 8.0 as compared with that

at aspect ratio of
1

8.0 , demonstrating the need for learned indexes

for multi-dimensional datasets.

7.6 Ablation Study
In this section, we investigate the impact of different optimization

components in LMSFC on the performance by performing ablation

studies.

We compared the following variants of the proposed method:

• ZM-index. This baseline uses the fixed 𝑧-order curve with a

learned index, with fixed-size paging.

• LO. We replace the 𝑧-order in ZM-index by our learned SFC.

• LO + C1. On top of LO, we add the sort dimension optimization

(SD).

• LO +C2. On top of LO +C1, we add the Recursive Query Splitting
(RQS) optimization.

• LMSFC. This is our proposed method, which has Dynamic Pro-

gramming Paging (DP) optimization added to LO + C2.

Figure 10 illustrates that adding more components can consis-

tently and continuously improve the baseline model. Across all

datasets, learned 𝑧-order (LO) almost achieves the biggest improve-

ment on ZM-index. This is because learned 𝑧-order has the ability
to adapt given query workload via optimizing.

We notice that LO + C1 and LO + C2 cannot improve too much

on STOCK dataset since the multi-dimensional data is too sparse

in the higher dimensionality dataset. As they still use fixed-size

paging, points in each page are more scattered and thus form a

much larger MBR. As a result, sort dimension optimization cannot

2614

(a) OSM (b) NYC (c) STOCK

Figure 9: Different Aspect Ratio

Figure 10: Ablation Study

skip too many points and more pages intersect with the query

window. Note that LMSFC replaces the fixed-size paging with DP-

based paging, and the above issue is alleviated, hence the noticeable

performance improvement.

7.7 Query Splitting

Table 3: Recursive Query Splitting (RQS) vs FindNextZad-
dress (FNZ)

Model Index Accesses Avg Query Time (𝜇𝑠)

ZM-index + RQS 18 306

ZM-index + FNZ 1807 380

LMSFC + RQS 19 109

LMSFC + FNZ 1927 206

We investigate the impact of different query splitting strate-

gies. Existing Z-order-based indexes either do not use any query

splitting [26, 35] or use the query splitting method via repeated

invocation of the FindNextZaddress (FNZ) function first proposed

in [34] and had been used in UB-tree [29]. We name the recursive

query splitting method in our proposal as the RQS.
We experiment with the two splitting strategies on both ZM-

index and LMSFC and show the results in Table 3, where “index

accesses” record the average number of times the forward index is

accessed to perform the 𝑧-address to page lookup (See explanation

in Section 6). We can see that our RQS outperforms FNZ and the

improvement is especially significant for LMSFC. This is mainly

because FNZ is invoked for every page that intersects the query

and hence causes great overhead.

Table 4: Effect of different 𝑘maxsplit

𝑘
maxsplit

Avg Irrelevant Pages Avg Query Time (𝜇𝑠)

0 16991 150

1 7531 126

2 4359 117

3 2478 112

4 1288 109

5 523 113

We further investigate the effects on different 𝑘
maxsplit

. Table 4

shows we can achieve the best average query performance when

𝑘
maxsplit

= 4. Although larger 𝑘
maxsplit

can avoid scanning consid-

erable irrelevant pages, the query performance slightly degrades.

This is because the query window has been divided into too many

parts, which significantly increases the overhead on accessing the

learned index.

7.8 Paging Methods

Table 5: Comparing Different Paging Methods (FP, HP, and
DP stands for fixed-size paging heuristic paging and dynamic
programming paging, respectively)

Model Avg Query Time (𝜇𝑠) Index Size (MB)

ZM-index + FP 419 6.8

ZM-index + HP 330 8.5

ZM-index + DP 309 8.8

LMSFC + FP 150 6.8

LMSFC + HP 116 7.4

LMSFC + DP 109 7.7

We investigate different pagingmethods on the OSM dataset, and

the results are shown in Table 5. For both ZM-index and LMSFC,

DP paging shows the best query performance since DP can mini-

mize our score function, which intuitively corresponds to relatively

densely packed pages. This helps to reduce the dead space within

2615

the page as well as decrease the probability of overlapping with the

queries. Note that HP is only slightly worse than DP, but typically

with much faster packing time (e.g., 35 seconds for HP versus 546

seconds for DP).

7.9 Index Learning Process

Figure 11: Varying Dataset
Size

Figure 12: Varying Work-
load Size

Learning a good SFC using the entire dataset and query work-

load is infeasible due to the prohibitively long time on sorting the

dataset according to the given SFC. Thus, we use sampled datasets

and workloads in the learning process, which can significantly re-

duce the learning cost without significantly degrading the query

performance. Figure 11 and Figure 12 illustrate the learning cost and

query performance on OSM (other datasets show a similar trend)

via varying different sample dataset sizes and query workloads

sizes over several trials (minimal and maximum result is shaded).

In Figure 11, when we sample a small portion of the dataset, the

performance has a large variance. Although a larger sample rate

can achieve better performance, the learning process is quite long.

Thus, adopting a 2.5%-7.5% sampled rate is good enough to maintain

both fast query time and low learning cost. Even if we reduce the

sample rate to 0.5%, we can still achieve better performance than

Flood but incur only half the learning time.

Based on the 5% sampled dataset, we conduct the experiment on

varying query workload sizes to observe whether a large workload

size can achieve better query performance. The results are displayed

in Figure 12.When aworkload size is larger than 500, we can achieve

robust performance.

7.10 Index Size and Index Construction
Table 6: Index Size (MB)

OSM NYC STOCK

𝑅∗-tree 26.7 9.8 8.9

Flood 0.9 0.2 0.4

ZM-index 6.8 1.6 2.6

LMSFC 7.7 2.0 4.4

In Table 6, we report the index sizes for the three datasets. All

the index sizes are small relative to the respective data size. Our

proposed LMSFC has a larger index size than ZM-index or Flood
partly because we have optimized page layouts so that pages are

not fully filled. Nonetheless, our index size is still acceptable as it is

still significantly smaller than the traditional 𝑅∗-tree.
We present the index construction times in Table 7. For learned

indexes, we further distinguish the learning time and the index

building time. 𝑅∗-tree suffers from high index construction time in

Table 7: Index Learning and Construction Times (Seconds)

OSM NYC STOCK

𝑅∗-tree 9651 708 864

ZM-index 35 5 5

Flood Learning 73 121 431

Flood Building 44 6 10

LMSFC Learning 1821 672 879

LMSFC Building 546 87 117

the large dataset because its construction requires optimizing some

criteria (e.g., dead space, margin, the overlap between two pages’

MBR) for each page. ZM-index has the fastest construction time

as there is no learning or optimization involved. Flood has faster

learning and building times than LMSFC, because (i) Flood’s model

is simpler in that the hyper-parameter space is much smaller than

ours. In addition, it also optimizes against a learned cost model,

hence the hyper-parameter search is faster. (ii) Our LMSFC also

includes other optimizations (such as dynamic programming-based

paging), hence affecting the index building time. Nonetheless, the

index construction is done once for a dataset.

Similar to Flood, if we can collect the training examples from

history, we can train an offline cost model to select the learned

SFC with low overhead. We use history instances as training ex-

amples to fit a neural network then we freeze the parameters of

the model. During learning SFC, we can utilize gradient descent to

directly adjust the input to find the optimum. Consequently, the

learning process only takes a few minutes and the performance is

competitive with the proposed BO algorithm.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we study the problem of learned indexes for multi-

dimensional data based on learned space-filling curves. We devised

a framework of learning a special class of space-filling curves that

is amenable to efficient query processing. In addition, we perform

both offline and online optimizations by optimizing the data place-

ment into pages and query splitting to further improve the query

processing efficiency. Extensive experimental results demonstrate

that the proposed method outperforms both non-learned indexes

(such as 𝑅∗-tree) and prior state-of-the-art learned multi-dimen-

sional indexes (such as ZM-index and Flood) across a wide range
of settings on three real-world datasets.

Although we focus on learned monotonic SFCs in this paper, our

idea and methods can be easily generalized to obtain learned non-

monotonic SFCs. For example, by dropping the constraints on 𝜃 ,

our method can learn a non-monotonic SFC. For another example,

we can consider other parameterized SFC families that generalize

other well-known SFCs, such as the Hilbert Curve. We leave such

exploration for future work.

ACKNOWLEDGMENTS
Wei Wang was supported by HKUST(GZ) Grant G0101000028,

GZU-HKUST Joint Research Collaboration Grant GZU22EG04, and

Guangzhou Municipal Science and Technology Project (No. 2023A0

3J0003). Xin Cao was supported by ARC DP230101534.

2616

REFERENCES
[1] Abdullah-Al-Mamun, Ch. Md. Rakin Haider, Jianguo Wang, and Walid G. Aref.

2022. The “AI+R”-tree: An Instance-optimized R-tree. In MDM.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles. In SIGMOD. ACM, 322–331. https://doi.org/10.1145/93597.98741

[3] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-

ciative Searching. Commun. ACM 18, 9 (1975), 509–517. http://doi.acm.org/10.1

145/361002.361007

[4] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:

A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor

Queries. In EDBT. OpenProceedings.org, 407–410. https://doi.org/10.5441/002/

edbt.2020.44

[5] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In SIGMOD. ACM, 969–984. https://doi.org/10.1145/3318464.3389711

[6] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.

Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed

Workloads. VLDB 14, 2 (2020), 74–86. http://www.vldb.org/pvldb/vol14/p74-

ding.pdf

[7] Yihe Dong, Piotr Indyk, Ilya P. Razenshteyn, and Tal Wagner. 2020. Learning

Space Partitions for Nearest Neighbor Search. In ICLR. OpenReview.net. https:

//openreview.net/forum?id=rkenmREFDr

[8] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic

compressed learned index with provable worst-case bounds. VLDB 13, 8 (2020),

1162–1175. http://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf

[9] Raphael A Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for

retrieval on composite keys. Acta informatica 4, 1 (1974), 1–9.
[10] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD. ACM,

1189–1206.

[11] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, Zheng Wang, and Sheng Wang.

[n.d.]. The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data.

([n. d.]). https://arxiv.org/abs/2103.04541

[12] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-

ing. In SIGMOD. ACM, 47–57. https://doi.org/10.1145/602259.602266

[13] Ali Hadian, Ankit Kumar, and Thomas Heinis. 2020. Hands-off Model Integration

in Spatial Index Structures (AIDB@VLDB).
[14] David Hilbert and David Hilbert. 1935. Über die stetige Abbildung einer Linie

auf ein Flächenstück. Dritter Band: Analysis· Grundlagen der Mathematik· Physik
Verschiedenes: Nebst Einer Lebensgeschichte (1935), 1–2.

[15] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-

Based Optimization for General Algorithm Configuration. In LION (Lecture Notes
in Computer Science), Vol. 6683. Springer, 507–523. https://doi.org/10.1007/978-

3-642-25566-3_40

[16] Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-tree

using Fractals. In VLDB. Morgan Kaufmann, 500–509. http://www.vldb.org/con

f/1994/P500.PDF

[17] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. [n.d.]. SOSD: A Benchmark for Learned

Indexes. ([n. d.]). http://arxiv.org/abs/1911.13014

[18] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned

index. In aiDM@SIGMOD. ACM. https://doi.org/10.1145/3401071.3401659

[19] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. ACM, 489–504. https:

//doi.org/10.1145/3183713.3196909

[20] Jonathan K. Lawder and Peter J. H. King. 2001. Querying Multi-dimensional

Data Indexed Using the Hilbert Space-filling Curve. SIGMOD 30, 1 (2001), 19–24.

https://doi.org/10.1145/373626.373678

[21] Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W. Tsang, and Xuemin Lin.

2020. I/O Efficient Approximate Nearest Neighbour Search based on Learned

Functions. In ICDE. IEEE, 289–300. https://doi.org/10.1109/ICDE48307.2020.000

32

[22] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A

Learned Index Structure for Spatial Data. In SIGMOD. ACM, 2119–2133. https:

//doi.org/10.1145/3318464.3389703

[23] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned

Indexes. VLDB 14, 1 (2020), 1–13. https://doi.org/10.14778/3421424.3421425

[24] Donald Meagher. [n.d.]. Octree encoding: a new technique for the representation,

manipulation and display of arbitrary 3-D objects by computer. Technical Report
([n. d.]).

[25] Guy M Morton. 1966. A computer oriented geodetic data base and a new tech-

nique in file sequencing. (1966).

[26] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.

Learning Multi-Dimensional Indexes. In SIGMOD. ACM, 985–1000. https:

//doi.org/10.1145/3318464.3380579

[27] Jürg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. 1984. The Grid File:

An Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst. 9,
1 (1984), 38–71. https://doi.org/10.1145/348.318586

[28] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively

Learning Spatial Indices. VLDB 13, 11 (2020), 2341–2354. http://www.vldb.org/p

vldb/vol13/p2341-qi.pdf

[29] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and

Rudolf Bayer. 2000. Integrating the UB-Tree into a Database System Kernel. In

VLDB. 263–272. http://www.vldb.org/conf/2000/P263.pdf

[30] Yanhao Wang Sachith Gopalakrishna Pai, Michael Mathioudakis. 2022. Towards

an Instance-Optimal Z-Index (AIDB@VLDB).
[31] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree:

A Dynamic Index for Multi-Dimensional Objects. In VLDB. Morgan Kaufmann,

507–518. http://www.vldb.org/conf/1987/P507.PDF

[32] Darius Sidlauskas, Sean Chester, Eleni Tzirita Zacharatou, and Anastasia Aila-

maki. 2018. Improving Spatial Data Processing by Clipping Minimum Bounding

Boxes. In ICDE. IEEE Computer Society, 425–436. https://doi.org/10.1109/ICDE

.2018.00046

[33] Yao Tian, Tingyun Yan, Xi Zhao, Kai Huang, and Xiaofang Zhou. 2022. A Learned

Index for Exact Similarity Search in Metric Spaces. CoRR abs/2204.10028 (2022).

https://doi.org/10.48550/arXiv.2204.10028

[34] Herbert Tropf and Helmut Herzog. 1981. Multidimensional Range Search in

Dynamically Balanced Trees. ANGEWANDTE INFO. 2 (1981), 71–77.
[35] HaixinWang, Xiaoyi Fu, Jianliang Xu, andHua Lu. 2019. Learned Index for Spatial

Queries. In MDM. IEEE, 569–574. https://doi.org/10.1109/MDM.2019.00121

[36] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.

2021. Are We Ready For Learned Cardinality Estimation? VLDB 14, 9 (2021),

1640–1654. http://www.vldb.org/pvldb/vol14/p1640-wang.pdf

[37] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao

Xing. 2021. Updatable Learned Index with Precise Positions. VLDB 14, 8 (2021),

1276–1288. http://www.vldb.org/pvldb/vol14/p1276-wu.pdf

[38] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,

Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.

2020. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD. ACM,

193–208. https://doi.org/10.1145/3318464.3389770

[39] Songnian Zhang, Suprio Ray, Rongxing Lu, and Yandong Zheng. 2021. SPRIG:

A Learned Spatial Index for Range and kNN Queries. In SSTD. ACM, 96–105.

https://doi.org/10.1145/3469830.3470892

2617

https://doi.org/10.1145/93597.98741
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
https://doi.org/10.5441/002/edbt.2020.44
https://doi.org/10.5441/002/edbt.2020.44
https://doi.org/10.1145/3318464.3389711
http://www.vldb.org/pvldb/vol14/p74-ding.pdf
http://www.vldb.org/pvldb/vol14/p74-ding.pdf
https://openreview.net/forum?id=rkenmREFDr
https://openreview.net/forum?id=rkenmREFDr
http://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf
https://arxiv.org/abs/2103.04541
https://doi.org/10.1145/602259.602266
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
http://www.vldb.org/conf/1994/P500.PDF
http://www.vldb.org/conf/1994/P500.PDF
http://arxiv.org/abs/1911.13014
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/373626.373678
https://doi.org/10.1109/ICDE48307.2020.00032
https://doi.org/10.1109/ICDE48307.2020.00032
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/348.318586
http://www.vldb.org/pvldb/vol13/p2341-qi.pdf
http://www.vldb.org/pvldb/vol13/p2341-qi.pdf
http://www.vldb.org/conf/2000/P263.pdf
http://www.vldb.org/conf/1987/P507.PDF
https://doi.org/10.1109/ICDE.2018.00046
https://doi.org/10.1109/ICDE.2018.00046
https://doi.org/10.48550/arXiv.2204.10028
https://doi.org/10.1109/MDM.2019.00121
http://www.vldb.org/pvldb/vol14/p1640-wang.pdf
http://www.vldb.org/pvldb/vol14/p1276-wu.pdf
https://doi.org/10.1145/3318464.3389770
https://doi.org/10.1145/3469830.3470892

	Abstract
	1 Introduction
	2 preliminaries
	2.1 Problem Definition
	2.2 Notations

	3 Related Work
	4 A Framework for Learned SFCs
	4.1 Window Query Processing with SFCs
	4.2 Monotonic Space-Filling Curves
	4.3 Parameterized Z-Order SFCs

	5 LMSFC Index Construction
	5.1 Overview
	5.2 Learning an Optimal SFC
	5.3 Cost-based Paging
	5.4 Page-level Sort Dimension

	6 Query Processing
	6.1 Recursive Query Splitting

	7 Experiments
	7.1 Experimental Settings
	7.2 Query Performance
	7.3 Selectivity
	7.4 Dataset Scalability
	7.5 Aspect Ratio
	7.6 Ablation Study
	7.7 Query Splitting
	7.8 Paging Methods
	7.9 Index Learning Process
	7.10 Index Size and Index Construction

	8 conclusions and Future Work
	Acknowledgments
	References

