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ABSTRACT
The higher-order structure cohesive subgraph mining is an impor-

tant operator in many graph analysis tasks. Recently, the colorful

ℎ-star core model has been proposed as an effective alternative

to ℎ-clique based cohesive subgraph models, in consideration of

both efficiency and utilities in many practical applications. The

existing peeling algorithms for colorful ℎ-star core decomposition

are to iteratively delete a node with the minimum colorful ℎ-star

degree. Hence, these methods are inherently sequential and suffer

from two limitations: low parallelism and inefficiency for dynamic

graphs. To enable high-performance colorful ℎ-star core decom-

position in large-scale graphs, we propose highly parallelizable

local algorithms based on a novel concept of colorful ℎ-star 𝑛-order

H-index and conduct thorough analyses for its properties. More-

over, three optimizations have been developed to further improve

the convergence performance. Based on our local algorithm and

its optimized variants, we can efficiently maintain colorful ℎ-star

cores in dynamic graphs. Furthermore, we design lower and upper

bounds for core numbers to facilitate identifying unaffected nodes

in presence of graph updates. Extensive experiments conducted

on 14 large real-world datasets with billions of edges demonstrate

that our proposed algorithms achieve a 10 times faster convergence

speed and a three orders of magnitude speedup when handling

graph changes.
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1 INTRODUCTION
The higher-order cohesive subgraph models, which exploit motif

structures as basic units of the cohesive parts, have been studied
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in recent researches. For instance, a study in Science [6] shows

that higher-order cohesive subgraph analysis can be applied to un-

derstand complex relationships and interactions within networks,

such as identifying near-optimal clusters in networks, revealing

the functional organization of neuronal networks, and analyzing

the connectivity in transportation networks. Fang et al. [14] found

the higher-order dense parts of a yeast protein-protein interaction

(PPI) network [21, 33, 45] have distinct shapes and present a subnet-

work with a specific function. Besides, our case studies show that

analyzing the higher-order structures of NFT communities enables

stakeholders to gain a deeper understanding of emerging trends and

market dynamics within the ecosystem, allowing for well-informed

decision-making and the recognition of opportunities and risks.

The ℎ-clique densest subgraph [39, 42] is a maximal subgraph

with the largest average number of ℎ-cliques per node. Though this

model performs well in extracting higher-order information, its

computation is prohibitively expensive, especially on large-scale

networks for large ℎ values [14, 42]. This is because the number

of higher-order structures, for example, ℎ-cliques, increases expo-

nentially as the size of the structure ℎ increases. To avoid listing

the ℎ-cliques, the colorful ℎ-star 𝑘-core model has been proposed

in [15], which only takes𝑂 (ℎ ×𝑚) time and𝑂 (ℎ × 𝑛 +𝑚) space to
count the motifs (colorful ℎ-stars) for all nodes, where 𝑛 and𝑚 are

the numbers of nodes and edges respectively. The results in [15]

show that the colorful ℎ-star core can be a good approximation for

the ℎ-clique densest subgraph, but it can achieve more than 10×
acceleration in most datasets.

However, real-world graphs, such as online social networks

[10, 20, 41] and the Internet [2, 9], typically evolve over time. The ex-

isting peeling algorithm for colorful ℎ-star core decomposition [15]

is to iteratively delete a node with the minimum colorful ℎ-star

degree. But in the peeling-based algorithms, the core numbers of

nodes are hard to maintain after the graph undergoes edge/node

deletions/insertions frequently [1, 43]. For instance, Fig. 9(b) shows

in the Q&A website Stack Overflow, this method suffers from an

extremely high latency when processing answers generated sequen-

tially. Moreover, the method is inherently sequential and hard to

execute in parallel, since the method requires maintaining global in-

formation of the whole graph (the minimum colorful ℎ-star degree

after peeling) and continuously changes the structure of the graph

(removing a node and its adjacent edges affects and needs to update

the degrees and colorful ℎ-star degrees of its neighbors). In conclu-

sion, the current algorithm for colorful ℎ-star core decomposition

is non-dynamic and exhibits low parallelism.
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(d) Colorful 3-star cores

Figure 1: A colored graph and its colorful 3-star cores.

To address the above-mentioned limitations, we develop a local

algorithm to allow later efficient parallelization and core mainte-

nance, with the following two observations. First, the global graph

information is not indispensable because the core number of a node

can be computed only based on the information of its neighbors.

Specifically, we found that given the colorful ℎ-star core number of

neighbors, the computation of the core number of this node falls

into two cases. By comparing the results of these two cases, the

core number can be immediately obtained. Thus, we can compute

the core number of each node locally by interacting only with its

neighbors. Second, we observe that in dynamic graphs, only a small

subset of nodes might be affected after each graph update, so it is

unnecessary to compute on the entire graph.

Inspired by the above observations, our algorithm computes the

core number for each node from an upper bound iteratively and

independently, without undermining the global graph structure.

Hence, the core decomposition can be executed in a highly paral-

lelizable manner. To further accelerate the computation, we devise

three optimizations that enhance its performance from two differ-

ent angles: two of them increase the convergence rate, while the

other eliminates redundant computations for each iteration. Thanks

to the independence and high parallelism of our local algorithm,

the cores can be efficiently maintained in dynamic graphs. To be

more specific, we first identify nodes whose core numbers need to

be updated. The scope of affected nodes can be narrowed by ex-

ploiting our elaborated lower and upper bounds of the original core

numbers. Then, we update core numbers by leveraging original

values or our designed upper bounds on new core numbers.

To summarize, the main contributions of this paper are as follows:

• We introduce a novel concept of colorful ℎ-star 𝑛-order H-index,

which has a theoretical convergence bound to be computed.

• Based on the 𝑛-order H-index, we propose a highly parallelizable

local algorithm and three optimizations for colorful ℎ-star core

decomposition that achieves 10× faster than baselines.

• We extend our local algorithm to address colorful ℎ-star core

maintenance in dynamic graphs, and develop tight lower and

upper bounds of core numbers which greatly facilitates affected

node identification, reaching three orders of magnitude speedup.

• We conduct experiments on 14 datasets to evaluate our algo-

rithms, and additionally apply them in real-world scenarios to

Table 1: Notations and descriptions

Notation Description

𝐺 = (𝑉 , 𝐸 ) A graph𝐺 with nodes set𝑉 and edge set 𝐸

𝑛,𝑚 𝑛 = |𝑉 |,𝑚 = |𝐸 |
𝑁𝑢 (𝐺 ) 𝑁𝑢 (𝐺 ) is the set of neighbors of 𝑢 in𝐺

𝑑𝑢 (𝐺 ) 𝑑𝑢 (𝐺 ) = |𝑁𝑢 (𝐺 ) |
𝜒 The number of colors used in graph coloring algorithms

color(𝑢 ) The color value of 𝑢

𝑑𝑢 (𝐺, S) The colorful ℎ-star degree of 𝑢 in𝐺

𝐶𝑘 (𝐺, S) or𝐶𝑘 The colorful ℎ-star 𝑘 core

𝑐𝑢 (𝐺, S) or 𝑐𝑢 The colorful ℎ-star core number of 𝑢

H(𝑛)𝑢 (𝐺,ℎ) 𝑛-order H-index

DP(𝑛) (𝑖 ) The number of colorful ℎ-stars that 𝑢 obtains on the first 𝑖

neighbors in the order of 𝑛

𝑝 (𝑛) The index of a neighbor of 𝑢 that satisfies specific conditions

in the order of 𝑛

𝑤 (𝑛) The neighbor of 𝑢 with the index 𝑝 (𝑛) in the order of 𝑛

L(𝑛)𝑢 The set of the first 𝑝 (𝑛) neighbors of 𝑢 in the order of 𝑛

𝑐−lb The lower bound of core numbers of affected nodes after an

edge deletion

𝑐+ub The upper bound of core numbers of affected nodes after an

edge deletion

study their performance in higher-order cohesive subgraph min-

ing and real-time maintenance.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be an undirected and unweighted graph, where

𝑉 (|𝑉 | = 𝑛) and 𝐸 (|𝐸 | = 𝑚) denote the set of nodes and edges

respectively. We denote the set of neighbor nodes of 𝑢 in 𝐺 with

𝑁𝑢 (𝐺), and 𝑑𝑢 (𝐺) = |𝑁𝑢 (𝐺) | denotes the degree of 𝑢 in 𝐺 . A

subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) is called an induced subgraph of 𝐺 if

𝑉𝐻 ⊆ 𝑉 and 𝐸𝐻 = {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸,𝑢 ∈ 𝑉𝐻 , 𝑣 ∈ 𝑉𝐻 }. An ℎ-

star is a tree, with one internal or central node having degree ℎ − 1
and the other ℎ − 1 nodes having degree 1.

Graph coloring is a procedure that assigns an integer color value

taken from [1, · · · , 𝜒] to each node 𝑢 in 𝐺 , denoted by color(𝑢), so
that no two adjacent nodes have the same color value. Since the

minimum coloring problem (𝜒 is minimum) is NP-hard [4], wemake

use of linear-time greedy coloring algorithms [17, 48] to obtain a

valid coloring. Example 1 illustrates the coloring procedure.

Example 1. Consider an undirected graph in Fig. 1(a). Here
we apply a widely-used graph coloring algorithm that colors all
nodes following a non-increasing order of their degrees, which is
(𝑣6, 𝑣5, 𝑣1, 𝑣9, 𝑣7, 𝑣3, 𝑣2, 𝑣4) in the given graph. Fig. 1(b) shows the re-
sult of this coloring procedure. The number next to a Node ID indicates
a corresponding color value assigned to this node.

Based on a valid coloring, we first introduce the concepts of the

colorful ℎ-star and the colorful ℎ-star degree as follows.

Definition 1 (Colorful ℎ-star and degree). ([15]) Given a
colored graph 𝐺 = (𝑉 , 𝐸) and an integer ℎ ≥ 2, an ℎ-star in 𝐺 is
colorful, denoted by Sℎ , if any pair of nodes 𝑢, 𝑣 ∈ S have different
color values. A colorful ℎ-star belongs to 𝑢 if it centers on 𝑢. The
colorful ℎ-star degree of 𝑢, denoted by 𝑑𝑢 (𝐺,Sℎ), is the number of
colorful ℎ-stars centered on 𝑢.

Definition 2 (Colorful ℎ-star 𝑘 core). ([15]) Given a colored
graph 𝐺 = (𝑉 , 𝐸) and an integer ℎ. The colorful ℎ-star 𝑘 core, or
(𝑘,Sℎ)-core of 𝐺 , denoted by 𝐶𝑘 (𝐺,Sℎ), is the maximal subgraph
𝐺 ′ such that ∀𝑢 ∈ 𝑉𝐺 ′ , 𝑑𝑢 (𝐺 ′,Sℎ) ≥ 𝑘 .
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The colorfulℎ-star core number of𝑢, denoted by 𝑐𝑢 (𝐺,Sℎ), is the
largest 𝑘 such that there exists a colorful ℎ-star 𝑘 core containing 𝑢.

If the context is clear, we will use 𝐶𝑘 and 𝑐𝑢 instead of 𝐶𝑘 (𝐺,Sℎ)
and 𝑐𝑢 (𝐺,Sℎ) for simplicity.

Problem 1 (Colorful ℎ-star core decomposition). Given a
graph 𝐺 and an integer ℎ. The colorful ℎ-star core decomposition
problem is to compute the colorful ℎ-star core number of each 𝑢 ∈ 𝑉 .

Problem 2 (Colorful ℎ-star core maintenance). To main-
tain the colorful ℎ-star core numbers of all nodes is to update them
after deleting/inserting edges from/into 𝐺 . If the two end-nodes of an
inserted edge share the same color value, an efficient recoloring strat-
egy is first applied to assign the smallest valid color to the end-node
with a lower core number. This ensures that the colorful h-star core
numbers remain accurate after changes to the graph’s structure.

Example 2. Reconsider the colored graph in Fig. 1(b). Fig. 1(c) lists
a colorful 3-star, two colorful 4-stars and two colorful 5-stars of 𝑢.
Clearly, in this graph the colorful 3-star degree of 𝑣3 is 2, because
there are two colorful 3-stars {𝑣3, 𝑣2, 𝑣1} and {𝑣3, 𝑣6, 𝑣1} centering on
𝑣3. Fig. 1(d) shows all colorful 3-star cores of 𝐺 , we can see that the
subgraph induced by {𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9} is a colorful 3-star 6 core, since
each node in this 5-clique has 6 colorful 3-stars. Obviously, the entire
graph is a colorful 3-star 1 core.

3 THE COLORFUL ℎ-STAR 𝑛-ORDER H-INDEX
In this section, we first introduce the concept of colorful ℎ-star

𝑛-order H-index which is the cornerstone of our local algorithm.

Then we will show our theoretical findings on its properties.

3.1 𝑛-order H-index

Motivations. The existing method [15] computes the colorful ℎ-

star core decomposition by iteratively deleting a node with the

minimum colorful ℎ-star degree and updating core numbers of its

neighbors. This algorithm is hard to parallelize since it 1) requires

global knowledge, i.e., finding a node with the minimum colorful

ℎ-star degree in the remaining graph, and 2) impacts the graph

structure after removing nodes and edges. Thus, this algorithm is

inherently sequential.

To develop a parallelizable algorithm, we first design the novel

colorful ℎ-star 𝑛-order H-index based on the ideas of 𝑛-order H-

index for 𝑘-core decomposition proposed by Eugene et al. [27].

However, it is infeasible to apply this H-index directly to solve our

problem which involves counting higher-order motifs, i.e., color

ℎ-stars for each node, not focusing on simple edges.

Observation on the colorful ℎ-star core numbers. We here

show that the core number of 𝑢 can be computed only from the

core numbers of its neighbors. We first prove the following theorem.

Theorem 1. Given a graph 𝐺 and a node 𝑢, let 𝑘 = 𝑐𝑢 be the core
number of 𝑢 and let𝑤 be the neighbor of 𝑢 in 𝐶𝑘 with the minimum
core number. Then we have 𝑐𝑢 = min

(
𝑐𝑤 , 𝑑𝑢 (𝐶𝑘 ,S)

)
.

According to Theorem 1, 𝑐𝑢 can be determined by 𝑑𝑢 (𝐶𝑘 ,S) and
𝑐𝑤 . Note that 𝑑𝑢 (𝐶𝑘 ,S) can be obtained by counting the number

of colorful ℎ-stars on neighbors with core numbers no smaller than

𝑢. Therefore, if we find out the neighbor𝑤 , then 𝑑𝑢 (𝐶𝑘 ,S) and 𝑐𝑤

V2 2

V3 2

V5 12
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Figure 2: The computation for 𝑣1’s 1-order H-index (ℎ = 3).

can be easily derived. The detailed computation as illustrated in

Fig. 2 has the following four steps.

S1 Sort the neighbors in non-increasing order of their core

numbers (𝑣1, 𝑣2, . . . , 𝑣𝑑𝑢 ), with the intuition that 𝑑𝑢 (𝐶𝑘 ,S)
is only related to neighbors with large core numbers.

S2 Search 𝑤 by testing each neighbor in this order until the

𝑝-th neighbor satisfies either DP(𝑝) ≥ 𝑐𝑣𝑝 (case 1) or
(DP(𝑝) < 𝑐𝑣𝑝 ) ∧ (DP(𝑝) ≥ 𝑐𝑣𝑝+1 ) (case 2), where DP(𝑝) is
the number of 𝑢’s colorful ℎ-stars computed on the first 𝑝

neighbors, then the node 𝑣𝑝 is𝑤 .

S3 Compute DP(𝑝), which is equal to 𝑑𝑢 (𝐶𝑘 ,S).
S4 Compare 𝑐𝑣𝑝 and DP(𝑝) and assign the minimum to 𝑐𝑢 .

Based on these observations, we define our colorful ℎ-star 𝑛-

order H-index, also called 𝑛-order H-index for simplicity.

Definition 3 (𝑛-order H-index). Given a colored graph 𝐺 =

(𝑉 , 𝐸), a node 𝑢 ∈ 𝑉 , and a positive integer ℎ, the 𝑛-order H-index
of 𝑢 w.r.t. ℎ on 𝐺 , denoted by H(𝑛)𝑢 (𝐺,ℎ), is defined by the following
recurrence relation

H(𝑛)𝑢 (𝐺,ℎ) =
{
𝑑𝑢 (𝐺,S) 𝑛 = 0

min(H(𝑛−1)
𝑤 (𝑛−1)

(𝐺,ℎ),DP(𝑛−1) (𝑝 (𝑛−1) )) 𝑛 > 0

(1)

Here H(𝑛−1)
𝑤 (𝑛−1)

(𝐺,ℎ) and DP(𝑛−1) (𝑝 (𝑛−1) ) indicate the results of
the above two cases respectively. We will omit the subscript 𝑢 if the
context is clear.

To formally define DP(𝑛) and 𝑝 (𝑛) , we first propose the 𝑛-order
neighbor list of 𝑢. The 𝑢’s 𝑛-order neighbor list (𝑣 (𝑛)

1
, 𝑣
(𝑛)
2
· · · 𝑣 (𝑛)

𝑑𝑢
)

contains neighbor nodes of 𝑢 sorted in non-increasing order of their
(𝑛 − 1)-order H-index H(𝑛−1)𝑣𝑖 (𝐺,ℎ), 𝑣𝑖 ∈ 𝑁𝑢 (𝐺).

DP(𝑛) (𝑖) associated with order 𝑛, denotes the number of colorful
ℎ-stars centering on 𝑢 and with the other ℎ−1 leaves coming from the
first 𝑖 neighbors of𝑢’s 𝑛-order neighbor list. Obviously,DP(0) (𝑑𝑢 (𝐺))
is equal to 𝑑𝑢 (𝐺,S). Here we define 𝑝 (𝑛) as follows:

𝑝 (𝑛) = min{𝑖 ∈ {1, 2, · · · , 𝑑𝑢 (𝐺)} : !(DP(𝑛) (𝑖) < H(𝑛)
𝑣
(𝑛)
𝑖

(𝐺,ℎ) ∧

DP(𝑛) (𝑖) < H(𝑛)
𝑣
(𝑛)
𝑖+1
(𝐺,ℎ))},

(2)

and𝑤 (𝑛) = 𝑣
(𝑛)
𝑝 (𝑛)

. We use L(𝑛)𝑢 to denote the set of the first 𝑝 (𝑛) nodes

in the 𝑛-order neighbor list of 𝑢.

Example 3. Fig. 2 shows the computational procedure of 𝑣1’s 1-
order H-index in four steps. In this example, each triad associated
with a node contains three elements: Node ID, Node with color and
0-order H-index of this node. All 0-order H-indexes of 𝑣1’s neighbors
are initiated with their colorful 3-star degrees, i.e., < 2, 2, 12, 13 > for
< 𝑣2, 𝑣3, 𝑣5, 𝑣6 > respectively. We first obtain 0-order neighbor list of
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Algorithm 1: 𝑛-order H-index Based Local Algorithm

Input: A graph𝐺 and an integer ℎ
Output: The colorful ℎ-star core number of each node𝑢 ∈ 𝑉

1 color[1, · · · , 𝑛] ← GreedyColoring(𝐺 ) ;
2 for each node𝑢 ∈ 𝑉 in parallel do
3 𝑑𝑢 (𝐺, S) ← Count(𝐺,ℎ,𝑢, color) ; // proposed in [15]

4 H(0)𝑢 (𝐺,ℎ) ← 𝑑𝑢 (𝐺, S) ;
5 updateFlag← true; 𝑛 ← 0;

6 while updateFlag do
7 updateFlag← false;𝑛 ← 𝑛 + 1;
8 for each node𝑢 ∈ 𝑉 in parallel do
9 𝐶 ← {H(𝑛−1)𝑣 (𝐺,ℎ) |𝑣 ∈ 𝑁𝑢 (𝐺 ) };

10 < H(𝑛)𝑢 (𝐺,ℎ), 𝑝 (𝑛−1) >← ComputeHIndex(𝑢,𝐶 ) ;
11 if H(𝑛)𝑢 (𝐺,ℎ) ≠ H(𝑛−1)𝑢 (𝐺,ℎ) then
12 updateFlag← true;

13 𝑐𝑢 (𝐺, S) ← H(𝑛)𝑢 (𝐺,ℎ) for each𝑢 ∈ 𝑉 ;

14 return 𝑐𝑢 (𝐺, S) for each𝑢 ∈ 𝑉 ;

15 Procedure GreedyColoring(𝐺 )

16 Let 𝜋 ′ be any ordering on nodes;

17 𝑓 𝑙𝑎𝑔 (𝑖 ) ← −1 for 𝑖 = 1, · · · , 𝜒 ;
18 for each node 𝑣 ∈ 𝜋 ′ in order do
19 for𝑢 ∈ 𝑁𝑣 (𝐺 ) do
20 𝑓 𝑙𝑎𝑔 (color(𝑢 ) ) ← 𝑣;

21 𝑐 ← min{𝑖 |𝑖 > 0, 𝑓 𝑙𝑎𝑔 (𝑖 ) ≠ 𝑣};
22 color(𝑣) ← 𝑐 ;

23 return color(𝑣) for each 𝑣 ∈ 𝑉 ;

𝑣1 by sorting its neighbors in non-increasing order of their 0-order
H-indexes. Then 𝑝 (0) = 3 can be found by Equation 2, and after that
DP(0) can be derived from computing the colorful 3-star degrees on
the first 𝑝 (0) nodes of 𝑣1’s 0-order neighbor list. Finally, by Equation
1, we compare DP(0) with the 0-order H-index of the third neighbor,
and set H(1)𝑣1 (𝐺, 3) to the minimum value of them.

3.2 Theoretical findings
Theorem 2 (Monotonicity). Given a graph 𝐺 , a node 𝑢 ∈ 𝑉 ,

and an integer ℎ, H(𝑛)𝑢 (𝐺,ℎ) ≤ H(𝑛−1)𝑢 (𝐺,ℎ) for any 𝑛 ∈ N.

Due to the space limit, all proofs of the following theorems and

lemmas can be found in [16].

Theorem 3 (Convergence).

lim

𝑛→∞
H(𝑛)𝑢 (𝐺,ℎ) = 𝑐𝑢 (𝐺,S) (3)

To bound the number of iterations that each node takes to con-

verge, we borrow the idea of building a node hierarchy from [25].

Definition 4 (Colorful ℎ-star degree hierarchy). Given a
colored graph 𝐺 = (𝑉 , 𝐸) and two integers ℎ and 𝑖 . For each 𝑖 ≥ 1, 𝑉𝑖
is comprised of nodes with the minimum colorful ℎ-star degrees in
the induced subgraph of 𝑉𝐺\

⋃
0≤ 𝑗≤𝑖−1𝑉𝑗 , where 𝑉0 contains nodes

with the minimum colorful ℎ-star degrees in 𝐺 .

Theorem 4 (Theoretical convergence bound). Given a graph
𝐺 and a node 𝑢 ∈ 𝑉 , computing the 𝑛-order H-index of 𝑢 takes at
most 𝑖 iterations to converge if 𝑢 ∈ 𝑉𝑖 .

4 LOCAL ALGORITHM AND OPTIMIZATIONS
In this section, we first present the 𝑛-order H-index based local

algorithm for colorful ℎ-star core decomposition in Section 4.1.

Then we propose three optimization strategies in Section 4.2.

Algorithm 2: 𝑛-order H-index Computation

Input: A node𝑢 and a set𝐶 = {H(𝑛−1)𝑣 (𝐺,ℎ) |𝑣 ∈ 𝑁𝑢 (𝐺 ) }
Output: The 𝑛-order H-index of𝑢

1 Procedure ComputeHIndex (𝑢,𝐶)

2 sort neighbor nodes of𝑢 such that

H(𝑛−1)𝑣
1

(𝐺,ℎ) ≥ H(𝑛−1)𝑣
2

(𝐺,ℎ) ≥ · · · ≥ H(𝑛−1)𝑣𝑑𝑢
(𝐺,ℎ) ;

3 Let 𝜒 be the number of different colors used in GreedyColoring;
4 DP(𝑛−1) (0) ← 1;

5 for 𝑖 = 1 to 𝑑𝑢 (𝐺 ) do
6 DP(𝑛−1) (𝑖 ) ← Updating(DP(𝑛−1) (𝑖 − 1), ℎ, 𝑣𝑖 , color(𝑣𝑖 ) ) ; // proposed

in [15]

7 if DP(𝑛−1) (𝑖 ) ≥ H(𝑛−1)𝑣𝑖
(𝐺,ℎ) or DP(𝑛−1) (𝑖 ) ≥ H(𝑛−1)𝑣𝑖+1 (𝐺,ℎ) then

8 H(𝑛)𝑢 (𝐺,ℎ) ← min{H(𝑛−1)𝑣𝑖
(𝐺,ℎ),DP(𝑛−1) (𝑖 ) };

9 𝑝 (𝑛−1) ← 𝑖 ;

10 break;

11 return < H(𝑛)𝑢 (𝐺,ℎ), 𝑝 (𝑛−1) >;

4.1 Local algorithms
Our 𝑛-order H-index Based Local Algorithm is outlined in Algo-

rithm 1. First, we apply a greedy graph coloring algorithm to color

graph𝐺 (line 1). Then, Algorithm 1 computes the colorful ℎ-star de-

grees of all nodes in parallel as upper bounds of colorful ℎ-star core

numbers by invoking a dynamic-programming method Count pro-
posed in [25] (lines 2-4). After that, this algorithm iteratively recom-

putes H(𝑛)𝑢 (𝐺,ℎ) for all nodes by the procedure ComputeHIndex,
the results of which are used as updated upper bounds of colorful ℎ-

star core numbers (lines 6-12). Note that the updating of H(𝑛)𝑢 (𝐺,ℎ)
is independent of other nodes, thus recomputation in each iteration

can be easily paralleled (line 8). The new upper bounds will only get

smaller after being updated due to the monotonicity of 𝑛-order H-

index. Finally, it will return the latest H(𝑛)𝑢 (𝐺,ℎ) as colorful ℎ-star
core numbers for all nodes (lines 13-14).

The pseudocode of computing 𝑛-order H-index of a specific node

𝑢 is shown in Algorithm 2. Given a node 𝑢, ComputeHIndex first
sorts its neighbor nodes in a non-increasing order of their (𝑛 − 1)-
order H-index (line 2). Then the algorithm aims to find 𝑝 (𝑛−1)

such that the 𝑛-order H-index of 𝑢 can be computed with the first

𝑝 (𝑛−1) neighbors (lines 5-9). For the first 𝑖 neighbors, the procedure
starts by counting the number of colorful ℎ-stars formed by 𝑢 and

nodes within the first 𝑖 neighbors using an Updating technique

proposed in [25] (line 6). It is worth mentioning that invoking the

Updating procedure requires very small computational effort as it

incrementally computesDP(𝑛) (𝑖) after the 𝑖-th neighbor is involved.
Then,ComputeHIndexwill compare the current number of colorful

ℎ-stars with the (𝑛 − 1)-order H-index of 𝑢’s 𝑖-th and (𝑖 + 1)-th
neighbor nodes (line 6). If conditions are met, this algorithm will

stop expanding the search and assign the minimum value of the

(𝑛 − 1)-order H-index of 𝑢’s 𝑖-th neighbor and the current number

of colorful ℎ-stars (lines 7-9).

Remark. The performance of the Count procedure in Algorithm

1 and the Updating procedure in Algorithm 2 is affected by the

adopted graph coloring, which has been thoroughly studied in

[15]. Among all popular graph coloring techniques, the degree-

based greedy graph coloring, i.e., coloring nodes following a non-

increasing order of degrees (line 16 of Algorithm 1), is the most

efficient method. Thus we choose this coloring as a default setting.
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Example 4. The execution of Local Algorithm on the example
graph Fig. 1(b) to compute its colorful 3-star core decomposition is
illustrated in Table 2. Here we can first see that H(0)𝑣𝑖 (𝐺, 3) represents
the colorful 3-star degree of 𝑣𝑖 . After 4 rounds of iterations, for each
node 𝑣𝑖 , H

(4)
𝑣𝑖 (𝐺, 3) = H(3)𝑣𝑖 (𝐺, 3), which indicates the 𝑛-order H-

indexes of all nodes have converged to their core numbers. The Local
Algorithm invokes ComputeHIndex procedure 36 times during all
updating steps, as each node runs the procedure in every iteration.

The following theorem details the time and space complexity of

Local Algorithm.

Theorem 5. Given a colored graph𝐺 and an integerℎ, Algorithm 1
computes the colorful ℎ-star core decomposition of𝐺 in𝑂 (𝑡𝑛𝑑max (ℎ+
log𝑑max)) time using 𝑂 (ℎ𝑛 +𝑚) space, where 𝑡 is the number of
iterations, 𝑑max is the maximum degree of nodes in 𝐺 .

4.2 Optimizations
In this section, we develop three optimization strategies to acceler-

ate Local Algorithm. Based on time complexity analysis of Local Al-

gorithm, we classify these three strategies into two categories: inter-

and intra-iteration optimizations. For inter-iteration processing, the

number of iterations is quite essential to the total computational

effort. For intra-iteration processing, we observe that there exist

some redundant computations in each iteration that could cause

severe time overhead and can be safely pruned.

4.2.1 Inter-Iteration Processing. We propose OPT-1 and OPT-2 to
accelerate the convergence of 𝑛-order H-index.

OPT-1: Asynchronous computing In the 𝑖-th iteration, the basic

Local Algorithm computesH(𝑖 )𝑢 (𝐺,ℎ) based on its neighbors’ (𝑖−1)-
order H-indexes. However, some neighbors’ 𝑖-order H-indexes have

been computed in the 𝑖-th iteration before processing node𝑢. Our in-

tuition is to leverage neighbors’ newer values H(𝑖 )𝑣 (𝐺,ℎ) instead of

the stale ones H(𝑖−1)𝑣 (𝐺,ℎ) to update 𝑢 for all 𝑣 ∈ 𝑁𝑢 . A faster con-

vergence can be achieved by computingH(𝑛)𝑢 (𝐺,ℎ) asynchronously,
hence reducing the total number of iterations. In this case, the only

difference is that the 𝑖-order neighbor list will be obtained by sort-

ing neighbors based on their latest H-Indexes. Therefore, similar

analyses as those in Theorem 2 and Theorem 3 will guarantee the

efficiency and correctness of asynchrony, respectively.

Example 5. The detailed updating steps of Local Algorithm
equipped with OPT-1 on the toy graph in Fig. 1(b) are depicted in
Table 2. As can be seen, in the first iteration, H(1)𝑣3 (𝐺, 3) converges
to the core number of 𝑣3 since its two neighbors 𝑣1 and 𝑣2 have been
processed before 𝑣3. OPT-1 takes 3 iterations to converge, faster than
Local using a synchronous processing strategy.

OPT-2: Processing ordering heuristic Revisit the graph𝐺 in Fig.

1(b) and updating steps of Local Algorithm and OPT-1 in Table 2. It

is clear that 𝑣1 and 𝑣4 have the same core values, but the numbers

of iterations that the 𝑛-order H-indexes of them take to converge

show a big difference, 3 of 𝑣1 compared to 1 of 𝑣4. One non-trivial

reason is that 𝑣1 has a larger initial upper bound of its core value, i.e.,

H(0)𝑣1 (𝐺,ℎ) > H(0)𝑣4 (𝐺,ℎ). Here we propose OPT-2 to significantly

accelerate the convergence of nodes with large upper bounds. We

Table 2: Illustration of Local Algorithm and Optimizations
Applied to the Example Graph(ℎ = 3,○: computation pruned)

Methods H(𝑛)𝑣 (𝐺, 3)
𝑛-order H-index

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

H(0) 4 2 2 1 12 13 6 6 6

Local

H(1) 2 1 2 1 6 6 6 6 6

H(2) 2 1 1 1 6 6 6 6 6

H(3) 1 1 1 1 6 6 6 6 6

H(4) 1 1 1 1 6 6 6 6 6

OPT-1
H(1) 2 1 1 1 6 6 6 6 6

H(2) 1 1 1 1 6 6 6 6 6

H(3) 1 1 1 1 6 6 6 6 6

OPT-2
H(1) 1 1 1 1 6 6 6 6 6

H(2) 1 1 1 1 6 6 6 6 6

OPT-3

H(1) 2 1 2 1 6 6 6 6 6

H(2) ○ ○ 1 ○ ○ ○ ○ ○ ○

H(3) 1 ○ ○ ○ ○ ○ ○ ○ ○

H(4) ○ ○ ○ ○ ○ ○ ○ ○ ○

Local +
OPT-1-2-3

H(1) 1 1 1 1 6 6 6 6 6

H(2) ○ ○ ○ ○ ○ ○ ○ ○ ○

observe that to compute 𝑖-order H-index of 𝑢, OPT-1 always uses
the latest H-indexes of 𝑢’s neighbors to update 𝑢. If more neighbors

have been processed in the 𝑖-th iteration, then according to the

monotonicity of 𝑛-order H-index, 𝑢 will get a smaller H(𝑖 )𝑢 (𝐺,ℎ).
Based on our observation, if in each iteration we process nodes

following an increasing order of their (𝑖−1)-order H-indexes instead
of the random processing order, i.e., in the order of node IDs, nodes

with large upper bounds will converge faster.

However, in different iterations, the node ordering can also be

different, so we have to dynamically pick nodes to process, which

adds extra maintenance overhead. Therefore, we replace it with

the degree-based ordering, i.e., computing 𝑛-order H-indexes in a

non-decreasing order of degrees since we found nodes with large

initial upper bounds, which are equal to their colorfulℎ-star degrees,

usually have large node degrees.

Example 6. Table 2 illustrates the OPT-2 strategy on graph 𝐺 in
Fig. 1(b). In each iteration, 𝑛-order H-indexes can be computed in the
non-decreasing order of node degrees (𝑣4, 𝑣2, 𝑣3, 𝑣1, 𝑣7, 𝑣8, 𝑣9, 𝑣5, 𝑣6).
Notice that the 𝑛-order H-index of 𝑣1 converges to its core number 1
after only 1 iteration since 𝑣1 is processed later than its two neighbor
nodes 𝑣2 and 𝑣3 with smaller degrees. Finally, OPT-2 reduces the total
number of iterations to 2.

4.2.2 Intra-Iteration Processing. We develop OPT-3 to skip some

redundant computation within one iteration.

OPT-3: Pruning technique As can be seen from Algorithm 1,

the Local Algorithm calls ComputeHIndex to compute 𝑛-order H-

indexes for all nodes in each iteration, though 𝑛-order H-indexes of

some nodes do not change after processing. Take Local Algorithm

in Table 2 for example. In the second iteration, H(2)𝑣1 (𝐺,ℎ) remains

the same after computed, which implies that the computation on 𝑣2
is redundant and unnecessary, and should be avoided for efficiency

purposes. To this end, we propose OPT-3, a pruning technique

that can detect redundant computation and skip nodes whose 𝑛-

order H-indexes will not be changed in each iteration. The theorem

guarantees the safe pruning of unnecessary computations.
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Algorithm 3: The pruning algorithm

Input: A graph𝐺 and an integer ℎ
Output: The colorful ℎ-star core number of each node𝑢 ∈ 𝑉

1 color[1, · · · , 𝑛] ← GreedyColoring(𝐺 ) ;
2 for each node𝑢 ∈ 𝑉 in parallel do
3 𝑑𝑢 (𝐺, S) ← Count(𝐺,ℎ,𝑢, color) ; // proposed in [15]

4 H(0)𝑢 (𝐺,ℎ) ← 𝑑𝑢 (𝐺, S) ;
5 updateFlag← true; 𝑛 ← 0;

6 while updateFlag do
7 updateFlag← false;𝑛 ← 𝑛 + 1;
8 for each node𝑢 ∈ 𝑉 in parallel do
9 skip← true;

10 for 𝑖 = 1 to 𝑝 (𝑛−2) do
11 𝑣 ← the 𝑖-th node of the (𝑛 − 2)-order neighbor list of𝑢 .;
12 if H(𝑛−1)𝑣 (𝐺,ℎ) < H(𝑛−1)𝑢 (𝐺,ℎ) then
13 skip← false;
14 break;

15 if skip then
16 < H(𝑛)𝑢 (𝐺,ℎ), 𝑝 (𝑛−1) >←< H(𝑛−1)𝑢 (𝐺,ℎ), 𝑝 (𝑛−2) >;

17 continue;

18 𝐶 ← {H(𝑛−1)𝑣 (𝐺,ℎ) |𝑣 ∈ 𝑁𝑢 (𝐺 ) };
19 < H(𝑛)𝑢 (𝐺,ℎ), 𝑝 (𝑛−1) >← ComputeHIndex(𝑢,𝐶 ) ;
20 if H(𝑛)𝑢 (𝐺,ℎ) ≠ H(𝑛−1)𝑢 (𝐺,ℎ) then
21 updateFlag← true;

22 𝑐𝑢 (𝐺, S) ← H(𝑛)𝑢 (𝐺,ℎ) for each𝑢 ∈ 𝑉 ;

23 return 𝑐𝑢 (𝐺, S) for each𝑢 ∈ 𝑉 ;

Theorem 6. Given a colored graph 𝐺 , a node 𝑢 and two in-
tegers ℎ, 𝑛, H(𝑛)𝑢 (𝐺,ℎ) = H(𝑛−1)𝑢 (𝐺,ℎ) holds if H(𝑛−1)𝑣 (𝐺,ℎ) ≥
H(𝑛−1)𝑢 (𝐺,ℎ) for any node 𝑣 ∈ 𝐿 (𝑛−2)𝑢 , where 𝐿 (𝑛−2)𝑢 is the set of the
first 𝑝 (𝑛−2) nodes in the (𝑛 − 2)-order neighbor list of 𝑢.

To prove this theorem, we first prove the following lemma.

Lemma 1. Given a node 𝑢, if H(𝑛−1)𝑣 (𝐺,ℎ) ≥ H(𝑛−1)𝑢 (𝐺,ℎ) holds
for any node 𝑣 ∈ 𝐿 (𝑛−2)𝑢 , then 𝐿

(𝑛−1)
𝑢 = 𝐿

(𝑛−2)
𝑢 .

According Lemma 1, 𝐿
(𝑛−1)
𝑢 is equal to 𝐿

(𝑛−2)
𝑢 which suggests

DP(𝑛−1) (𝑝 (𝑛−1) ) = DP(𝑛−2) (𝑝 (𝑛−2) ). By Equation 1,H(𝑛)𝑢 (𝐺,ℎ) =
H(𝑛−1)𝑢 (𝐺,ℎ). Thus, Theorem 6 holds.

The pruning algorithm is shown in Algorithm 3. When pro-

cessing a node 𝑢, Algorithm 3 first tests the first 𝑝 (𝑛−2) nodes of
the (𝑛 − 2)-order neighbor list of 𝑢. If all these 𝑝 (𝑛−2) nodes have
(𝑛−2)-order H-indexes larger than that of𝑢 (lines 10-14), we do not

invoke ComputeHIndex to compute 𝑢’s 𝑛-order H-index. Instead,

we assignH(𝑛−1)𝑢 (𝐺,ℎ) directly toH(𝑛)𝑢 (𝐺,ℎ) (lines 15-17), because
in this case the 𝑛-order H-index never changes.

It is worth mentioning that our pruning technique can not only

avoid redundant computation after a node has already converged to

its core number, but also skip some unnecessary computation before

it converges. Besides, this method can be slightly modified to be

compatible with other optimizations, like asynchronous computing.

Example 7. The effect of applying OPT-3 to Local Algorithm run-
ning on the example graph in Fig. 1(b) is illustrated in Table 2. We
can clearly see that OPT-3 shares the same number of iterations with
Local, since it focuses only on handling intra-iteration computation.
Here○ denotes the skipped computation. Computations on almost all
nodes are pruned three times among 4 iterations. The total number of
invocations is significantly reduced by 69.45% after applying OPT-3.

Finally, we show the power of integrating our Local Algorithm

with three optimizations in Table 2. This combination uses the least

iterations and invocations, indicating that our proposed optimiza-

tions take effect independently and cumulatively.

Distributed colorful ℎ-star core decomposition. It is worth not-

ing that our Local Algorithm can be easily extended to distributed

settings. The distributed algorithms under popular distributed

graph processing frameworks, such as vertex-centric [26, 28, 32]

and block-centric [13, 40, 46], are expected to exhibit excellent scal-

ability with minimal communication overhead. This is because,

in each iteration, only the new 𝑛-order H-Index of a node will be

broadcasted to its neighbors.

5 COLORFUL ℎ-STAR CORE MAINTENANCE
IN DYNAMIC GRAPHS

In this section, we leverage the proposed Local Algorithm and

optimizations to study the problem of efficiently maintaining the

colorful ℎ-star core decomposition in dynamic graphs.

5.1 Colorful ℎ-star core maintenance problem
Many real-world graphs are highly dynamic and rapidly chang-

ing with edges being frequently inserted into or removed from

graphs over time. The colorful ℎ-star core maintenance problem

is to efficiently update core numbers of affected nodes after one

or a batch of edges are inserted or deleted from 𝐺 . We focus on

handling changes of edges since the node additions and removals

can be considered as its trivial extensions. However, maintaining

colorful ℎ-star core decomposition in a dynamic setting is never an

easy task. We state its challenges as follows.

a) Applying algorithms for static graphs to recompute core

numbers of all nodes from scratch is more than prohibitive in

terms of performance when handling large graphs and lots of

edge changes.

b) Identifying nodes whose core numbers remain unchanged

as a result of an insertion or deletion beforehand is quite hard. This

is because after an edge is inserted or deleted, the core numbers

of two end-nodes of that edge will get updated. This update will

bring about updates on core numbers of the neighbors of these

two end-nodes, which implies that the update may spread across

the entire network, incurring predicting affected nodes intractable.

c) Whenℎ = 2, a colorful 2-star is exactly an edge. In this case,

the colorful 2-star core decomposition turns into the classical

core decomposition, which has been widely studied in [5, 11,

29]. Existing works show a very tight upper/lower bound for

core numbers that after an edge is inserted into/deleted from 𝐺 ,

the core number of each node may increase/decrease at most

1. However, this rule is no longer applicable for ℎ > 2 because

the changes of core numbers in this situation may exceed that

bound, i.e., much larger than 1.

To tackle this problem, we develop efficient two-stage algo-
rithms to update colorful ℎ-star core numbers. We first iden-
tify a small subset of nodes that have to be visited, since not
all nodes’ core numbers will change. Filtering out affected
nodes and limiting updates within these nodes will signif-
icantly reduce computational effort. Then in the updating
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Algorithm 4: The EdgeDel algorithm
Input: A graph𝐺 = (𝑉 , 𝐸 ) , an integer ℎ, a removed edge (𝑣, 𝑤 ) ∈ 𝐸 and

𝑐𝑢 (𝐺, S) for each𝑢 ∈ 𝑉
Output: The new colorful ℎ-star core number of each node𝑢 ∈ 𝑉

1 𝐺− ← (𝑉 , 𝐸\{ (𝑣, 𝑤 ) } ) ;
2 𝐶∗𝑣 ← {𝑐𝑢 (𝐺, S) |𝑢 ∈ 𝑁𝑣 (𝐺 ) },𝐶∗𝑤 ← {𝑐𝑢 (𝐺, S) |𝑢 ∈ 𝑁𝑤 (𝐺 ) };
3 H(∗)𝑣 (𝐺,𝐺− ) ← ComputeHIndex(𝑣,𝐶∗𝑣 ) ;
4 H(∗)𝑤 (𝐺,𝐺− ) ← ComputeHIndex(𝑤,𝐶∗𝑤 ) ;
5 𝑐−lb ← min(H(∗)𝑣 (𝐺,𝐺− ),H(∗)𝑤 (𝐺,𝐺− ) ) ;
6 𝑐−ub ← min(𝑐𝑣 (𝐺, S), 𝑐𝑤 (𝐺, S) ) ;
7 res← BFSwithBounds(𝐺− , (𝑣, 𝑤 ), 𝑐−lb, 𝑐

−
ub ) ;

8 for each node𝑢 ∈ res in parallel do
9 H(0)𝑢 (𝐺− , ℎ) ← 𝑐𝑢 (𝐺, S) ;

10 invoke Local Algorithm to compute new 𝑛-order H-indexes of nodes in res over
𝐺− until all of them converge;

11 𝑐𝑢 (𝐺− , S) ← H(𝑛)𝑢 (𝐺− , ℎ) for each𝑢 ∈ res;
12 𝑐𝑢 (𝐺− , S) ← 𝑐𝑢 (𝐺, S) for each𝑢 ∉ res;
13 return 𝑐𝑢 (𝐺− , S) for each𝑢 ∈ 𝑉 ;

14 Procedure BFSwithBounds(𝐺− , (𝑣, 𝑤 ), 𝑐−lb, 𝑐
−
ub )

15 Q ← ∅, res← ∅;
16 if 𝑐𝑣 (𝐺, S) > 𝑐𝑤 (𝐺, S) then
17 swap(𝑣, 𝑤 ) ;
18 Q .push(𝑣), res← res ∪ {𝑣};
19 if 𝑐𝑣 (𝐺, S) = 𝑐𝑤 (𝐺, S) then
20 Q .push(𝑤 ), res← res ∪ {𝑤};
21 while Q ≠ ∅ do
22 𝑣′ ← Q .pop( ) ;
23 for each node𝑢 ∈ 𝑁𝑣′ (𝐺− ) do
24 if 𝑢 ∉ res and 𝑐−lb < 𝑐𝑢 (𝐺, S) ≤ 𝑐−ub then
25 res← res ∪ {𝑢};
26 Q .push(𝑢 ) ;

27 return a collection of nodes res;

stage, we further accelerate the convergence by applying our
Local Algorithm to compute from the original core numbers
which can be utilized as a tight new bound.

In the remainder of the paper, we use 𝐺− = (𝑉 , 𝐸\{(𝑣,𝑤)})
and 𝐺+ = (𝑉 , 𝐸 ∪ {(𝑣,𝑤)}) to denote the graph after a dele-
tion/insertion of an edge (𝑣,𝑤) . Given two nodes 𝑢 and 𝑣 ,
we say 𝑢 is reachable from 𝑣 and vice versa if there exists a
path (𝑣𝑠 , · · · , 𝑣𝑡 ) such that 𝑢 = 𝑣𝑠 and 𝑣 = 𝑣𝑡 .

5.2 Edge Deletion
Before introducing the updating algorithm, we first show our
theoretical findings. These findings could facilitate identify-
ing a subset of nodes whose core numbers may change after
removing an edge.

Theorem 7 (Nodes Exclusion Theorem). Given a removed edge
𝑒 = (𝑣,𝑤), for any node 𝑢 ∈ 𝑉𝐺 such that 𝑐𝑢 (𝐺,S) is larger than
min(𝑐𝑣 (𝐺,S), 𝑐𝑤 (𝐺,S)), then 𝑐𝑢 (𝐺,S) = 𝑐𝑢 (𝐺−,S), where S rep-
resents a colorful ℎ star.

Theorem 7 indicates that core numbers of nodes will not
change in the updated graph if the original core numbers of
these nodes are larger than that of 𝑢 or 𝑣 .

In order to provide a lower bound for the changed core
numbers, we first propose the instant H-index as follows.

Definition 5 (Instant H-index). Given a node 𝑢 and colorful
ℎ-star core numbers of all nodes in 𝐺 , the instant H-index of 𝑢 in
a subgraph 𝑔, denoted by H(∗)𝑢 (𝐺,𝑔), is equal to ComputeHIndex
(𝑢,𝐶∗), where 𝐶∗ = {𝑐𝑣 (𝐺,S)|𝑣 ∈ 𝑁𝑢 (𝑔)}.

Algorithm 5: The EdgeIns algorithm
Input: A graph𝐺 = (𝑉 , 𝐸 ) , an integer ℎ, an inserted edge (𝑣, 𝑤 ) and 𝑐𝑢 (𝐺, S)

for each𝑢 ∈ 𝑉
Output: The new colorful ℎ-star core number of each node𝑢 ∈ 𝑉

1 𝐺+ ← (𝑉 , 𝐸 ∪ { (𝑣, 𝑤 ) } ) ;
2 𝑐+lb ← min(𝑐𝑣 (𝐺, S), 𝑐𝑤 (𝐺, S) ) ;
3 Let 𝐻 be the colorful ℎ-star 𝑐+lb core;
4 𝐻+ ← (𝑉𝐻 , 𝐸𝐻 ∪ { (𝑣, 𝑤 ) } ) ;
5 𝑐+ub = min(𝑑𝑣 (𝐻+, S), 𝑑𝑤 (𝐻+, S) ) ;
6 res← BFSwithBounds(𝐺+, (𝑣, 𝑤 ), 𝑐+lb, 𝑐

+
ub )

7 for each node𝑢 ∈ res in parallel do
8 H(0)𝑢 (𝐺+, ℎ) ← min(𝑑𝑢 (𝐻+, S), 𝑑𝑣 (𝐻+, S), 𝑑𝑤 (𝐻+, S) ) ;
9 invoke Local Algorithm to compute new 𝑛-order H-indexes of nodes in res over

𝐺+ until all of them converge;

10 𝑐𝑢 (𝐺+, S) ← H(𝑛)𝑢 (𝐺+, ℎ) for each𝑢 ∈ res;
11 𝑐𝑢 (𝐺+, S) ← 𝑐𝑢 (𝐺, S) for each𝑢 ∉ res;
12 return 𝑐𝑢 (𝐺+, S) for each𝑢 ∈ 𝑉 ;

Intuitively, the instant H-index of 𝑢 is to compute an H-
index based on original core numbers of its neighbors in 𝑔.
Obviously, if 𝑔 = 𝐺 , then H(∗)𝑢 (𝐺,𝐺) = 𝑐𝑢 (𝐺,S).

Theorem 8 (Lower Bound). Given a removed edge 𝑒 = (𝑣,𝑤),
let 𝑐−lb = min(H(∗)𝑣 (𝐺,𝐺−),H

(∗)
𝑤 (𝐺,𝐺−)). For any node 𝑢 ∈ 𝑉 , if

𝑐𝑢 (𝐺,S) > 𝑐−lb, then the core number of 𝑢 may change and the new
core number 𝑐𝑢 (𝐺−,S) ≥ 𝑐−lb.

By combining Theorem 7 and Theorem 8, we have the fol-
lowing corollary.

Corollary 1. Given a removed edge 𝑒 = (𝑣,𝑤), for any
node 𝑢 ∈ 𝑉 , if min(H(∗)𝑣 (𝐺,𝐺−),H

(∗)
𝑤 (𝐺,𝐺−)) ≤ 𝑐𝑢 (𝐺,S) ≤

min(𝑐𝑣 (𝐺,S), 𝑐𝑤 (𝐺,S)) and 𝑢 is reachable from 𝑣 or 𝑤 , then the
colorful ℎ-star core number of 𝑢 may change and the new core num-
ber is no smaller than min(H(∗)𝑣 (𝐺,𝐺−),H

(∗)
𝑤 (𝐺,𝐺−)).

Initiation of 𝑛-order H-index. According to the monotonic-
ity of 𝑛-order H-index, the original core numbers are larger
than the new core numbers in the updated graph. Hence, we
can use 𝑐𝑢 (𝐺,S), instead of 𝑑𝑢 (𝐺,S), as an upper bound of
𝑐𝑢 (𝐺−,S) to initiate 0-order H-indexes.

Based on the above theorems, we develop an efficient al-
gorithm EdgeDel to update core numbers after an edge dele-
tion, the pseudocode of which is outlined in Algorithm 4.
The EdgeDel algorithm first computes the lower bound and
the upper bound of original core numbers of nodes that may
have their core numbers changed (lines 2-6). Then this algo-
rithm calls BFSwithBounds procedure to select out nodes ac-
cording to the two bounds (line 7). After that EdgeDel initiates
0-order H-indexes of selected nodes with their core numbers
in 𝐺 , and iteratively computes the new 𝑛-order H-indexes of
those nodes by invoking Local Algorithm (lines 8-10).

5.3 Edge Insertion
After inserting an edge, updating core numbers of affected
nodes can be more challenging compared to a deletion of
an edge. The reasons are twofold. 1) Our cohesive subgraph
model is based on the graph coloring, which ensures any two
adjacent nodes are colored with different color values. How-
ever, if two nodes 𝑣,𝑤 have the same color in the original
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graph 𝐺 , inserting the edge (𝑣,𝑤) will cause a conflict with
graph coloring properties. 2) Since our 𝑛-order H-index is a
monotonically decreasing function, we can use original core
numbers as upper bounds of new core numbers when han-
dling edge deletions. Nevertheless, there are no existing tight
upper bounds for edge insertions. It is quite hard to utilize
original core numbers to facilitate updating.

To address the first issue, we develop a recoloring strategy.
If the two end-nodes 𝑣,𝑤 of the inserted edge have the same
colors in𝐺 , we pick the node with a smaller core number and
assign the minimum valid color value to this node following
the greedy coloring technique such that the new color is dif-
ferent from colors of its neighbors in the updated graph 𝐺+.
The intuition is that since recoloring a node may change core
numbers of its neighbors and the node with a smaller core
number usually has a smaller degree, thus, fewer neighbors,
adjusting neighbors’ core numbers after recoloring will incur
less computational overhead if fewer nodes get involved. Be-
sides, the core number updating caused by recoloring can be
executed along with the updating caused by the edge inser-
tion. Thus, this strategy takes little effect on the performance
of our algorithm. In the remainder of this section, we assume
that the two end-nodes of the inserted edge have different col-
ors in𝐺 for simplicity. Next, we first introduce our theoretical
analyses on the identification of affected nodes.

Theorem 9 (Nodes Exclusion Theorem). Given an inserted
edge 𝑒 = (𝑣,𝑤), for any node 𝑢 ∈ 𝑉𝐺 , if 𝑐𝑢 (𝐺,S) is smaller than
min(𝑐𝑣 (𝐺,S), 𝑐𝑤 (𝐺,S)), then 𝑐𝑢 (𝐺,S) = 𝑐𝑢 (𝐺+,S).

Theorem 9 suggests that the nodes not contained in the col-
orful ℎ-star min(𝑐𝑣 (𝐺,S), 𝑐𝑤 (𝐺,S)) core will not change their
core numbers.

Theorem 10 (Upper Bound). Given an inserted edge 𝑒 = (𝑣,𝑤),
let 𝑐+ub = min(𝑑𝑣 (𝐻+,S), 𝑑𝑤 (𝐻+,S)). For any node 𝑢 ∈ 𝑉 , if
𝑐𝑢 (𝐺,S) < 𝑐+ub, the core number of 𝑢 may change and the new core
number 𝑐𝑢 (𝐺+,S) ≤ 𝑐+ub. Here𝐻

+ is a subgraph that the colorfulℎ-star
min(𝑐𝑣 (𝐺,S), 𝑐𝑤 (𝐺,S)) core is inserted the edge 𝑒 = (𝑣,𝑤) into.

Similarly, by combining Theorem 9 and Theorem 10, we
can obtain the following corollary.

Corollary 2. Given an inserted edge 𝑒 = (𝑣,𝑤), for any node
𝑢 ∈ 𝑉 , if min(𝑐𝑣 (𝐺,S), 𝑐𝑤 (𝐺,S)) ≤ 𝑐𝑢 (𝐺,S) ≤ min(𝑑𝑣 (𝐻+,S),
𝑑𝑤 (𝐻+,S)) and 𝑢 is reachable from 𝑣 or𝑤 , then the colorful ℎ-star
core number of 𝑢 may change and the new core number is no smaller
than min(𝑑𝑣 (𝐻+,S), 𝑑𝑤 (𝐻+,S)).

Initiation of 𝑛-order H-index. Theorem 10 guarantees a good
upper bound for affected nodes since the new color numbers
must be smaller than 𝑐+ub. In addition, we can further acceler-
ate the convergence of the new 𝑛-order H-index of each iden-
tified node 𝑢 by providing a tighter upper bound min(𝑑𝑢 (𝐻+,
S), 𝑑𝑣 (𝐻+,S), 𝑑𝑤 (𝐻+,S)) for the initiation of 0-order H-index.
This is because by the definition of 𝑛-order H-index, in any
subgraph 𝐻+, a node’s colorful ℎ-star core number cannot ex-
ceed its colorful ℎ-star degree.

Based on the above theoretical analyses, we develop the
EdgeIns algorithm shown in Algorithm 5. Specifically, EdgeIns

Table 3: Datasets (1K=103, 1M=106, 1B=109)
Datasets 𝑛 = |𝑉 | 𝑚 = |𝐸 | 𝜒 𝑑max 𝑑avg Description

Buzznet 101.2K 2.8M 62 64.3K 55

Online
social

activities

Flickr 514K 3.2M 107 4.4K 12
Digg 770.8K 5.9M 66 17.6K 15
Orkut 3M 106.3M 79 27.5K 71

LiveJournal 4.8M 42.9M 324 20.3K 18
Twitter 41.6M 1.2B 1084 3.0M 57.7

Nasasrb 54.9K 1.3M 38 275 48

Scientific
computing

Pkustk 87.8K 2.6M 54 131 58
Pwtk 217.9K 5.7M 42 179 52

MsDoor 404.8K 9.4M 42 76 46
LDoor 909.5K 20.8M 42 76 46

DBLP 317.1K 1M 114 343 7 Collaboration

Skitter 1.7M 11.1M 71 35.5K 13 Internet topology

Patent 3.8M 16.5M 14 793 9 Citation

takes the original core numbers in 𝐺 and the inserted edge
(𝑣,𝑤) as an input. It first computes the range of core numbers
of affected nodes, i.e., the lower bound and upper bound of
core numbers (lines 2-5). Then EdgeIns searches nodes which
are reachable from 𝑣 or 𝑤 and have core numbers located in
that range by invoking the BFSwithBounds procedure (line 6).
After identifying a collection of nodes, this algorithm initi-
ates each node’s 0-order 𝐻 -Index with its distinctive upper
bound (lines 7-8). Next, for nodes in res, EdgeIns calls Local
Algorithm to compute their new 𝑛-order H-indexes (line 9).

Theorem 11. Assume that for each edge update, 𝑛 nodes are af-
fected and EdgeDel/ EdgeIns takes 𝑡 iterations to converge. Then, the
time complexity is given by 𝑂 (𝑛 × 𝑡 × ℎ).

6 EXPERIMENTS
In the following, we first describe the experimental setup,
and then report the results of Local Algorithm and its opti-
mizations. After that we investigate the performance varia-
tion of our updating algorithms over dynamic graphs.

6.1 Experimental Setup

Datasets. We collect 14 large real-world graphs from two dif-
ferent sources (1) Network Repository1 and (2) Stanford Net-
work Analysis Project2 (SNAP). These datasets cover various
domains, such as online social networks, scientific computing
networks, collaboration networks, Internet topology graphs
and citation networks. Table 3 summarizes the detailed sta-
tistics of each dataset. In Table 3, 𝜒 denotes the total number
of different colors used by the greedy graph coloring algo-
rithm. 𝑑max and 𝑑avg represent the maximum degree and the
average degree respectively.

Experimental environment. All our proposed algorithms are
implemented in GNU C++ and parallelized using OpenMP
API. We conduct all experiments on a Linux server equipped
with a 2.9GHz AMD Ryzen 3990X CPU with 64 cores and
256GB RAM running Ubuntu 22.04 (64-bit).

Parameters. In experiments, by default we will use a single
thread for the sequential versions of algorithms, and use up

1
https://networkrepository.com/

2
http://snap.stanford.edu/data/
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Figure 3: Convergence rate and cumulative time

to 64 threads when evaluating the degree of parallelism. Un-
less otherwise specified, we evaluate all algorithms for ℎ = 10.
Similar results can be observed for other values of ℎ.

6.2 Effectiveness Evaluation
In this experiment, we evaluate the convergence of proposed
algorithms in different datasets.

Algorithms. We implement the Local Algorithm Local in Sec-
tion 4.1 and its three optimizations OPT-1,OPT-2 and OPT-3 in
Section 4.2. We also develop OPT∗ by integrating these three
optimizations with Local Algorithm. Theory represents the
theoretical upper bound of the number of iterations.

Overview: Convergence evaluation. We report the conver-
gence results of different algorithms in 14 graphs for ℎ = 10

in Table 4. Table 4 considers three metrics: the number of it-
erations, average invocations and running time, where Aver-
age Invocations is defined as 𝜎

|𝑉 | , and 𝜎 is the total number
of 𝑛-order H-index calls, i.e., invoking ComputeHIndex proce-
dure. It is obvious that our proposed algorithms go through
far fewer iterations compared to the theoretical bound. The
two inter-iteration optimizations OPT-1 and OPT-2 further re-
duce almost half of iterations of Local in all datasets. Note that
OPT-1 and OPT-2 have the comparative reduction ability, and
in most graphs our degree-based heuristic approach OPT-2
performs much better than OPT-1. In terms of pruning abil-
ity, our intra-iteration optimization OPT-3 avoids at least 90%
unnecessary 𝑛-order H-index calls of Local in all networks ex-
cept Patent. By combining OPT-1 and OPT-2, the reduction of
OPT∗ can even reach 95% in most datasets. It is worth men-
tioning that in some graphs (e.g. Flickr, Digg, DBLP, Skitter
and Patent), the invocation ratios are less than 100%, suggest-
ing that the average number of procedure calls per node is
less than 1. Additionally, our best method OPT∗ outperforms
Local by at least one order of magnitude in all 14 graphs. The
results are consistent with invocation ratios since each proce-
dure call takes similar time.

Into Iterations: Convergence rate and cumulative time. Fig.
3 presents the detailed convergence statistics to demonstrate
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Figure 4: Running time with varying ℎ from 3 to 10

the effectiveness of our two types of optimizations. Conver-
gence rate and cumulative time of iteration 𝑖 indicates the per-
centage of converged nodes and total running time after the
first 𝑖 iterations respectively. These two metrics reflect how
fast our proposed algorithms converge and time distribution
along with iterations. From Fig. 3(a) and Fig. 3(b) we can ob-
serve that as the number of iterations increases, the percent-
age of converged nodes raises as well. Moreover, our Local
Algorithm and its optimized variants show sharper increases
compared to the steady but slow Theory. Besides, OPT-2 and
OPT∗ benefiting from asynchronous and order-based process-
ing strategies, achieve a faster convergence than others. Fig.
3(c) and Fig. 3(d) show the time consumption per iteration
of our five algorithms where dashed lines mark the iteration
that all nodes converge. It is clear that the cumulative time
of Local, OPT-1 and OPT-2 increases almost linearly with the
number of iterations. However, the pruning-equipped meth-
ods OPT-3 and OPT∗ show a totally different trend where time
consumption per iteration drops rapidly after the first few
iterations. This is because computations on the converged
nodes can be identified and then avoided.

6.3 Efficiency Evaluation

The effect ofℎ. We first study how the performance of our five
algorithms is affected by different ℎ values in Fig. 4. As ex-
pected, though all algorithms have larger time costs with an
increasing ℎ on two graphs, Local is consistently the slowest
for all ℎ values. The reason could be that the ComputeHIndex
procedure will take more time for a larger ℎ. After apply-
ing our two optimizations to reduce the number of iterations,
OPT-1 and OPT-2 achieve much better performance. In addi-
tion, the two algorithms can be further improved by using
our pruning technique, as shown in the results of OPT-3 and
OPT∗ where the time consumption is more stable with the in-
crease of ℎ. It is clear that for ℎ = 10, our best performing
method OPT∗ is even 16× and 13× faster than the basic Local
on Pwtk and Orkut respectively. Note that following the trend
of running time, our algorithms are highly competent to com-
pute the core decomposition even for ℎ > 10.

Degree of parallelism. We evaluate the degree of parallelism
of our proposed algorithms and Peel by varying the num-
ber of threads in Fig. 5. Here Peel is a parallel version of
the peeling algorithm by simply updating colorful ℎ-star de-
grees of neighbors in parallel after deleting a node. As can
be seen, the performance of Peel gets slightly worse when
using even more threads. The reasons are twofold: 1) After
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Table 4: Convergence Evaluation w.r.t Iterations, 𝑛-order H-index calls and Running Time (ℎ = 10)

Datasets
#Iterations Average Invocations Time (sec)

Theory Local OPT-1 OPT-2 OPT-3 OPT∗ Local OPT-1 OPT-2 OPT-3 OPT∗ Local OPT-1 OPT-2 OPT-3 OPT∗

Buzznet @ 30234 66 35 33 66 33 33.76 17.90 16.88 1.81 1.19 16 8.6 7.9 4.5 2.4
Flickr 24686 85 45 45 85 45 8.20 4.34 4.34 0.59 0.35 19.6 10.6 10 4.9 2.6
Digg 39341 83 44 40 83 40 8.21 4.35 3.96 0.55 0.34 36.7 20.2 17.6 11.7 6.2
Orkut 1245333 237 117 119 237 119 197.53 97.52 99.19 9.58 5.33 2860.5 1422.1 1456.8 425.4 227

LiveJournal 397783 122 65 62 122 62 29.21 15.57 14.86 1.72 1.02 455 244.2 229.1 72.5 38.9
Twitter 4768506 141 73 71 141 71 56.21 29.1 28.31 0.89 0.68 31540.1 15280.1 14170.2 2477.5 1274.7

Nasasrb 16797 285 170 127 285 127 284.52 169.72 126.79 26.94 17.49 32.8 19.5 15.2 4.3 3
Pkustk 5032 91 43 39 91 39 91.00 43.00 39.00 7.15 5.48 20.5 10 9.1 2.6 2
Pwtk 15421 289 74 69 289 69 288.39 73.84 68.86 28.94 14.50 144.3 36 34.5 19.1 8.9

MsDoor 27107 166 88 93 166 93 166.00 88.00 93.00 6.14 4.67 137.9 74.1 79.1 8.5 6.5
LDoor 77066 235 120 122 235 122 235.00 120.00 122.00 7.19 5.54 434.9 224.7 231.9 23.5 18.4

DBLP 880 30 17 19 30 19 1.89 1.07 1.20 0.11 0.09 1 0.6 0.6 0.2 0.2

Skitter 46157 79 43 43 79 43 6.36 3.46 3.46 0.30 0.21 33.6 18.9 18.5 6.8 4.1

Patent 1492 69 37 37 69 37 0.06 0.04 0.04 0.02 0.02 3.6 3.2 2.2 3.2 2.1
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Figure 5: Parallelization Performance Evaluation
deleting a node, parallelizing the update of Peel could intro-
duce extra time overhead, such as cache misses. 2) The se-
quential version of Peel, i.e., using only 1 thread, can well
leverage the space locality since neighbors are stored in an
adjacent array in the CSR format. In contrast, our algorithms
all achieve a significantly high degree of parallelism. For ex-
ample, OPT-2 with 64 threads is 45× and 49× faster than its se-
quential version. Moreover, the speedup of our two pruning-
equipped algorithms OPT-3 and OPT∗ is not always as high
as other methods. It is because that in the last few iterations,
most nodes have converged and computations on them are
pruned, which incurs that many threads keep idle and there-
fore limit the degree of parallelism.

6.4 Update Evaluation

Algorithms and settings. Since the previous experiments
have demonstrated the superiority of our best algorithm
OPT∗, we omit the evaluation of other algorithms in this
experiment. Here we consider two types of algorithms: 1)
ReComp. For each edge update, this algorithm calls OPT∗ to
recompute core numbers of all nodes. 2) EdgeDel and EdgeIns.
Two algorithms only compute core numbers on identified
nodes. For edge deletions, ReComp and EdgeDel initiate the
new 0-order H-indexes both with original core numbers. For
edge insertions, ReComp takes the new colorful ℎ-star degrees
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Figure 6: Update Time and Speedup for Edge Deletions

in the updated graph as the initiation, but EdgeIns will use
our proposed upper bounds. Here we consider two kinds of
updates: a single edge update and a batch of edge updates.
For the batch updates, we sample 100 edges uniformly at
random from the original graph as edge updates. We invoke
ReComp for the entire batch of updates, while in contrast, we
run EdgeDel and EdgeIns to handle each update one by one.

Results for the edge deletion. We compare two edge dele-
tion algorithms in terms of updating time for computing new
core numbers on 9 datasets in Fig. 6. We can observe that
EdgeDel is significantly faster than ReComp, reaching 2-3 or-
ders of magnitude speedup on all graphs. For instance, on
Skitter and Flickr, ReComp takes 6224× and 1927× updating
time than EdgeDel. It is worth mentioning that the speedup
can be used as an important indicator for choosing an ap-
propriate algorithm when handling different number of edge
deletions. To be more specific, the speedup on Orkut is 1369,
which means if there is less than 1369 edges to be sequen-
tially deleted from the original graph at a time interval, we
recommend invoking EdgeDel multiple times to handle each
edge update independently. If the number of edge deletions

2547



0.01

1

100

10K

1M

Buzznet
Flickr

Digg
Orkut

LiveJour

Pkustk
Dblp

Skitter
Patent

1K

10K

100K

1M

Ti
m

e 
(m

s)

Sp
ee

du
p

ReComp
EdgeIns

Speedup

(a) Edge Insertion (Single)

1

10

100

1K

10K

100K

Buzznet
Flickr

Digg
Orkut

LiveJour

Pkustk
Dblp

Skitter
Patent

Ti
m

e 
(m

s)

ReComp
EdgeIns

(b) Edge Insertion (Batch)

Figure 7: Update Time and Speedup for Edge Insertions
is larger than that speedup, then ReComp is preferable since
it will be more efficient. Fig. 6(b) shows the competence of
EdgeDel when dealing with a batch of edge updates. Note that
the performance gap between ReComp and EdgeDel narrows
in this case because after 100 edges are deleted, it only needs
to call OPT∗ once to update core numbers, rather than sum-
ming up the running time of each edge deletion as EdgeDel
does. Even so, EdgeDel still achieves two to three times im-
provement on most graphs.

Results for the edge insertion. Fig. 7(a) and Fig. 7(b) report
the results for a single edge insertion and a batch of edge in-
sertions respectively. As Fig. 7(a) shows, EdgeIns is at least
four orders of magnitude faster than ReComp on all datasets
except Pkustk. Moreover, the average updating time on DBLP,
Skitter and Patent is all less than 1 millisecond, which does
not surprise us since as we all know, real-world graphs are
usually sparse and most nodes of them have smaller col-
orful ℎ-star degrees. Thus, in most cases inserting an edge
will affect a small number of nodes that can be identified
by EdgeIns. EdgeIns remains its high efficiency in the test of
batch insertions in Fig. 7(b), outperforming ReComp on all
networks. Another interesting observation is that EdgeIns can
achieve a higher speedup compared to EdgeDel over ReComp
when handling a batch of edge updates. This is because
EdgeIns benefits from our well-developed upper bounds that
are much tighter than the bounds ReComp uses.

Skewed updates on graphs with skewed structures. Here
we use skewed updates to evaluate the worse-case perfor-
mance of our algorithms. Instead of sampling edge updates
uniformly at random, we collect the 100 most skewed edge
updates from the graph, where deleting or inserting each of
them will result in the maximum number of affected nodes.
Additionally, we use two graphs with skewed structures to
demonstrate the efficiency of our algorithms on real-world
graphs (i.e. following power-low degree distribution). The re-
sults are presented in Table 5. As observed, the skewed dele-
tions have a slight impact on the number of affected nodes,
compared to the significant increase caused by skewed inser-
tions on real-world graphs (e.g., 1.2% increase for deletions

Table 5: Average updating time (millisecond) per random
and skewed edge deletion/insertion for graphs with power-
law and skewed degree distributions using 32 threads (%:
proportion of affected nodes)

Dataset Type
Delete Insert

ReComp
Random Skew

ReComp
Random Skew

% EdgeDel % EdgeDel % EdgeIns % EdgeIns

Skitter
Power

law

183.2 0.1 0.11 1.2 11.6 686.9 1.9 12 94.0 559.3

Digg 101.5 1.8e-5 0.12 0.5 1.7 447.8 0.4 11.6 39.2 70.1

Twitter 44K 2.4e-7 14.7 1.9e-6 265.3 107K 1.2e-5 21.5 31.5 11K

Pwtk
Skew

122.2 1.2 0.8 6.2 3.8 806.6 84.4 665.7 87.9 837.2

MsDoor 267.2 0.7 1.1 6.4 10.1 508.5 35.8 182.2 58.9 243.6

and 92.1% increase for insertions on Skitter). The reason is that
the upper bound for the new core number is still much larger
than the old one. Hopefully, our experiment indicates that
this type of skewed edges only accounts for a minor portion.
On the skewed graphs, the results show a big difference. The
skewed deletions and insertion both affect a slightly larger
number of nodes (e.g., 5% and 3.5% increase in deletions and
insertions respectively on Pwtk). This occurs because, in the
skewed structure, most nodes have large and similar core
numbers. Therefore, though the bounds we obtain for new
core numbers are tight, there are still a large number of nodes
that fall within the range of bounds and old core numbers.

6.5 Applications
We empirically study the significance of the colorful ℎ-star
core model and its local algorithm in higher-order cohesive
subgraph mining. Other applications can be found in [16].

Kevin Wunks

KevinPunks

WanderVerse

1465237577712078854

993157676

3981182061

1402670818870636562

Twitter User ID

Figure 8: Higher-order structure in NFT comunities

Application 1. Identification of higher-order structures in
NFT communities. NFT communities are groups of people
who share an interest in Non-Fungible Tokens (NFTs) and
engage in activities related to their creation, collection, and
trading. Identifying higher-order structures within NFT com-
munities allows stakeholders to better comprehend the intri-
cate relationships and dynamics of the ecosystem, make in-
formed decisions and recognize opportunities and risks. We
analyzed an NFT transaction network from the first week
of March 2022 on the Ethereum blockchain. Fig. 8 shows
the maximal colorful 3-star core of the network, revealing
three active communities with the most frequent transactions:
"WanderVerse" for Play-to-Earn gaming, and "Kevin Wunks"
and "KevinPunks" for trading social media profile pictures
(PFPs). Our model further identified a higher-order group,
where each member participates in all three communities. By

2548



(a) Active user distribution in four years

0.001
0.01

0.1
1

10
100
1K

10K

1 2 4 8 16 32

Ti
m

e 
(s

ec
)

#Answers Posted

Process:
Latency:

Peel
Peel

Local
Local

0.001
0.01

0.1
1

10
100
1K

10K

1 2 4 8 16 32

Ti
m

e 
(s

ec
)

#Answers Posted

Interval

(b) Average time for temporal edge insertions

Figure 9: The evolution of Stack Overflow and performance
comparison for maintaining colorful ℎ-star cores

combining public information from online social media plat-
forms, such as Twitter, and Ethereum Name, we infer cer-
tain personal details. Upon analyzing their tweets, we discov-
ered that the higher-order group members are genuinely in-
terested in PFPs and PC gaming, and maintain strong social
relationships, which highlights potential investment oppor-
tunities and mitigates concerns about money laundering.

Application 2. Revelation of active users in social networks
and real-time capture of graph changes. Here we discuss the
application of our model in dynamic graphs. We construct an
undirected temporal graph of a public Q&A platform Stack
Overflow from the Stack Exchange Data Dump3. In this tem-
poral graph, each edge (𝑢, 𝑣) associated with a timestamp 𝑡

represents user 𝑢 answered a question asked by user 𝑣 at time
𝑡 . Fig. 9(a) shows the distribution of users over four years
(only displays the dense part). Users marked in blue lie in
the colorful ℎ-star maximum core of each year, and they are
usually the potential influential ones who actively give an-
swers or post questions related to hot topics. We can clearly
see that our model is excellent at detecting newly joined ac-
tive users in different epochs. The efficiency of this detection
is demonstrated in Fig. 9(b). In this figure, we observe that
an answer is generated (an edge is inserted) at intervals of
about 20 seconds, but the classical Peel approach takes ap-
proximately 80 seconds to handle this graph change, which
incurs a very high average latency for each update. By con-
trast, the Local algorithm takes at most 0.01 second for any in-
sertion, significantly faster than the answer generation. Due
to this feature, the local algorithm enables a real-time detec-
tion of influential users in dynamic social networks.

7 RELATED WORK

Higher-Order Core Decomposition. Unlike the classical 𝑘-
core [22, 38] which only considers the simple structure of
nodes and adjacent edges, recently a large number of higher-
order core models have been proposed to identify the cohe-
sive subgraph with higher-order Information. Notable exam-
ples include 𝑘-truss [7, 12, 19, 39] which considers the involve-
ment of edges and triangles, triangle 𝑘-core [30, 31, 49] which
focuses on the structure of nodes and triangles they partic-
ipate in, and their non-trivial generalization 𝑘-(𝑟, 𝑠)-nucleus
[36, 37]. 𝑘-(𝑟, 𝑠)-nucleus treats every simple structure as a
clique, i.e., 1-clique for a node and 2-clique for an edge ,and

3
https://archive.org/details/stackexchange

stipulates that in its 𝑘-core, each 𝑟 -clique is contained in at
least 𝑘 𝑠-cliques [35]. Among all combinations of 𝑟, 𝑠 values,
ℎ-clique core with 𝑟 = 1, 𝑠 = ℎ received more attention. It was
first proposed by Fang et al. [14] to provide an approxima-
tion for 𝑘-clique densest subgraph problem [42]. The gener-
alization for higher-order structures is not limited within a
node and its neighbors. Francesco et al. [8] proposed the dis-
tance generalized core, also called (𝑘, ℎ)-core, to consider the
structural information of ℎ-hop neighborhood. Liao et al. [23]
has conducted research on the problem of D-core decompo-
sition in distributed settings by introducing the concept D-
index. Even almost all higher-order core models have a peel-
ing approach to compute their core decomposition, they are
not appealing since they either require too much computa-
tional effort, or have limited applications.

Core Maintenance. Core maintenance is to update core num-
bers after the graph structure is changed, and has usually
been done locally, i.e., without recomputing new core num-
bers for all nodes. Li et al. developed pruning strategies to
maintain the 𝑘-core numbers in a dynamic graph [22]. Simi-
larly, Ahmet et al. proposed the first incremental 𝑘-core de-
composition algorithms for streaming graph data [34]. Re-
cently, Yu et al. studied the problem of processing multiple
edges concurrently [47]. Lin et al. [24] maintained 𝑘-cores by
taking the connections among different 𝑘-cores into consid-
eration. Besides, an I/O efficient algorithm following a semi-
external model, which only allows node information to be
loaded in memory, has been devised by Wen et al. to study
the out-memory core maintenance [44]. Parallel algorithms
for dynamic graphs have been developed by Hua et al. [18].
For higher-order core maintenance, Liu et al. [25] adopted the
𝑛-order H-index to design an algorithm for (𝑘, ℎ)-core mainte-
nance. Besides, Bai et al. [3] presented a bottom-up algorithm
on dynamic bipartite graphs.

8 CONCLUSION
In this paper, we revisit the colorful ℎ-star core decomposi-
tion problem. We first introduce a new concept of colorful
ℎ-star 𝑛-order H-index and study its properties through thor-
ough theoretical analyses. Based on the 𝑛-order H-index, we
propose a local algorithm and three optimizations to address
the low degree of parallelism of the existing methods. The de-
composition in dynamic graphs can be efficiently maintained
by extending our local algorithm. The experimental results
on 14 large real-world graphs demonstrate the efficiency and
effectiveness of our proposed algorithms.
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