CommunityAF: An Example-based Community Search Method
via Autoregressive Flow

Jiazun Chen
National Key Laboratory for
Multimedia Information Processing,
School of Computer Science, Peking
University, Beijing, China
chenjiazun@stu.pku.edu.cn

ABSTRACT

Example-based community search utilizes hidden patterns of given
examples rather than explicit rules, reducing users’ burden and
enhancing flexibility. However, existing works face challenges such
as low scalability, high training cost, and improper termination
during the search. Aiming at tackling all these issues, this paper
proposes a community search framework named CommunityAF
with three well-designed components. The first is a GNN (graph
neural network) component that combines community-aware struc-
ture features to incrementally learn node embeddings over a large
graph for the other two components. The second is an autoregres-
sive flow-based generation component designed for fast training
and model stability. The third is a scoring component that evalu-
ates the communities and provides scores for a stable termination.
Moreover, to show that CommunityAF has the sufficient expressive
power to cover the rules, we demonstrate that the scoring com-
ponent with node features weighted by degree-related factors is
able to mimic the existing structure-based community metrics. We
introduce a square ranking loss to guide the training of the scor-
ing component, and further devise a flexible termination strategy
based on the inferred score change pattern over a sequence of can-
didate communities using beam search. We compare CommunityAF
with four different categories of community search methods on
six real-world datasets. The results illustrate that CommunityAF
outperforms these community search methods, and achieves an av-
erage 15.3% improvement in effectiveness and 4x to 20x speedups on
different datasets relative to the state-of-the-art generative method.

PVLDB Reference Format:

Jiazun Chen, Yikuan Xia, and Jun Gao . CommunityAF: An Example-based
Community Search Method via Autoregressive Flow

. PVLDB, 16(10): 2565 - 2577, 2023.

doi:10.14778/3603581.3603595

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/JiazunChen/CommunityAF.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:10.14778/3603581.3603595

Yikuan Xia
National Key Laboratory for
Multimedia Information Processing,
School of Computer Science, Peking
University, Beijing, China
wfl00014@pku.edu.cn

2565

Jun Gao
National Key Laboratory for
Multimedia Information Processing,
School of Computer Science, Peking
University, Beijing, China
gaojun@pku.edu.cn

-~ Example ™
o P!

Train

‘ CommunityAF

‘ Inference

Query
(]

DM.Rap

DM Rap

Figure 1: Example-based Community Search.

1 INTRODUCTION

Given a query node (seed) in an underlying graph, community
search [11] discovers a subgraph that contains the query node
and satisfies requirements in terms of structure and content fea-
tures. Usually, the nodes in the discovered community share similar
content features and cohesive structural relationships. Thus, the
discovered community can support various tasks such as recom-
mendation [47], personal background discovery [6], anomaly de-
tection [48], etc. In contrast to community detection [25], which ex-
pects to identify all potential communities, community search [11]
focuses on subgraphs around the query node, which greatly reduces
computational overhead and improves the quality of discovered
communities.

Community search faces one fundamental issue of how to ex-
press the community, despite significant progress achieved [2, 11,
16, 17, 25, 35]. Numerous communities exist in a graph with vary-
ing shapes, and end users search them for various purposes across
multiple applications. It is difficult to flexibly find communities
through explicit rules such as k-core [35], k-truss [16], k-clique
[9], or implicit node scores such as personalized PageRank scores
[1, 23]. Nonetheless, when end users find that the searched commu-
nity cannot meet their specific requirements, they will be confused
about whether there exist valid rules and parameters (such as k) in
rule-based methods that suit their needs.

An example-based approach is promising to deal with the afore-
mentioned key issue. That is, end users want to find some new
communities via a limited number of examples, which guide the

https://doi.org/10.14778/3603581.3603595
https://github.com/JiazunChen/CommunityAF
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603595
https://www.acm.org/publications/policies/artifact-review-and-badging-current

following community search to achieve the goal of what-you-see-is-
what-you-get. In addition, end users can easily refine the searched
community if needed by adjusting the examples. Figure 1 demon-
strates an example-based community search from a toy graph. An
end user specifies a community example (white circle) whose topic
is related to database research. The keywords below the nodes
represent their content features. It is observed that there are two
communities around the query node, an academic-related commu-
nity (red circle) as well as a music-related community (gray circle).
It is better to provide the end user with an academic community
that is more similar to the community example.

Compared with the general community search methods, the
example-based methods first need to capture the hidden patterns
among the examples. With the advances in deep learning, it is nat-
ural and feasible to learn the hidden patterns [2, 19, 48] in terms
of structural/content features of given examples, and the learned
hidden patterns should be precise as there are a massive number of
different candidate communities. At the same time, the example-
based methods should support sufficient scalability, as the under-
lying graph may be large, while the deep learning methods are
usually costly. Moreover, we expect the algorithm to be stable and
avoid issues like mode collapse [13]. The termination of community
generation is another key issue that seriously impacts the quality
of discovered communities. The existing fixed stop criteria [12, 19]
are obviously not flexible.

There are two types of learning approaches for example-based
community search, classified according to the granularity of exam-
ples. ICS-GNN and QD-GNN [12, 19] belong to a class of works that
handle node-level examples. They require two steps for community
generation. First, a binary classification model is built to predict
each node’s probability of belonging to the community according
to the given examples. Second, a rule-based method runs on nodes
with probabilities to generate the community, with goals such as
maximizing the average probabilities of selected nodes. Despite
being efficiently implementable, node-level examples fail to provide
patterns that are characteristic of the community. As an example,
ICS-GNN has to assume that the community is fixed in size and
highly connected in the second phase. These limitations damage
the quality of searched communities.

The other class of approaches attempts to capture patterns di-
rectly from community-level examples. They usually recast the
community search as a generative problem, including a task to
produce the candidate community and a task to evaluate it. One
of the representative works is SEAL [48]. SEAL learns the node
representation using GNN and follows the GAN (Generative Ad-
versarial Network) schema, which contains a generator producing
the community node by node based on learned node embedding,
and a discriminator to distinguish between the generated and given
community examples. By training alternately, its generator is able
to generate communities that are difficult for its discriminator to
distinguish. In other words, the hidden pattern of the community
examples can be captured precisely.

However, the GAN-based approach, such as SEAL, has limi-
tations in the context of community search, as shown in Table 1.
Firstly, many works show that GAN-based methods suffer from high
training cost, model instability, and even mode collapse [4, 24, 32].
These issues prevent SEAL from fully learning about the example

2566

Table 1: Comparison with example-based community search.

Characteristics QD-GNN SEAL GraphAF Ours
Community-Level X v v v
Scalability X v X v
Fast Training v X v v
Flexible Termination | X X X v

community patterns and cause it to fall into a single community
pattern. Secondly, SEAL adds a virtual node into the graph, and
stops generating groups once the virtual node is selected. The un-
smooth generation process introduced by virtual nodes also affects
the quality of the generated community.

We are interested in whether other kinds of generative models
have the potential to meet all requirements, as the generative model
can capture community-level patterns, but the GAN-based method
has its inherent limitations. We find that autoregressive flows,
another kind of generative model, have been studied in various
tasks, including audio [29], image [28], and molecular graph gener-
ation [33]. The directly related work on graph fields, GraphAF [33],
attempts to generate valid molecular graphs from scratch. It follows
the autoregressive framework, and trains a series of invertible trans-
formations between the probability density of the molecular graphs
and a base distribution, which finally supports molecular graph
generation by sampling within the base distribution. As shown in
Table 1, GraphAF can be trained in an efficient and stable way. How-
ever, GraphAF only produces a small, entirely new graph, and does
not consider the large underlying graph. In addition, GraphAF de-
termines the termination of graph generation using chemical bond
rules, which are not suitable either in the context of community
search.

Inspired by existing works, this paper designs an example-based
community search method aiming to meet all these requirements.
The basic ideas of our method are as follows. For the issue of scala-
bility, we mainly borrow and extend the idea of SEAL, and deliber-
ately employ different strategies in node representation learning
and generative model training. We choose an incremental GNN
in the large underlying graph for processing node representations
with community-aware structure features. The subsequent expen-
sive community generation only handles very limited community-
related data. For the issue of fast training, we choose the autore-
gressive flow model to locate communities in a large graph. The
autoregressive flow model can be trained in parallel and is easier to
converge compared with the GAN-based method [48]. For the issue
of flexible termination, we plan to introduce a more fine-grained
scoring task to measure the currently generated communities. Intu-
itively, the quality of the generated community should first increase
and then decline as nodes are added. Such change patterns can be
captured in a sequence of generated communities, and further help
to design a flexible and smooth termination strategy.

The contributions can be summarized as follows: (1) This pa-
per proposes a community generation framework named Commu-
nityAF, aiming to tackle the above requirements. Specifically, a GNN
component combines community-aware structure features to learn
node embeddings over a large graph, which requires low computa-
tion resources and supports embedding updates incrementally. In

addition, an autoregressive flow-based generation (AF) component
is designed to select the next node to join the current community,
which enables fast parallel training and improves model stability
compared with other generative models like GAN.

(2) For community evaluation, we design a scoring component
over the learned node embedding in a multi-task way, and demon-
strate that this component with degree-related factor weighted
node features has sufficient expressiveness to mimic the existing
structure-based community metrics. In addition, we introduce a
square ranking loss to guide the training of the component for a
more stable training process. We further devise a flexible termina-
tion strategy based on the score change pattern over a sequence of
the candidates in beam search for community generation.

(3) We conduct experiments to demonstrate that CommunityAF
outperforms existing rule-based and example-based approaches,
and improves the training efficiency 4x-20x times compared with
the GAN-based method. We also verify that CommunityAF can
learn the distribution of different community patterns through
visualization.

2 PRELIMINARIES

In this section, we review some preliminary knowledge about au-
toregressive flows and graph neural networks.

2.1 Autoregressive Flow

Normalizing flows (NFs) [24] are a family of generative models that
differ from GANSs [13] and variational autoencoders (VAEs) [20] in
that they explicitly model the target distribution through a mecha-
nism of invertible probability transformations.

Specifically, a normalizing flow [24] can convert a simple prob-
ability distribution & into a more complex distribution Z by a pa-
rameterized invertible deterministic transformation fy : & — Z.
For a real-world data z, its probability density function pz(z) can
be determined by a density function of € ~ pg, as well as the deter-
minant of the inverse transformation fé)_l ’s jacobian matrix with
the help of the change-of-variable formula as follows:

-1
det afg—(Z) .
0z

pz(2) =pe (f7(2) M

We can maximize the log-likelihood of a given data point z in the
training phase using Eq. 1. When it comes to generation, we can
sample € ~ & and apply z = fy(e). In order to perform the above
calculation efficiently, it is required that the jacobian determinant
is easy to compute. Also, NFs use a sequence of transformations
to push a basic probability density function to a more complex
distribution, analogous to fluid flowing through tubes.

Autoregressive models (ARs) are another type of generative mod-
els, such as RNN [27]. The probability distribution of the current
time step data is generated based on the previous observations.
Additionally, the process of ARs typically requires the calculation
of the first d-1 data before computing the d-th data, making the
serial calculation process typically inefficient.

ARs exhibit a triangular jacobian matrix for their transformation
function fy due to the autoregressive process. This property makes
ARs as a layer of NFs [24]. The entire ARs can be reparameterized
as affine autoregressive flows [28, 30, 33], where the conditional

2567

probability of each step can be modeled as follows:

@)

where zq,4_1 is the observation data, g = gy (21.4-1:04), @g =
9o (21.4-1;04) represent the mean and deviation of the normal
distribution, respectively. In practice, these functions g, and g, can
be implemented as neural networks. The affine transformation of
autoregressive flows can be written as:

fo(eq) =zq=pq+ay30eg;
Zq = ld

P (24| z1:0-1) = N (Zd | Ha, (“d)z),

S) = ea = ©
In addition, during the training process, autoregressive flows allow
9y (o) to compute p13.4 (1.4) in parallel [28]. They construct a fully-
connected model with d inputs and d outputs and then can use
masks to ensure that output i depends only on input 1:i-1, avoiding
the inefficient iterative computation.

2.2 Graph Neural Network

Graph neural networks (GNNs) [14, 21, 49] encode node contents
and structural relationships into low-dimensional representations,
which are optimized by different training signals. Over the years,
researchers have introduced ideas such as convolution [21] and self-
attention [37] for designing the architectures of GNNs and proposed
a variety of GNNs that differ in the methods of transforming nodes’
features and aggregating features from neighbors. Most GNNs are
composed of multiple layers, which can be expressed as:

H' = Upd (H'™!, Agg (4, H"‘{@ﬁ) .6}), @)
where A is the adjacent matrix, @i Jo are the layer-specific learned
parameters, Agg collects neighbor messages based on different
weights, and Upd is responsible for transforming nodes’ current
embeddings. The first layer’s hidden feature H° is initialized by
H° = Upd(X, @8) based on the node content features X. Various
loss functions provide the training signals for the models, depending
on task scenarios. The models’ parameters are optimized using
strategies such as gradient descent to minimize the loss.

3 METHODOLOGY

In this section, we first present the framework of CommunityAF,
then introduce its three components, and finally describe its efficient
training algorithm.

3.1 Framework

Let G = (V, E, X) denote an undirected graph, where V, E, X are the
set of nodes, edges, and the feature matrix, respectively. x(u) € R4
is the feature vector of node u. We directly represent a community
G¢ = (C,Ec, X) using the set of nodes C = {q,u1,...,ur} in the
subgraph for brevity. We use dC to denote the neighbors (bound-
aries) of the community, that is, the set of nodes that are connected
to the community nodes but not part of the community.
CommunityAF includes three well-designed components to achieve

the goals of the example-based community search, as shown in
Figure 2. The community, initialized by the query node, is gener-
ated node-by-node. In each step, the incremental GNN component
computes partially changed embeddings by fusing the structural

Termination detection

S, S,
Q/j o “
t
l Scoring ‘ l AF ‘ l Scoring ‘ l cee
Qo i, Co)
= o ~ s
ff*u Ho GNN H, GNN H,
AX21
G ' Neighbors

! Community Nodesi
1@ Seed Node 1
1O Selected Node

AO

ax, |

&

QO

Figure 2: Interactions among 3 components of CommunityAF
in community generation progress.

(including community-related features) and content features of
the nodes, and updates the previous ones. The updated node em-
beddings about the current community are then fed into the AF
component and the scoring component. The AF component aims to
maximize the likelihood of the community examples, and is respon-
sible for selecting the next-to-be-joined nodes during generation.
The scoring component learns the community quality based on
ranking and also comprehensively determines whether to terminate
community generation based on quality changes.

3.2 Incremental GNN Component

The purpose of the incremental GNN component is to extract the
node and community features needed for community generation
and scoring tasks. Additionally, there is a need for scalability to
support large-scale graph data. We take the similar GNN component
as that in SEAL [48], because the challenges faced here are the same.
Furthermore, we enhance features that are important to express
the character of the communities and analyze the complexity of
the incremental GNN component.

When performing the community generation task, incorporating
information related to the query node as well as the nodes within
the current community is crucial. For instance, if a node is present
in the vicinity of the query node or all of its neighboring nodes are
considered part of the community, it is probable that the node also
belongs to the community. Thus, similar to SEAL [48], Commu-
nityAF enhances the node features by indicating whether a node is
a query node or belongs to the current community. Moreover, for
each node, we introduce a feature whose aggregated result in GNN
equals the node degree and another feature about the distance of
nodes from the query node to estimate the community scale [42].
All these enhanced features are named community-aware structure
features, which can be written as the following equation at step ¢:

(©)

Here, 1 is the newly-introduced all-1 vector to help calculate the
node degree during aggregation. We define ec,_, to denote whether
a node belongs to the current community C;—1. The binary vector
e{q) indicate whether a node is the query gq. id (4, is a vector that
captures the node’s distance to the query node g, where id(4) (u)
equals the inverse of the shortest distance between the node u and

Xt = [X. Lec,, e(q)-id(gy].

2568

the query q. We let 1 as the minimal shortest distance to prevent
division by 0.

Community-aware features come at a cost, despite that they can
be used to better reflect community structures and help community
generation. For example, when a node is added into the community,
the vectors ec,_, should be correspondingly adjusted. The precise
node embedding learning actually requires the GNN model to be
run t times when there are t nodes in the community. The operation
is obviously expensive, which seriously impacts scalability.

At the same time, node feature changes are very localized. When
a node joins the community, only a small number of node embed-
dings will change. Therefore, efficient incremental computation
is possible. We borrow iGPN from SEAL to provide a lightweight
incremental update on the node embedding. iGPN inherits the idea
of APPNP [22], which makes the aggregation phase completely
parameter-free and linear by using fixed parameters as weights to
aggregate neighbor messages. The aggregation process of the i-th
layer iGPN can be written as follows:

H! = (1- A + pH, (©)

where A is the symmetrically normalized adjacent matrix, f is
the damping factor, which can be set to 0.85, and Ht(o) = X;. Since

iGPN(.) performs a propagation of features X; along with the graph
structural A, an incremental update rule, similar to SEAL [48], can
be defined as:

Hy = iGPN(Xy) = iGPN([X, 1,0,0,0]),
AHy = iGPN(AX;) = iGPN([0,0,e(gy. gy, id (g}]).
AHy; = iGPN(AX;) = iGPN([0,0,e(y, ,}.0,0])(t > 1),

™)

where O and 0 represent matrices or vectors with all zeros. iGPN
decomposes the node embeddings at step ¢ by H;y = Hy—1 + AH; to
avoid a full propagation for each generated node.

The incremental node embeddings are fed into MLP (Multilayer
Perceptron) to maintain the flexibility of the final representations,
as the previous steps are parameter-free. As only nodes in the com-
munity with its neighbors C;_; are involved at step t, we perform
MLP computation over the embedding of these nodes to obtain the
final embeddings:

H; (Ci-1) = MLPg(H; (Cy—1)). (®)

We analyze the complexity of plain and incremental GNNs. Let
Gc¢ = (C, E¢, F;) be a community example in an underlying graph
G = (V,E, X), e be the number of epochs in training, and the in-
put as well as the output feature matrix dimensions be both d for
calculation convenience. The time complexity for forward prop-
agation of the plain GNN layer requires O (e|C| (|E|d + |V|d2)),
where |E|d and |V|d? are the complexity of neighbor aggrega-
tion and parameter transformation, respectively. The plain GNN
requires the same time for backward propagation and an addi-
tional space complexity of O(|V|d) to store the parameters and
gradients. In contrast, the complexity of the incremental GNN is
O(|E|d + |C||E|) + O(e|C|C|d?), in which the former part is the
parameter-free incremental GNN layer, and the latter part is the
subsequent MLP layer computation. We can see that the incre-
mental GNN takes much less cost than the plain GNN because Hy

Incremental
GNN

Neighbors

Community Nodes
Query Node

Selected Node

Node Embeddings
Community Embedding

Candidate Node Embeddings
Inference

Argmax =3

Figure 3: One step of community generation process in the autoregressive flow-based generation component.

needs to be computed only once and the aggregation process is
parameter-free.

3.3 Autoregressive Flow-based Generation
Component

The AF component is responsible for learning the conditional dis-
tribution of the example community, which supports the node
selection in the community generation. The entire process is au-
toregressive, indicating that the data for the ¢-th step is generated
based on the previous ¢-1 steps. Thus, there are two primary factors
to consider, how to represent the data prior to step ¢, and how to
select the next nodes. Figure 3 illustrates one generation step, in
which the upper figure describes the representation of previous
data, and the lower part shows the next node selection using the
invertible transformation learned by a flow-based method.

The data representation prior to step ¢ actually considers the
currently generated community. With the embeddings of nodes in
the community, we produce the community embedding by pooling
the node embeddings:

he, , = Mean(Hy(Ct-1)).)

Mean readout function is selected as the pooling function in Com-
munityAF over Sum function [48], as we believe that the common
features instead of the number of nodes are important for the rep-
resentation of a community. Two pooling functions will be experi-
mentally studied later.

We use the neighboring nodes of the current community 9C;_;
as the candidate node set, in order to ensure connectivity. For each
candidate node u € dC;_1, we concatenate its own embedding
with the community embedding to get the final embedding of that
node. Then we stack the final embedding of all candidate nodes as

Hpc,_, € RU-1x2do.
fz}(u) = Coniatenate(ﬁtfu),Ectil), (10)
Hpc,_, = Stack([he(u'), ... he(u-1)]),
where 0C;_1 = {ul, o yde-1 }, and d;—1 is the number of neighbors

of the current community.

2569

We follow the flow-based model in selecting the next node by
estimating the probability density function of candidate nodes. That
is, for each candidate node, we can learn its probability density
function in the form of a Gaussian distribution, from which the
next nodes can be sampled. The conditional probability density
function is defined as follows:

P(u|Cr-1) =N (1, (ar)?), (11)
where u € dC;_1 is a candidate node from the current community
neighbors, 1y = g, (ﬁact_l) and o; = gg (ﬁBCH) are the mean and
deviation of the standard normal distribution learned by g, and g,
using the current candidate data.

We further enhance the capability of invertible transformations
using flow. Specifically, the transformation process is decomposed
into k different modules, where each module uses MLP to compute
the mean and variance, as illustrated in Figure 3. The training stage
is the inverse of the generation stage, which we discuss in Section
3.5. The i-th (1 < i < k) transformation module is calculated as

follows:
= MLP!, (Hyc,),

i_ i i-1 i
Zp =0, 0zp [y,

pel i (12)

where zi € Ri-1isa d¢—1-dimensional vector, and z? = €7, which
is randomly sampled from the standard normal distribution, and
© is the element-wise multiplication. In practice, the community
node u; is generated by taking the argmax of the generated vector
zf, ie., u; = argmaxy (zlf).

3.4 Scoring Component

Flexible termination is crucial to the quality of community genera-
tion, as mentioned before. The existing termination strategies, such
as the fixed stopping criteria [12, 19] and the virtual node policy
[48], have limitations. For example, the fixed stopping criteria ob-
viously cannot suit the cases when the community examples are
arbitrary. The virtual node is introduced by considering the current
community embedding and its neighbor embedding, and it serves

as the termination indicator when the virtual node is selected. How-
ever, the virtual nodes cannot leverage the trends of the community
and may lead to early termination due to randomness.
CommunityAF plans to introduce a scoring component to pro-
duce scores for each generated community based on the similarity
of the community examples to overcome the aforementioned limi-
tations. Besides being a more fine-grained assessment of generated
sequences, the scoring component can be used to capture the qual-
ity trend of the community. When a community evolves with node
addition, the quality score rises before all the correct nodes are
added and falls afterward. The quality changing pattern can be
learned from the community examples, and then help to determine
the termination in the community generation. In such a way, a more
stable and smooth community generation can be supported. We
also note that classic scoring functions based on subgraph structural
properties such as density [42], conductance[1, 15] are extensively
utilized to evaluate community quality. However, these predefined
rule-based scores lack flexibility in handling different examples.
In the following, we first show how the scoring component is
designed and then show that it can mimic classical scoring func-
tions such as conductance if needed. Finally, we design a flexible
termination strategy based on the score generated.
Score Computation. The scoring component evaluates the quality
of the generated community, which is represented by the commu-
nity embedding i{ét—l in the previous subsection. In addition, we
introduce another self-attention based community embedding as
follows, which not only considers different weights of nodes in
aggregation, but also incorporates neighbor nodes outside the com-
munity. These two community embeddings are concatenated as the
input to the scoring component:

exp(62 hy (u))

az(u) S (GZE(U))’
fe = > arw) - he(w, (13)
ueCs_q
hse, = stack(lhe, . he, D).
For community C;_1, its score can be written as follows:
sc,, = (1 +eXp(MLPS(hSCt71))]_1, (14)

where sc, | € [0,1], and a larger sc,_, means a higher quality of
Ci_1.

Analysis of the Scoring Component. We argue that the scor-
ing component can naturally combine the structural and content
features to learn the patterns inside the examples, making it more
expressive and flexible than existing rule-based metrics. In order
to illustrate the power of the scoring component, we discuss the
relationships between the scoring component and the rule-based
structural properties such as conductance, which is the most com-
monly used rule-based metric [1, 8].

The previous work proves that the GNN with the labeling trick
features can predict the density and cut ratio of subgraphs [40]. In
fact, the community-aware structure features can also be regarded
as an enhanced labeling trick. We consider the factor of node degree

to weight community-aware features hi,o) in Eq. 15. Similarly, we
prove that there exists a score component that can precisely predict

2570

conductance using hl(lo). We show that h,(lo) is transformed using
the incremental GNN into another form Eu, which can be used to
compute conductance. These computations can be fit by the neural
network used by a score component.

I(ue)
1
THEOREM 1. Given any graph G with its node features weighed
using Eq. 15, there exists a scoring component that can precisely predict
the conductance of any community C in G.

h? = IN(w)| (15)

Proof Sketch. According to the incremental GNN computation

o)

(0)
veC h

/]

rule in Eq. 6, the node representation of hile)c can be computed as:
1 (0)
=(1-p) (—hu) +
;U VIN@IWING)]
1-p
N@)nC|+ N(v
~ o IN@ N Cl+ BYING)] }
IN (o)

Subsequently, the intermediate node embedding is fed into the
MLP; in Eq. 8, which is used to fit the following equation:

hoec = MLPy(h{))

| #Peton - BipeTn - pRlle
= e

veC (1] 2
Next, we obtained the average number of inner edges and the
average number of node degrees of the community by mean pooling
the node embeddings. The conductance can be precisely predicted
by a scoring component that fits the following equation:

[112)/(1-) }
(17)

N(v) (|
IN(0)]

he = Mean(H(C)) = %
conde =1-2 Z IN(v) N CI/E IN(v)] (18)
veC veC
=1-2hc[0]/hc(1]
[B

We should note that the proof is to illustrate the expressiveness
of the scoring component, with the restrictions on the node features
and computation steps. In practice, considering both the features of
the query node and the graph content can make the scoring compo-
nent more flexible. In our experimental test, we find that the node
features with degree weighting do not always work well. It may be
due to the fact that conductance is not a suitable measurement for
some datasets. Thus, we uses the node features in Eq. 5 by default.
Usage of Scores in Termination. The scoring component enables
CommunityAF to leverage the score changing of the community to
determine the termination, which results in a stable and smooth
generation. That is, given a community Cr, we maintain a mg-size
sliding window for an evolving community, and represent the scores
of its generation process as (sc;_,, - - - SCr_my). The generation can
be terminated when the condition sc; < min(sc;_j, - -+, Scr_,,,)
is satisfied, and the community with the highest score sa,gmax(s)

) Neighbors [) Community Nodes [Query Node O Selected Node‘
eé
t

£§ eé

0.99

0.7 < min(0.99,0.85) o

Terminate generation d)

Cs C3

Figure 4: Example of score and its usage in stop generation.

is selected as the final community. By contrast, the virtual node
strategy terminates generation once the virtual node is selected.

We can further expand the sliding window if we generate mul-
tiple candidate communities in each step. In fact, the next node is
selected by sampling from the probability density distribution in
CommunityAF. We can then sample m, nodes {61, ,eMe}, and
each sampled node results in an independent community snap-
shot, which is similar to beam search in text generation [41]. We
then generate scores for all candidate communities, and greedily
select the community with the highest score as C; for the next step,
repeating until the generation stops.

We illustrate how our scoring component works in Figure 4 with
ms = me = 2. The current community C3 has a score of 0.99, and
we generate Ci and CZ by sampling ei and ef from a Gaussian
distribution. Next, we select the community with the highest score
as C4. We repeat the procedure to generate Cs, and we notice that
sc; < min(sc,, sc,)- Therefore, we decide to stop generating this
community, and the community with the highest score Cs is selected
as the final generated community.

3.5 Efficient Training Process

In this subsection, we first discuss how to parallel preprocess data
for fast training. Then, we present the loss functions for the AF
component and scoring component. Finally, we give the overall
training algorithm and analyze its time complexity.
Parallel Preprocessing for Training. Inspired by the fact that
autoregressive flows can compute the hidden representation Hiy
during the parallel training [33], we plan to support efficient train-
ing in CommunityAF. To accomplish this, we need to produce a
node sequence to determine the next node to be selected. Com-
munityAF generates the node sequence for a given community by
using breadth-first search, which is widely used in graph genera-
tion work [31, 33, 45]. Specifically, for an ordered community C =
{uo, ..., ur}, we takes ug as the query node and obtains snapshots
of the generation process, as {Co = {uo},...,Cr = {uo, ... ur}}.
With the node sequence, CommunityAF can learn the node em-
beddings incrementally. It is difficult to compute hidden representa-
tions for large graphs on a single GPU, even though the incremental

2571

Algorithm 1: Efficient Training of CommunityAF.

Input: Graph G = (V, E, X), Train set Ctrqin, Batch size my,.
1 Initial Parameters © of CommunityAF;

2 while © is not converged do

forb=1,...,my do

Sample a community C from train set Cyrqin with
size T +1;

Reorder C according to BFS as {ug, u1, . .

3
4

L urh;
Select the current community
Crist = {Co,C1,...,Cr} and the next generated
node Z = {z1, ..., zr} according to the BFS order;
Calculate the node embeddings
H={Hy,...,Hr,Hr41} using Eq. 7;
fort=1,...,Tdo
Calculate IF-I\aCF1 using Eq. 8, 9, 10;
fori=k ..., 1do
| i = MLP!(Hac,), a} = MLPL (Hac, _,);

10

11

12 Calculate ¢, Lossé according to Eq. 19, Eq. 21;

13 Lossg = Zt:1,.,,,T(L0335)§

14 Sampling mpeq negative nodes from dCr as
Cheg = {Cneg, .. .,C,Te';eg, } and calculate the node
embeddings using Eq. 7 ;

15 Initialize Rp ={(Co,C1),...,(C1-1,Cr);

16 R=Rp +{(Cheg: C1)r- . (Crgg . Cr):

17 Calculate the score for each community in
Ciist U Cneg according to Eq. 8, 9, 13, 14;
18 Calculate Losss according to Eq.23;

19

Lossf’n = Lossg + ALosss;

20 | Back propagate Loss = 2p Loss,lil

and update ©;

GNN model has reduced parameter and gradient memory usage.
Thus, we decouple the underlying graph data from the subsequent
training. Since the order of the nodes in the example community
is given, we can efficiently process incremental embeddings AHj.;
for each snapshot in batches on CPU. Next, for each snapshot with
the underlying graph embedding H, we can store the community
embedding H(C) and the candidate node embedding H(JC) to the
disk to avoid repeated computations during subsequent training.
In order to facilitate subsequent generation in batches on GPU, we
fix the boundary size of the community C to 200. CommunityAF
takes a sampling strategy when the number of candidate neighbors
exceeds this size limit, or uses zero vector padding otherwise.
Loss Functions for AF and Scoring Components. For the gener-
ation task, our goal is to maximize the log-likelihood of the training
data. In CommunityAF, we set the conditional generation vector
from training data as a one-hot vector z’f, which indicates the se-
lected candidate node in this snapshot. The jacobian matrix of the
inverse process f~! : Z — & is a triangular(diagonal) matrix, and
its determinant can be calculated very efficiently:

k

ol ¥y

=1

af (k)
az

det (19)

: ul(at)

Also, the inverse deduction of et(z(t)) is straightforward:

N1
(zé—pé)@;(l <i<k).
t

(20)

So the optimization goal of a certain community generation snap-
shot is:
k

Lossy = —log(Mul(pg (€1))) =) log(
i=1

Mul(p)). (2)
®

where Mul(v) represents the multiplication of all elements in a
vector v, and pg is the probability density function of the standard
normal distribution. In the training phase, we compute « and p
according to the candidates’ embeddings, calculate €; in the inverse
direction, and finally calculate the required log-likelihood.

The scoring component is used to evaluate the generated com-
munity. Instead of modeling the absolute score labeled by end users
or some rules, CommunityAF attempts to model the relative scores,
which not only detect the quality change in community evolution
but also require no extra labeling. That is, we use Ry = {(C¢, Ct+1)}
to indicate the ranking pairs during the generation process of an
example community C, where C; is the previous snapshot of Cryq
in the generation, and the community score SC,,, at step t + 1
should be higher than the community score sc, at step ¢. In addi-
tion, we randomly add nodes in the neighborhood of Cr to form
Mpeg Negative examples of community C;,eg to introduce negative
samples to help the component learn community scores better. The
pairs for each negative example are added into the training pairs
R=Rp+ {(Cﬁleg, Cr)}. Note that the embedding of these negative
communities can also be computed in the preprocessing stage.

The plain loss function measures the relative score for given two
communities, where 0 < m < 1 is the margin to allow a tolerance
of the error in the ranking:

2

(Ci,Cir1)€R

Loss = max (0, s¢, — sc;,, +m). (22)

However, the plain loss function may not work properly in some
community ranking scenarios. For example, suppose that we expect
5C;y, —Sc; > maswellas sc; —sc,_, > m. The sum operation results
insc,,, —Sc;_, > 2m, leaving the score of community sc, untrained.
One solution is to use listwise ranking loss [5], but it requires
artificially setting the ground truth community score for each stage
in advance, while the community is flexible.

We further propose a square pairwise ranking loss to overcome
the limitation of the plain loss function. Due to the square operation,
we can see that a positive term in a pair cannot be canceled by the
corresponding negative term in another par, making the scores of
all communities fully learned:

Losss = max (0, ((s¢c; = sc;py + 1)% - (1- m)z)). (23)
(Ci,Ciz1)€R

Overall Algorithm and Complexity Analysis. The overall train-
ing of CommunityAF is shown in Algorithm 1. The training is
conducted in multiple epochs until the model is fully trained. In
each epoch, the patterns in m;, example communities are learned.
That is, for a sampled example community, we generate one node
sequence in line 5, and prepare the training data, including com-
munity embedding and candidate node embedding, in lines 6-7.

2572

Table 2: Statistics of datasets.

4 |E| |C] Max(C) | Mean(C)
Facebook | 3K 72K 130 72 15.6
Amazon 13K 33K 4517 30 9.3
DBLP 114K | 466K 4559 16 8.4
Twitter 87K 1M 2838 34 10.9
Youtube 216K | 1M 2865 25 7.7
LiveJournal| 316K | 5M 4510 54 17.6

Then, we compute the loss in each generation step to produce the
generative loss in the AF component. The ranking loss in the scor-
ing component is computed in line 18. The overall loss function
in line 19 takes the form of Lossy, = Lossy + ALosss, where A is a
hyperparameter to adjust the weights of two losses.

We analyze the time complexity of Algorithm 1. Let G, = (C, E¢, F¢)
be a community example in an underlying graph G = (V, E, X), e be
the number of epochs in training. The complexity of the incremen-
tal computation in lines 5-7 and 14 is O(e|C||E|). The preprocessing
can reduce the complexity of this part to O(|E|), because it can
compute the incremental part in parallel, and avoid repeated com-
putations. The rest of the calculations are only related to the size
of the community and its neighbors, independent of the size of the
underlying graph.

4 EXPERIMENTS

In this section, we first introduce our experimental setup and com-
parison methods. Then, we validate the effectiveness and efficiency
of CommunityAF, and perform the ablation experiment and hy-
perparameter study to demonstrate the rationality of the Commu-
nityAF design. Finally, we design an experiment to demonstrate
the ability of CommunityAF to learn the distribution of different
community patterns, and validate it through visualization. Due to
the page limitation, the hyperparameter settings and experiment
environment can be found in our code repository.

4.1 Experiment Setup

Metrics. We choose the Bi-matching F1 (BI) metric [2, 48] com-
monly used in community-related fields to evaluate method per-
formance. Specifically, for a dataset with n real communities {ciy,
we split it into a train set, a validation set, and a test set. For each
community C in the validation set and test set, we uniformly sam-
ple one node g from it as a query node to generate the community.
Finally, we obtain m generated communities {C'}. The evaluation
metrics can be calculated as:

1.1 ~; : 1 s .
E(Ezm}iXFl(C(l)’C(}))-‘—;Zm?XFl(C(l)’C(})))’ (24)
i J

where the forward matching F1 (F = % 2. max; Fl(é(i), C(j)))
indicates that how the generated community is alike one of the
existing ground-truth communities, while the backward matching
F1(B = % 2. j max; F1(C®,c())) shows that how the ground-
truth community is alike one of the generated communities.

Datasets. We use 6 real-life graphs in our experiments, which are
available from the snap project [43]. Among them, Facebook and

Twitter have both content features and ground-truth communities,
while the rest of the datasets have only ground-truth communities.
For non-attributed graphs, we assume that each node has the same
attributes, i.e. x(u) = 0. The statistics of the datasets are shown
in Table2. For each dataset, we select 450 communities (28 from
Facebook) as the train set, 50 communities (2 from Facebook) as the
validation set, and the rest as the test set. The example-based models
will be trained on the train set and tuned for the hyperparameters
on the validation set. Eventually, all methods will be evaluated on
the test set.

Preprocessing. For each dataset, we follow the same preprocessing
strategies as the previous work [48] to facilitate training and fair
comparison. The data preprocessing strategies include the removal
of outliers, the removal of irrelevant nodes that are not community
nodes or neighbors, and feature reduction, which are presented in
detail in our code repository. Additionally, we perform a study on
the datasets that contain these irrelevant nodes.

4.2 Competitors

To the best of our knowledge, example-based community search is
a relatively new field with only a few related works. Therefore, we
further select some representative general community search work
for comparison.

Local modularity-based methods. Mod-m [8] defines local mod-
ularity to measure community quality based on the proportion of
boundary edges in the community, and stops according to a thresh-
old. Mod-r [26] proposes a new metric for the local modularity of
communities considering subgraphs.

Random walk-based methods. HK (Heat Kernel) [23] finds com-
munities using random-walk with restart probabilities to sort the
nodes and utilizes conductance to determine the termination of
community generation. LOSP [15] introduces a local spectral sub-
space and seeks out a sparse indicator vector in the subspace to
identify the community that contains the given seed. LLSA [34]
attempts to first sample communities using HK algorithm, and then
optimizes these communities using Lanczos method. MRW [3] re-
lies on multiple walkers to capture the local community structure
and allows walkers with similar visit histories to reinforce each
other.

Structural cohesiveness-based methods. CTC [18] tries to find
connected k-truss subgraphs that contain the query nodes with
the smallest diameter. SCS [44] aims to locate a community whose
minimum node degree is the largest among all candidates.
Example-based methods. We select SEAL, a representative search
method using community-level examples, as our major competitor.
SEAL can additionally train a seed selector extension to the com-
munity detection problem, but in our context, the seed is given. In
addition, we extend three search methods using node-level exam-
ples into our context, ICS-GNN [12], ICS*-GNN [7], QD-GNN [19]
using node-level examples. Originally, ICS-GNN [12] and ICS*-
GNN [7] learn a classifier to determine whether a node belongs to
a community. Similar to QD-GNN, their classifier can be trained
on nodes in all trained communities, which can capture the pat-
terns among multiple communities to some extent. Then all these
methods search for the communities using heuristic rules. In detail,
ICS*-GNN additionally introduces an unsupervised clustering task

2573

in the training phase that enhances node embeddings’ capability
of capturing some community-level features. QD-GNN introduces
local query dependency structures and global graph embeddings,
which enable the node embedding to obtain sufficient information
about the query node and the underlying graph. Considering that
QD-GNN focuses on community search on small graphs, we add the
process of subgraph sampling, which is similar to that in ICS-GNN.

Variations of CommunityAF. We use a limited train set, e.g., 5
communities for training, in order to validate whether Commu-
nityAF works well with limited examples, which called CommunityAF-
F. CommunityAF-A means that we use Sum for the pooling func-
tion in Eq. 9 to get the community representation. CommunityAF-V
represents using the virtual node strategy instead of our scoring
component. Specifically, we add the input embedding of the scoring
component hs. as the virtual node embedding to the candidate
node embeddings, and stop the generation when the virtual node is
selected. CommunityAF-C stops community generation with con-
ductance. CommunityAF-D uses a degree-related factor to weight
the specific community-aware features in Eq.15 to facilitate pre-
cisely predicting community structural properties. CommunityAF-P
uses the plain ranking loss for training in Eq. 22.

4.3 Comparison with Competitors

In this subsection, we compare the effectiveness and efficiency of
CommunityAF with its competitors on different datasets.
Effectiveness on preprocessed datasets. Table 3 shows that Com-
munityAF is superior to the majority of methods on all datasets, and
significantly outperforms SEAL on five datasets. The rule-based
methods perform differently on various datasets. For example, the
local modularity-based methods work well on Facebook and Ama-
zon, the random walk-based methods only do well on Amazon, and
the structural cohesiveness-based methods are adept at the DBLP,
Amazon, Twitter, and LiveJournal datasets.

Compared with the node-level example-based methods, Com-
munityAF achieves better performance. These two-stage methods
can learn patterns on community nodes, but are difficult to capture
at the community-level patterns, and they stop community genera-
tion using fixed criteria, which impacts the quality of the generated
community seriously.

CommunityAF outperforms SEAL, the major competitor, on most
datasets, with 15.3% average improvement in performance. We also
note that SEAL achieves slightly better results than CommunityAF
on Amazon. We guess that the community patterns on Amazon
are relatively simple and homogeneous, with clear structural char-
acteristics, because almost all approaches perform well on it. The
backward F1 of CommunityAF is lower than that of SEAL, probably
because CommunityAF is overfitted on this dataset.

CommunityAF has higher scores in the F and lower scores in
the B, and we can note that similar results can be found in other
example-based methods. It is due to the difference in patterns be-
tween the training and testing communities. Usually, it is relatively
easy to find a test community C that shares a similar pattern to
communities in the train set, and then the generated community
is similar to C, resulting in a higher F. However, there may exist a

Table 3: Results of experiments with competitors. The best result is boldfaced.

Facebook DBLP Amazon Twitter Youtube LiveJournal
F B BI F B BI F B BI F B BI F B BI F B BI
Mod-m 0.511 0.365 | 0.438 | 0.630 0.573 | 0.602 | 0.816 0.807 | 0.811 | 0.354 0.260 | 0.307 | 0.320 0.271 | 0.296 | 0.696 0.651 | 0.673
Mod-r 0.528 0.374 | 0.451 | 0.648 0.587 | 0.618 | 0.845 0.835 | 0.840 | 0.363 0.270 | 0.316 | 0.353 0.299 | 0.326 | 0.724 0.668 | 0.696
HK 0.387 0.196 | 0.292 | 0.489 0.430 | 0.459 | 0.837 0.779 | 0.808 | 0.303 0.189 | 0.246 | 0.284 0.201 | 0.243 | 0.623 0.544 | 0.584
LLSA 0.508 0.346 | 0.427 | 0.570 0.517 | 0.544 | 0.677 0.662 | 0.670 | 0.360 0.288 | 0.324 | 0.270 0.232 | 0.251 | 0.675 0.624 | 0.650
LOSP 0.496 0.391 | 0.444 | 0.639 0.586 | 0.613 | 0.757 0.748 | 0.753 | 0.402 0.342 | 0.372 | 0.373 0.331 | 0.352 | 0.634 0.599 | 0.616
MRW 0.459 0.239 | 0.349 | 0.509 0.450 | 0.479 | 0.876 0.845 | 0.860 | 0.310 0.193 | 0.251 | 0.443 0.395 | 0.419 | 0.683 0.594 | 0.639
CTC 0.451 0.353 | 0.402 | 0.682 0.712 | 0.697 | 0.795 0.784 | 0.790 | 0.404 0.328 | 0.366 | 0.420 0.422 | 0.421 | 0.701 0.680 | 0.691
SCS 0.473 0.333 | 0.403 | 0.686 0.715 | 0.700 | 0.869 0.856 | 0.862 | 0.428 0.310 | 0.369 | 0.350 0.313 | 0.331 | 0.716 0.622 | 0.669
ICS-GNN 0.430 0.288 | 0.359 | 0.606 0.566 | 0.586 | 0.813 0.799 | 0.806 | 0.400 0.292 | 0.346 | 0.390 0.343 | 0.367 | 0.578 0.532 | 0.555
ICST-GNN 0.475 0.286 | 0.381 | 0.704 0.687 | 0.696 | 0.834 0.819 | 0.826 | 0.397 0.343 | 0.370 | 0.455 0.396 | 0.426 | 0.587 0.548 | 0.568
QD-GNN 0.385 0.317 | 0.351 | 0.715 0.675 | 0.701 | 0.877 0.893 | 0.885 | 0.334 0.287 | 0.311 | 0.433 0.378 | 0.405 | 0.689 0.654 | 0.672
SEAL 0.414 0.327 | 0.370 | 0.694 0.568 | 0.631 | 0.916 0.920 | 0.918 | 0.359 0.260 | 0.310 | 0.431 0.304 | 0.368 | 0.692 0.661 | 0.677
CommunityAF | 0.539 0.395 | 0.467 | 0.749 0.687 | 0.718 | 0.914 0.905 | 0.910 | 0.440 0.345 | 0.393 | 0.470 0.406 | 0.438 | 0.742 0.702 | 0.722

community in the test set with distinct patterns that are difficult to
learn in the train set, and a lower B occurs.

Table 4: Bi-matching F1 results of the example-based meth-
ods varying raw datasets.

Datasets SEAL QD-GNN ICS*-GNN CommunityAF
Facebook 0.355 0.345 0.369 0.461
DBLP 0.629 0.659 0.651 0.688
Amazon 0.827 0.782 0.743 0.793
Twitter 0.364 0.371 0.382 0.390
Youtube 0.346 0.369 0.365 0.381
LiveJournal | 0.632 0.599 0.446 0.684

Effectiveness on raw datasets. Table 4 reports the results of
example-based community search methods on raw data. The raw
data, compared with the fully preprocessed data, keep all irrelevant
nodes in the graph. These irrelevant nodes are not community nodes
or community neighbors, which may be noise in the community
generation. The experiments show that all methods are slightly
degraded, but CommunityAF still performs the best overall.

Table 5: Comparison of training costs (seconds) varying
datasets.

SEAL CommunityAF
pretraining trainning | preprocessing trainning

Facebook 30 2507 3 121
DBLP 412 2565 42 663
Amazon 254 2266 3 322
Twitter 290 2248 11 212
Youtube 1851 14431 1446 548
LiveJournal | 2654 31844 1805 1836

Efficiency. A major overhead of deep learning is the training
time. We test the time costs in seconds of two generative methods,
CommunityAF and SEAL, on six varying-sized graphs, as shown
in Table 5. From this table, we can see that CommunityAF only ac-
counts for less than 4% of the SEAL’s training time in the best case.
Even if we consider the one-time preprocessing and pretraining
time, CommunityAF still achieves 4x to 20x speedups on different

datasets. As previously analyzed, low training time in Commu-
nityAF comes from parallel training and easy convergence in the
autoregressive flow-based method. Here, we do not report the time
used by the node-level example-based methods, as they do not cap-
ture the community-level pattern and therefore are faster naturally.

Table 6: Ablation experiment with Bi-matching F1.

Facebook DBLP Amazon Twitter Youtube
CommunityAF-A | 0.372 0.496 0.888 0.314 0.362
CommunityAF-V | 0.417 0.662 0.808 0.382 0.321
CommunityAF-C | 0.456 0.626 0.860 0.382 0.393
CommunityAF-F | 0.438 0.610 0.863 0.366 0.411
CommunityAF-D | 0.467 0.722 0.876 0.383 0.422
CommunityAF-P | 0.463 0.710 0.909 0.382 0.422
CommunityAF 0.467 0.718 0.910 0.393 0.438

4.4 Ablation Experiment

We test the results of different variants of CommunityAF in Ta-
ble 6. The results of CommunityAF-A using Sum as its pooling
function verify our previous expectations that the averaged com-
munity features are more suitable to determine the next node in the
community. Moreover, the performances of CommunityAF-V with
the virtual node strategy and CommunityAF-C with conductance
indicate that the scoring component is more robust and capable of
adapting to different datasets. The result of CommunityAF-F shows
that providing examples is not a large burden for users, since only
a small number of examples can outperform most rule-based meth-
ods. CommunityAF-D uses a degree-related weighting to precisely
calculate community properties, achieving optimal results on two
datasets. We think it is possible that the conductance or similar
subgraph structural properties of the metrics are not applicable
to other datasets. The results of CommunityAF-P with the plain
ranking loss verify that the square ranking loss is more stable.

4.5 Hyperparameters Study

Study of the AF Component. We study the effect of the number
of transformation module k in the AF component on two repre-
sentative datasets, as shown in Figure 5, respectively. Obviously,
the number of layers k in the autoregressive flow-based generation

2574

0.4

0.3

0.2+ H
1

Figure 5: Bi-matching F1 varying k.

0.75
0.70
0.65
0.60
0.55
0.50

il

DBLP

8

4 12
(b) Twitter

16

component is related to the complexity of the distribution of differ-
ent community patterns. The increase of k can enlarge the model
capability, and initially improve its performance. However, when k
is too large, the performance degrades due to issues like overfitting.
Study of the Scoring Component. We study the effects of ms and
me in the scoring component in Figure 6, where mg is the length of
the sliding window, and m, is the number of samples in each step.
The community quality increases when mg increases, indicating
that a large sliding window can avoid the previous improper early
stop. However, when m; is too high, the generation is difficult to
stop, and the size of the generated communities increases, which
has a negative impact. Figures 6(b) and 6(d) show that the increase
of m, has only led to a slight improvement in the quality of the final
community, indicating that CommunityAF has a stable performance
in generation progress. In contrast to mg, a higher m, makes the
component generation more conservative and tends to generate
smaller communities.

—s— Average community size

[Bi-matching F1 0.715

—s— Average community size
[0 Bi-matching F1

0.710

0.705

1 3 5 10 1 3 5
(a) ms on DBLP (b) me on DBLP

—=— Average community size
[Bi-matching F1

1,

c) ms on Twntter

35 —=— Average community size

[Bi-matching F1

1

1 3 5
(d) me on Twitter

256
30

252
25
248

Figure 6: Bi-matching F1 and size of the generated communi-
ties under different parameters.

Study of Multi-task Training Tricks. We experiment with differ-
ent training tricks in CommunityAF, such as considering the loss
of generation and scoring tasks together or learning the generation
task first and then learning together. Intuitively, the latter will yield
more stable node embeddings because the generation tasks have
more explicit signals. Specifically, the number of the horizontal axis
of the coordinates, e.g., “20” in Figure 7, represents that we first
train 20 epochs of the generation task, and then train two tasks
together in the remaining epochs. As expected, the results show
that training the generation task first improves performance on
most datasets, except for Facebook.

2575

0.48.

072

111

(b) DBLP

046

11

Amazon

11

0 20
(a) Facebook

Figure 7: Bi-matching F1 varying different training tricks.

=3 0.000 -0.005

3 -0.069

Twitter

-0.031 0.000

0.000

Facebook DBLP

Figure 8: Bi-matching F1 descent results of the models tested
under different datasets.

4.6 Community Hidden Patterns Study

In this subsection, we attempt to verify our previous claim that Com-
munityAF is able to capture the hidden patterns of given examples.
In detail, we learn a model from a source dataset (e.g., Facebook),
and apply the model to another target dataset (e.g., DBLP). We
argue that the learned model can extract the relevant patterns if
the communities discovered using the model in the target dataset
are still similar to ground-truth communities in the source rather
than ground-truth communities in the target dataset.

We choose Facebook, Twitter as representatives of social net-
work datasets, and select DBLP as a representative community
dataset for academic networks. As those features vary greatly across
datasets, models are trained without using node attribute features.
The learned models on different datasets are named as F (Facebook),
T (Twitter), and D (DBLP) for short. Next, we apply these models to
the other two datasets and record the changes of bi-matching F1 in
Figure 8, where the darker color indicates the worse performance. It
can be noted that the performances of models trained on the social
network dataset drop slightly on similar social networks, but have
more severe degradation on the academic network dataset. A simi-
lar result is observed for the model trained on the academic network
dataset. This indicates that different types (social and academic) of
graphs have different community patterns, and CommunityAF is
able to learn community patterns similar to those in the train set.

Further, we choose 4 representative ground-truth communities
from Twitter and DBLP, select a query node for each community
(in red color), search communities using F, T, and D models, and
visualize both ground-truth and searched communities. It is obvious
that academic communities are more tightly structured, while social
network communities are more tolerant of stray nodes and prefer
to have a chain-like structure. These patterns can be learned by
CommunityAF. For example, the D model intends to produce a
community with a large minimal node degree in Twitter, while the
T model guides to generating a community with densely connected
nodes as well as nodes with degree 1.

Ground Truth F
- B g 290
e S 22
-
g
» .
P o Y
S
.
@y,
— o - . e
=.
a
a - - e
P
o - ™
e 1 B S g
B >
- e my
.o '® R o o
. g, o Uit g
g o @
- g o . @ .90
. o e d 13@90.
P o g 0 Rt S
@50
@5 @7 i . i o™ o
o e g - 9
> et @
g e N - e eng®
=
ja~
o s - -
e
» - . o
o R G
@ o o Y
e b % %
- R g
P o @ o Y

-

198
- pa\ B o
e g
- M Y
- e
- . - . @ P
» -
Ed . e
® e N N 1@ g
»s e
P
1iges s
e o V%
e T g0 s g ®
. -, R .
o Y
@ e L
- o @ . e
T By, g & e @
po . o
L e E
@ s@o s@s s

Figure 9: Visualization of community results. The labels of the nodes correspond to their indexes.

5 RELATED WORK

We review the following related works, except those methods men-
tioned as competitors in the experiment part.

Community Search. Community search [11], also known as local
community detection, or seed extension problem, aims at finding a
subgraph that contains a given query node (seed). It’s the consensus
of most work [11] that communities are subgraphs with content
similarity and structural cohesion. In addition to the methods al-
ready mentioned in the experiment section, there are some methods
that try to use attributes for queries. LocATC [17] proposes the
concept of attribute community search (ACS), which requires users
to input additional keywords (attributes) to locate communities
where the corresponding keywords appear as frequently as pos-
sible. AQD-GNN [19] is based on QD-GNN, which models nodes
and attributes as bipartite graphs and proposes the feature fusion
operator to solve the ACS problem. Because we don’t need to give
attributes for querying in our scenario, only QD-GNN is chosen as
the comparison method.

Subgraph Pattern Matching. Subgraph pattern matching (sub-
graph isomorphism) [10] aims to find subgraphs that are isomorphic
to a given query graph. Subgraph isomorphism is an NP-complete
problem, so existing methods tend to relax the structural require-
ments [36], design heuristic rules, utilize graph cache technol-
ogy [39] or choose distributed computing methods [46] to support
matching in a large graph. When relaxing strict structural con-
straints and considering the content features among multiple com-
munity examples, the existing subgraph pattern matching methods
can be extended to handle the problem in this paper.
Normalizing Flows. Normalizing Flows [24] have made signifi-
cant progress and have been successfully applied to a variety of

2576

tasks, including density estimation, variational inference, and image
generation. Among existing works, IAF [30] first uses an autore-
gressive model as a form of normalizing flow and proposes an
easily computable invertible variation with a triangular jacobian
matrix. MAF [28] builds on IAF, which employs a network with
masks to support fast parallel training. Normalizing flow has also
received attention in the field of database research. For example,
FACE [38] achieves good progress in the cardinality estimator task
by using normalizing flow to learn the joint probability distribution
of relational data.

6 CONCLUSION

This paper presents a new framework named CommunityAF, de-
signed to handle the example-based community search problem
with three well-designed key components in a multi-task way. Com-
munityAF utilizes an incremental GNN component for learning
node embeddings in a large underlying graph to meet scalabil-
ity, an autoregressive flow-based generation component for fast
parallel training, and a scoring component over the learned node
embeddings for flexible termination. We use a square ranking loss
during training to ensure stability and introduce a flexible way to
end the community generation process based on the score changes
observed during beam search. Experimental results demonstrate
that CommunityAF outperforms existing approaches and can learn
various community patterns.

ACKNOWLEDGMENTS

This work was partially supported by NSFC under Grant No. 62272008
and 61832001.

REFERENCES

(1]

(2]

[10]

(1]

[12]

[13]

[14]

[15]

[20]
[21]

[22]

[23]

[24]

Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local Graph Partitioning
using PageRank Vectors. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). 475-486. https://doi.org/10.1109/FOCS.2006.44
A.Bakshi, S. Parthasarathy, and K. Srinivasan. 2018. Semi-Supervised Community
Detection Using Structure and Size. In 2018 IEEE International Conference on Data
Mining (ICDM).

Yuchen Bian, Yaowei Yan, Wei Cheng, Wei Wang, Dongsheng Luo, and Xiang
Zhang. 2018. On Multi-query Local Community Detection. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM), Vol. NaN.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz,
and Samy Bengio. 2016. Generating Sentences from a Continuous Space. In
CoNLL. ACL, 10-21.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129-136.

Tanmoy Chakraborty, Sikhar Patranabis, Pawan Goyal, and Animesh Mukherjee.
2015. On the Formation of Circles in Co-authorship Networks. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015, Longbing Cao, Chenggqi
Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Gra-
ham Williams (Eds.). ACM, 109-118. https://doi.org/10.1145/2783258.2783292
Jiazun Chen, Jun Gao, and Bin Cui. 2023. ICS-GNN™*: lightweight interactive
community search via graph neural network. VLDB 7. 32, 2 (2023), 447-467.
Aaron Clauset. 2005. Finding local community structure in networks. Physical
Review E 72, 2 (2005), 026132.

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online
search of overlapping communities. In SIGMOD. 277-288.

W. Fan, J. Li, M. Shuai, T. Nan, and Y. Wu. 2010. Graph Pattern Matching: From
Intractable to Polynomial Time. Proceedings of the VLDB Endowment 3, 1 (2010),
264-275.

Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB .
29, 1 (2020), 353-392

Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: Lightweight
Interactive Community Search via Graph Neural Network. Proc. VLDB Endow.
14, 6 (2021), 1006-1018. https://doi.org/10.14778/3447689.3447704

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NIPS. 2672-2680.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS. 1024-1034.

Kun He, Yiwei Sun, David Bindel, John Hopcroft, and Yixuan Li. 2015. De-
tecting Overlapping Communities from Local Spectral Subspaces. In 2015 IEEE
International Conference on Data Mining, Vol. NaN.

Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying
k-truss community in large and dynamic graphs. In SIGMOD. 1311-1322.

Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-Driven Community
Search. Proc. VLDB Endow. 10, 9 (2017), 949-960.

Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-
proximate Closest Community Search in Networks. Proc. VLDB Endow. 9, 4
(2015), 276-287

Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou Huang.
2022. Query Driven-Graph Neural Networks for Community Search: From Non-
Attributed, Attributed, to Interactive Attributed. Proc. VLDB Endow. 15, 6 (2022),
1243-1255.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
In ICLR.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR (Poster). OpenReview.net.

Kyle Kloster and David F. Gleich. 2014. Heat kernel based community detection.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, Vol. NaN.

1. Kobyzev, S. Prince, and M. Brubaker. 2020. Normalizing Flows: An Introduction
and Review of Current Methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence PP, 99 (2020), 1-1.

2577

[25

[26]

[27

[28

[29

@
=

[31

(32]
(33]

(34]

[41]

[42]

[43

[44]

[45

[46]

N
=

[48

[49

Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya
Nepal, Jian Yang, and Philip S. Yu. 2020. Deep Learning for Community Detection:
Progress, Challenges and Opportunities. In [JCAL 4981-4987.

Feng Luo, James Wang, and Eric Promislow. 2006. Exploring Local Community
Structures in Large Networks. In 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI'06). 233-239.

Larry R Medsker and LC Jain. 2001. Recurrent neural networks. Design and

Applications 5 (2001), 64-67.
George Papamakarios, Iain Murray, and Theo Pavlakou. 2017. Masked Autore-

gressive Flow for Density Estimation. In NIPS. 2338-2347.

Kainan Peng, Wei Ping, Zhao Song, and Kexin Zhao. 2020. Non-Autoregressive
Neural Text-to-Speech. In Proceedings of the 37th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Hal Daumé III and
Aarti Singh (Eds.), Vol. 119. PMLR, 7586-7598. https://proceedings.mlr.press/
v119/peng20a.html

Diederik P.Kingma, Tim Salimans, and Max Welling. 2016. Improving Variational
Inference with Inverse Autoregressive Flow. CoRR abs/1606.04934 (2016).
Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. 2019. Molec-
ularRNN: Generating realistic molecular graphs with optimized properties. CoRR
abs/1905.13372 (2019).

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved Techniques for Training GANs. In NIPS. 2226-2234.
C. Shi, M. Xu, Z. Zhu, W. Zhang, and J. Tang. 2020. GraphAF: a Flow-based
Autoregressive Model for Molecular Graph Generation. In ICLR.

Pan Shi, Kun He, David Bindel, and John E. Hopcroft. 2017. Local Lanczos
Spectral Approximation for Community Detection. In ECML/PKDD (1) (Lecture
Notes in Computer Science), Vol. 10534. Springer, 651-667.

Mauro Sozio and Aristides Gionis. 2010. The community-search problem and
how to plan a successful cocktail party. In SIGKDD. 939-948.

Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM) 23,1 (1976), 31-42.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Normal-
izing Flow based Cardinality Estimator. Proc. VLDB Endow. 15, 1 (2021), 72-84.
https://doi.org/10.14778/3485450.3485458

Jing Wang, Zichen Liu, Shuai Ma, Nikos Ntarmos, and Peter Triantafillou. 2018.
GC: A Graph Caching System for Subgraph/Supergraph Queries. Proc. VLDB
Endow. 11, 12 (2018), 2022-2025.

Xiyuan Wang and Muhan Zhang. 2022. GLASS: GNN with Labeling Tricks for
Subgraph Representation Learning. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net. https://openreview.net/forum?id=XLxhEjKNbXj

Sam Wiseman and Alexander M. Rush. 2016. Sequence-to-Sequence Learning
as Beam-Search Optimization. In EMNLP. The Association for Computational
Linguistics, 1296-1306.

Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust Local Commu-
nity Detection: On Free Rider Effect and Its Elimination. Proc. VLDB Endow. 8, 7
(feb 2015), 798-809. https://doi.org/10.14778/2752939.2752948

Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-
munities based on Ground-truth. arXiv:1205.6233 [cs.SI]

Kai Yao and Lijun Chang. 2021. Efficient Size-Bounded Community Search over
Large Networks. Proc. VLDB Endow. 14, 8 (2021), 1441-1453.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In
ICML (Proceedings of Machine Learning Research), Vol. 80. PMLR, 5694-5703.

Ye Yuan, Delong Ma, Zhenyu Wen, Zhiwei Zhang, and Guoren Wang. 2021.
Subgraph matching over graph federation. Proceedings of the VLDB Endowment
15, 3 (2021), 437-450.

Jiawei Zhang, Philip S. Yu, and Yuanhua Lv. 2017. Enterprise Employee Training
via Project Team Formation. In Proceedings of the Tenth ACM International Con-
ference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom,
February 6-10, 2017, Maarten de Rijke, Milad Shokouhi, Andrew Tomkins, and
Min Zhang (Eds.). ACM, 3-12. https://doi.org/10.1145/3018661.3018682

Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, and Philip S. Yu. 2020. SEAL: Learning
Heuristics for Community Detection with Generative Adversarial Networks. In
KDD °20.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2018. Graph Neural Networks: A Review of Methods and Applications.
CoRR (2018).

https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1145/2783258.2783292
https://doi.org/10.14778/3447689.3447704
https://proceedings.mlr.press/v119/peng20a.html
https://proceedings.mlr.press/v119/peng20a.html
https://doi.org/10.14778/3485450.3485458
https://openreview.net/forum?id=XLxhEjKNbXj
https://doi.org/10.14778/2752939.2752948
https://arxiv.org/abs/1205.6233
https://doi.org/10.1145/3018661.3018682

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Autoregressive Flow
	2.2 Graph Neural Network

	3 METHODOLOGY
	3.1 Framework
	3.2 Incremental GNN Component
	3.3 Autoregressive Flow-based Generation Component
	3.4 Scoring Component
	3.5 Efficient Training Process

	4 EXPERIMENTS
	4.1 Experiment Setup
	4.2 Competitors
	4.3 Comparison with Competitors
	4.4 Ablation Experiment
	4.5 Hyperparameters Study
	4.6 Community Hidden Patterns Study

	5 RELATED WORK
	6 CONCLUSION
	Acknowledgments
	References

