
CommunityAF: An Example-based Community Search Method
via Autoregressive Flow

Jiazun Chen

National Key Laboratory for

Multimedia Information Processing,

School of Computer Science, Peking

University, Beijing, China

chenjiazun@stu.pku.edu.cn

Yikuan Xia

National Key Laboratory for

Multimedia Information Processing,

School of Computer Science, Peking

University, Beijing, China

wfl00014@pku.edu.cn

Jun Gao

National Key Laboratory for

Multimedia Information Processing,

School of Computer Science, Peking

University, Beijing, China

gaojun@pku.edu.cn

ABSTRACT
Example-based community search utilizes hidden patterns of given

examples rather than explicit rules, reducing users’ burden and

enhancing flexibility. However, existing works face challenges such

as low scalability, high training cost, and improper termination

during the search. Aiming at tackling all these issues, this paper

proposes a community search framework named CommunityAF

with three well-designed components. The first is a GNN (graph

neural network) component that combines community-aware struc-

ture features to incrementally learn node embeddings over a large

graph for the other two components. The second is an autoregres-

sive flow-based generation component designed for fast training

and model stability. The third is a scoring component that evalu-

ates the communities and provides scores for a stable termination.

Moreover, to show that CommunityAF has the sufficient expressive

power to cover the rules, we demonstrate that the scoring com-

ponent with node features weighted by degree-related factors is

able to mimic the existing structure-based community metrics. We

introduce a square ranking loss to guide the training of the scor-

ing component, and further devise a flexible termination strategy

based on the inferred score change pattern over a sequence of can-

didate communities using beam search. We compare CommunityAF

with four different categories of community search methods on

six real-world datasets. The results illustrate that CommunityAF

outperforms these community search methods, and achieves an av-

erage 15.3% improvement in effectiveness and 4x to 20x speedups on

different datasets relative to the state-of-the-art generative method.

PVLDB Reference Format:
Jiazun Chen, Yikuan Xia, and Jun Gao . CommunityAF: An Example-based

Community Search Method via Autoregressive Flow

. PVLDB, 16(10): 2565 - 2577, 2023.

doi:10.14778/3603581.3603595

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/JiazunChen/CommunityAF.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.

doi:10.14778/3603581.3603595

Query

CommunityAF

K-
core

DM,Rap

DM,Rap

Search

Basket
ball

Soccer

Rock,
Sport

Base
ball

Folk

K-core

DM,Rap

Pop

Jazz

Volley
ball

Community
Detection

Page
Rank

GNN

SEAL
ICS

Detection
Community

 Inference

Train

Example

Search

Figure 1: Example-based Community Search.

1 INTRODUCTION
Given a query node (seed) in an underlying graph, community

search [11] discovers a subgraph that contains the query node

and satisfies requirements in terms of structure and content fea-

tures. Usually, the nodes in the discovered community share similar

content features and cohesive structural relationships. Thus, the

discovered community can support various tasks such as recom-

mendation [47], personal background discovery [6], anomaly de-

tection [48], etc. In contrast to community detection [25], which ex-

pects to identify all potential communities, community search [11]

focuses on subgraphs around the query node, which greatly reduces

computational overhead and improves the quality of discovered

communities.

Community search faces one fundamental issue of how to ex-

press the community, despite significant progress achieved [2, 11,

16, 17, 25, 35]. Numerous communities exist in a graph with vary-

ing shapes, and end users search them for various purposes across

multiple applications. It is difficult to flexibly find communities

through explicit rules such as k-core [35], k-truss [16], k-clique

[9], or implicit node scores such as personalized PageRank scores

[1, 23]. Nonetheless, when end users find that the searched commu-

nity cannot meet their specific requirements, they will be confused

about whether there exist valid rules and parameters (such as 𝑘) in

rule-based methods that suit their needs.

An example-based approach is promising to deal with the afore-

mentioned key issue. That is, end users want to find some new

communities via a limited number of examples, which guide the

2565

https://doi.org/10.14778/3603581.3603595
https://github.com/JiazunChen/CommunityAF
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603595
https://www.acm.org/publications/policies/artifact-review-and-badging-current

following community search to achieve the goal of what-you-see-is-
what-you-get. In addition, end users can easily refine the searched

community if needed by adjusting the examples. Figure 1 demon-

strates an example-based community search from a toy graph. An

end user specifies a community example (white circle) whose topic

is related to database research. The keywords below the nodes

represent their content features. It is observed that there are two

communities around the query node, an academic-related commu-

nity (red circle) as well as a music-related community (gray circle).

It is better to provide the end user with an academic community

that is more similar to the community example.

Compared with the general community search methods, the

example-based methods first need to capture the hidden patterns

among the examples. With the advances in deep learning, it is nat-

ural and feasible to learn the hidden patterns [2, 19, 48] in terms

of structural/content features of given examples, and the learned

hidden patterns should be precise as there are a massive number of

different candidate communities. At the same time, the example-

based methods should support sufficient scalability, as the under-

lying graph may be large, while the deep learning methods are

usually costly. Moreover, we expect the algorithm to be stable and

avoid issues like mode collapse [13]. The termination of community

generation is another key issue that seriously impacts the quality

of discovered communities. The existing fixed stop criteria [12, 19]

are obviously not flexible.

There are two types of learning approaches for example-based

community search, classified according to the granularity of exam-

ples. ICS-GNN and QD-GNN [12, 19] belong to a class of works that

handle node-level examples. They require two steps for community

generation. First, a binary classification model is built to predict

each node’s probability of belonging to the community according

to the given examples. Second, a rule-based method runs on nodes

with probabilities to generate the community, with goals such as

maximizing the average probabilities of selected nodes. Despite

being efficiently implementable, node-level examples fail to provide

patterns that are characteristic of the community. As an example,

ICS-GNN has to assume that the community is fixed in size and

highly connected in the second phase. These limitations damage

the quality of searched communities.

The other class of approaches attempts to capture patterns di-

rectly from community-level examples. They usually recast the

community search as a generative problem, including a task to

produce the candidate community and a task to evaluate it. One

of the representative works is SEAL [48]. SEAL learns the node

representation using GNN and follows the GAN (Generative Ad-

versarial Network) schema, which contains a generator producing

the community node by node based on learned node embedding,

and a discriminator to distinguish between the generated and given

community examples. By training alternately, its generator is able

to generate communities that are difficult for its discriminator to

distinguish. In other words, the hidden pattern of the community

examples can be captured precisely.

However, the GAN-based approach, such as SEAL, has limi-

tations in the context of community search, as shown in Table 1.

Firstly, manyworks show that GAN-basedmethods suffer from high

training cost, model instability, and even mode collapse [4, 24, 32].

These issues prevent SEAL from fully learning about the example

Table 1: Comparison with example-based community search.

Characteristics QD-GNN SEAL GraphAF Ours

Community-Level × ✓ ✓ ✓
Scalability × ✓ × ✓
Fast Training ✓ × ✓ ✓
Flexible Termination × × × ✓

community patterns and cause it to fall into a single community

pattern. Secondly, SEAL adds a virtual node into the graph, and

stops generating groups once the virtual node is selected. The un-

smooth generation process introduced by virtual nodes also affects

the quality of the generated community.

We are interested in whether other kinds of generative models

have the potential to meet all requirements, as the generative model

can capture community-level patterns, but the GAN-based method

has its inherent limitations. We find that autoregressive flows,

another kind of generative model, have been studied in various

tasks, including audio [29], image [28], and molecular graph gener-

ation [33]. The directly related work on graph fields, GraphAF [33],

attempts to generate valid molecular graphs from scratch. It follows

the autoregressive framework, and trains a series of invertible trans-

formations between the probability density of the molecular graphs

and a base distribution, which finally supports molecular graph

generation by sampling within the base distribution. As shown in

Table 1, GraphAF can be trained in an efficient and stable way. How-

ever, GraphAF only produces a small, entirely new graph, and does

not consider the large underlying graph. In addition, GraphAF de-

termines the termination of graph generation using chemical bond

rules, which are not suitable either in the context of community

search.

Inspired by existing works, this paper designs an example-based

community search method aiming to meet all these requirements.

The basic ideas of our method are as follows. For the issue of scala-
bility, we mainly borrow and extend the idea of SEAL, and deliber-

ately employ different strategies in node representation learning

and generative model training. We choose an incremental GNN

in the large underlying graph for processing node representations

with community-aware structure features. The subsequent expen-

sive community generation only handles very limited community-

related data. For the issue of fast training, we choose the autore-
gressive flow model to locate communities in a large graph. The

autoregressive flow model can be trained in parallel and is easier to

converge compared with the GAN-based method [48]. For the issue

of flexible termination, we plan to introduce a more fine-grained

scoring task to measure the currently generated communities. Intu-

itively, the quality of the generated community should first increase

and then decline as nodes are added. Such change patterns can be

captured in a sequence of generated communities, and further help

to design a flexible and smooth termination strategy.

The contributions can be summarized as follows: (1) This pa-

per proposes a community generation framework named Commu-

nityAF, aiming to tackle the above requirements. Specifically, a GNN

component combines community-aware structure features to learn

node embeddings over a large graph, which requires low computa-

tion resources and supports embedding updates incrementally. In

2566

addition, an autoregressive flow-based generation (AF) component

is designed to select the next node to join the current community,

which enables fast parallel training and improves model stability

compared with other generative models like GAN.

(2) For community evaluation, we design a scoring component

over the learned node embedding in a multi-task way, and demon-

strate that this component with degree-related factor weighted

node features has sufficient expressiveness to mimic the existing

structure-based community metrics. In addition, we introduce a

square ranking loss to guide the training of the component for a

more stable training process. We further devise a flexible termina-

tion strategy based on the score change pattern over a sequence of

the candidates in beam search for community generation.

(3) We conduct experiments to demonstrate that CommunityAF

outperforms existing rule-based and example-based approaches,

and improves the training efficiency 4x-20x times compared with

the GAN-based method. We also verify that CommunityAF can

learn the distribution of different community patterns through

visualization.

2 PRELIMINARIES
In this section, we review some preliminary knowledge about au-

toregressive flows and graph neural networks.

2.1 Autoregressive Flow
Normalizing flows (NFs) [24] are a family of generative models that

differ from GANs [13] and variational autoencoders (VAEs) [20] in

that they explicitly model the target distribution through a mecha-

nism of invertible probability transformations.

Specifically, a normalizing flow [24] can convert a simple prob-

ability distribution E into a more complex distribution 𝑍 by a pa-

rameterized invertible deterministic transformation 𝑓\ : E → 𝑍 .

For a real-world data 𝑧, its probability density function 𝑝𝑍 (𝑧) can
be determined by a density function of 𝜖 ∼ 𝑝E , as well as the deter-
minant of the inverse transformation 𝑓 −1

\
’s jacobian matrix with

the help of the change-of-variable formula as follows:

𝑝𝑍 (𝑧) = 𝑝E
(
𝑓 −1

\
(𝑧)

) �����det

𝜕𝑓 −1

\
(𝑧)

𝜕𝑧

����� . (1)

We can maximize the log-likelihood of a given data point 𝑧 in the

training phase using Eq. 1. When it comes to generation, we can

sample 𝜖 ∼ E and apply 𝑧 = 𝑓\ (𝜖). In order to perform the above

calculation efficiently, it is required that the jacobian determinant

is easy to compute. Also, NFs use a sequence of transformations

to push a basic probability density function to a more complex

distribution, analogous to fluid flowing through tubes.

Autoregressive models (ARs) are another type of generative mod-

els, such as RNN [27]. The probability distribution of the current

time step data is generated based on the previous observations.

Additionally, the process of ARs typically requires the calculation

of the first 𝑑-1 data before computing the 𝑑-th data, making the

serial calculation process typically inefficient.

ARs exhibit a triangular jacobian matrix for their transformation

function 𝑓\ due to the autoregressive process. This property makes

ARs as a layer of NFs [24]. The entire ARs can be reparameterized

as affine autoregressive flows [28, 30, 33], where the conditional

probability of each step can be modeled as follows:

𝑝 (𝑧𝑑 | 𝑧
1:𝑑−1

) = N
(
𝑧𝑑 | `𝑑 , (𝛼𝑑)2

)
, (2)

where 𝑧
1:𝑑−1

is the observation data, `𝑑 = 𝑔` (𝑧1:𝑑−1
;\𝑑), 𝛼𝑑 =

𝑔𝛼 (𝑧
1:𝑑−1

;\𝑑) represent the mean and deviation of the normal

distribution, respectively. In practice, these functions 𝑔` and 𝑔𝛼 can

be implemented as neural networks. The affine transformation of

autoregressive flows can be written as:

𝑓\ (𝜖𝑑) = 𝑧𝑑 = `𝑑 + 𝛼𝑑 ⊙ 𝜖𝑑 ;

𝑓 −1

\
(𝑧𝑑) = 𝜖𝑑 =

𝑧𝑑 − `𝑑

𝛼𝑑
.

(3)

In addition, during the training process, autoregressive flows allow

𝑔` (𝑔𝛼) to compute `
1:𝑑 (𝛼

1:𝑑) in parallel [28]. They construct a fully-

connected model with 𝑑 inputs and 𝑑 outputs and then can use

masks to ensure that output 𝑖 depends only on input 1:𝑖-1, avoiding

the inefficient iterative computation.

2.2 Graph Neural Network
Graph neural networks (GNNs) [14, 21, 49] encode node contents

and structural relationships into low-dimensional representations,

which are optimized by different training signals. Over the years,

researchers have introduced ideas such as convolution [21] and self-

attention [37] for designing the architectures of GNNs and proposed

a variety of GNNs that differ in the methods of transforming nodes’

features and aggregating features from neighbors. Most GNNs are

composed of multiple layers, which can be expressed as:

𝐻 𝑖 = 𝑈𝑝𝑑

(
𝐻 𝑖−1, 𝐴𝑔𝑔

(
𝐴,𝐻 𝑖−1,Θ𝑖

1

)
,Θ𝑖

0

)
, (4)

where 𝐴 is the adjacent matrix, Θ𝑖
1/0

are the layer-specific learned

parameters, 𝐴𝑔𝑔 collects neighbor messages based on different

weights, and 𝑈𝑝𝑑 is responsible for transforming nodes’ current

embeddings. The first layer’s hidden feature 𝐻0
is initialized by

𝐻0 = 𝑈𝑝𝑑 (𝑋,Θ0

0
) based on the node content features 𝑋 . Various

loss functions provide the training signals for themodels, depending

on task scenarios. The models’ parameters are optimized using

strategies such as gradient descent to minimize the loss.

3 METHODOLOGY
In this section, we first present the framework of CommunityAF,

then introduce its three components, and finally describe its efficient

training algorithm.

3.1 Framework
Let𝐺 = (𝑉 , 𝐸, 𝑋) denote an undirected graph, where𝑉 , 𝐸,𝑋 are the

set of nodes, edges, and the feature matrix, respectively. 𝑥 (𝑢) ∈ R𝑑
is the feature vector of node 𝑢. We directly represent a community

𝐺𝑐 = (𝐶, 𝐸𝑐 , 𝑋𝑐) using the set of nodes 𝐶 = {𝑞,𝑢1, . . . , 𝑢𝑇 } in the

subgraph for brevity. We use 𝜕𝐶 to denote the neighbors (bound-

aries) of the community, that is, the set of nodes that are connected

to the community nodes but not part of the community.

CommunityAF includes threewell-designed components to achieve

the goals of the example-based community search, as shown in

Figure 2. The community, initialized by the query node, is gener-

ated node-by-node. In each step, the incremental GNN component

computes partially changed embeddings by fusing the structural

2567

Incremental
GNN

Scoring AF

𝑠C0

Δ𝑋1

H0

Incremental
GNN

AF

𝑠C1

Δ𝑋2

෩H2(തC1)

Scoring

Termination detection

…
෩H1(തC0)

Neighbors
Community Nodes
Seed Node
Selected Node

𝑠C𝑖

H1 H2

Figure 2: Interactions among 3 components of CommunityAF
in community generation progress.

(including community-related features) and content features of

the nodes, and updates the previous ones. The updated node em-

beddings about the current community are then fed into the AF

component and the scoring component. The AF component aims to

maximize the likelihood of the community examples, and is respon-

sible for selecting the next-to-be-joined nodes during generation.

The scoring component learns the community quality based on

ranking and also comprehensively determines whether to terminate

community generation based on quality changes.

3.2 Incremental GNN Component
The purpose of the incremental GNN component is to extract the

node and community features needed for community generation

and scoring tasks. Additionally, there is a need for scalability to

support large-scale graph data.We take the similar GNN component

as that in SEAL [48], because the challenges faced here are the same.

Furthermore, we enhance features that are important to express

the character of the communities and analyze the complexity of

the incremental GNN component.

When performing the community generation task, incorporating

information related to the query node as well as the nodes within

the current community is crucial. For instance, if a node is present

in the vicinity of the query node or all of its neighboring nodes are

considered part of the community, it is probable that the node also

belongs to the community. Thus, similar to SEAL [48], Commu-

nityAF enhances the node features by indicating whether a node is

a query node or belongs to the current community. Moreover, for

each node, we introduce a feature whose aggregated result in GNN

equals the node degree and another feature about the distance of

nodes from the query node to estimate the community scale [42].

All these enhanced features are named community-aware structure

features, which can be written as the following equation at step 𝑡 :

𝑋𝑡 = [𝑋, 1, 𝑒𝐶𝑡−1
, 𝑒{𝑞} , 𝑖𝑑 {𝑞}] . (5)

Here, 1 is the newly-introduced all-1 vector to help calculate the

node degree during aggregation. We define 𝑒𝐶𝑡−1
to denote whether

a node belongs to the current community 𝐶𝑡−1. The binary vector

𝑒{𝑞} indicate whether a node is the query 𝑞. 𝑖𝑑 {𝑞} is a vector that
captures the node’s distance to the query node 𝑞, where 𝑖𝑑 {𝑞} (𝑢)
equals the inverse of the shortest distance between the node 𝑢 and

the query 𝑞. We let 1 as the minimal shortest distance to prevent

division by 0.

Community-aware features come at a cost, despite that they can

be used to better reflect community structures and help community

generation. For example, when a node is added into the community,

the vectors 𝑒𝐶𝑡−1
should be correspondingly adjusted. The precise

node embedding learning actually requires the GNN model to be

run 𝑡 times when there are 𝑡 nodes in the community. The operation

is obviously expensive, which seriously impacts scalability.

At the same time, node feature changes are very localized. When

a node joins the community, only a small number of node embed-

dings will change. Therefore, efficient incremental computation

is possible. We borrow iGPN from SEAL to provide a lightweight

incremental update on the node embedding. iGPN inherits the idea

of APPNP [22], which makes the aggregation phase completely

parameter-free and linear by using fixed parameters as weights to

aggregate neighbor messages. The aggregation process of the 𝑖-th

layer iGPN can be written as follows:

𝐻 𝑖
𝑡 = (1 − 𝛽)𝐴𝐻 (𝑖−1)

𝑡 + 𝛽𝐻
(0)
𝑡 , (6)

where 𝐴 is the symmetrically normalized adjacent matrix, 𝛽 is

the damping factor, which can be set to 0.85, and 𝐻
(0)
𝑡 = 𝑋𝑡 . Since

𝑖𝐺𝑃𝑁 (.) performs a propagation of features𝑋𝑡 alongwith the graph

structural 𝐴, an incremental update rule, similar to SEAL [48], can

be defined as:

𝐻0 = 𝑖𝐺𝑃𝑁 (𝑋0) = 𝑖𝐺𝑃𝑁 ([𝑋, 1, 0, 0, 0]),

Δ𝐻1 = 𝑖𝐺𝑃𝑁 (Δ𝑋1) = 𝑖𝐺𝑃𝑁 ([𝑂, 0, 𝑒{𝑞} , 𝑒{𝑞} , 𝑖𝑑 {𝑞}]),

Δ𝐻𝑡 = 𝑖𝐺𝑃𝑁 (Δ𝑋𝑡) = 𝑖𝐺𝑃𝑁 ([𝑂, 0, 𝑒{𝑢𝑡−1 } , 0, 0]) (𝑡 > 1),

(7)

where 𝑂 and 0 represent matrices or vectors with all zeros. iGPN

decomposes the node embeddings at step 𝑡 by 𝐻𝑡 = 𝐻𝑡−1 + Δ𝐻𝑡 to

avoid a full propagation for each generated node.

The incremental node embeddings are fed into𝑀𝐿𝑃 (Multilayer

Perceptron) to maintain the flexibility of the final representations,

as the previous steps are parameter-free. As only nodes in the com-

munity with its neighbors 𝐶𝑡−1 are involved at step 𝑡 , we perform

MLP computation over the embedding of these nodes to obtain the

final embeddings:

𝐻𝑡

(
𝐶𝑡−1

)
= MLPg (𝐻𝑡 (𝐶𝑡−1)) . (8)

We analyze the complexity of plain and incremental GNNs. Let

𝐺𝑐 = (𝐶, 𝐸𝑐 , 𝐹𝑐) be a community example in an underlying graph

𝐺 = (𝑉 , 𝐸, 𝑋), 𝑒 be the number of epochs in training, and the in-

put as well as the output feature matrix dimensions be both 𝑑 for

calculation convenience. The time complexity for forward prop-

agation of the plain GNN layer requires 𝑂
(
𝑒 |𝐶 |

(
|𝐸 |𝑑 + |𝑉 |𝑑2

))
,

where |𝐸 |𝑑 and |𝑉 |𝑑2
are the complexity of neighbor aggrega-

tion and parameter transformation, respectively. The plain GNN

requires the same time for backward propagation and an addi-

tional space complexity of 𝑂 (|𝑉 |𝑑) to store the parameters and

gradients. In contrast, the complexity of the incremental GNN is

𝑂 (|𝐸 |𝑑 + 𝑒 |𝐶 | |𝐸 |) + 𝑂 (𝑒 |𝐶 |𝐶 |𝑑2), in which the former part is the

parameter-free incremental GNN layer, and the latter part is the

subsequent MLP layer computation. We can see that the incre-

mental GNN takes much less cost than the plain GNN because 𝐻0

2568

AF

0

1 2
Mean Concatenate

0

3

1 2

𝜀4[0]

𝜀4[1]

𝜀4[2]

𝜀4[3]

0

3

1 2

0

3

1 2

𝛼4
1[0]

𝛼4
1[1]

𝛼4
1[2]

𝛼4
1[3]

𝜇4
1[0]

𝜇4
1[1]

𝜇4
1[2]

𝜇4
1[3]

𝛼4
2[0]

𝛼4
2[1]

𝛼4
2[2]

𝛼4
2[3]

𝜇4
2[0]

𝜇4
2[1]

𝜇4
2[2]

𝜇4
2[3]

𝛼4
𝑘[0]

𝛼4
𝑘[1]

𝛼4
𝑘[2]

𝛼4
𝑘[3]

𝜇4
𝑘[0]

𝜇4
𝑘[1]

𝜇4
𝑘[2]

𝜇4
𝑘[3]

𝑀𝐿P1 𝑀𝐿P2 𝑀𝐿Pk…

…
𝐴𝑟𝑔𝑚𝑎𝑥 = 3

𝑧4[0]

𝑧4[1]

𝑧4[2]

𝑧4[3]

Neighbors

Community Nodes

Query Node

Selected Node

Node Embeddings

Community Embedding

Candidate Node Embeddings

Inference

Train

Incremental
GNN

Figure 3: One step of community generation process in the autoregressive flow-based generation component.

needs to be computed only once and the aggregation process is

parameter-free.

3.3 Autoregressive Flow-based Generation
Component

The AF component is responsible for learning the conditional dis-

tribution of the example community, which supports the node

selection in the community generation. The entire process is au-

toregressive, indicating that the data for the 𝑡-th step is generated

based on the previous 𝑡-1 steps. Thus, there are two primary factors

to consider, how to represent the data prior to step 𝑡 , and how to

select the next nodes. Figure 3 illustrates one generation step, in

which the upper figure describes the representation of previous

data, and the lower part shows the next node selection using the

invertible transformation learned by a flow-based method.

The data representation prior to step 𝑡 actually considers the

currently generated community. With the embeddings of nodes in

the community, we produce the community embedding by pooling

the node embeddings:

ℎ̃𝐶𝑡−1
= 𝑀𝑒𝑎𝑛(𝐻𝑡 (𝐶𝑡−1)) . (9)

𝑀𝑒𝑎𝑛 readout function is selected as the pooling function in Com-

munityAF over 𝑆𝑢𝑚 function [48], as we believe that the common

features instead of the number of nodes are important for the rep-

resentation of a community. Two pooling functions will be experi-

mentally studied later.

We use the neighboring nodes of the current community 𝜕𝐶𝑡−1

as the candidate node set, in order to ensure connectivity. For each

candidate node 𝑢 ∈ 𝜕𝐶𝑡−1, we concatenate its own embedding

with the community embedding to get the final embedding of that

node. Then we stack the final embedding of all candidate nodes as

𝐻𝜕𝐶𝑡−1
∈ R𝑑𝑡−1×2𝑑0

:

ℎ̂𝑡 (𝑢) = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (ℎ̃𝑡 (𝑢), ℎ̃𝐶𝑡−1
),

𝐻𝜕𝐶𝑡−1
= 𝑆𝑡𝑎𝑐𝑘 ([ℎ̂𝑡 (𝑢1), . . . , ℎ̂𝑡 (𝑢𝑑𝑡−1)]),

(10)

where 𝜕𝐶𝑡−1 = {𝑢1, . . . , 𝑢𝑑𝑡−1 }, and𝑑𝑡−1 is the number of neighbors

of the current community.

We follow the flow-based model in selecting the next node by

estimating the probability density function of candidate nodes. That

is, for each candidate node, we can learn its probability density

function in the form of a Gaussian distribution, from which the

next nodes can be sampled. The conditional probability density

function is defined as follows:

𝑃 (𝑢 |𝐶𝑡−1) =N(`𝑡 , (𝛼𝑡)2), (11)

where 𝑢 ∈ 𝜕𝐶𝑡−1 is a candidate node from the current community

neighbors, `𝑡 = 𝑔` (𝐻𝜕𝐶𝑡−1
) and 𝛼𝑡 = 𝑔𝛼 (𝐻𝜕𝐶𝑡−1

) are the mean and

deviation of the standard normal distribution learned by 𝑔` and 𝑔𝛼
using the current candidate data.

We further enhance the capability of invertible transformations

using flow. Specifically, the transformation process is decomposed

into 𝑘 different modules, where each module uses𝑀𝐿𝑃 to compute

the mean and variance, as illustrated in Figure 3. The training stage

is the inverse of the generation stage, which we discuss in Section

3.5. The 𝑖-th (1 ≤ 𝑖 ≤ 𝑘) transformation module is calculated as

follows:

`𝑖𝑡/𝛼𝑖𝑡 = 𝑀𝐿𝑃𝑖
`/𝛼 (𝐻𝜕𝐶𝑡−1

),

𝑧𝑖𝑡 = 𝛼𝑖𝑡 ⊙ 𝑧𝑖−1

𝑡 + `𝑖𝑡 ,
(12)

where 𝑧𝑖𝑡 ∈ R𝑑𝑡−1
is a 𝑑𝑡−1-dimensional vector, and 𝑧0

𝑡 = 𝜖𝑡 , which

is randomly sampled from the standard normal distribution, and

⊙ is the element-wise multiplication. In practice, the community

node 𝑢𝑡 is generated by taking the 𝑎𝑟𝑔𝑚𝑎𝑥 of the generated vector

𝑧𝑘𝑡 , i.e., 𝑢𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢 (𝑧𝑘𝑡).

3.4 Scoring Component
Flexible termination is crucial to the quality of community genera-

tion, as mentioned before. The existing termination strategies, such

as the fixed stopping criteria [12, 19] and the virtual node policy

[48], have limitations. For example, the fixed stopping criteria ob-

viously cannot suit the cases when the community examples are

arbitrary. The virtual node is introduced by considering the current

community embedding and its neighbor embedding, and it serves

2569

as the termination indicator when the virtual node is selected. How-

ever, the virtual nodes cannot leverage the trends of the community

and may lead to early termination due to randomness.

CommunityAF plans to introduce a scoring component to pro-

duce scores for each generated community based on the similarity

of the community examples to overcome the aforementioned limi-

tations. Besides being a more fine-grained assessment of generated

sequences, the scoring component can be used to capture the qual-

ity trend of the community. When a community evolves with node

addition, the quality score rises before all the correct nodes are

added and falls afterward. The quality changing pattern can be

learned from the community examples, and then help to determine

the termination in the community generation. In such a way, a more

stable and smooth community generation can be supported. We

also note that classic scoring functions based on subgraph structural

properties such as density [42], conductance[1, 15] are extensively

utilized to evaluate community quality. However, these predefined

rule-based scores lack flexibility in handling different examples.

In the following, we first show how the scoring component is

designed and then show that it can mimic classical scoring func-

tions such as conductance if needed. Finally, we design a flexible

termination strategy based on the score generated.

Score Computation. The scoring component evaluates the quality

of the generated community, which is represented by the commu-

nity embedding ℎ̃𝐶𝑡−1

in the previous subsection. In addition, we

introduce another self-attention based community embedding as

follows, which not only considers different weights of nodes in

aggregation, but also incorporates neighbor nodes outside the com-

munity. These two community embeddings are concatenated as the

input to the scoring component:

𝑎𝑡 (𝑢) =
exp(\𝑇𝑎 ℎ̃𝑡 (𝑢))∑

𝑣∈𝐶𝑡−1

exp

(
\𝑇𝑎 ℎ̃𝑡 (𝑣)

) ,
¥ℎ𝐶𝑡−1

=
∑︁

𝑢∈𝐶𝑡−1

𝑎𝑡 (𝑢) · ℎ̃𝑡 (𝑢),

ℎ𝑠�̄�𝑡−1

= 𝑠𝑡𝑎𝑐𝑘 ([¥ℎ𝐶𝑡−1

, ℎ̃𝐶𝑡−1
]) .

(13)

For community 𝐶𝑡−1, its score can be written as follows:

𝑠𝐶𝑡−1
= [1 + exp(𝑀𝐿𝑃𝑠 (ℎ𝑠�̄�𝑡−1

))]−1

, (14)

where 𝑠𝐶𝑡−1
∈ [0, 1], and a larger 𝑠𝐶𝑡−1

means a higher quality of

𝐶𝑡−1.

Analysis of the Scoring Component. We argue that the scor-

ing component can naturally combine the structural and content

features to learn the patterns inside the examples, making it more

expressive and flexible than existing rule-based metrics. In order

to illustrate the power of the scoring component, we discuss the

relationships between the scoring component and the rule-based

structural properties such as conductance, which is the most com-

monly used rule-based metric [1, 8].

The previous work proves that the GNN with the labeling trick

features can predict the density and cut ratio of subgraphs [40]. In

fact, the community-aware structure features can also be regarded

as an enhanced labeling trick. We consider the factor of node degree

to weight community-aware features ℎ
(0)
𝑢 in Eq. 15. Similarly, we

prove that there exists a score component that can precisely predict

conductance using ℎ
(0)
𝑢 . We show that ℎ

(0)
𝑢 is transformed using

the incremental GNN into another form ℎ̃𝑢 , which can be used to

compute conductance. These computations can be fit by the neural

network used by a score component.

ℎ
(0)
𝑢 =

√︁
|𝑁 (𝑢) |

[
𝐼 (𝑢 ∈ 𝐶)

1

]
. (15)

Theorem 1. Given any graph 𝐺 with its node features weighed
using Eq. 15, there exists a scoring component that can precisely predict
the conductance of any community 𝐶 in 𝐺 .

Proof Sketch. According to the incremental GNN computation

rule in Eq. 6, the node representation of ℎ
(1)
𝑣∈𝐶 can be computed as:

ℎ
(1)
𝑣∈𝐶 = (1 − 𝛽)

∑︁
𝑢∈𝑁 (𝑣)

(
1√︁

|𝑁 (𝑢) |
√︁
|𝑁 (𝑣) |

ℎ
(0)
𝑢

)
+ 𝛽ℎ

(0)
𝑣

=

[
1−𝛽√
|𝑁 (𝑣) |

|𝑁 (𝑣) ∩𝐶 | + 𝛽
√︁
|𝑁 (𝑣) |√︁

|𝑁 (𝑣) |

]
.

(16)

Subsequently, the intermediate node embedding is fed into the

𝑀𝐿𝑃𝑔 in Eq. 8, which is used to fit the following equation:

ℎ̃𝑣∈𝐶 = 𝑀𝐿𝑃𝑔 (ℎ (1)𝑣∈𝐶)

=

[
(ℎ (1)

𝑣∈𝐶 [0] · ℎ
(1)
𝑣∈𝐶 [1] − 𝛽ℎ

(1)
𝑣∈𝐶 [1]

2)/(1 − 𝛽)
ℎ
(1)
𝑣∈𝐶 [1]

2

]
=

[
|𝑁 (𝑣) ∩𝐶 |
|𝑁 (𝑣) |

]
.

(17)

Next, we obtained the average number of inner edges and the

average number of node degrees of the community bymean pooling

the node embeddings. The conductance can be precisely predicted

by a scoring component that fits the following equation:

ℎ̃𝐶 = 𝑀𝑒𝑎𝑛(𝐻 (𝐶)) =
∑

𝑣∈𝐶 ℎ̃𝑣

|𝐶 | ,

𝑐𝑜𝑛𝑑𝐶 = 1 − 2

∑︁
𝑣∈𝐶

|𝑁 (𝑣) ∩𝐶 |/
∑︁
𝑣∈𝐶

|𝑁 (𝑣) |

= 1 − 2ℎ̃𝐶 [0]/ℎ̃𝐶 [1]

(18)

.

We should note that the proof is to illustrate the expressiveness

of the scoring component, with the restrictions on the node features

and computation steps. In practice, considering both the features of

the query node and the graph content can make the scoring compo-

nent more flexible. In our experimental test, we find that the node

features with degree weighting do not always work well. It may be

due to the fact that conductance is not a suitable measurement for

some datasets. Thus, we uses the node features in Eq. 5 by default.

Usage of Scores in Termination. The scoring component enables

CommunityAF to leverage the score changing of the community to

determine the termination, which results in a stable and smooth

generation. That is, given a community 𝐶𝑇 , we maintain a𝑚𝑠 -size

slidingwindow for an evolving community, and represent the scores

of its generation process as (𝑠𝐶𝑇 −1
, . . . , 𝑠𝐶𝑇 −𝑚𝑠

). The generation can

be terminated when the condition 𝑠𝐶𝑇
< min(𝑠𝐶𝑇 −1

, . . . , 𝑠𝐶𝑇 −𝑚𝑠
)

is satisfied, and the community with the highest score 𝑠𝑎𝑟𝑔𝑚𝑎𝑥 (𝑆)

2570

𝜀5
1

𝜀5
2

𝜀6
1

𝜀6
2

0.99 0.85

0.7 < min(0.99,0.85)

𝐶3 𝐶4

𝐶5

Neighbors Community Nodes Query Node Selected Node

0.7 0.99

𝐶3

Terminate generation

Figure 4: Example of score and its usage in stop generation.

is selected as the final community. By contrast, the virtual node

strategy terminates generation once the virtual node is selected.

We can further expand the sliding window if we generate mul-

tiple candidate communities in each step. In fact, the next node is

selected by sampling from the probability density distribution in

CommunityAF. We can then sample𝑚𝑒 nodes {𝜖1, . . . , 𝜖𝑚𝑒 }, and
each sampled node results in an independent community snap-

shot, which is similar to beam search in text generation [41]. We

then generate scores for all candidate communities, and greedily

select the community with the highest score as𝐶𝑡 for the next step,

repeating until the generation stops.

We illustrate how our scoring component works in Figure 4 with

𝑚𝑠 =𝑚𝑒 = 2. The current community 𝐶3 has a score of 0.99, and

we generate 𝐶1

4
and 𝐶2

4
by sampling 𝜖1

4
and 𝜖2

4
from a Gaussian

distribution. Next, we select the community with the highest score

as 𝐶4. We repeat the procedure to generate 𝐶5, and we notice that

𝑠𝐶5
< 𝑚𝑖𝑛(𝑠𝐶4

, 𝑠𝐶3
). Therefore, we decide to stop generating this

community, and the communitywith the highest score𝐶3 is selected

as the final generated community.

3.5 Efficient Training Process
In this subsection, we first discuss how to parallel preprocess data

for fast training. Then, we present the loss functions for the AF

component and scoring component. Finally, we give the overall

training algorithm and analyze its time complexity.

Parallel Preprocessing for Training. Inspired by the fact that

autoregressive flows can compute the hidden representation 𝐻1:𝑡

during the parallel training [33], we plan to support efficient train-

ing in CommunityAF. To accomplish this, we need to produce a

node sequence to determine the next node to be selected. Com-

munityAF generates the node sequence for a given community by

using breadth-first search, which is widely used in graph genera-

tion work [31, 33, 45]. Specifically, for an ordered community 𝐶 =

{𝑢0, . . . , 𝑢𝑇 }, we takes 𝑢0 as the query node and obtains snapshots

of the generation process, as {𝐶0 = {𝑢0}, . . . ,𝐶𝑇 = {𝑢0, ..., 𝑢𝑇 }}.
With the node sequence, CommunityAF can learn the node em-

beddings incrementally. It is difficult to compute hidden representa-

tions for large graphs on a single GPU, even though the incremental

Algorithm 1: Efficient Training of CommunityAF.

Input: Graph 𝐺 = (𝑉 , 𝐸, 𝑋), Train set 𝐶𝑡𝑟𝑎𝑖𝑛 , Batch size𝑚𝑏 .

1 Initial Parameters Θ of CommunityAF;

2 while Θ is not converged do
3 for 𝑏 = 1, . . . ,𝑚𝑏 do
4 Sample a community 𝐶 from train set 𝐶𝑡𝑟𝑎𝑖𝑛 with

size 𝑇 + 1;

5 Reorder 𝐶 according to BFS as {𝑢0, 𝑢1, . . . , 𝑢𝑇 };
6 Select the current community

𝐶𝑙𝑖𝑠𝑡 = {𝐶0,𝐶1, . . . ,𝐶𝑇 } and the next generated

node 𝑍 = {𝑧1, . . . , 𝑧𝑇 } according to the BFS order;

7 Calculate the node embeddings

𝐻 = {𝐻1, . . . , 𝐻𝑇 , 𝐻𝑇+1} using Eq. 7;
8 for 𝑡 = 1, . . . ,𝑇 do
9 Calculate 𝐻𝜕𝐶𝑡−1

using Eq. 8, 9, 10;

10 for 𝑖 = 𝑘, . . . , 1 do
11 `𝑖𝑡 = 𝑀𝐿𝑃𝑖` (𝐻𝜕𝐶𝑡−1

), 𝛼𝑖𝑡 = 𝑀𝐿𝑃𝑖𝛼 (𝐻𝜕𝐶𝑡−1
);

12 Calculate 𝜖𝑡 , 𝐿𝑜𝑠𝑠
𝑡
𝑔 according to Eq. 19, Eq. 21;

13 𝐿𝑜𝑠𝑠𝑔 =
∑
𝑡=1,...,𝑇 (𝐿𝑜𝑠𝑠𝑡𝑔);

14 Sampling𝑚𝑛𝑒𝑔 negative nodes from 𝜕𝐶𝑇 as

𝐶𝑛𝑒𝑔 = {𝐶1

𝑛𝑒𝑔, . . . ,𝐶
𝑚𝑛𝑒𝑔

𝑛𝑒𝑔 , } and calculate the node

embeddings using Eq. 7 ;

15 Initialize 𝑅𝑝 = {(𝐶0,𝐶1), . . . , (𝐶𝑇−1,𝐶𝑇);
16 𝑅 = 𝑅𝑝 + {(𝐶1

𝑛𝑒𝑔,𝐶𝑇), . . . , (𝐶
𝑚𝑛𝑒𝑔

𝑛𝑒𝑔 ,𝐶𝑇)};
17 Calculate the score for each community in

𝐶𝑙𝑖𝑠𝑡 ∪𝐶𝑛𝑒𝑔 according to Eq. 8, 9, 13, 14;

18 Calculate 𝐿𝑜𝑠𝑠𝑠 according to Eq.23;

19 𝐿𝑜𝑠𝑠𝑏𝑚 = 𝐿𝑜𝑠𝑠𝑔 + _𝐿𝑜𝑠𝑠𝑠 ;

20 Back propagate 𝐿𝑜𝑠𝑠𝑚 =
∑
𝑏 𝐿𝑜𝑠𝑠

𝑏
𝑚 and update Θ;

GNN model has reduced parameter and gradient memory usage.

Thus, we decouple the underlying graph data from the subsequent

training. Since the order of the nodes in the example community

is given, we can efficiently process incremental embeddings Δ𝐻1:𝑡

for each snapshot in batches on CPU. Next, for each snapshot with

the underlying graph embedding 𝐻 , we can store the community

embedding 𝐻 (𝐶) and the candidate node embedding 𝐻 (𝜕𝐶) to the

disk to avoid repeated computations during subsequent training.

In order to facilitate subsequent generation in batches on GPU, we

fix the boundary size of the community 𝐶 to 200. CommunityAF

takes a sampling strategy when the number of candidate neighbors

exceeds this size limit, or uses zero vector padding otherwise.

Loss Functions for AF and Scoring Components. For the gener-
ation task, our goal is to maximize the log-likelihood of the training

data. In CommunityAF, we set the conditional generation vector

from training data as a one-hot vector 𝑧𝑘𝑡 , which indicates the se-

lected candidate node in this snapshot. The jacobian matrix of the

inverse process 𝑓 −1
: 𝑍 → E is a triangular(diagonal) matrix, and

its determinant can be calculated very efficiently:�����det

𝜕𝑓 −1 (𝑧𝑘𝑡)
𝜕𝑧𝑘𝑡

����� =
����� 𝑘∏
𝑖=1

1

𝑀𝑢𝑙 (𝛼𝑖𝑡)

����� . (19)

2571

Also, the inverse deduction of 𝜖𝑡 (𝑧0

𝑡) is straightforward:

𝑧𝑖−1

𝑡 =

(
𝑧𝑖𝑡 − `𝑖𝑡

)
⊙ 1

𝛼𝑖𝑡

(1 ≤ 𝑖 ≤ 𝑘). (20)

So the optimization goal of a certain community generation snap-

shot is:

𝐿𝑜𝑠𝑠𝑔 = − log(Mul(𝑝E (𝜖𝑡))) −
𝑘∑︁
𝑖=1

log(
�����Mul(1

𝛼𝑖𝑡

)
�����), (21)

where Mul(𝑣) represents the multiplication of all elements in a

vector 𝑣 , and 𝑝E is the probability density function of the standard

normal distribution. In the training phase, we compute 𝛼 and `

according to the candidates’ embeddings, calculate 𝜖𝑡 in the inverse

direction, and finally calculate the required log-likelihood.

The scoring component is used to evaluate the generated com-

munity. Instead of modeling the absolute score labeled by end users

or some rules, CommunityAF attempts to model the relative scores,

which not only detect the quality change in community evolution

but also require no extra labeling. That is, we use 𝑅𝑝 = {(𝐶𝑡 ,𝐶𝑡+1)}
to indicate the ranking pairs during the generation process of an

example community 𝐶 , where 𝐶𝑡 is the previous snapshot of 𝐶𝑡+1

in the generation, and the community score 𝑠𝐶𝑡+1
at step 𝑡 + 1

should be higher than the community score 𝑠𝐶𝑡
at step 𝑡 . In addi-

tion, we randomly add nodes in the neighborhood of 𝐶𝑇 to form

𝑚𝑛𝑒𝑔 negative examples of community 𝐶𝑖
𝑛𝑒𝑔 to introduce negative

samples to help the component learn community scores better. The

pairs for each negative example are added into the training pairs

𝑅 = 𝑅𝑝 + {(𝐶𝑖
𝑛𝑒𝑔,𝐶𝑇)}. Note that the embedding of these negative

communities can also be computed in the preprocessing stage.

The plain loss function measures the relative score for given two

communities, where 0 ≤ 𝑚 ≤ 1 is the margin to allow a tolerance

of the error in the ranking:

𝐿𝑜𝑠𝑠 =
∑︁

(𝐶𝑖 ,𝐶𝑖+1) ∈𝑅
max(0, 𝑠𝐶𝑖

− 𝑠𝐶𝑖+1
+𝑚). (22)

However, the plain loss function may not work properly in some

community ranking scenarios. For example, suppose that we expect

𝑠𝐶𝑖+1
−𝑠𝐶𝑖

> 𝑚 as well as 𝑠𝐶𝑖
−𝑠𝐶𝑖−1

> 𝑚. The sum operation results

in 𝑠𝐶𝑖+1
−𝑠𝐶𝑖−1

> 2𝑚, leaving the score of community 𝑠𝐶𝑖
untrained.

One solution is to use listwise ranking loss [5], but it requires

artificially setting the ground truth community score for each stage

in advance, while the community is flexible.

We further propose a square pairwise ranking loss to overcome

the limitation of the plain loss function. Due to the square operation,

we can see that a positive term in a pair cannot be canceled by the

corresponding negative term in another par, making the scores of

all communities fully learned:

𝐿𝑜𝑠𝑠𝑠 =
∑︁

(𝐶𝑖 ,𝐶𝑖+1) ∈𝑅
max

(
0, ((𝑠𝐶𝑖

− 𝑠𝐶𝑖+1
+ 1)2 − (1 −𝑚)2)

)
. (23)

Overall Algorithm and Complexity Analysis. The overall train-
ing of CommunityAF is shown in Algorithm 1. The training is

conducted in multiple epochs until the model is fully trained. In

each epoch, the patterns in𝑚𝑏 example communities are learned.

That is, for a sampled example community, we generate one node

sequence in line 5, and prepare the training data, including com-

munity embedding and candidate node embedding, in lines 6–7.

Table 2: Statistics of datasets.

|𝑉 | |𝐸 | |𝐶 | 𝑀𝑎𝑥 (𝐶) 𝑀𝑒𝑎𝑛(𝐶)
Facebook 3K 72K 130 72 15.6

Amazon 13K 33K 4517 30 9.3

DBLP 114K 466K 4559 16 8.4

Twitter 87K 1M 2838 34 10.9

Youtube 216K 1M 2865 25 7.7

LiveJournal 316K 5M 4510 54 17.6

Then, we compute the loss in each generation step to produce the

generative loss in the AF component. The ranking loss in the scor-

ing component is computed in line 18. The overall loss function

in line 19 takes the form of 𝐿𝑜𝑠𝑠𝑚 = 𝐿𝑜𝑠𝑠𝑔 + _𝐿𝑜𝑠𝑠𝑠 , where _ is a

hyperparameter to adjust the weights of two losses.

We analyze the time complexity of Algorithm 1. Let𝐺𝑐 = (𝐶, 𝐸𝑐 , 𝐹𝑐)
be a community example in an underlying graph𝐺 = (𝑉 , 𝐸, 𝑋), 𝑒 be
the number of epochs in training. The complexity of the incremen-

tal computation in lines 5-7 and 14 is𝑂 (𝑒 |𝐶 | |𝐸 |). The preprocessing
can reduce the complexity of this part to 𝑂 (|𝐸 |), because it can

compute the incremental part in parallel, and avoid repeated com-

putations. The rest of the calculations are only related to the size

of the community and its neighbors, independent of the size of the

underlying graph.

4 EXPERIMENTS
In this section, we first introduce our experimental setup and com-

parison methods. Then, we validate the effectiveness and efficiency

of CommunityAF, and perform the ablation experiment and hy-

perparameter study to demonstrate the rationality of the Commu-

nityAF design. Finally, we design an experiment to demonstrate

the ability of CommunityAF to learn the distribution of different

community patterns, and validate it through visualization. Due to

the page limitation, the hyperparameter settings and experiment

environment can be found in our code repository.

4.1 Experiment Setup
Metrics. We choose the Bi-matching 𝐹1 (BI) metric [2, 48] com-

monly used in community-related fields to evaluate method per-

formance. Specifically, for a dataset with 𝑛 real communities {𝐶𝑖 },
we split it into a train set, a validation set, and a test set. For each

community 𝐶 in the validation set and test set, we uniformly sam-

ple one node 𝑞 from it as a query node to generate the community.

Finally, we obtain𝑚 generated communities {𝐶𝑖 }. The evaluation
metrics can be calculated as:

1

2

(1

𝑚

∑︁
𝑖

max

𝑗
𝐹1(𝐶 (𝑖) ,𝐶 (𝑗)) + 1

𝑛

∑︁
𝑗

max

𝑖
𝐹1(𝐶 (𝑖) ,𝐶 (𝑗))),

(24)

where the forward matching 𝐹1 (F = 1

𝑚

∑
𝑖 max𝑗 𝐹1(𝐶 (𝑖) ,𝐶 (𝑗)))

indicates that how the generated community is alike one of the

existing ground-truth communities, while the backward matching

𝐹1 (B = 1

𝑛

∑
𝑗 max𝑖 𝐹1(𝐶 (𝑖) ,𝐶 (𝑗))) shows that how the ground-

truth community is alike one of the generated communities.

Datasets. We use 6 real-life graphs in our experiments, which are

available from the snap project [43]. Among them, Facebook and

2572

Twitter have both content features and ground-truth communities,

while the rest of the datasets have only ground-truth communities.

For non-attributed graphs, we assume that each node has the same

attributes, i.e. 𝑥 (𝑢) = 0. The statistics of the datasets are shown

in Table2. For each dataset, we select 450 communities (28 from

Facebook) as the train set, 50 communities (2 from Facebook) as the

validation set, and the rest as the test set. The example-basedmodels

will be trained on the train set and tuned for the hyperparameters

on the validation set. Eventually, all methods will be evaluated on

the test set.

Preprocessing. For each dataset, we follow the same preprocessing

strategies as the previous work [48] to facilitate training and fair

comparison. The data preprocessing strategies include the removal

of outliers, the removal of irrelevant nodes that are not community

nodes or neighbors, and feature reduction, which are presented in

detail in our code repository. Additionally, we perform a study on

the datasets that contain these irrelevant nodes.

4.2 Competitors
To the best of our knowledge, example-based community search is

a relatively new field with only a few related works. Therefore, we

further select some representative general community search work

for comparison.

Local modularity-based methods. Mod-m [8] defines local mod-

ularity to measure community quality based on the proportion of

boundary edges in the community, and stops according to a thresh-

old. Mod-r [26] proposes a new metric for the local modularity of

communities considering subgraphs.

Random walk-based methods. HK (Heat Kernel) [23] finds com-

munities using random-walk with restart probabilities to sort the

nodes and utilizes conductance to determine the termination of

community generation. LOSP [15] introduces a local spectral sub-

space and seeks out a sparse indicator vector in the subspace to

identify the community that contains the given seed. LLSA [34]

attempts to first sample communities using HK algorithm, and then

optimizes these communities using Lanczos method. MRW [3] re-

lies on multiple walkers to capture the local community structure

and allows walkers with similar visit histories to reinforce each

other.

Structural cohesiveness-based methods. CTC [18] tries to find

connected 𝑘-truss subgraphs that contain the query nodes with

the smallest diameter. SCS [44] aims to locate a community whose

minimum node degree is the largest among all candidates.

Example-basedmethods.We select SEAL, a representative search

method using community-level examples, as our major competitor.

SEAL can additionally train a seed selector extension to the com-

munity detection problem, but in our context, the seed is given. In

addition, we extend three search methods using node-level exam-

ples into our context, ICS-GNN [12], ICS
+
-GNN [7], QD-GNN [19]

using node-level examples. Originally, ICS-GNN [12] and ICS
+
-

GNN [7] learn a classifier to determine whether a node belongs to

a community. Similar to QD-GNN, their classifier can be trained

on nodes in all trained communities, which can capture the pat-

terns among multiple communities to some extent. Then all these

methods search for the communities using heuristic rules. In detail,

ICS
+
-GNN additionally introduces an unsupervised clustering task

in the training phase that enhances node embeddings’ capability

of capturing some community-level features. QD-GNN introduces

local query dependency structures and global graph embeddings,

which enable the node embedding to obtain sufficient information

about the query node and the underlying graph. Considering that

QD-GNN focuses on community search on small graphs, we add the

process of subgraph sampling, which is similar to that in ICS-GNN.

Variations of CommunityAF.We use a limited train set, e.g., 5

communities for training, in order to validate whether Commu-

nityAFworkswell with limited examples, which called CommunityAF-

F. CommunityAF-A means that we use 𝑆𝑢𝑚 for the pooling func-

tion in Eq. 9 to get the community representation. CommunityAF-V

represents using the virtual node strategy instead of our scoring

component. Specifically, we add the input embedding of the scoring

component ℎ𝑠�̄�𝑡−1

as the virtual node embedding to the candidate

node embeddings, and stop the generation when the virtual node is

selected. CommunityAF-C stops community generation with con-

ductance. CommunityAF-D uses a degree-related factor to weight

the specific community-aware features in Eq.15 to facilitate pre-

cisely predicting community structural properties. CommunityAF-P

uses the plain ranking loss for training in Eq. 22.

4.3 Comparison with Competitors
In this subsection, we compare the effectiveness and efficiency of

CommunityAF with its competitors on different datasets.

Effectiveness on preprocessed datasets. Table 3 shows that Com-

munityAF is superior to the majority of methods on all datasets, and

significantly outperforms SEAL on five datasets. The rule-based

methods perform differently on various datasets. For example, the

local modularity-based methods work well on Facebook and Ama-

zon, the random walk-based methods only do well on Amazon, and

the structural cohesiveness-based methods are adept at the DBLP,

Amazon, Twitter, and LiveJournal datasets.

Compared with the node-level example-based methods, Com-

munityAF achieves better performance. These two-stage methods

can learn patterns on community nodes, but are difficult to capture

at the community-level patterns, and they stop community genera-

tion using fixed criteria, which impacts the quality of the generated

community seriously.

CommunityAF outperforms SEAL, themajor competitor, onmost

datasets, with 15.3% average improvement in performance. We also

note that SEAL achieves slightly better results than CommunityAF

on Amazon. We guess that the community patterns on Amazon

are relatively simple and homogeneous, with clear structural char-

acteristics, because almost all approaches perform well on it. The

backward 𝐹1 of CommunityAF is lower than that of SEAL, probably

because CommunityAF is overfitted on this dataset.

CommunityAF has higher scores in the F and lower scores in

the B, and we can note that similar results can be found in other

example-based methods. It is due to the difference in patterns be-

tween the training and testing communities. Usually, it is relatively

easy to find a test community 𝐶 that shares a similar pattern to

communities in the train set, and then the generated community

is similar to 𝐶 , resulting in a higher F. However, there may exist a

2573

Table 3: Results of experiments with competitors. The best result is boldfaced.

Facebook DBLP Amazon Twitter Youtube LiveJournal

F B BI F B BI F B BI F B BI F B BI F B BI

Mod-m 0.511 0.365 0.438 0.630 0.573 0.602 0.816 0.807 0.811 0.354 0.260 0.307 0.320 0.271 0.296 0.696 0.651 0.673

Mod-r 0.528 0.374 0.451 0.648 0.587 0.618 0.845 0.835 0.840 0.363 0.270 0.316 0.353 0.299 0.326 0.724 0.668 0.696

HK 0.387 0.196 0.292 0.489 0.430 0.459 0.837 0.779 0.808 0.303 0.189 0.246 0.284 0.201 0.243 0.623 0.544 0.584

LLSA 0.508 0.346 0.427 0.570 0.517 0.544 0.677 0.662 0.670 0.360 0.288 0.324 0.270 0.232 0.251 0.675 0.624 0.650

LOSP 0.496 0.391 0.444 0.639 0.586 0.613 0.757 0.748 0.753 0.402 0.342 0.372 0.373 0.331 0.352 0.634 0.599 0.616

MRW 0.459 0.239 0.349 0.509 0.450 0.479 0.876 0.845 0.860 0.310 0.193 0.251 0.443 0.395 0.419 0.683 0.594 0.639

CTC 0.451 0.353 0.402 0.682 0.712 0.697 0.795 0.784 0.790 0.404 0.328 0.366 0.420 0.422 0.421 0.701 0.680 0.691

SCS 0.473 0.333 0.403 0.686 0.715 0.700 0.869 0.856 0.862 0.428 0.310 0.369 0.350 0.313 0.331 0.716 0.622 0.669

ICS-GNN 0.430 0.288 0.359 0.606 0.566 0.586 0.813 0.799 0.806 0.400 0.292 0.346 0.390 0.343 0.367 0.578 0.532 0.555

ICS
+
-GNN 0.475 0.286 0.381 0.704 0.687 0.696 0.834 0.819 0.826 0.397 0.343 0.370 0.455 0.396 0.426 0.587 0.548 0.568

QD-GNN 0.385 0.317 0.351 0.715 0.675 0.701 0.877 0.893 0.885 0.334 0.287 0.311 0.433 0.378 0.405 0.689 0.654 0.672

SEAL 0.414 0.327 0.370 0.694 0.568 0.631 0.916 0.920 0.918 0.359 0.260 0.310 0.431 0.304 0.368 0.692 0.661 0.677

CommunityAF 0.539 0.395 0.467 0.749 0.687 0.718 0.914 0.905 0.910 0.440 0.345 0.393 0.470 0.406 0.438 0.742 0.702 0.722

community in the test set with distinct patterns that are difficult to

learn in the train set, and a lower B occurs.

Table 4: Bi-matching F1 results of the example-based meth-
ods varying raw datasets.

Datasets SEAL QD-GNN ICS
+
-GNN CommunityAF

Facebook 0.355 0.345 0.369 0.461
DBLP 0.629 0.659 0.651 0.688
Amazon 0.827 0.782 0.743 0.793

Twitter 0.364 0.371 0.382 0.390
Youtube 0.346 0.369 0.365 0.381
LiveJournal 0.632 0.599 0.446 0.684

Effectiveness on raw datasets. Table 4 reports the results of

example-based community search methods on raw data. The raw

data, compared with the fully preprocessed data, keep all irrelevant

nodes in the graph. These irrelevant nodes are not community nodes

or community neighbors, which may be noise in the community

generation. The experiments show that all methods are slightly

degraded, but CommunityAF still performs the best overall.

Table 5: Comparison of training costs (seconds) varying
datasets.

SEAL CommunityAF

pretraining trainning preprocessing trainning

Facebook 30 2507 3 121
DBLP 412 2565 42 663
Amazon 254 2266 3 322
Twitter 290 2248 11 212
Youtube 1851 14431 1446 548
LiveJournal 2654 31844 1805 1836

Efficiency. A major overhead of deep learning is the training

time. We test the time costs in seconds of two generative methods,

CommunityAF and SEAL, on six varying-sized graphs, as shown

in Table 5. From this table, we can see that CommunityAF only ac-

counts for less than 4% of the SEAL’s training time in the best case.

Even if we consider the one-time preprocessing and pretraining

time, CommunityAF still achieves 4x to 20x speedups on different

datasets. As previously analyzed, low training time in Commu-

nityAF comes from parallel training and easy convergence in the

autoregressive flow-based method. Here, we do not report the time

used by the node-level example-based methods, as they do not cap-

ture the community-level pattern and therefore are faster naturally.

Table 6: Ablation experiment with Bi-matching F1.

Facebook DBLP Amazon Twitter Youtube

CommunityAF-A 0.372 0.496 0.888 0.314 0.362

CommunityAF-V 0.417 0.662 0.808 0.382 0.321

CommunityAF-C 0.456 0.626 0.860 0.382 0.393

CommunityAF-F 0.438 0.610 0.863 0.366 0.411

CommunityAF-D 0.467 0.722 0.876 0.383 0.422

CommunityAF-P 0.463 0.710 0.909 0.382 0.422

CommunityAF 0.467 0.718 0.910 0.393 0.438

4.4 Ablation Experiment
We test the results of different variants of CommunityAF in Ta-

ble 6. The results of CommunityAF-A using 𝑆𝑢𝑚 as its pooling

function verify our previous expectations that the averaged com-

munity features are more suitable to determine the next node in the

community. Moreover, the performances of CommunityAF-V with

the virtual node strategy and CommunityAF-C with conductance

indicate that the scoring component is more robust and capable of

adapting to different datasets. The result of CommunityAF-F shows

that providing examples is not a large burden for users, since only

a small number of examples can outperform most rule-based meth-

ods. CommunityAF-D uses a degree-related weighting to precisely

calculate community properties, achieving optimal results on two

datasets. We think it is possible that the conductance or similar

subgraph structural properties of the metrics are not applicable

to other datasets. The results of CommunityAF-P with the plain

ranking loss verify that the square ranking loss is more stable.

4.5 Hyperparameters Study
Study of the AF Component. We study the effect of the number

of transformation module 𝑘 in the AF component on two repre-

sentative datasets, as shown in Figure 5, respectively. Obviously,

the number of layers 𝑘 in the autoregressive flow-based generation

2574

1 4 8 12 16
0.50

0.55

0.60

0.65

0.70

0.75

(a) DBLP

1 4 8 12 16
0.2

0.3

0.4

(b) Twitter

Figure 5: Bi-matching F1 varying 𝑘 .

component is related to the complexity of the distribution of differ-

ent community patterns. The increase of 𝑘 can enlarge the model

capability, and initially improve its performance. However, when 𝑘

is too large, the performance degrades due to issues like overfitting.

Study of the Scoring Component.We study the effects of𝑚𝑠 and

𝑚𝑒 in the scoring component in Figure 6, where𝑚𝑠 is the length of

the sliding window, and𝑚𝑒 is the number of samples in each step.

The community quality increases when𝑚𝑠 increases, indicating

that a large sliding window can avoid the previous improper early

stop. However, when𝑚𝑠 is too high, the generation is difficult to

stop, and the size of the generated communities increases, which

has a negative impact. Figures 6(b) and 6(d) show that the increase

of𝑚𝑒 has only led to a slight improvement in the quality of the final

community, indicating that CommunityAF has a stable performance

in generation progress. In contrast to𝑚𝑠 , a higher𝑚𝑒 makes the

component generation more conservative and tends to generate

smaller communities.

1 3 5 10
0.50

0.55

0.60

0.65

0.70 Bi-matching F1

4

6

8

10

12

14

 Average community size

(a) 𝑚𝑠 on DBLP

1 3 5
0.700

0.705

0.710

0.715

 Bi-matching F1

7.8

7.9

8.0
 Average community size

(b) 𝑚𝑒 on DBLP

1 3 5 10

0.36

0.37

0.38

 Bi-matching F1

20

25

30

35
 Average community size

(c) 𝑚𝑠 on Twitter

1 3 5

0.37

0.38

0.39
 Bi-matching F1

24.8

25.2

25.6

 Average community size

(d) 𝑚𝑒 on Twitter

Figure 6: Bi-matching F1 and size of the generated communi-
ties under different parameters.

Study of Multi-task Training Tricks.We experiment with differ-

ent training tricks in CommunityAF, such as considering the loss

of generation and scoring tasks together or learning the generation

task first and then learning together. Intuitively, the latter will yield

more stable node embeddings because the generation tasks have

more explicit signals. Specifically, the number of the horizontal axis

of the coordinates, e.g., “20” in Figure 7, represents that we first

train 20 epochs of the generation task, and then train two tasks

together in the remaining epochs. As expected, the results show

that training the generation task first improves performance on

most datasets, except for Facebook.

(a) Facebook (b) DBLP (c) Amazon

Figure 7: Bi-matching F1 varying different training tricks.

Facebook Twitter DBLP

F
T

D

0.000 -0.005 -0.073

-0.031 0.000 -0.069

-0.142 -0.061 0.000

−0.15

−0.10

−0.05

0.00

Figure 8: Bi-matching F1 descent results of the models tested
under different datasets.

4.6 Community Hidden Patterns Study
In this subsection, we attempt to verify our previous claim that Com-

munityAF is able to capture the hidden patterns of given examples.

In detail, we learn a model from a source dataset (e.g., Facebook),

and apply the model to another target dataset (e.g., DBLP). We

argue that the learned model can extract the relevant patterns if

the communities discovered using the model in the target dataset

are still similar to ground-truth communities in the source rather

than ground-truth communities in the target dataset.

We choose Facebook, Twitter as representatives of social net-

work datasets, and select DBLP as a representative community

dataset for academic networks. As those features vary greatly across

datasets, models are trained without using node attribute features.

The learned models on different datasets are named as F (Facebook),

T (Twitter), and D (DBLP) for short. Next, we apply these models to

the other two datasets and record the changes of bi-matching 𝐹1 in

Figure 8, where the darker color indicates the worse performance. It

can be noted that the performances of models trained on the social

network dataset drop slightly on similar social networks, but have

more severe degradation on the academic network dataset. A simi-

lar result is observed for the model trained on the academic network

dataset. This indicates that different types (social and academic) of

graphs have different community patterns, and CommunityAF is

able to learn community patterns similar to those in the train set.

Further, we choose 4 representative ground-truth communities

from Twitter and DBLP, select a query node for each community

(in red color), search communities using F, T, and D models, and

visualize both ground-truth and searched communities. It is obvious

that academic communities are more tightly structured, while social

network communities are more tolerant of stray nodes and prefer

to have a chain-like structure. These patterns can be learned by

CommunityAF. For example, the D model intends to produce a

community with a large minimal node degree in Twitter, while the

T model guides to generating a community with densely connected

nodes as well as nodes with degree 1.

2575

F T DGround Truth

Tw
itter

D
B

LP

Figure 9: Visualization of community results. The labels of the nodes correspond to their indexes.

5 RELATEDWORK
We review the following related works, except those methods men-

tioned as competitors in the experiment part.

Community Search. Community search [11], also known as local

community detection, or seed extension problem, aims at finding a

subgraph that contains a given query node (seed). It’s the consensus

of most work [11] that communities are subgraphs with content

similarity and structural cohesion. In addition to the methods al-

ready mentioned in the experiment section, there are some methods

that try to use attributes for queries. LocATC [17] proposes the

concept of attribute community search (ACS), which requires users

to input additional keywords (attributes) to locate communities

where the corresponding keywords appear as frequently as pos-

sible. AQD-GNN [19] is based on QD-GNN, which models nodes

and attributes as bipartite graphs and proposes the feature fusion

operator to solve the ACS problem. Because we don’t need to give

attributes for querying in our scenario, only QD-GNN is chosen as

the comparison method.

Subgraph Pattern Matching. Subgraph pattern matching (sub-

graph isomorphism) [10] aims to find subgraphs that are isomorphic

to a given query graph. Subgraph isomorphism is an NP-complete

problem, so existing methods tend to relax the structural require-

ments [36], design heuristic rules, utilize graph cache technol-

ogy [39] or choose distributed computing methods [46] to support

matching in a large graph. When relaxing strict structural con-

straints and considering the content features among multiple com-

munity examples, the existing subgraph pattern matching methods

can be extended to handle the problem in this paper.

Normalizing Flows. Normalizing Flows [24] have made signifi-

cant progress and have been successfully applied to a variety of

tasks, including density estimation, variational inference, and image

generation. Among existing works, IAF [30] first uses an autore-

gressive model as a form of normalizing flow and proposes an

easily computable invertible variation with a triangular jacobian

matrix. MAF [28] builds on IAF, which employs a network with

masks to support fast parallel training. Normalizing flow has also

received attention in the field of database research. For example,

FACE [38] achieves good progress in the cardinality estimator task

by using normalizing flow to learn the joint probability distribution

of relational data.

6 CONCLUSION
This paper presents a new framework named CommunityAF, de-

signed to handle the example-based community search problem

with three well-designed key components in a multi-task way. Com-

munityAF utilizes an incremental GNN component for learning

node embeddings in a large underlying graph to meet scalabil-

ity, an autoregressive flow-based generation component for fast

parallel training, and a scoring component over the learned node

embeddings for flexible termination. We use a square ranking loss

during training to ensure stability and introduce a flexible way to

end the community generation process based on the score changes

observed during beam search. Experimental results demonstrate

that CommunityAF outperforms existing approaches and can learn

various community patterns.

ACKNOWLEDGMENTS
Thisworkwas partially supported byNSFC under Grant No. 62272008

and 61832001.

2576

REFERENCES
[1] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local Graph Partitioning

using PageRank Vectors. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). 475–486. https://doi.org/10.1109/FOCS.2006.44

[2] A. Bakshi, S. Parthasarathy, and K. Srinivasan. 2018. Semi-Supervised Community

Detection Using Structure and Size. In 2018 IEEE International Conference on Data
Mining (ICDM).

[3] Yuchen Bian, Yaowei Yan, Wei Cheng, Wei Wang, Dongsheng Luo, and Xiang

Zhang. 2018. On Multi-query Local Community Detection. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM), Vol. NaN.

[4] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz,

and Samy Bengio. 2016. Generating Sentences from a Continuous Space. In

CoNLL. ACL, 10–21.
[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[6] Tanmoy Chakraborty, Sikhar Patranabis, Pawan Goyal, and Animesh Mukherjee.

2015. On the Formation of Circles in Co-authorship Networks. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015, Longbing Cao, Chengqi
Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Gra-

ham Williams (Eds.). ACM, 109–118. https://doi.org/10.1145/2783258.2783292

[7] Jiazun Chen, Jun Gao, and Bin Cui. 2023. ICS-GNN
+
: lightweight interactive

community search via graph neural network. VLDB J. 32, 2 (2023), 447–467.
[8] Aaron Clauset. 2005. Finding local community structure in networks. Physical

Review E 72, 2 (2005), 026132.

[9] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

search of overlapping communities. In SIGMOD. 277–288.
[10] W. Fan, J. Li, M. Shuai, T. Nan, and Y. Wu. 2010. Graph Pattern Matching: From

Intractable to Polynomial Time. Proceedings of the VLDB Endowment 3, 1 (2010),
264–275.

[11] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB J.
29, 1 (2020), 353–392.

[12] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: Lightweight

Interactive Community Search via Graph Neural Network. Proc. VLDB Endow.
14, 6 (2021), 1006–1018. https://doi.org/10.14778/3447689.3447704

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative

Adversarial Nets. In NIPS. 2672–2680.
[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In NIPS. 1024–1034.
[15] Kun He, Yiwei Sun, David Bindel, John Hopcroft, and Yixuan Li. 2015. De-

tecting Overlapping Communities from Local Spectral Subspaces. In 2015 IEEE
International Conference on Data Mining, Vol. NaN.

[16] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.
[17] Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-Driven Community

Search. Proc. VLDB Endow. 10, 9 (2017), 949–960.
[18] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-

proximate Closest Community Search in Networks. Proc. VLDB Endow. 9, 4
(2015), 276–287.

[19] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou Huang.

2022. Query Driven-Graph Neural Networks for Community Search: From Non-

Attributed, Attributed, to Interactive Attributed. Proc. VLDB Endow. 15, 6 (2022),
1243–1255.

[20] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.

In ICLR.
[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[22] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

ICLR (Poster). OpenReview.net.
[23] Kyle Kloster and David F. Gleich. 2014. Heat kernel based community detection.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, Vol. NaN.

[24] I. Kobyzev, S. Prince, and M. Brubaker. 2020. Normalizing Flows: An Introduction

and Review of Current Methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence PP, 99 (2020), 1–1.

[25] Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya

Nepal, Jian Yang, and Philip S. Yu. 2020. Deep Learning for Community Detection:

Progress, Challenges and Opportunities. In IJCAI. 4981–4987.
[26] Feng Luo, James Wang, and Eric Promislow. 2006. Exploring Local Community

Structures in Large Networks. In 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI'06). 233–239.

[27] Larry R Medsker and LC Jain. 2001. Recurrent neural networks. Design and
Applications 5 (2001), 64–67.

[28] George Papamakarios, Iain Murray, and Theo Pavlakou. 2017. Masked Autore-

gressive Flow for Density Estimation. In NIPS. 2338–2347.
[29] Kainan Peng, Wei Ping, Zhao Song, and Kexin Zhao. 2020. Non-Autoregressive

Neural Text-to-Speech. In Proceedings of the 37th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Hal Daumé III and

Aarti Singh (Eds.), Vol. 119. PMLR, 7586–7598. https://proceedings.mlr.press/

v119/peng20a.html

[30] Diederik P.Kingma, Tim Salimans, and MaxWelling. 2016. Improving Variational

Inference with Inverse Autoregressive Flow. CoRR abs/1606.04934 (2016).

[31] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. 2019. Molec-

ularRNN: Generating realistic molecular graphs with optimized properties. CoRR
abs/1905.13372 (2019).

[32] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. 2016. Improved Techniques for Training GANs. InNIPS. 2226–2234.
[33] C. Shi, M. Xu, Z. Zhu, W. Zhang, and J. Tang. 2020. GraphAF: a Flow-based

Autoregressive Model for Molecular Graph Generation. In ICLR.
[34] Pan Shi, Kun He, David Bindel, and John E. Hopcroft. 2017. Local Lanczos

Spectral Approximation for Community Detection. In ECML/PKDD (1) (Lecture
Notes in Computer Science), Vol. 10534. Springer, 651–667.

[35] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In SIGKDD. 939–948.
[36] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the

ACM (JACM) 23, 1 (1976), 31–42.
[37] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[38] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Normal-

izing Flow based Cardinality Estimator. Proc. VLDB Endow. 15, 1 (2021), 72–84.
https://doi.org/10.14778/3485450.3485458

[39] Jing Wang, Zichen Liu, Shuai Ma, Nikos Ntarmos, and Peter Triantafillou. 2018.

GC: A Graph Caching System for Subgraph/Supergraph Queries. Proc. VLDB
Endow. 11, 12 (2018), 2022–2025.

[40] Xiyuan Wang and Muhan Zhang. 2022. GLASS: GNN with Labeling Tricks for

Subgraph Representation Learning. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net. https://openreview.net/forum?id=XLxhEjKNbXj

[41] Sam Wiseman and Alexander M. Rush. 2016. Sequence-to-Sequence Learning

as Beam-Search Optimization. In EMNLP. The Association for Computational

Linguistics, 1296–1306.

[42] Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust Local Commu-

nity Detection: On Free Rider Effect and Its Elimination. Proc. VLDB Endow. 8, 7
(feb 2015), 798–809. https://doi.org/10.14778/2752939.2752948

[43] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-

munities based on Ground-truth. arXiv:1205.6233 [cs.SI]

[44] Kai Yao and Lijun Chang. 2021. Efficient Size-Bounded Community Search over

Large Networks. Proc. VLDB Endow. 14, 8 (2021), 1441–1453.
[45] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In

ICML (Proceedings of Machine Learning Research), Vol. 80. PMLR, 5694–5703.

[46] Ye Yuan, Delong Ma, Zhenyu Wen, Zhiwei Zhang, and Guoren Wang. 2021.

Subgraph matching over graph federation. Proceedings of the VLDB Endowment
15, 3 (2021), 437–450.

[47] Jiawei Zhang, Philip S. Yu, and Yuanhua Lv. 2017. Enterprise Employee Training

via Project Team Formation. In Proceedings of the Tenth ACM International Con-
ference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom,
February 6-10, 2017, Maarten de Rijke, Milad Shokouhi, Andrew Tomkins, and

Min Zhang (Eds.). ACM, 3–12. https://doi.org/10.1145/3018661.3018682

[48] Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, and Philip S. Yu. 2020. SEAL: Learning

Heuristics for Community Detection with Generative Adversarial Networks. In

KDD ’20.
[49] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong

Sun. 2018. Graph Neural Networks: A Review of Methods and Applications.

CoRR (2018).

2577

https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1145/2783258.2783292
https://doi.org/10.14778/3447689.3447704
https://proceedings.mlr.press/v119/peng20a.html
https://proceedings.mlr.press/v119/peng20a.html
https://doi.org/10.14778/3485450.3485458
https://openreview.net/forum?id=XLxhEjKNbXj
https://doi.org/10.14778/2752939.2752948
https://arxiv.org/abs/1205.6233
https://doi.org/10.1145/3018661.3018682

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Autoregressive Flow
	2.2 Graph Neural Network

	3 METHODOLOGY
	3.1 Framework
	3.2 Incremental GNN Component
	3.3 Autoregressive Flow-based Generation Component
	3.4 Scoring Component
	3.5 Efficient Training Process

	4 EXPERIMENTS
	4.1 Experiment Setup
	4.2 Competitors
	4.3 Comparison with Competitors
	4.4 Ablation Experiment
	4.5 Hyperparameters Study
	4.6 Community Hidden Patterns Study

	5 RELATED WORK
	6 CONCLUSION
	Acknowledgments
	References

