
Effective and Efficient Route Planning Using Historical
Trajectories on Road Networks

Wei Tian
Hong Kong Polytechnic University

wei.tian@connect.polyu.hk

Jieming Shi∗
Hong Kong Polytechnic University

jieming.shi@polyu.edu.hk

Siqiang Luo
Nanyang Technological University

siqiang.luo@ntu.edu.sg

Hui Li
Xiamen University
hui@xmu.edu.cn

Xike Xie
University of Science and Technology

of China
xkxie@ustc.edu.cn

Yuanhang Zou
Tencent Co. Ltd.

yuanhangzou@tencent.com

ABSTRACT
We study route planning that utilizes historical trajectories to pre-
dict a realistic route from a source to a destination on a road network
at given departure time. Route planning is a fundamental task in
many location-based services. It is challenging to capture latent
patterns implied by complex trajectory data for accurate route plan-
ning. Recent studies mainly resort to deep learning techniques that
incur immense computational costs, especially on massive data,
while their effectiveness are complicated to interpret.

This paper proposes DRPK, an effective and efficient route plan-
ning method that achieves state-of-the-art performance via a series
of novel algorithmic designs. In brief, observing that a route plan-
ning query (RPQ) with closer source and destination is easier to be
accurately predicted, we fulfill a promising idea in DRPK to first
detect the key segment of an RPQ by a classification model KSD,
in order to split the RPQ into shorter RPQs, and then handle the
shorter RPQs by a destination-driven route planning procedure
DRP. Both KSD and DRP modules rely on a directed association
(DA) indicator, which captures the dependencies between road seg-
ments from historical trajectories in a surprisingly intuitive but
effective way. Leveraging the DA indicator, we develop a set of
well-thought-out key segment concepts that holistically consider
historical trajectories and RPQs. KSD is powered by effective en-
coders to detect high-quality key segments, without inspecting all
segments in a road network for efficiency. We conduct extensive
experiments on 5 large-scale datasets. DRPK consistently achieves
the highest effectiveness, often with a significant margin over exist-
ing methods, while being much faster to train. Moreover, DRPK is
efficient to handle thousands of online RPQs in a second, e.g., 2768
RPQs per second on a PT dataset, i.e., 0.36 milliseconds per RPQ.

PVLDB Reference Format:
Wei Tian, Jieming Shi, Siqiang Luo, Hui Li, Xike Xie, and Yuanhang Zou.
Effective and Efficient Route Planning Using Historical Trajectories on
Road Networks. PVLDB, 16(10): 2512-2524, 2023.
doi:10.14778/3603581.3603591

∗Corresponding Author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:10.14778/3603581.3603591

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/derekwtian/DRPK.

1 INTRODUCTION
With the popularity of location-based services, massive trajectory
data become highly available, which attracts much research at-
tention to support important applications [17, 23–27, 42]. Given
the historical trajectory data D on a road network, we focus on
non-personalized route planning, aiming to predict a realistic path
from a source to a destination (an SD pair) at certain departure time,
specified by a route planning query (an RPQ). A route (a.k.a. path) is
a sequence of connected road segments in the road network. Route
planning has important use cases in navigation [37], food deliv-
ery [18], ride-sharing [17], etc. The non-personalized setting does
not require extra user information, and thus provides convenience
to new cold-start users and also the users sensitive to such infor-
mation. For instance, route planning can recommend a promising
route towards a destination, where a new ride-sharing driver has
never been before. The route is generated based on the underlying
mainstream travel patterns implied by historical trajectories.

Effective route planning is a highly challenging task, especially
for large-scale data with millions of trajectories on large road net-
works. It is non-trivial to efficaciously capture the latent pivotal
patterns among road segments from the complicated data involving
trajectory sequences on network topology. Given an RPQ, an early
wrong prediction near the source could cause a great divergence
between the predicted and the real routes, especially for long RPQs
with faraway source and destination. A collection of existing studies
formulate route planning as path finding or graph search problems
based on certain cost functions over various factors [7, 9, 26, 36].
The design of cost functions relies on expert knowledge. Besides,
real trajectories do not always match the paths with lowest costs,
e.g., distance and time [12, 30]. As shown in Section 6.2, in an SF
dataset, the average percentage of overlapping length of the shortest
paths over the corresponding real trajectories is just 49.1%.

Thus, another plethora of existing solutions learn travel patterns
from historical trajectories to plan routes [11, 12, 22, 24, 25, 34, 37],
by adopting learning models, especially Recurrent Neural Networks
(RNNs) [8, 16]. However, these methods incur immense overheads
to train complex models in the offline stage, and are also slow
for online RPQ inference. Moreover, their effectiveness is elusive
to interpret. Specifically, as revealed in [17], a significant portion

2512

https://doi.org/10.14778/3603581.3603591
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603591
https://github.com/derekwtian/DRPK
https://www.acm.org/publications/policies/artifact-review-and-badging-current

of the predicted routes cannot even reach the destinations of the
processed RPQs, which significantly comprises their real-world
utility. To recapitulate, existing solutions are facing either efficiency
or effectiveness issues for route planning using big trajectory data.

Adhering to making the complicated simple, we propose DRPK
(short for Directed Association based Route Planning with Key Seg-
ment Detection), a novel solution that yields state-of-the-art route
planning accuracy, while being highly efficient, which is fulfilled
through several thoughtful designs. In a nutshell, we observe that
RPQs with closer SD pairs are easier to be accurately planned, and
hence, carry out an intriguing idea to let DRPK first invoke a key
segment detection model KSD that identifies the key segment 𝑒𝑘𝑒𝑦
of an RPQ 𝑞, to split 𝑞 into shorter RPQs (𝑞1 from the source to
𝑒𝑘𝑒𝑦 and 𝑞2 from 𝑒𝑘𝑒𝑦 to the destination); both 𝑞1 and 𝑞2 are then
solved by a destination-driven route planning procedure DRP that
relies on a new directed association (DA) indicator 𝜎 to plan routes.

The superiority of DRPK is non-trivial to achieve. The first chal-
lenging task is to capture segment dependencies implied by massive
historical trajectoriesD. To deal with it, we propose the DA indica-
tor 𝜎 , in which the DA strength between two segments quantifies
the historical trend of going from one to the other. Compared with
expensive RNNs used in the literature, the construction of 𝜎 only
requires efficient statistical counting. Then starting from the source
of an RPQ, the DRP procedure always picks the adjacent segment
with the highest DA strength towards the destination to expand
and plan the route (i.e., destination-driven), assisted by an auxiliary
traffic popularity technique. In experiments, DRP itself already ex-
hibits comparable performance over existing methods, validating
the effectiveness of the DA indicator.

As for the KSD model, the challenges are twofold. It is unclear
how to properly measure if a segment is key or not w.r.t. an RPQ.
Further, it is inefficient to inspect every segment in a large road
network to detect key segments. To tackle the challenges, we exploit
the DA indicator 𝜎 again and develop a complete set of key segment
concepts that consider RPQs and trajectories on road networks
as a whole. In particular, given an RPQ, we devise its candidate
key segment pool of small size and formulate KSD as a binary
classification model over the pool. Thus, we avoid inspecting all
segments in a road network for efficiency. We develop effective
and efficient encoders and loss function to build and train the KSD
model in Section 5.

Extensive experiments over 5 real-world trajectory datasets on
road networks demonstrate that DRPK consistently outperforms its
competitors in terms of result quality, at a fraction of their training
costs. For instance, on a PT dataset with trajectories in millions,
DRPK only takes 0.65 hour to train, while a fast competitor require
7.59 hours and the other competitors need more than a day.

To sum up, we make the following contributions in our paper.
• We propose a new solution DRPK for route planning using his-

torical trajectories on road networks. The main technical designs
in DRPK include the DA indicator 𝜎 , the destination-driven pro-
cedure DRP, and the key segment detection model KSD.

• We devise the DA indicator to preserve the segment associations
implied by historical trajectories in an intuitive, effective and
efficient way. Then we designDRP to perform destination-driven
route planning guided by the DA indicator as well as an auxiliary
traffic popularity technique.

Table 1: Frequently used notations
Notation Description
D Historical trajectory data D.
𝑇,𝑇 .𝑠,𝑇 .𝑑 ,
𝑇 .𝑠𝑒𝑞

A trajectory𝑇 from its source𝑇 .𝑠 to destination𝑇 .𝑑
with a sequence of traveled segments𝑇 .𝑠𝑒𝑞.

𝐺 = (𝑉 , 𝐸) , 𝑛 A road network𝐺 with road segment set 𝐸 and inter-
section set𝑉 . And 𝑛 is the number of segments.

𝑒𝑖 , 𝑁𝑜 (𝑒𝑖) A road segment 𝑒𝑖 and its out-going adjacent segments.
𝑞 = ⟨𝑠,𝑑, 𝑡𝑞 ⟩ A route planning query 𝑞 with source and destination

GPS coordinates 𝑠 and 𝑑 and departure time 𝑡𝑞 .
𝑒𝑠 , 𝑒𝑑 The source and destination segments where 𝑠 and 𝑑

are respectively, obtained by map-matching.
𝑡𝑞 The time slot of timestamp 𝑡𝑞 .
𝜔 (𝑒𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩) The importance of segment 𝑒𝑖 w.r.t. SD pair ⟨𝑒𝑠 , 𝑒𝑑 ⟩.
K𝑇 The ground-truth key segment set of trajectory𝑇 .
C𝑠𝑑 , 𝑘𝑐 The candidate key segment pool of the SD pair of an

RPQ 𝑞, with size 𝑘𝑐 .
𝑃𝑘𝑒𝑦 (𝑒𝑖 |𝑞) ,
𝑒𝑖 ∈ C𝑠𝑑

The key segment probability of a candidate 𝑒𝑖 in the
candidate pool C𝑠𝑑 of the RPQ 𝑞.

R The predicted route of an RPQ.

• Utilizing the DA indicator again, we derive a holistic set of key
segment concepts that properly take RPQs and historical trajec-
tories into consideration. We then develop KSD, a classification
model to effectively detect key segments over a small candidate
pool of an online RPQ.

• The superiority of DRPK, in terms of efficiency and effectiveness,
is evaluated over massive trajectory data on road networks.

2 PRELIMINARIES
2.1 Problem Formulation
Road Network. A road network is modeled as a directed graph
𝐺 = (𝑉 , 𝐸), where𝑉 is a set of nodes, and 𝐸 is a set of directed edges.
A node 𝑣 ∈ 𝑉 represents an intersection or a road end. A directed
edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 is a road segment from entrance point 𝑣𝑖 to
exit point 𝑣 𝑗 . Denote 𝑛 = |𝐸 | and𝑚 = |𝑉 | as the number of road
segments and intersections, respectively. Road network data are
from OpenStreetMap [2]. A segment 𝑒𝑖 has length 𝑙 (𝑒𝑖) in meters.
Figure 1a shows a road network with black arrows as segments and
white circles as intersections. Let 𝑁𝑜 (𝑒𝑖) be the set of out-going
adjacent segments of 𝑒𝑖 , e.g., 𝑁𝑜 (𝑒6) = {𝑒7, 𝑒8} in Figure 1a.
Trajectory. A raw trajectory is a sequence of GPS points in the
form of ([latitude, longitude], 𝑡𝑖𝑚𝑒), meaning that the moving ob-
ject is at location [latitude,longitude] at the 𝑡𝑖𝑚𝑒 . In this work, we
consider trajectories generated in a road network. In other words,
the GPS points of raw trajectories are on road segments. Therefore,
we map raw trajectories onto road segments by a popular map-
matching algorithm [41], also adopted in existing studies [17, 34].
After map-matching, a trajectory 𝑇 consists of (i) a sequence of
road segments 𝑇 .𝑠𝑒𝑞 = ⟨𝑒1, 𝑒2, ..., 𝑒ℓ ⟩ with length 𝑇 .ℓ , (ii) a source
location 𝑇 .𝑠 on the source segment 𝑒1 and a destination location
𝑇 .𝑑 on the destination segment 𝑒ℓ , associated with respective de-
parture time and arrival time, and (iii) the entry and exit times-
tamps 𝑒𝑡 (𝑒𝑖 ,𝑇) and 𝑥𝑡 (𝑒𝑖 ,𝑇) of 𝑇 on every segment 𝑒𝑖 in 𝑇 .𝑠𝑒𝑞.
Particularly, 𝑒𝑡 (𝑒𝑖 ,𝑇) and 𝑥𝑡 (𝑒𝑖 ,𝑇) are obtained by linear interpo-
lation after map-matching [42], and the travel time of 𝑇 over 𝑒𝑖 is
𝑡 (𝑒𝑖 ,𝑇) = 𝑥𝑡 (𝑒𝑖 ,𝑇) − 𝑒𝑡 (𝑒𝑖 ,𝑇). Given historical trajectories D, we
can obtain the average travel time 𝑡 (𝑒𝑖) on segment 𝑒𝑖 by averaging

2513

Segment Intersection
Source Destination
𝑇! 𝑇"

𝑒!
𝑒"

𝑒# 𝑒$

𝑒%
𝑒&

𝑠!

𝑠"

𝑑!

𝑑"

𝑒'

𝑠

𝑑

RPQ 𝑞 =< 𝑠, 𝑑, 𝑡(>

𝑒)

𝑒*

(a) Road Network

𝜎 𝑒!, 𝑒" = 6, 𝜎 𝑒#, 𝑒" = 9,
𝜎 𝑒$, 𝑒" = 4, 𝜎 𝑒%, 𝑒" = 2,
𝜎 𝑒#, 𝑒& = 3, 𝜎 𝑒$, 𝑒& = 3,
𝜎 𝑒&, 𝑒' = 8, 𝜎 𝑒&, 𝑒(= 2,
𝜎 𝑒&, 𝑒) = 3, 𝜎 𝑒&, 𝑒! = 5,
𝜎 𝑒', 𝑒# = 1, 𝜎 𝑒(, 𝑒# = 3,
𝜎 𝑒), 𝑒# = 4, 𝜎 𝑒!, 𝑒# = 7

(b) DA Strength Values

Figure 1: Running Example

the travel time 𝑡 (𝑒𝑖 ,𝑇) of all 𝑇 ∈ D. In the following, the map-
matched trajectories are referred to as trajectories. Figure 1a shows
two trajectories𝑇1 and𝑇2 in dashed lines.𝑇1 has its source 𝑠1 on seg-
ment 𝑒3, destination 𝑑1 on segment 𝑒8, and 𝑇1 .𝑠𝑒𝑞 = ⟨𝑒3, 𝑒5, 𝑒6, 𝑒8⟩.
Route Planning Query. Given a source 𝑠 and a destination 𝑑 ,
one can apply the map-matching method [41] again to get the
source segment 𝑒𝑠 and destination segment 𝑒𝑑 , where 𝑠 and 𝑑 reside
respectively. Note that 𝑠 can be anywhere on 𝑒𝑠 . Let position ratio
𝑟𝑠 be the ratio of the distance between 𝑠 and the entrance of 𝑒𝑠 over
segment length 𝑙 (𝑒𝑠). Similarly, let 𝑟𝑑 be the position ratio of 𝑑 on
𝑒𝑑 . A route from 𝑠 to 𝑑 is a path of connected road segments from
𝑒𝑠 to 𝑒𝑑 on the road network 𝐺 . Then an RPQ is defined as follows.
When the context is clear, we refer to either ⟨𝑠, 𝑑⟩ or ⟨𝑒𝑠 , 𝑒𝑑 ⟩ as an
SD pair. Table 1 shows the frequently used notations.

Definition 2.1. (Route Planning Query). Given historical trajec-
tory data D on a road network 𝐺 , an RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩, consisting
of a source location 𝑠 , a destination location𝑑 , and departure time 𝑡𝑞 ,
asks for the most likely routeR with high probability 𝑃𝑟 (R|𝑞,D,𝐺)
based on the travel patterns implied in D.

2.2 Overview of Current Approaches
We overview the main competitors here, while discussing other
related work in Section 7.

A vital task in route planning is to capture the transition proba-
bilities among road segments w.r.t. RPQs. Recent studies attempt to
adopt complicated models to preserve such transition patterns over
historical trajectories.NMLR [17] is a latest method that utilizes Lip-
schitz embeddings [5] and Graph Convolutional Networks (GCN)
[21] together to learn the probabilities from historical trajectories
on road networks and then generates routes by either Dijkstra or
greedy search. CSSRNN [37] is based on RNN [8, 16], a sequential
deep learning model, to learn the transition probabilities. CSSRNN
integrates the constraints of road networks (e.g., reachability) into
RNN to capture long-term dependencies of road segments, and is
trained to minimize the error between the predicted and the real
transition probability distributions implied by historical trajectories.
NASR [34] automatically learns the cost functions in A* algorithm
by deep learning models, including using RNN for observable cost
and adopting Graph Attention Networks (GAT) [33] for estimated
cost, and then utilizes A* for route planning. DeepMove [11] also
uses RNNs to capture sequential transition patterns in personalized
historical trajectories, and has an attention model to capture multi-
level periodicity of mobility patterns. In experiments, it is extended
to road network without personalization.

Algorithm 1: DRPK (Online)
Input: RPQ 𝑞 = ⟨𝑠,𝑑, 𝑡𝑞 ⟩ where 𝑠 and 𝑑 are on segments 𝑒𝑠 and 𝑒𝑑

of the input road network𝐺 respectively, the KSD model,
the DA indicator 𝜎

Output: The predicted route R
1 Get the candidate key segment pool C𝑠𝑑 of 𝑞 (Definition 5.2,

Section 5.1);
2 Get the key segment probability 𝑃𝑘𝑒𝑦 (𝑒𝑖 |𝑞) of every candidate

𝑒𝑖 ∈ C𝑠𝑑 by the KSD model (Sections 5.2 and 5.3);
3 Predicted key segment 𝑒𝑘𝑒𝑦 ← argmax∀𝑒𝑖 ∈C𝑠𝑑 𝑃𝑘𝑒𝑦 (𝑒𝑖 |𝑞) ;
4 RPQ 𝑞1 = ⟨𝑠, 𝑣+𝑘𝑒𝑦, 𝑡𝑞 ⟩, where 𝑣

+
𝑘𝑒𝑦

is the entrance of 𝑒𝑘𝑒𝑦 ;
5 Predicted route and arrival time R1, 𝑡1 ← Invoke DRP on 𝑞1

(Algorithm 3);
6 RPQ 𝑞2 = ⟨𝑣+𝑘𝑒𝑦, 𝑑, 𝑡1 ⟩ from source segment 𝑒𝑘𝑒𝑦 to 𝑒𝑑 ;
7 Predicted route and arrival time R2, 𝑡2 ← Invoke DRP on 𝑞2

(Algorithm 3);
8 R ← 𝑐𝑜𝑛𝑐𝑎𝑡 (R1, R2) ;
9 return R;

Novelty. Our technical novelty lies in three aspects. First, instead
of the complicated models (e.g., RNN, GCN, and GAT) commonly
used in the approaches above, we propose a new DA indicator to
preserve transition patterns via efficient statistical counting. Sec-
ond, to the best of our knowledge, for the route planning problem
in Definition 2.1, it is the first time to formulate KSD as a classifica-
tion task from scratch with a complete set of concepts developed,
without inspecting all segments. Third, DRPK assembles the novel
components above to first split RPQs by KSD and then handle them
by DRP, for superior effectiveness and efficiency on real data.

3 THE DRPK SOLUTION
The DRPK solution has two phases. In the offline phase, we build
the DA indicator using historical trajectories (Section 4.1), and train
the key segment detection model KSD by historical trajectories
(Section 5). In the online phase, for an RPQ 𝑞 to be issued in the
future, DRPK invokes the KSD model and the destination-driven
route planning procedure DRP (Section 4.2) to get the predicted
route R for RPQ 𝑞. In this section, we present the pseudocode of
DRPK in Algorithm 1 for online RPQ processing.

Recall that DRPK first detects the key segment of an RPQ 𝑞 by
KSD, and then splits 𝑞 into two shorter RPQs 𝑞1 and 𝑞2 which
are handled by DRP. Given the input RPQ in Algorithm 1, 𝑞 =

⟨𝑠, 𝑑, 𝑡𝑞⟩, its route usually involves only a small part of the whole
input road network 𝐺 . In other words, most road segments in 𝐺

are less relevant or even irrelevant to the query. Hence, to detect
the key segment of 𝑞, it is not necessary to inspect every road
segment in𝐺 in details. Therefore, at Line 1, DRPK first gets a small
pool C𝑠𝑑 of candidate key segments w.r.t. 𝑞 (defined in Section 5.1),
and only focuses on the pool for key segment detection, rather
than on all road segments in 𝐺 . According to our definitions, C𝑠𝑑
contains the top segments that are important to both the source
and the destination of 𝑞, which is measured by the DA indicator
𝜎 . A segment that is less important to either the source or the
destination of 𝑞 is unlikely to be in C𝑠𝑑 , and subsequently cannot
be a key segment of 𝑞. Then, at Line 2, we execute the KSD model

2514

forwardly to predict the key segment probability of every candidate
𝑒𝑖 ∈ C𝑠𝑑 w.r.t. RPQ 𝑞, and select the segment 𝑒𝑘𝑒𝑦 with the highest
probability as the predicted key segment of 𝑞 (Line 3).

At Line 4, the first RPQ 𝑞1 is formed as ⟨𝑠, 𝑣+
𝑘𝑒𝑦

, 𝑡𝑞⟩, where 𝑣+𝑘𝑒𝑦
is the entrance point of 𝑒𝑘𝑒𝑦 and 𝑒𝑘𝑒𝑦 is the destination segment
of 𝑞1. RPQ 𝑞1 has the same source 𝑠 and departure time 𝑡𝑞 as RPQ
𝑞. Then DRPK invokes DRP on 𝑞1 to get the predicted route R1
and predicted arrival time 𝑡1 as a byproduct (Line 5). The predicted
arrival time 𝑡1 of 𝑞1 is useful at Line 6, as the departure time of the
second RPQ 𝑞2. RPQ 𝑞2 starts from 𝑣+

𝑘𝑒𝑦
with source segment 𝑒𝑘𝑒𝑦

towards the final destination 𝑑 of the original RPQ 𝑞. At Line 7,
DRPK invokes DRP on 𝑞2 to get the predicted route R2 and arrival
time 𝑡2. At Line 8, the final predicted routeR is obtained by merging
R1 and R2, and returned at Line 9.
Remark. In Algorithm 1,DRPK only invokes KSD once for an RPQ,
to explain our main ideas. In Section 6.5, we also experimentally
evaluate the extension of DRPK with multiple key segments per
RPQ and analyze its performance trade off.

4 DIRECTED ASSOCIATION
In Section 4.1, we present the directed association (DA) indicator
𝜎 to capture the relationships between road segments based on
historical trajectories. Then, in Section 4.2, we develop the DRP
procedure that leverages the DA indicator to perform destination-
driven route planning, assisted by a traffic popularity technique.

4.1 DA Construction
As mentioned, a vital task is to extract transition patterns from
historical trajectories D. Existing methods mainly resort to deep
learning with tremendous overheads. We propose the DA indicator
𝜎 that is intuitive and effective, while being efficient to construct.

Given a historical trajectory𝑇 with sequence𝑇 .𝑠𝑒𝑞 = ⟨𝑒1, 𝑒2, ..., 𝑒ℓ ⟩,
𝑇 .𝑠𝑒𝑞 reflects the driver’s intention that every segment 𝑒𝑖 (1 ≤ 𝑖 < ℓ)
is chosen with the goal to be directed to the destination segment
𝑒ℓ . 𝑇 .𝑠𝑒𝑞 also indicates that 𝑒𝑖 is selected with the consideration to
arrive at some intermediate segment 𝑒 𝑗 first (1 ≤ 𝑖 < 𝑗 ≤ ℓ), in
order to finally arrive at the destination. The DA indicator is de-
signed to preserve these associations. Specifically, the DA strength
𝜎 (𝑒𝑖 , 𝑒 𝑗) from segments 𝑒𝑖 to 𝑒 𝑗 indicates the trend of going to 𝑒 𝑗
from 𝑒𝑖 based on historical trajectories. Note that 𝑒𝑖 and 𝑒 𝑗 are not
necessarily adjacent in the road network. Also the indicator 𝜎 is
directed, i.e., the DA strength 𝜎 (𝑒𝑖 , 𝑒 𝑗) is different from 𝜎 (𝑒 𝑗 , 𝑒𝑖).

How to construct the DA indicator 𝜎 over historical trajectories
D is presented at Lines 1-5 of Algorithm 2. We implement the
DA indicator by a two-layer dictionary to store the DA strength
values between road segments. Initially, 𝜎 is empty (Line 1). For
every training trajectory 𝑇 ∈ D with 𝑇 .𝑠𝑒𝑞 = ⟨𝑒1, 𝑒2, ..., 𝑒ℓ ⟩ (Lines
2-4), 𝑇 [𝑒𝑖 , 𝑒 𝑗] represents a sub-trajectory of 𝑇 starting from 𝑒𝑖 and
ending at 𝑒 𝑗 , for all possible 1 ≤ 𝑖 < 𝑗 ≤ ℓ . Therefore, we increase
𝜎 (𝑒𝑖 , 𝑒 𝑗) by one for every such sub-trajectory of 𝑇 (Line 5). After
going through all trajectories inD, the DA indicator is constructed.
Discussion. One may feel that the DA indicator 𝜎 is intuitive to
construct. We emphasize that this is actually an interesting finding
made in this paper. As shown in our experiments, 𝜎 is important in
DRP for accurate route planning. This demonstrates the simplicity
and effectiveness of 𝜎 , compared with the complex learning designs

Algorithm 2: Build DA indicator and Traffic Popularity
Input: Historical trajectories D as training data
Output: DA indicator 𝜎 and traffic popularity P

1 Initialize 𝜎 as an empty dictionary;
2 foreach Trajectory𝑇 ∈ D do
3 for 𝑖 ← 1, 2, ...,𝑇 .ℓ do
4 for 𝑗 ← 𝑖 + 1, ...,𝑇 .ℓ do
5 𝜎 (𝑒𝑖 , 𝑒 𝑗) ← 𝜎 (𝑒𝑖 , 𝑒 𝑗) + 1;

6 Initialize P as a zero matrix;
7 foreach Trajectory𝑇 ∈ D do
8 for 𝑖 ← 1, 2, ...,𝑇 .ℓ do
9 𝑒�̂� (𝑒𝑖 ,𝑇) ← time slot by Eq. (1) for entry time 𝑒𝑡 (𝑒𝑖 ,𝑇) ;

10 P[𝑒𝑖 , 𝑒�̂� (𝑒𝑖 ,𝑇)] ← P[𝑒𝑖 , 𝑒�̂� (𝑒𝑖 ,𝑇)] + 1;

in the literature. More importantly, based on 𝜎 , we develop the KSD
model in Section 5, to further boost the performance of DRPK.

Furthermore, the average sequence length𝑇 .ℓ of real trajectories
is just in dozens, as shown in Table 2 in experiments. Thus, it is
practically efficient to iterate historical trajectories to construct
𝜎 . In particular, it only costs just tens of seconds over millions of
trajectories to build 𝜎 as reported in Table 10 of Section 6.3.

4.2 DRP: Destination-driven Route Planning
The majority of moving objects on road networks are with clear
goals to arrive at their destinations. Hence, it is reasonable to deduce
that most historical trajectories (and future RPQs) were generated
(will be issued) with the objective to reach their destinations. Thus,
we design DRP, a destination-driven method for route planning. In
brief, starting from the source segment 𝑒𝑠 of an RPQ𝑞,DRP expands
the predicted route by always appending the adjacent segment with
the highest DA strength to the destination segment 𝑒𝑑 of 𝑞.
Running example. In Figure 1a, an RPQ𝑞 asks for a route from the
source 𝑠 on segment 𝑒5 to the destination 𝑑 on segment 𝑒1. Figure 1b
provides example DA values 𝜎 built from historical trajectories on
the road network in Figure 1a. Starting from source segment 𝑒5 with
adjacent segments 𝑁𝑜 (𝑒5) = {𝑒6, 𝑒9}, DRP adds 𝑒6 into the planned
route since 𝑒6 has stronger DA strength towards the destination
segment 𝑒1, i.e., 𝜎 (𝑒6, 𝑒1) = 6 > 𝜎 (𝑒9, 𝑒1) = 2. Then with adjacent
segments 𝑁𝑜 (𝑒6) = {𝑒7, 𝑒8}, DRP expands the route by 𝑒7, since
𝜎 (𝑒7, 𝑒1) = 9 > 𝜎 (𝑒8, 𝑒1) = 4. Then from 𝑒7, DRP finds that the
destination segment 𝑒1 is in 𝑁𝑜 (𝑒7) (i.e., destination reached), and
returns the planned route ended at 𝑒1.

Since DRP is destination-driven, only the DA values 𝜎 (∗, 𝑒𝑑)
towards the destination 𝑒𝑑 are used when processing an RPQ with
destination segment 𝑒𝑑 . There could be tie cases when comparing
DA values. For instance, in Figure 1, if the destination segment of
another RPQ is 𝑒2 and DRP needs to pick a segment from 𝑁𝑜 (𝑒6) =
{𝑒7, 𝑒8}, both 𝜎 (𝑒7, 𝑒2) and 𝜎 (𝑒8, 𝑒2) are 3, which is a tie case. It is
also possible that no DA values exist between certain road segments
and the destination, which is a tie too. A brute-force way is to break
ties arbitrarily, which is ineffective as validated in experiments.

Therefore, in the following, we first present a traffic popularity
technique P to assist DRP to effectively break ties, and then present
the complete algorithm of DRP.

2515

Mon Tue Wed Thr Fri Sat Sun
0

2,000
4,000
6,000
8,000

trajectories

Figure 2: Traffic Periodicity Per Hour Per Day

Traffic popularity. In modern road networks, due to the increas-
ingly mature urban planning, road segments are uncrowded for
most of the time. The majority tend to choose relatively common
road segments to travel. Hence, we suggest to break the tie cases
of DA strengths by choosing the relative popular segment in the
corresponding time period. Specifically, for every road segment 𝑒𝑖 ,
we maintain its traffic popularity in 𝑛𝑡 time slots. Given historical
trajectory data D, the traffic popularity P[𝑒𝑖 , 𝑡 𝑗] of segment 𝑒𝑖 at
time slot 𝑡 𝑗 is the number of trajectories entering 𝑒𝑖 within the
time slot 𝑡 𝑗 . Then, we store the traffic popularity of all segments
by P ∈ R𝑛×𝑛𝑡 , where 𝑛𝑡 is a small number, explained below.

Now the question is how to decide 𝑛𝑡 . Figure 2 shows the num-
ber of trajectories per hour per day of a PT dataset. Observe that
weekdays and weekends exhibit different traffic patterns. As an
example, a road segment towards a resort could be more popular
on weekends than weekdays. Also, within weekdays, the traffic
exhibits periodicity. Therefore, we distinguish the traffic popularity
of a road segment into weekdays and weekends (each counts for
𝑛𝑡/2 time slots). Let 𝑡0 be the starting time of a day and 𝛿 be the
time slot duration in seconds (e.g., 3600s). 𝛿 ·𝑛𝑡/2 is 24 hours, which
decides 𝑛𝑡 . Given a timestamp 𝑡 𝑗 , we first parse the timestamp into
the 𝑑𝑎𝑦 of a week, and the time remainder 𝑡𝑟 𝑗 in seconds. Then the
time slot id 𝑡 𝑗 of timestamp 𝑡 𝑗 is calculated by

𝑡 𝑗 =

{︄
⌊ 𝑡𝑟 𝑗

𝛿
⌋, 𝑑𝑎𝑦 is a weekday,

⌊ 𝑡𝑟 𝑗
𝛿
⌋ + 𝑛𝑡 /2, otherwise.

(1)

Lines 6-10 in Algorithm 2 show the build of P based on historical
trajectories D. Initially, P is a zero matrix (Line 6). Then we scan
every segment 𝑒𝑖 in every trajectory 𝑇 (Lines 7-8), get the time slot
𝑒�̂� (𝑒𝑖 ,𝑇) of its entry time 𝑒𝑡 (𝑒𝑖 ,𝑇) at 𝑒𝑖 by Eq. (1) at Line 9, and
increase P[𝑒𝑖 , 𝑒�̂� (𝑒𝑖 ,𝑇)] by one at Line 10.
DRP algorithm. The pseudocode of DRP is presented in Algorithm
3. DRP takes as input an RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩ with source and destina-
tion segments 𝑒𝑠 and 𝑒𝑑 , the DA indicator 𝜎 and traffic popularity
P. DRP returns the predicted route R and also the predicted arrival
time 𝑡𝑎 , which is useful in DRPK (Algorithm 1). From Lines 1-2 in
Algorithm 3, the route R is initialized by 𝑒𝑠 , and timestamp 𝑡 ′ is set
to be the departure time 𝑡𝑞 . Then DRP performs destination-driven
route planning from Lines 3 to 14, which terminates at Line 3 if the
last segment R[−1] is the destination segment 𝑒𝑑 or the sequence
length of R is too long beyond a threshold parameter 𝐿 (e.g., 300).
Within the while loop, DRP first gets the last segment 𝑒𝑖 in R (Line
4). At Lines 5-6, DRP retrieves all the candidate adjacent segments
𝑒 𝑗 ∈ 𝑁𝑜 (𝑒𝑖) with the highest DA strength 𝑑𝑎max towards 𝑒𝑑 into
set 𝐸𝑐𝑎𝑛𝑑 . If there is only one element in 𝐸𝑐𝑎𝑛𝑑 (Line 8), then the
new segment 𝑒𝑎𝑝𝑝 to be appended into R is decided without a tie
(Line 9). Otherwise, we have at least two segments in 𝐸𝑐𝑎𝑛𝑑 . If so,
we further use the traffic popularity P to break tie: get the time slot
𝑡 ′̂ by Eq. (1) (Line 11) and decide 𝑒𝑎𝑝𝑝 from 𝐸𝑐𝑎𝑛𝑑 by the highest

Algorithm 3: DRP (Online)
Input: RPQ 𝑞 = ⟨𝑠,𝑑, 𝑡𝑞 ⟩ where 𝑠 and 𝑑 are on segments 𝑒𝑠 and 𝑒𝑑

of the input road network𝐺 respectively, DA indicator 𝜎 ,
traffic popularity P, max length 𝐿

Output: The predicted route R and arrival time 𝑡𝑎
1 Predicted route R ← ⟨𝑒𝑠 ⟩;
2 Predicted time 𝑡 ′ ← 𝑡𝑞 ;
3 while R[−1] ≠ 𝑒𝑑 and size of R < 𝐿 do
4 Segment 𝑒𝑖 ← R[−1];
5 𝑑𝑎max ← max∀𝑒 𝑗 ∈𝑁𝑜 (𝑒𝑖) 𝜎 (𝑒 𝑗 , 𝑒𝑑) ;
6 𝐸𝑐𝑎𝑛𝑑 ← {𝑒 𝑗 ∈ 𝑁𝑜 (𝑒𝑖) |𝜎 (𝑒 𝑗 , 𝑒𝑑) = 𝑑𝑎max};
7 𝑒𝑎𝑝𝑝 ← 𝑛𝑢𝑙𝑙 ;
8 if |𝐸𝑐𝑎𝑛𝑑 | = 1 then
9 𝑒𝑎𝑝𝑝 ← 𝐸𝑐𝑎𝑛𝑑 [0];

10 else
11 Get the time slot 𝑡 ′̂ of timestamp 𝑡 ′ by Eq. (1) ;
12 𝑒𝑎𝑝𝑝 ← argmax∀𝑒 𝑗 ∈𝐸𝑐𝑎𝑛𝑑 (P[𝑒 𝑗 , 𝑡

′̂]) ;
13 R.append(𝑒𝑎𝑝𝑝) ;
14 𝑡 ′ ← 𝑡 ′ + 𝑡 (𝑒𝑎𝑝𝑝) ;
15 𝑡𝑎 ← 𝑡 ′;
16 return R and 𝑡𝑎 ;

traffic popularity (Line 12). Note that, at Line 12, if more than one
segment in 𝐸𝑐𝑎𝑛𝑑 has the highest traffic popularity, there is still a
tie. In this case, we adopt a simple trick based on cosine similarity to
break the tie. Specifically, for every segment 𝑒 𝑗 in 𝐸𝑐𝑎𝑛𝑑 , we regard
it as a vector from its entrance to its exit point, compute its cosine
similarity with the vector formed from its entrance point to the
destination location 𝑑 , and then choose 𝑒 𝑗 with the highest cosine
similarity as 𝑒𝑎𝑝𝑝 . Then at Lines 13-14, DRP appends segment 𝑒𝑎𝑝𝑝
to the end of R and increases timestamp 𝑡 ′ by the average travel
time 𝑡 (𝑒𝑎𝑝𝑝) of segment 𝑒𝑎𝑝𝑝 . After the while loop terminates, at
Line 15, DRP updates the predicted arrival time 𝑡𝑎 to be 𝑡 ′ and
returns R and 𝑡𝑎 at Line 16. DRP in Algorithm 3 predicts at most 𝐿
steps. Let 𝑑𝑒𝑔˜ be the max value of |𝑁𝑜 (𝑒𝑖) | for any 𝑒𝑖 in𝐺 . In every
step, DRP iterates the neighbors of a road segment. The accesses of
𝜎 and P cost amortized constant time. 𝑑𝑒𝑔˜ is also small, at most 6 in
all datasets in experiments. Hence, DRP is efficient to plan routes.
Discussion. Currently we consider static road networks. It is possi-
ble to extend DRP to handle road changes, e.g., road closure or new
connections. In Algorithm 3, if DRP encounters a closed segment
or dead end, before appending 𝑒𝑎𝑝𝑝 to R (Line 13), a technique is
to allow DRP backtrack one or multiple steps along R to restart
the route planning by selecting another segment based on the next
largest DA 𝜎 . For new segment 𝑒𝑛𝑒𝑤 , if a route R planned by DRP
contains a sub-sequence with the same starting and ending points
as 𝑒𝑛𝑒𝑤 , then it is possible to generate another route R′ by replac-
ing the sub-sequence with 𝑒𝑛𝑒𝑤 and also recommend R′ to users.
If users adopt R′, then we can obtain new trajectories containing
𝑒𝑛𝑒𝑤 to further train our method.

5 KEY SEGMENT DETECTION
It is promising to apply the idea of key segment detection for route
planning. However, as mentioned, the challenges are (i) how to

2516

properly measure if a segment is a key segment w.r.t. an RPQ, and
(ii) how to efficiently detect high-quality key segments over massive
data. Given an RPQ, its key segment should serve as a hub from its
source to destination. Obviously, a segment that is only important
to the source or the destination should not be a key segment of the
RPQ. Further, trivially regarding segments with higher road types
as the key neglects the travel patterns in historical trajectories, and
different RPQs should have different key segments.

To deal with these issues, in Section 5.1, we utilize the DA in-
dicator 𝜎 to define the importance of a segment w.r.t. an SD pair,
and develop a series of key segment concepts considering histor-
ical trajectories and RPQs as a whole. For every RPQ, we derive
a small candidate key segment pool and formulate key segment
detection as a binary classification task over the pool. Then in Sec-
tion 5.2, we present the KSD model consisting of a weighted binary
cross entropy loss function and effective encoders, namely query
encoder and candidate key segment encoder. Lastly, in Section 5.3,
we elaborate how to train KSD and use it for online detection.

5.1 KSD Concepts and Problem Formulation
Given an RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩ where 𝑠 and 𝑑 are on segments 𝑒𝑠 and
𝑒𝑑 respectively, its key segment should be important to both 𝑒𝑠
and 𝑒𝑑 . Therefore, as the first step, in Definition 5.1, we define
the importance score 𝜔 (𝑒𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩) of a segment 𝑒𝑖 w.r.t. SD pair
⟨𝑒𝑠 , 𝑒𝑑 ⟩ by leveraging the DA indicator 𝜎 .

Definition 5.1. (Segment Importance w.r.t. an SD Pair). Given
an SD pair ⟨𝑒𝑠 , 𝑒𝑑 ⟩ and the DA indicator 𝜎 built from historical
trajectories, the importance of a road segment 𝑒𝑖 w.r.t. ⟨𝑒𝑠 , 𝑒𝑑 ⟩ is
𝜔 (𝑒𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩) = min(𝜎 (𝑒𝑠 , 𝑒𝑖), 𝜎 (𝑒𝑖 , 𝑒𝑑)).

𝜔 (𝑒𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩) takes the minimum of 𝜎 (𝑒𝑠 , 𝑒𝑖) and 𝜎 (𝑒𝑖 , 𝑒𝑑), in
order to quantify the importance w.r.t. both 𝑒𝑠 and 𝑒𝑑 . If 𝑒𝑖 has high
DA strengths from 𝑒𝑠 to itself and also from itself to 𝑒𝑑 , then 𝑒𝑖 is
with high importance score 𝜔 (𝑒𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩). If 𝑒𝑖 only has high DA
strength with either 𝑒𝑠 or 𝑒𝑑 , but not both, then 𝑒𝑖 is less important
to the SD pair. For instance, in Figure 1a, for an SD pair ⟨𝑒2, 𝑒7⟩,
the importance of 𝑒6 is 𝜔 (𝑒6, ⟨𝑒2, 𝑒7⟩) = min(𝜎 (𝑒2, 𝑒6), 𝜎 (𝑒6, 𝑒7)) =
min(5, 7) = 5, the importance of 𝑒5 is𝜔 (𝑒5, ⟨𝑒2, 𝑒7⟩) = min(3, 4) = 3.
As a counter example, 𝑒3 has large DA value 𝜎 (𝑒2, 𝑒3) = 8 from 𝑒2
but is with low 𝜎 (𝑒3, 𝑒7) = 1 to 𝑒7, and consequently its importance
score 𝜔 (𝑒3, ⟨𝑒2, 𝑒7⟩) = min(8, 1) = 1 is low w.r.t. the SD pair.

Given an RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩ with SD pair ⟨𝑒𝑠 , 𝑒𝑑 ⟩, the road seg-
ments with higher importance scores are more likely to be the key
segment of 𝑞, since they have higher DA strengths to both 𝑒𝑠 and
𝑒𝑑 . Further, as mentioned, a route of an RPQ usually goes through
a small part of a road network 𝐺 , while the remaining part of 𝐺
is less relevant to the query. It is not necessary to investigate all
segments in 𝐺 for key segment detection. Therefore, in Definition
5.2, given an SD pair ⟨𝑒𝑠 , 𝑒𝑑 ⟩, we define its candidate key segment
pool C𝑠𝑑 to contain its top-𝑘𝑐 most important segments, and only
focus on the pool to detect key segments, where 𝑘𝑐 ≪ 𝑛.

Definition 5.2. (Candidate Key Segment Pool of an SD Pair).
Given an SD pair ⟨𝑒𝑠 , 𝑒𝑑 ⟩ and the DA indicator 𝜎 , the candidate key
segment pool C𝑠𝑑 of ⟨𝑒𝑠 , 𝑒𝑑 ⟩ contains the top-𝑘𝑐 most important
segments 𝑒𝑖 ranked by importance scores 𝜔 (𝑒𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩), where 𝑘𝑐
is the pool size.

SF PT XA BJ CD

1 10 20 30 40 50 60 70 80 90 100

0.6

0.8

1
ratio

Figure 3: The ratio of trajectories 𝑇 with candidate key seg-
ment pool C𝑠𝑑𝑇 containing at least one segment in𝑇 .𝑠𝑒𝑞, when
varying pool size 𝑘𝑐 from 1 to 100.

Then a question is how to decide the pool size 𝑘𝑐 . Too large 𝑘𝑐
will include too many less important segments into the pool C𝑠𝑑 ,
while too small 𝑘𝑐 may miss out the true key segments of RPQs. In
the following, we provide empirical evidence on how to choose 𝑘𝑐 .

Given historical trajectory data D for training, every trajectory
𝑇 corresponds to a training RPQ 𝑞𝑇 formed by 𝑇 .𝑠 , 𝑇 .𝑑 , and its
departure time 𝑇 .𝑡𝑞 . For every 𝑞𝑇 , we get its C𝑠𝑑𝑇 with size 𝑘𝑐 .
Then we calculate the ratio of trajectories 𝑇 ∈ D with at least one
segment in C𝑠𝑑𝑇 that is also in𝑇 ’s segment sequence𝑇 .𝑠𝑒𝑞. Figure 3
reports the ratio when varying 𝑘𝑐 from 1 to 100 on the five datasets
in experiments, each represented by a line. Observe that the ratio
is almost 1 when 𝑘𝑐 approaches 100 on all datasets, meaning that,
for almost every trajectory 𝑇 ∈ D, its candidate key segment pool
C𝑠𝑑𝑇 with size 100 contains at least one ground-truth segment from
𝑇 .𝑠𝑒𝑞. Therefore, we set 𝑘𝑐 to 100 (≪ 𝑛).

Another observation is that, in Figure 3, when 𝑘𝑐 = 1, the ratio
is not high on all datasets, which indicates that the top-1 most
important segment of an RPQ 𝑞𝑇 is not necessarily a true key
segment really existing in the corresponding trajectory sequence
𝑇 .𝑠𝑒𝑞. In other words, during online stage of processing RPQ 𝑞,
blindly choosing the top-1 important segment of 𝑞’s SD pair as its
key segment is not effective for route planning, which is validated in
experiments. Further, in Figure 3, observe that as 𝑘𝑐 increases from
1 to 20, the ratio increases significantly, which indicates that the
segment importance in Definition 5.1 exhibits positive correlations
to the segments actually traveled by historical trajectories.

Remark that not every segment in C𝑠𝑑𝑇 appears in the corre-
sponding trajectory 𝑇 . In Figure 1b, according to the example DA
values, when 𝑘𝑐 = 3, for an SD pair ⟨𝑒2, 𝑒7⟩, its candidate pool
contains {𝑒6, 𝑒5, 𝑒4} with importance scores 𝜔 (𝑒6, ⟨𝑒2, 𝑒7⟩) = 5 >

𝜔 (𝑒5, ⟨𝑒2, 𝑒7⟩) = 3 > 𝜔 (𝑒4, ⟨𝑒2, 𝑒7⟩) = 2. But for a trajectory𝑇2 with
SD pair ⟨𝑒2, 𝑒7⟩ in Figure 1a, it actually traveled via 𝑒6 and 𝑒4, but
not 𝑒5. To facilitate the training of KSD, we define the ground-truth
key segments of a historical trajectory 𝑇 in Definition 5.3.

Definition 5.3. (Ground-truth Key Segments of a Historical Tra-
jectory). Given a trajectory 𝑇 with 𝑇 .𝑠 , 𝑇 .𝑑 and segment sequence
𝑇 .𝑠𝑒𝑞 = ⟨𝑒1, ..., 𝑒ℓ ⟩, after getting its C𝑠𝑑𝑇 by Definition 5.2, the seg-
ments in both 𝑇 .𝑠𝑒𝑞 and C𝑠𝑑𝑇 are the ground-truth key segments
of 𝑇 . Denote K𝑇 as the ground-truth key segment set of 𝑇 .

In Figure 1, for trajectory 𝑇2 with 𝑇2 .𝑠𝑒𝑞 = ⟨𝑒2, 𝑒4, 𝑒6, 𝑒7⟩ and
candidate key segment pool C𝑠𝑑𝑇2 = {𝑒6, 𝑒5, 𝑒4}, we can get its
ground-truth key segment set K𝑇2 = {𝑒6, 𝑒4}. Since candidate pool
size is set to 100 in practice, long trajectories could have K𝑇 with
size close to 100. In this case, we truncate K𝑇 to size ⌈0.2 ·𝑇 .ℓ⌉ to
exclude low-importance ground-truth key segments, and make K𝑇
proportional to sequence length 𝑇 .ℓ .

2517

Finally, we formulate the Key Segment Detection problem below.
Key Segment Detection (KSD) Problem. KSD is a binary clas-
sification task to classify road segments to be or not to be the key
segments of RPQs.
(i) Labeled KSD data. For every training trajectory 𝑇 ∈ D with
𝑇 .𝑠 ,𝑇 .𝑑 ,𝑇 .𝑡𝑞 forming a training RPQ 𝑞𝑇 , its candidate key segment
pool C𝑠𝑑𝑇 and ground-truth key segment set K𝑇 are obtained by
Definition 5.2 and Definition 5.3. Then every candidate 𝑐 ∈ C𝑠𝑑𝑇
has class label 𝑦𝑐 = 1 if 𝑐 ∈ K𝑇 , or class label 𝑦𝑐 = 0 if 𝑐 ∉ K𝑇 .
(ii) KSD Problem Formulation. Given training trajectory dataD
with ground-truth key segment labels, the KSD problem is to train a
binary classification model, so that, for an online RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩
with candidate key segment pool C𝑠𝑑 , the model can accurately
classify the candidates in C𝑠𝑑 into class 1 or 0 w.r.t. RPQ 𝑞.

5.2 KSDModel Architecture
Then we develop the KSD model illustrated in Figure 4, containing
a query encoder, a candidate key segment encoder, and a weighted
binary cross entropy loss as the objective.

In a nutshell, given an RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩, the query encoder will
generate a query representation vector q by considering ⟨𝑒𝑠 , 𝑒𝑑 ⟩,
position ratio 𝑟𝑠 and 𝑟𝑑 , and road network via fully connected layer
(FC) and Multi-layer Perceptron (MLP). Meanwhile, based on Def-
initions 5.1 and 5.2, KSD utilizes the DA strength values 𝜎 (𝑒𝑠 , ∗)
and 𝜎 (∗, 𝑒𝑑) to obtain the candidate key segment pool C𝑠𝑑 of RPQ
𝑞. Then C𝑠𝑑 is fed into the candidate key segment encoder to out-
put a candidate representation vector c𝑖 for every 𝑐𝑖 ∈ C𝑠𝑑 , with
the consideration of candidate segment id and traffic popularity
of 𝑐𝑖 at departure time 𝑡𝑞 in RPQ via FC and MLP as well. With
representation vectors q and c𝑖 , KSD computes 𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞), the prob-
ability that 𝑐𝑖 is a key segment of RPQ 𝑞 by Eq. (2). In particular,
𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞) is the inner product of c𝑖 and q, normalized by function
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1

1+𝑒𝑥𝑝 (−𝑥) to map a value to range (0, 1).

𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (c𝑖 · q) (2)

Training Objective. During offline training stage, for a trajectory
𝑇 with candidate pool C𝑠𝑑𝑇 labeled by ground-truth key segment
setK𝑇 and training RPQ 𝑞𝑇 , KSD employs a weighted binary cross
entropy loss function to evaluate the 𝑙𝑜𝑠𝑠𝑇 of predicting the key
segment labels for every 𝑐𝑖 ∈ C𝑠𝑑𝑇 , as in Eq. (3). Note that𝑤𝑐𝑖 is the
weight of candidate 𝑐𝑖 , which is calculated based on the importance
score of 𝑐𝑖 w.r.t. the SD pair of 𝑞𝑇 , to be explained shortly.
𝑙𝑜𝑠𝑠𝑇 (Θ) =

−
∑︂

∀𝑐𝑖 ∈C𝑠𝑑𝑇

𝑤𝑐𝑖

(︁
𝑦𝑐𝑖 log𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞𝑇) +

(︁
1 − 𝑦𝑐𝑖

)︁
log

(︁
1 − 𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞𝑇)

)︁)︁
,

(3)
where Θ represents the model parameters in KSD,𝑤𝑐𝑖 is the weight
of candidate 𝑐𝑖 , and 𝑦𝑐𝑖 is the class label of 𝑐𝑖 in {0, 1}.

Then the total loss of KSD is the averaged 𝑙𝑜𝑠𝑠𝑇 of all 𝑇 in D,

𝑙𝑜𝑠𝑠 (Θ) = 1
|D |

∑︂
∀𝑇 ∈D

𝑙𝑜𝑠𝑠𝑇 (Θ) . (4)

Recall that every candidate 𝑐𝑖 in C𝑠𝑑𝑇 has segment importance
score 𝜔 (𝑐𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩) (Definition 5.1), which should be considered
in the loss function above. Specifically, for every candidate 𝑐𝑖 , we
assign a weight 𝑤𝑐𝑖 computed by Eq. (5). If 𝑐𝑖 has class label 1

Candidate
set 𝒞!"

𝑠

𝑑

Road
Network

Network
Embedding

initialize

Historical
Trajectories

𝒟

RPQ 𝑞

initialize

𝐞#! 𝐏[𝑐! , �̂�"]

𝐳#"𝐳##
𝐳#$%

𝐞!

𝑟!
𝐞"

𝑟"

𝐜$
𝐜%
𝐜𝒌𝒄

𝐪

𝑡'

𝐖#
𝐛#

𝐖$
𝐛$

𝑒!

𝑒"

𝐖%
𝐖&
𝐛&

𝐖'
𝐛'

𝐳'

Query Encoder

Candidate Key Segment Encoder

𝐖(

𝐖𝒞

Labeled ∀	𝑇 ∈ 𝒟

𝑙𝑜𝑠𝑠*(Θ)

𝑃+,- 𝑐! 𝑞

𝑙𝑜𝑠𝑠(Θ)

Objective

DA Indicator 𝜎
𝜎(𝑒!,∗)
𝜎(∗, 𝑒")

Figure 4: Key Segment Detection Model: KSD

(i.e., ground-truth key segment),𝑤𝑐𝑖 is obtained by exponentially
scaling the normalized 𝜔 (𝑐𝑖 , ⟨𝑒𝑠 , 𝑒𝑑 ⟩), and obviously𝑤𝑐𝑖 > 1. If 𝑐𝑖
has class label 0,𝑤𝑐𝑖 is set to 1, regardless of its importance score.

𝑤𝑐𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑒𝑥𝑝

(︃
𝜔 (𝑐𝑖 ,⟨𝑒𝑠 ,𝑒𝑑 ⟩)∑︁

∀𝑐 𝑗 ∈C𝑠𝑑𝑇
𝑦𝑐 𝑗 ·𝜔 (𝑐 𝑗 ,⟨𝑒𝑠 ,𝑒𝑑 ⟩)

)︃
, 𝑦𝑐𝑖 = 1

1, 𝑦𝑐𝑖 = 0
(5)

Query Encoder. Given an RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩, we encode it into a
query representation q by considering ⟨𝑒𝑠 , 𝑒𝑑 ⟩, position ratios 𝑟𝑠
and 𝑟𝑑 , and road network 𝐺 . Note that departure time 𝑡𝑞 is consid-
ered in the candidate key segment encoder that is explained later.
For segments 𝑒𝑠 and 𝑒𝑑 , a simple way is to encode their segment
ids by 𝑛-dimensional one-hot vectors 1𝑠 and 1𝑑 ∈ {0, 1}𝑛 , in which
all elements are 0, except 1 at the 𝑒𝑠 -th and 𝑒𝑑 -th dimension respec-
tively. However, such one-hot vector ignores all other information
of a segment, e.g., its representation in a road network. Intuitively,
a segment 𝑒𝑖 influences all its out-going adjacent segments 𝑁𝑜 (𝑒𝑖).
The representations of nearby segments should be similar, while
that of faraway segments should be less similar. There are clas-
sic network embedding techniques to get node representations in
graphs, e.g., [14, 28]. We simply adopt Node2Vec [14] as a basic
preprocessing step. Node2vec maximizes the likelihood of preserv-
ing a node’s topological neighborhood via biased random walks
with a return likelihood parameter and an in-out parameter control-
ling depth-first and breath-first explorations respectively. We first
convert road network 𝐺 into its conjugate form where segments
𝑒𝑖 are nodes, and an edge exists from 𝑒𝑖 to 𝑒 𝑗 if 𝑒 𝑗 ∈ 𝑁𝑜 (𝑒𝑖) in 𝐺

[42]. Then Node2vec is applied on the conjugate network to learn
segment embeddings W𝐺 ∈ R𝑛×𝑑0 (𝑑0 ≪ 𝑛) of all segments in 𝐺 .

Rather than directly using the corresponding rows in W𝐺 as
the representations of 𝑒𝑠 and 𝑒𝑑 , in the query encoder in Figure 4,
we use W𝐺 to initialize the learnable parameters W𝑠 and W𝑑 of
two one-layer FCs, which are trained to output the representations
e𝑠 and e𝑑 . Intuitively, a segment should have different semantics
when serving as source or destination, and thus, we have separate
FCs for source and destination. Specifically, the FC of 𝑒𝑠 (resp. 𝑒𝑑)
takes as input the one-hot encoding 1𝑠 (resp. 1𝑑), and outputs the
representation e𝑠 (resp. e𝑑) after trained in the KSD architecture in
Figure 4. Eq. (6) shows the formula of the FCs.

e𝑠 = 1⊤𝑠 W𝑠 ; e𝑑 = 1⊤
𝑑

W𝑑 , (6)

where W𝑠 ,W𝑑 ∈ R𝑛×𝑑0 are the learnable parameters.
Then we generate the intermediate representation of RPQ 𝑞,

z𝑞 = 𝑐𝑜𝑛𝑐𝑎𝑡 (e𝑠 , 𝑟𝑠 , e𝑑 , 𝑟𝑑) by further concatenating position ratios

2518

𝑟𝑠 of 𝑠 on 𝑒𝑠 and 𝑟𝑑 of 𝑑 on 𝑒𝑑 . z𝑞 ∈ R2𝑑0+2 is then fed into a
two-layer MLP to generate the final query representation q ∈ R𝑑2
shown in Eq. (7). Briefly, MLP is a fully connected feed-forward
neural network and it often combines with nonlinear activation
function (e.g., 𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥)) to bring non-linearity into the
model, to alleviate the vanishing gradient problem [13].

q = W2𝑅𝑒𝐿𝑈 (W1z𝑞 + b1) + b2, (7)

where W1 ∈ R𝑑1×(2𝑑0+2) and b1 ∈ R𝑑1 are the parameters of
the first layer in MLP, and W2 ∈ R𝑑2×𝑑1 and b2 ∈ R𝑑2 are the
parameters of the second layer, and the output is q ∈ R𝑑2 .
Candidate Key Segment Encoder. Then we develop the encoder
that generates a representation c𝑖 for every 𝑐𝑖 ∈ C𝑠𝑑 as shown in
Figure 4. This encoder contains a one-layer FC and a two-layer MLP.
In particular, for every 𝑐𝑖 ∈ C𝑠𝑑 , the FC transforms its one-hot id
vector 1𝑐𝑖 to a dense representation e𝑐𝑖 via learnable weights WC ,

e𝑐𝑖 = 1𝑐𝑖 WC, (8)

where WC ∈ R𝑛×𝑑3 contains the learnable parameters.
As shown in Figure 4, then for every 𝑐𝑖 ∈ C𝑠𝑑 , we get its z𝑐𝑖

by concatenating the traffic popularity of 𝑐𝑖 at the departure time
𝑡𝑞 in RPQ 𝑞 with e𝑐𝑖 , so that the traffic popularity of a candidate
key segment at the departure time is also considered. Specifically,
after getting the time slot 𝑡𝑞 of 𝑡𝑞 by Eq. (1), we get P[𝑐𝑖 , 𝑡𝑞] of all
𝑐𝑖 ∈ C𝑠𝑑 , apply min-max normalization to convert the values to
into range [0, 1], and then concatenate to get z𝑐𝑖 . All z𝑐𝑖 of 𝑐𝑖 ∈ C𝑠𝑑
are then fed into a two-layer MLP (Eq.(9)) to get the final candidate
representation c𝑖 ∈ R𝑑2 , with the same dimension as the query
encoding q in Eq. (7).

c𝑖 = W4𝑅𝑒𝐿𝑈 (W3z𝑐𝑖 + b3) + b4, (9)

where W3 ∈ R𝑑4×(𝑑3+1) , b3 ∈ R𝑑4 , W4 ∈ R𝑑2×𝑑4 , and b4 ∈ R𝑑2 are
the parameters of the MLP.

Finally, we obtain the query representation q and the candidate
key segment representations c𝑖 ,∀𝑐𝑖 ∈ C𝑠𝑑 in Figure 4. As explained,
we then calculate the key segment probability 𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞) by Eq.
(2), get 𝑙𝑜𝑠𝑠𝑇 by Eq. (3) and subsequently total loss in Eq. (4) over
historical trajectories D, in order to train the whole KSD model, as
elaborated in the following section.

5.3 KSD Offline Training and Online Inference
Model Training. We adopt mini-bath training in epochs and em-
ploy Adam Optimizer [20] to train the parameters Θ of KSD (i.e.,
Eq. (6), (7), (8), and (9)) over the loss functions in Eq. (3) and (4). Al-
gorithm 4 presents the training process of KSD. The input includes
a historical trajectory dataset D for training, the corresponding
DA indicator 𝜎 , learning rate 𝑙𝑟 , number of training epochs 𝐼 , and
batch size 𝑏𝑠 . In a nutshell, from Lines 1 to 8, we generate training
samplesU, i.e., labeled KSD data (Section 5.1); then from Lines 9 to
19, we train KSD overU with the loss function and the encoders
of KSD (Section 5.2). Specifically, for each trajectory 𝑇 (Line 2),
we regard its 𝑇 .𝑠 , 𝑇 .𝑑 , 𝑇 .𝑡𝑞 as a training RPQ 𝑞𝑇 (Line 3), get its
candidate key segment pool C𝑠𝑑𝑇 with class labels labeled by its
ground-truth key segmentsK𝑇 (Lines 4-6), and compute the weight
𝑤𝑐𝑖 of candidate 𝑐𝑖 (Line 7). The training sample generated by 𝑇 is
inserted intoU at Line 8. Then, after initializing all parameters at
Line 9, we train KSD with at most 𝐼 epochs (Line 10) until training

Algorithm 4: KSD Training Algorithm
Input: Training trajectory data D and its DA indicator 𝜎 , learning

rate 𝑙𝑟 , training epochs 𝐼 , batch size 𝑏𝑠
Output: KSD model

1 Training samples U ← ∅;
2 foreach𝑇 ∈ D do
3 Training RPQ 𝑞𝑇 ← ⟨𝑇 .𝑠,𝑇 .𝑑,𝑇 .𝑡𝑞 ⟩;
4 Get candidate key segment pool C𝑠𝑑𝑇 of 𝑞𝑇 by Definition 5.2;
5 Get ground-truth key segments K𝑇 by Definition 5.3;
6 ∀𝑐𝑖 ∈ C𝑠𝑑𝑇 , if 𝑐𝑖 ∈ K𝑇 , 𝑦𝑐𝑖 ← 1; else 𝑦𝑐𝑖 ← 0;
7 ∀𝑐𝑖 ∈ C𝑠𝑑𝑇 , get 𝑤𝑐𝑖 by Eq. (5);
8 Insert training sample

(︁
𝑞𝑇 , C𝑠𝑑𝑇 ,K𝑇

)︁
into U;

9 Initialize parameters in Eq. (6), (7), (8), and (9);
10 for 𝑖 ← 1, 2, ..., 𝐼 do
11 Shuffle and split U into batches B;
12 foreach batch in B do
13 foreach training sample

(︁
𝑞𝑇 , C𝑠𝑑𝑇 ,K𝑇

)︁
in batch do

14 Forward model execution to get 𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞𝑇) of all
candidate 𝑐𝑖 ∈ C𝑠𝑑𝑇 ;

15 Get 𝑙𝑜𝑠𝑠𝑇 by Eq. (3);

16 Get 𝑙𝑜𝑠𝑠 of the batch by Eq. (4);
17 Δ\ ← 𝐴𝑑𝑎𝑚𝑂𝑝𝑡 (Θ, 𝑙𝑜𝑠𝑠, 𝑙𝑟) ;
18 Update model parameters Θ with Δ\ ;

19 return KSD model with Θ;

Table 2: Dataset Statistics
San Francisco

City (SF)
Porto District

(PT)
Xi’an
(XA)

Beijing
(BJ)

Chengdu
(CD)

of trajectories 314,507 1,258,165 2,419,072 3,100,845 3,887,769
Avg # of segments 34.15 49.44 24.59 18.57 22.31
Avg length (m) 3,659.98 6,185.39 4,752.08 4,033.85 4,299.19

Avg travel time (𝑠) 563.53 718.07 834.14 486.60 648.32

Time interval 2008/5/17-
2008/6/10

2013/7/1-
2014/6/30

2016/10/1-
2016/10/31

2009/3/2-
2009/3/25

2016/10/1-
2016/10/31

of segments 26,659 185,074 59,927 311,769 107,655
of intersections 9,581 78,054 26,979 125,558 46,008

loss convergence. In every epoch, we randomly shuffle and split
U into batches (Line 11). In every batch, we handle every training
sample

(︁
𝑞𝑇 , C𝑠𝑑𝑇 ,K𝑇

)︁
by forward model execution to get predicted

key segment probabilities (Lines 12-14) and get 𝑙𝑜𝑠𝑠𝑇 by Eq. (3) at
Line 15. The total loss of the batch is obtained by Eq. (4) at Line
16. Then the model parameters are updated via Adam Optimizer at
Lines 17-18. After training, Algorithm 4 returns the trained KSD
model with optimized parameters Θ at Line 19.
Online Inference. In the online stage, given an RPQ 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩,
KSD first gets its C𝑠𝑑 using the DA indicator 𝜎 , and then conducts
forward execution as shown in Figure 4 to get the predicted key
segment probability 𝑃𝑘𝑒𝑦 (𝑐𝑖 |𝑞) of every candidate 𝑐𝑖 ∈ C𝑠𝑑 . Note
that KSD only outputs the key segment probabilities of the candi-
date segments in C𝑠𝑑 . This online inference of KSD is invoked at
Line 1 of Algorithm 1 (DRPK) in Section 3.

6 EXPERIMENTS
All experiments are conducted on a Linux machine powered by
Intel Xeon® Gold 6226R 2.90GHz CPU and NVIDIA GTX 3090 GPU

2519

Table 3: Overall Effectiveness Evaluation: Precision, Recall, F1, Jaccard Scores. (Best is in bold, runner up is underlined.)
Precision Recall

Data Short Fast CSSRNN DeepMove NASR NMLR DRPK Short Fast CSSRNN DeepMove NASR NMLR DRPK
SF 0.515 0.589 0.408 0.472 0.532 0.600 0.658 0.491 0.574 0.542 0.543 0.471 0.596 0.650
PT 0.601 0.716 0.736 0.649 0.738 0.763 0.791 0.539 0.671 0.740 0.666 0.632 0.738 0.757
XA 0.693 0.784 0.834 0.741 0.766 0.835 0.846 0.667 0.763 0.824 0.772 0.744 0.822 0.831
BJ 0.791 0.817 0.786 0.450 0.734 0.842 0.865 0.749 0.779 0.803 0.588 0.674 0.823 0.839
CD 0.733 0.810 0.865 0.764 0.798 0.866 0.876 0.700 0.783 0.850 0.794 0.773 0.848 0.856

F1-score Jaccard
Data Short Fast CSSRNN DeepMove NASR NMLR DRPK Short Fast CSSRNN DeepMove NASR NMLR DRPK
SF 0.500 0.578 0.430 0.486 0.476 0.593 0.650 0.410 0.486 0.362 0.408 0.397 0.509 0.567
PT 0.559 0.683 0.727 0.644 0.643 0.741 0.765 0.469 0.608 0.668 0.577 0.579 0.681 0.707
XA 0.678 0.772 0.827 0.748 0.752 0.827 0.836 0.591 0.702 0.776 0.681 0.684 0.774 0.785
BJ 0.764 0.792 0.780 0.465 0.676 0.825 0.846 0.698 0.728 0.733 0.424 0.612 0.775 0.798
CD 0.714 0.794 0.855 0.769 0.782 0.855 0.864 0.634 0.731 0.809 0.708 0.721 0.808 0.818

with 24GB video memory. Our methods are implemented in Python
3.8 with PyTorch 1.13 and C++. Source codes of all competitors are
obtained from the respective authors in Python.

6.1 Experimental Setup
Datasets. Table 2 lists the statistics of the 5 real-world trajectory
data on San Francisco City (SF) [29], Porto District (PT) [3], Beijing
(BJ) [31], Xi’an (XA) and Chengdu (CD) [1]. Map-matching method
in [41] is used. SF, PT, and BJ contain taxi trajectories; XA and
CD contain trajectories by DiDi ride-sharing. There are millions of
trajectories in 4 out of 5 datasets. Table 2 also provides the average
number of segments, length, travel time of trajectories, and the
number of segments and intersections.
Training, Validation and Test Data. We randomly split a trajec-
tory dataset into training, validation, testing with ratio in 60%, 20%,
and 20%. Training data is used to train models. Validation data is
used to select model parameters. Test data serves as ground truth
in the online stage to evaluate the predicted routes of testing RPQs.
Competitors. Following latest studies [17, 34], we compare with
6 competitors, including NMLR [17], CSSRNN [37], NASR [34],
DeepMove [11], Short to get the shortest path, and Fast to get the
fastest path of an RPQ. The codes of [12, 15] are unavailable. Studies
[7, 24, 25] are subsumed by the competitors [17, 34].
Parameter Settings. In KSD model, we set candidate key segment
pool size 𝑘𝑐 = 100 as analyzed in Section 5.1. We set dimension
𝑑0 = 64 in Eq. (6), 𝑑2 = 256 in Eq. (7) and Eq. (9), and 𝑑3 = 64 in Eq.
(8). As for the hidden dimension of MLP, we set 𝑑1 = 2048 in Eq. (7)
and 𝑑4 = 512 in Eq. (9). In KSD, the learning rate (𝑙𝑟) is 1e-3 and the
batch size is 8,192. The number of time slots𝑛𝑡 is 48. The max length
parameter 𝐿 = 300 [17] and the number of training epochs 300 are
applied to all methods. For competitors, we follow their suggested
settings in their papers to tune optimal parameters and train all
competitors until convergence. NMLR adopts Lipschitz embedding,
2-layer GCN, and 3-layer MLP with hidden dimension 256, and is
trained using Adam [20] with 𝑙𝑟 1e-3. CSSRNN uses LSTM with
512 hidden dimension and dropout rate 0.1, and is trained using
RMSProp [32] with 𝑙𝑟 1e-4 and decay rate 0.9. DeepMove inputs
location and time embedding into GRU with 256 hidden size, and is
trained by Adam with 𝑙𝑟 1e-3, and L2 penalty with 1e-5 is applied
as suggested. NASR feeds location and time embedding into LSTM

with 256 hidden size, and the number of multi-head self attention
layers is 3 with 6 heads, and it is trained using Adam with 𝑙𝑟 1e-4.
Evaluation Metrics. (i) Effectiveness metrics. Given an RPQ 𝑞, let
R and R∗ be the predicted route by a method and the ground-truth
route, respectively. We use 5 popular metrics, Precision (pre), Recall
(rec), F1-score (F1), Jaccard (jac), and reachability, with formula
shown below, all of which are the higher the better [17, 34]. Seg-
ment length 𝑙 (𝑒) is used as weights. In particular, given an RPQ,
recall (rec) evaluates the proportion of overlapping length of the
predicted routeR over the ground truthR∗. Reachability is the ratio
of testing RPQs with predicted routes arriving at their destinations.
The metrics below are averaged on all testing RPQs.

𝑝𝑟𝑒 (R∗, R) =
∑︁

𝑒∈ (R∩R∗) 𝑙 (𝑒)∑︁
𝑒∈R 𝑙 (𝑒)

𝑟𝑒𝑐 (R∗, R) =
∑︁

𝑒∈ (R∩R∗) 𝑙 (𝑒)∑︁
𝑒∈R∗ 𝑙 (𝑒)

𝐹1(R∗, R) = 2𝑝𝑟𝑒 (R∗, R)𝑟𝑒𝑐 (R∗, R)
𝑝𝑟𝑒 (R∗, R) + 𝑟𝑒𝑐 (R∗, R) 𝑗𝑎𝑐 (R∗, R) =

∑︁
𝑒∈ (R∩R∗) 𝑙 (𝑒)∑︁
𝑒∈ (R∪R∗) 𝑙 (𝑒)

(ii) Efficiency metrics. We evaluate each method by the number of
online RPQs processed per second (QPS for short), total training
time, and training time per epoch.

6.2 Effectiveness Evaluation
Overall Effectiveness. Table 3 reports the precision, recall, F1, and
Jaccard scores of all methods on all datasets. An overall observation
is that our method DRPK consistently achieves the highest perfor-
mance on all datasets under all evaluation metrics, outperforming
existing methods often by a substantial margin. For instance, on SF
dataset, DRPK achieves precision 0.658, while the precision of the
best competitor NMLR is 0.600, indicating 5.8% absolute improve-
ment, which is significant in terms of effectiveness. The recall of
DRPK on SF is 0.650, improving 5.4% over NMLR with recall 0.596.
On a large dataset BJ, DRPK has the highest Jaccard score, 0.798,
2.3% higher than the best Jaccard 0.775 from NMLR. The evaluation
scores of almost all methods on XA and CD are relatively high.
Nevertheless, DRPK still outperforms existing methods on XA and
CD. The results in Table 3 demonstrate the effectiveness of DRPK
powered by the DA indicator 𝜎 , DRP procedure, and KSD model.
Besides, the recall of Short on SF is 0.491, meaning that on average
the overlapping length of the shortest paths over the correspond-
ing real trajectories is only 49.1%, which demonstrates that real
trajectories do not always follow shortest paths.

2520

DRPK Short Fast CSSRNN DeepMove NASR NMLR

short medium long
0.4

0.5

0.6

0.7
F1-score

(a) SF
short medium long

0.6
0.65
0.7
0.75
0.8

F1-score

(b) PT
short medium long

0.7

0.8

0.9
F1-score

(c) XA
short medium long

0.6

0.7

0.8

0.9
F1-score

(d) BJ
short medium long

0.7

0.8

0.9

F1-score

(e) CD

Figure 5: F1-score on short, medium, and long RPQs (low F1 data points are truncated for clarity)

Table 4: Average SD Distance of Testing RPQs in meters
SF PT XA BJ CD

All 2534.78 3539.12 2987.01 2358.83 2696.22
NC-RPQs 2656.16 3795.06 3354.10 2802.87 3234.85
C-RPQs 2019.03 3372.10 2892.37 1825.37 2591.17

Table 5: F1 on hard NC-RPQs with Not Covered SD Pairs
Data Short Fast CSSRNN DeepMove NASR NMLR DRPK
SF 0.477 0.561 0.390 0.453 0.462 0.571 0.624
PT 0.509 0.629 0.621 0.522 0.549 0.671 0.692
XA 0.558 0.666 0.721 0.620 0.630 0.727 0.747
BJ 0.678 0.716 0.664 0.307 0.579 0.745 0.776
CD 0.565 0.637 0.718 0.583 0.643 0.727 0.747

Table 6: F1 on C-RPQs with Covered SD Pairs
Data Short Fast CSSRNN DeepMove NASR NMLR DRPK
SF 0.609 0.662 0.627 0.650 0.544 0.704 0.777
PT 0.596 0.723 0.804 0.734 0.714 0.793 0.819
XA 0.708 0.798 0.854 0.780 0.782 0.852 0.859
BJ 0.867 0.883 0.920 0.656 0.794 0.921 0.930
CD 0.744 0.826 0.883 0.807 0.810 0.881 0.888

Impact of SD Distance. We then categorize testing RPQs into
three groups based on their SD Euclidean distance: short (less than
2km), medium (2km to 4km) and long (more than 4km). Figure
5 displays the F1-scores of these groups (low F1 data points are
truncated for clarity). The first important observation is that all
methods have better performance on RPQs with shorter distances,
which validates the rationale in DRPK to break an RPQ into shorter
RPQs and motivates the design of KSD. In Figure 5, DRPK consis-
tently outperforms competitors for short, medium and long RPQs,
validating the effectiveness of DRPK regardless of SD distance.
Hard RPQs with Not Covered SD Pairs. In real world, future
RPQs may have their source and destination segments covered or
not covered by training data. Similar to [17], given all testing RPQs
𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩ with SD pairs ⟨𝑒𝑠 , 𝑒𝑑 ⟩, we separate into two categories:
NC-RPQs with ⟨𝑒𝑠 , 𝑒𝑑 ⟩ not covered by the SD pairs of any training
RPQs and C-RPQs with ⟨𝑒𝑠 , 𝑒𝑑 ⟩ covered. Intuitively, NC-RPQs are
hard to handle. Table 4 reports the average SD Euclidean distance
of all testing RPQs, testing NC-RPQs, and C-RPQs, respectively.
Observe that NC-RPQs are usually with longer distances, making
them even harder to be accurately predicted as shown in Figure
5. Table 5 reports the F1 scores of all methods on hard NC-RPQs.
First, the performance gap between DRPK and the competitors
on the hard NC-RPQs maintains, or enlarges especially on XA, BJ,
and CD. For instance, in Table 5, on XA, DRPK has F1 0.747, 2%
higher than NMLR with 0.727, while the overall F1 of DRPK and
NMLR in Table 3 are 0.836 and 0.827. Table 5 illustrates the power
of DRPK to handle RPQs with unseen SD pairs. Second, NC-RPQs

Table 7: Reachability (%)
Data CSSRNN DeepMove NASR NMLR DRPK
SF 64.00 73.76 57.90 92.72 99.85
PT 94.91 81.40 72.67 98.37 99.65
XA 99.66 98.62 89.19 99.87 100.0
BJ 92.85 48.07 79.16 98.84 99.95
CD 99.72 97.70 86.84 99.88 100.0

Table 8: Online QPS (# of RPQs processed per second)
Shortest Path Processing Learning-based Route Planning

Data Short ShortBCH Fast FastBCH CSSRNN DeepMove NASR NMLR DRPK
SF 916.6 8787.7 776.2 15236.1 23.8 11.7 2.08 1750.6 3569.9
PT 296.6 19207.5 191.1 30809.1 97.2 16.9 2.56 1266.9 2768.6
XA 2033.4 22541.1 1748.3 32886.8 198.3 20.6 9.92 3433.1 6070.2
BJ 1371.9 22737.3 1498.2 59725.7 104.7 3.44 2.24 2266.5 4085.1
CD 1773.5 15590.9 1906.6 24408.1 304.8 18.5 11.4 3622.2 5618.8

are usually with longer distance (Table 4), so the F1 of Short and
Fast on NC-RPQs also drop in Table 5, compared with Table 3. We
report the F1 on C-RPQs in Table 6, where DRPK is the best.
Reachability. As showed in [17], some methods have a significant
portion of predicted routes failing to reach destinations. We also
evaluate the reachability of predicted routes in Table 7. DRPK al-
ways has the highest close-to-1 reachability on all datasets, due to
the destination-driven procedure and the adoption of key segments
as hubs, while existing methods suffer from low reachability. For
instance, NMLR has reachability 92.72% on SF, probably due to
insufficient historical trajectories to train its model. CSSRNN also
has low reachability on SF, PT, and BJ. The reachability of Short
and Fast is always 1, but they have inferior effectiveness in Table 3.

6.3 Efficiency Evaluation
Online QPS.During online phase, we evaluate the number of RPQs
processed per second (QPS). In Table 8, there are 2 classes of meth-
ods: learning-based methods and shortest path processing methods
that include Short and Fast adopt vanilla Dijkstra and ShortBCH and
FastBCH adopt well-established Bidirectional Dijkstra with Contrac-
tion Hierarchies [10]. Observe that, compared with learning-based
competitors, DRPK has higher QPS. Meanwhile, ShortBCH and
FastBCH with dedicated shortest path techniques have unrivaled
efficiency. Considering the effectiveness results reported ahead, we
conclude that DRPK consistently achieves highest route planning
accuracy, and is more efficient than learning-based competitors.
Offline Training Efficiency. Table 9 reports the total training
time in hours. DRPK is much faster to train than the competitors,
by up to orders of magnitude. For instance, on PT, DRPK takes
0.65 hour to train, 10.7× faster than NMLR that requires 7.59 hours,
while the other competitors cost more than 24 hours. We then break

2521

DRPK CSSRNN NMLR Short Fast

1 3 5 10 20 40 60 80 100

0.2

0.4

0.6

F1-score

(a) SF
1 3 5 10 20 40 60 80 100

0.2

0.4

0.6

0.8
F1-score

(b) PT
1 3 5 10 20 40 60 80 100

0.4

0.6

0.8

F1-score

(c) XA
1 3 5 10 20 40 60 80 100

0.2

0.4

0.6

0.8

F1-score

(d) BJ
1 3 5 10 20 40 60 80 100

0.5
0.6
0.7
0.8
0.9

F1-score

(e) CD

Figure 6: F1-score When Varying Training Data Size from 1% to 100%

Table 9: Offline Training Time (hours)
Data CSSRNN DeepMove NASR NMLR DRPK
SF 5.03 2.29 6.34 3.25 0.16
PT 33.43 26.39 81.05 7.59 0.65
XA 9.29 20.42 20.59 4.62 1.08
BJ 54.34 99.55 97.06 8.74 1.34
CD 13.79 48.55 31.29 6.64 2.17

Table 10: DRPK Training Time Breakdown (seconds)
Component SF PT XA BJ CD
DA indicator 𝜎 9.18 106.5 32.8 45.5 63.3
Traffic Popularity 0.36 1.99 1.94 2.45 2.73
KSD Training 562.7 2324.5 3892.9 4833.8 7814.6

Table 11: Training Time per Epoch (seconds)
Data CSSRNN DeepMove NASR NMLR DRPK
SF 60.35 161.53 292.75 233.62 4.47
PT 401.17 1895.09 4732.52 546.39 14.33
XA 278.78 1497.62 1681.08 332.53 28.94
BJ 652.14 7057.28 5797.68 628.89 32.89
CD 413.98 3760.87 1878.92 478.31 71.31

down the training time of DRPK in Table 10, including the time of
constructing DA indicator 𝜎 at Lines 1-5 of Algorithm 2 (Section
4.1), traffic popularity at Lines 6-10 of Algorithm 2 (Section 4.2), and
KSD training time (Algorithm 4). First, the build of DA indicator
𝜎 and traffic popularity is highly efficient. For example, on CD
with millions of trajectories, DA indicator construction only takes
63.3 seconds, and traffic popularity is built in 2.73 seconds. The
build of 𝜎 on PT takes 106.5 seconds since the average number of
segments per trajectory in PT is 49.44 (Table 2), but it is still fast.
Second, training KSD is the main overhead in DRPK. Nevertheless,
as reported in Table 9, DRPK needs shortest total training time. We
further evaluate the training time per epoch of KSD in DRPK and
the baselines in Table 11, where our method costs tens of seconds
per epoch, while the competitors require hundreds/thousands of
seconds per epoch. For instance, on BJ, on average DRPK requires
32.89𝑠 to train an epoch in KSD, while competitor NMLR needs
628.89𝑠 . The reason is that KSD only involves elementary learning
components (FC and MLP) that are fast to train in Section 5.2.

6.4 Model Analysis
Ablation Study.We ablate the techniques in DRPK with F1 results
in Table 12. The F1 of DRPK is at the first row. In the second
row, DRPK-Top1 is DRPK without KSD but with blind choice of
top-1 candidate in C𝑠𝑑 as the key segment 𝑒𝑘𝑒𝑦 (Section 5.1). DRPK-
Top1 has lower F1 than DRPK, proving that KSD (Section 5.2) is
effective to detect high-quality key segments, and improves the
performance of DRPK. The F1 of sub-procedure DRP is in the

Table 12: F1-score of Ablation Study
Variant SF PT XA BJ CD
DRPK 0.650 0.765 0.836 0.846 0.864
DRPK-Top1 0.624 0.705 0.789 0.837 0.826
DRP 0.634 0.737 0.827 0.840 0.855
DRP-TP 0.607 0.730 0.826 0.834 0.853

Table 13: Recency Evaluation on PT
Short Fast CSSRNN DeepMove NASR NMLR DRPK

Precision 0.597 0.711 0.689 0.612 0.729 0.756 0.781
Recall 0.536 0.667 0.711 0.636 0.620 0.732 0.750
F1 0.556 0.679 0.685 0.609 0.631 0.735 0.757
Jaccard 0.467 0.604 0.624 0.540 0.566 0.673 0.697

third row. First, DRP achieves comparable F1 compared with the
best baseline NMLR in Table 3. Compared with NMLR, DRP has
lower F1 on PT, same F1 on XA and CD, and higher F1 on SF and
BJ. This validates the effectiveness of the DA indicator in Section
4.1 to preserve the associations between segments from historical
trajectories. Further, DRPK is better than DRP on all datasets (e.g.,
0.765 v.s. 0.737 on PT) in Table 12, showing the importance of KSD
to assist DRPK for the best performance in Table 3. In the last row
of Table 12, DRP-TP is DRP without the traffic popularity P in
Section 4.2, which has lower F1 than DRP, indicating that the traffic
popularity at the departure time 𝑡𝑞 in 𝑞 = ⟨𝑠, 𝑑, 𝑡𝑞⟩ is also helpful.
Robustness v.s. Amount of Training Data. We evaluate the
robustness of DRPK when varying the amount of training data
to be 1%, 3%, 5%, 10% 20%, 40%, 60%, 80% and 100% of the total
training data, and report F1 scores in Figure 6, in which the two
strong competitors CSSRNN and NMLR, as well as Short and Fast,
are also included for comparison. Observe that, as the amount of
training data reduces, all learning-based models have degraded F1
scores, but the performance gap of DRPK overNMLR and CSSRNN
maintains or enlarges from 100% to 1%. Under most settings, DRPK
is also better than Short and Fast. DRPK requires about minimum
of 5%, 3%, 3%, 5%, 3% (resp. 15%, 5%, 3%, 10%, 3%) of training data on
SF, PT, XA, BJ, and CD respectively, to be better than Short (resp.
Fast), which is interesting to help decide when to switch between
DRPK and shortest/fastest paths.
Recency Evaluation. We split all trajectories in PT based on the
chronological order into training, validation, and testing with ratio
6:2:2 to test the effect of recency, with results in Table 13. DRPK
achieves higher performance than existing methods on all metrics.
Compared with the results on PT in Table 3, all methods have
slightly lower scores under the recency setting. We further split
the training data above into 4 splits by chronological order, use the
𝑖-th split to train DRPK-𝑖 , and use the same testing data above to
evaluate the performance in Table 14. A slight performance increase
is observed from DRPK-1 to DRPK-4 that is more recent to testing.

2522

Table 14: 4-Split Recency on PT
DRPK-1 DRPK-2 DRPK-3 DRPK-4

Precision 0.741 0.742 0.746 0.748
Recall 0.720 0.721 0.724 0.726
F1 0.721 0.722 0.726 0.727
Jaccard 0.658 0.659 0.664 0.666

Table 15: Train on BJ data and test on T-Drive data
Short Fast CSSRNN DeepMove NASR NMLR DRPK

Precision 0.740 0.806 0.757 0.421 0.688 0.820 0.841
Recall 0.605 0.783 0.785 0.552 0.658 0.802 0.828
F1 0.666 0.789 0.754 0.430 0.651 0.802 0.828
Jaccard 0.499 0.736 0.712 0.395 0.595 0.756 0.783

Generalization to Unseen Data. In addition to the experiments
on NC-RPQs (Table 5) and recency evaluation (Tables 13, 14), we
develop another experiment on generalization. Specifically, the BJ
data is from [31]. We find another trajectory dataset T-Drive on
the same city, but from a different data source [43], which can be
regarded as unseen data. For all learning-based methods, we use
their models trained on BJ data to test on T-Drive with 208,951
testing RPQs, with results in Table 15, where DRPK still achieves
the highest accuracy under all metrics.

6.5 Extension to Multiple Key Segments
In Algorithm 1, DRPK uses KSD only once to break an RPQ 𝑞 to
RPQs 𝑞1 and 𝑞2. A natural question is: what about applying KSD
multiple times to split 𝑞 to multiple RPQs? Here we extend DRPK
with multiple key segments and evaluate the performance.

Let a parameter ^ specify the number of key segments to be used.
For an RPQ 𝑞, let Q be the list of RPQs split from 𝑞 by key segments.
Initially, Q = {𝑞}. In every iteration of a while loop, among all RPQs
in Q, DRPK pops from Q the RPQ 𝑞′ with the largest SD Euclidean
distance, applies KSD to detect a key segment of 𝑞′, and splits 𝑞′
into two RPQs 𝑞′1 and 𝑞′2 that are then inserted into Q. In every
iteration, KSD is applied once and the size of Q increases by 1. The
while loop terminates when |Q| = ^ + 1. Lastly, DRPK applies the
DRP procedure to get the routes of all RPQs in Q and concatenate
these routes together as the final route of the input RPQ 𝑞.

We vary ^ in {0, 1, 2, 3, 4}. Figure 7a reports the F1 scores and
Figure 7b displays the QPS. In Figure 7a, F1 scores increase when
^ is from 0 to 2, and then drop as ^ = 3, 4. The reasons are as
follows. In real world, a route may not necessarily contain a lot of
key segments as hubs, especially for short routes. If a segment is
wrongly predicted as a key segment, this could bring divergence to
the route planning process, and the excessive usage of key segments
(e.g., ^ ≥ 3) will accumulate this impact, offsetting the benefit
brought by key segments. In Figure 7b, the QPS decreases as KSD is
invoked more times. Thus, we set ^ = 1 in DRPK as default to strike
the balance between route quality and online efficiency. It is also
an option to set ^ = 2, especially on SF and PT, if the application is
insensitive to QPS but requires high F1 scores.

7 RELATEDWORK
We review other related work here, except [11, 17, 34, 37] reviewed
in Section 2.2. There are studies formulating route planning as path
finding or graph search problems [7, 9, 19, 26, 36]. An A* method

SF PT XA BJ CD

0 1 2 3 4
0.6

0.7

0.8

^

F1-score

(a) F1-Scores

0 1 2 3 4

2,000

4,000

6,000

8,000

^

QPS

(b) QPS

Figure 7: DRPK with Multiple Key Segments per RPQ

in [19] finds the fastest paths with speed patterns. Luo et al. [26]
design a path finding query to retrieve the most frequent paths from
historical trajectories. Wei et al. develop a framework to construct
popular routes from uncertain trajectories [36]. Chen et al. [7] find
most popular routes by Markov Chain and breath-first search. A
personalized method considers travel costs and driver preferences
via a series of filters in [9]. With given road costs, a work [27] finds
diverse top-k paths. Note that the studies [9, 19, 26] mainly focus
on efficient graph search with heuristic cost functions, and some
studies consider different settings with given travel costs [19, 27].

Another trend is to adopt either conventional machine learning
techniques [6, 15, 40] or deep learning models [11, 12, 17, 34, 37],
to capture the patterns in trajectories for route planning. A spatio-
temporal hidden Markov model [40] is used to model correlations
among different traffic time series to infer travel costs. In [15], Guo
et al. design a trajectory-based clustering technique and a modified
Dijkstra algorithm to accommodate multiple preferences for route
planning. Chen et al. [6] adoptMarkov chain to combine the ranking
and transition probabilities of places to recommend trajectories. Re-
cent deep learning methods commonly use sequential/graph neural
networks for trajectory modeling [11, 12, 17, 22, 24, 25, 34, 37], e.g.,
RNNs also used in [12, 24, 25]. Methods in [24, 25] are subsumed
by NMLR and NASR, while the code of [12] is not available.

There are orthogonal studies, e.g., travel time estimation [42],
trajectory similarity [35], route recovery [4, 38], and destination
prediction [39, 44]. They, together with this study, demonstrate the
value to leverage historical trajectories for spatial data management.

8 CONCLUSION
We present DRPK, a novel method for route planning using histori-
cal trajectories. The main designs inDRPK include the DA indicator
𝜎 , the destination-driven module DRP, and the key segment de-
tection model KSD. We develop a set of thoughtful key segment
concepts that holistically consider 𝜎 , trajectories, and road net-
works. Then KSD is formulated as a classification model that is
efficient for offline training and online inference. Extensive experi-
ments demonstrate the superiority of DRPK. We plan to study route
planning with changes, e.g., road closures and new connections. We
will also investigate peak-hour route planning with heavy traffic.

ACKNOWLEDGMENTS
This work is supported by Hong Kong RGC ECS No. 25201221, and
NSFC No. 62202404. This work is also supported by a collaboration
grant from Tencent Technology (Shenzhen) Co., Ltd (P0039546).
This work is supported by Singapore MOE Tier 1 Seed Funding
(RS05/21) and Tier 2 Grant (MOE-T2EP20122-0003). This work is
partially supported by NSFC No. 62002303, 61772492, 62072428.

2523

REFERENCES
[1] 2022. Gaya. https://outreach.didichuxing.com/research/opendata/.
[2] 2022. OpenStreetMap. https://www.openstreetmap.org/.
[3] 2022. Porto Dataset. https://www.kaggle.com/c/pkdd-15-predict-taxi-service-

trajectory-i/data.
[4] Prithu Banerjee, Sayan Ranu, and Sriram Raghavan. 2014. Inferring Uncertain

Trajectories from Partial Observations. In ICDM. 30–39.
[5] Jean Bourgain. 1985. On Lipschitz embedding of finite metric spaces in Hilbert

space. Israel Journal of Mathematics 52, 1 (1985), 46–52.
[6] Dawei Chen, Cheng Soon Ong, and Lexing Xie. 2016. Learning Points and Routes

to Recommend Trajectories. In CIKM. 2227–2232.
[7] Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. 2011. Discovering popular

routes from trajectories. In ICDE. 900–911.
[8] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP. 1724–1734.

[9] Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. 2015. Personalized route
recommendation using big trajectory data. In ICDE. 543–554.

[10] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. 2009.
Engineering Route Planning Algorithms. In Algorithmics of Large and Complex
Networks - Design, Analysis, and Simulation, Vol. 5515. 117–139.

[11] Jie Feng, Yong Li, Chao Zhang, Funing Sun, FanchaoMeng, Ang Guo, and Depeng
Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent
Networks. In WWW. 1459–1468.

[12] Tao-Yang Fu and Wang-Chien Lee. 2021. ProgRPGAN: Progressive GAN for
Route Planning. In KDD. 393–403.

[13] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier
Neural Networks. In AISTATS. 315–323.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. 855–864.

[15] Chenjuan Guo, Bin Yang, Jilin Hu, and Christian S. Jensen. 2018. Learning to
Route with Sparse Trajectory Sets. In ICDE. 1073–1084.

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780.

[17] Jayant Jain, Vrittika Bagadia, SahilManchanda, and Sayan Ranu. 2021. NeuroMLR:
Robust & Reliable Route Recommendation on Road Networks. In NeurIPS. 22070–
22082.

[18] Manas Joshi, Arshdeep Singh, Sayan Ranu, Amitabha Bagchi, Priyank Karia, and
Puneet Kala. 2021. Batching and Matching for Food Delivery in Dynamic Road
Networks. In ICDE. 2099–2104.

[19] Evangelos Kanoulas, Yang Du, Tian Xia, and Donghui Zhang. 2006. Finding
Fastest Paths on A Road Network with Speed Patterns. In ICDE. 10.

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[22] Jiangtao Kong, Jian Huang, Hongkai Yu, Hanqiang Deng, Jianxing Gong, and Hao
Chen. 2019. RNN-based default logic for route planning in urban environments.
Neurocomputing 338 (2019), 307–320.

[23] Hai Lan, Jiong Xie, Zhifeng Bao, Feifei Li, Wei Tian, Fang Wang, Sheng Wang,
and Ailin Zhang. 2022. VRE: A Versatile, Robust, and Economical Trajectory
Data System. PVLDB 15, 12 (2022), 3398–3410.

[24] Xiucheng Li, Gao Cong, and Yun Cheng. 2020. Spatial Transition Learning on
Road Networks with Deep Probabilistic Models. In ICDE. 349–360.

[25] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the Next
Location: A Recurrent Model with Spatial and Temporal Contexts. In AAAI.
194–200.

[26] Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M. Ni. 2013. Finding time period-
based most frequent path in big trajectory data. In SIGMOD. 713–724.

[27] Zihan Luo, Lei Li, Mengxuan Zhang, Wen Hua, Yehong Xu, and Xiaofang Zhou.
2022. Diversified Top-k Route Planning in Road Network. PVLDB 15, 11 (2022),
3199–3212.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In KDD. 701–710.

[29] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser.
2009. Dataset of mobility traces of taxi cabs in San Francisco. Retrieved from
https://crawdad.org/epfl/mobility/20090224.

[30] Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello. 2014. The shortest
path to happiness: recommending beautiful, quiet, and happy routes in the city.
In HT. 116–125.

[31] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed In-Memory
Trajectory Analytics. In SIGMOD. 725–740.

[32] T Tieleman and G Hinton. 2012. Divide the gradient by a running average of its
recent magnitude. COURSERA Neural Netw. Mach. Learn. 4, 2 (2012), 26–31.

[33] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[34] Jingyuan Wang, Ning Wu, Wayne Xin Zhao, Fanzhang Peng, and Xin Lin. 2019.
Empowering A* Search Algorithms with Neural Networks for Personalized Route
Recommendation. In KDD. 539–547.

[35] ZhengWang, Cheng Long, Gao Cong, and Yiding Liu. 2020. Efficient and Effective
Similar Subtrajectory Search with Deep Reinforcement Learning. PVLDB 13, 11
(2020), 2312–2325.

[36] Ling-Yin Wei, Yu Zheng, and Wen-Chih Peng. 2012. Constructing popular routes
from uncertain trajectories. In KDD. 195–203.

[37] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. 2017. Model-
ing Trajectories with Recurrent Neural Networks. In IJCAI. 3083–3090.

[38] Hao Wu, Jiangyun Mao, Weiwei Sun, Baihua Zheng, Hanyuan Zhang, Ziyang
Chen, and Wei Wang. 2016. Probabilistic Robust Route Recovery with Spatio-
Temporal Dynamics. In KDD. 1915–1924.

[39] Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, and Zhenghua Xu.
2013. Destination prediction by sub-trajectory synthesis and privacy protection
against such prediction. In ICDE. 254–265.

[40] Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2013. Travel Cost Inference
from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models.
PVLDB 6, 9 (2013), 769–780.

[41] Can Yang and Gyözö Gidófalvi. 2018. Fast map matching, an algorithm integrat-
ing hidden Markov model with precomputation. Int. J. Geogr. Inf. Sci. 32, 3 (2018),
547–570.

[42] Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2020. Effective Travel
Time Estimation: When Historical Trajectories over Road Networks Matter. In
SIGMOD. 2135–2149.

[43] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun,
and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories. In
ACM SIGSPATIAL. 99–108.

[44] Jing Zhao, Jiajie Xu, Rui Zhou, Pengpeng Zhao, Chengfei Liu, and Feng Zhu.
2018. On Prediction of User Destination by Sub-Trajectory Understanding: A
Deep Learning based Approach. In CIKM. 1413–1422.

2524

https://outreach.didichuxing.com/research/opendata/
https://www.openstreetmap.org/
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
https://crawdad.org/epfl/mobility/20090224

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Overview of Current Approaches

	3 The DRPK solution
	4 Directed Association
	4.1 DA Construction
	4.2 DRP: Destination-driven Route Planning

	5 Key Segment Detection
	5.1 KSD Concepts and Problem Formulation
	5.2 KSD Model Architecture
	5.3 KSD Offline Training and Online Inference

	6 Experiments
	6.1 Experimental Setup
	6.2 Effectiveness Evaluation
	6.3 Efficiency Evaluation
	6.4 Model Analysis
	6.5 Extension to Multiple Key Segments

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

