
Enabling Secure and Efficient Data Analytics Pipeline Evolution
with Trusted Execution Environment

Haotian Gao
National University of Singapore

NUS Research Institute in Chongqing
gaohaotian@comp.nus.edu.sg

Cong Yue
National University of Singapore

yuecong@comp.nus.edu.sg

Tien Tuan Anh Dinh
Deakin University

anh.dinh@deakin.edu.au

Zhiyong Huang
National University of Singapore

NUS Research Institute in Chongqing
huangzy@comp.nus.edu.sg

Beng Chin Ooi
National University of Singapore

ooibc@comp.nus.edu.sg

ABSTRACT
Modern data analytics pipelines are highly dynamic, as they are
constantly monitored and fine-tuned by both data engineers and
scientists. Recent systems managing pipelines ease creating, de-
ploying, and tracking their evolution. However, privacy concerns
emerge as many of them are deployed on the public cloud with less
or no trust. Unfortunately, the unique nature of pipelines prevents
the adoption of existing confidential computing techniques with
different computational patterns and large performance overhead.
Being a potential approach, trusted execution environments (TEEs)
are efficient in protecting the confidentiality and integrity of data
and computation. However, fast-changing pipelines with latency re-
quirements bring the challenge of reducing the cold start overhead—
the main bottleneck in the latest TEE. To support end-to-end private
pipeline evolution, we present SecCask, a TEE-based data analytics
pipeline management system. SecCask overcomes the problems
of a naive design that isolates complete pipeline execution in one
enclave by administering enclaves and runtimes. To reduce cold
start overheads, our approach consists of reusing trusted runtimes
for different pipeline components and caching them to avoid the
cost of initialization. We leverage the latest Intel SGX to conduct
experiments on representative workloads. The results demonstrate
that SecCask reduces the total execution time by 68.4% compared
to not reusing, is faster than running all components in one enclave,
and incurs a modest average performance overhead of 29.9% over
insecure baselines.

PVLDB Reference Format:
Haotian Gao, Cong Yue, Tien Tuan Anh Dinh, Zhiyong Huang, and Beng
Chin Ooi. Enabling Secure and Efficient Data Analytics Pipeline Evolution
with Trusted Execution Environment. PVLDB, 16(10): 2485 - 2498, 2023.
doi:10.14778/3603581.3603589

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/seccask.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:10.14778/3603581.3603589

1 INTRODUCTION
Modern data analytic pipelines are not static. While traditional data
pipelines are created by expert data engineers for specific business
(OLAP) applications, many of today’s pipelines are created by data
scientists and are more exploratory in nature. In particular, they
are fine-tuned over many iterations, constantly monitored, and
updated even in production [8, 48, 60]. For example, the pipeline is
updated when new data sources are used when new features are
discovered, when the data distribution changes, or when there are
new runtime libraries.

The ease of managing complex, fast-changing analytics pipelines
drives work in pipeline management systems [6, 10, 32, 35, 58, 59,
65] that automate the creation and execution of pipeline compo-
nents, and track change in data and computation using version
control. Current pipeline management systems have become more
efficient and user-friendly as many of which are being offered as
cloud services, e.g., MLflow, Amazon SageMaker, and Azure Ma-
chine Learning. However, they are not designed with privacy in
mind. In particular, end users must trust the entire system that man-
ages their data and performs computations on it. This assumption
is not tenable, especially in the cloud settings, for two reasons. First,
the system can be compromised either through software vulnera-
bilities or insider threats. Second, users may not be able to upload
raw data or components, considering privacy regulations such as
GDPR, or concerns over intellectual properties.

Hence, protecting data and computation privacy in an untrusted
environment becomes an important while challenging problem. Dif-
ferent techniques are proposed to address it, including differential
privacy [1, 46], homomorphic encryption [7, 38, 42], multi-party
computation [63, 68], etc. However, it is not suitable to adopt these
techniques in a broader pipeline management process. First, most of
them mainly target machine learning (ML) modeling, which is only
one stage of modern pipelines [8]. Second, they are designed with
specific communicative and computational patterns, and compre-
hensive changes in the development workflow are required to work
with these patterns. Third, they suffer from either high communica-
tion or computational overhead (for multi-party computation and
encryption-based techniques, respectively), or loss of accuracy (for
differential privacy techniques), which is not practical for either
large or small data setups.

One approach to providing privacy without the above limitations
is to leverage trusted execution environment (TEE) techniques, e.g.,

2485

https://doi.org/10.14778/3603581.3603589
https://github.com/seccask
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603589
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Intel SGX, Arm TrustZone, and Arm Confidential Computing. TEE
protects the confidentiality and integrity of both data and computa-
tion against powerful software adversaries including the malicious
operating system. Existing works demonstrate the viability of us-
ing TEE for various applications despite hardware limitations such
as memory size [15, 22, 26, 39, 45, 66]. The latest release of Intel
SGX significantly loosens the memory limitation, being able to
run memory-intensive application services [16, 34]. Although this
makes it possible to run pipelines directly inside TEEs, we observe
that it does not meet our performance goal. In particular, TEEs
suffer from the cold start problem, where the cost of initializing a
trusted runtime from scratch is high. This type of overhead can
become significant in a typical pipeline evolution, making it a major
issue for efficiency. First, during the early phases, many procedures
are short in execution time and are frequently, repeatedly executed,
as data scientists are exploring the parameter space [48, 61, 65]. Sec-
ond, some pipeline components such as data inference and feature
extraction require low latency.

To target the performance limitations of pipeline privacy preser-
vation and provide an end-to-end solution for pipeline evolution in
an untrusted environment, we present SecCask, a TEE-based secure
and efficient pipeline management system. It allows different user
roles to collaborate on securely creating, scheduling, monitoring,
and executing fast-changing data pipelines. For secure file storage,
we propose Encrypted Filesystem (EncFS) for modules in SecCask to
overcome the limitations of existing TEE file sealing solutions. To
reduce overheads from the cold-starting, SecCask supports runtime
reusing by executing components on compatible cached workers.
We propose a novel caching policy, called Pipeline-aware Caching
(PAC), which is based on access patterns across pipeline compo-
nents. Specifically, PAC analyzes user pipeline submission activities
and predicts probabilities of subsequent component versions based
on two locality properties, spatial locality and temporal locality. By
caching the runtimes that could serve components more likely to
execute for the subsequent pipeline, the system reduces the costly
cold starts for long-term pipeline evolution.

In summary, we make the following contributions:

• We present SecCask, a secure and efficient data analytics pipeline
management system based on TEEs. Unlike existing works using
TEEs for secure ML systems, SecCask manages end-to-end, non-
linear data analytics pipeline evolution, including components
with, e.g., preprocessing, training on small and large datasets,
and inference. To overcome the limitations of existing file sealing
solutions for TEE, we provide SecCask’s modules with a new file
sealing middleware called EncFS.

• We provide a formal definition of the cold start problem in the
context of TEE-based pipelines. We then propose a runtime
reusing strategy and a novel PAC policy to reduce cold start
overheads. It exploits two locality properties, i.e., temporal local-
ity and spatial locality, extracted from the pipeline history.

• We evaluate the effectiveness of PAC through extensive bench-
marks on worker scalability, cold start overheads, EncFS, and
PAC. The results show that PAC is effective in reducing the
impact of cold starts, achieving up to 74.28% more cold start
elimination over the baselines with generic caching policies.

• We test the efficiency of SecCask through two representative
workloads as case studies, where the pipelines come from existing
works. The results show that PAC helps reduce the average
execution time by 68.4%, enabling SecCask a modest overhead
of 29.9% over the insecure baselines, with small EPC overheads.
The remainder of the paper is organized as follows. Section 2

presents the background on pipeline management systems and
TEEs. Section 3 discusses the threat model, goals and challenges,
and the design of SecCask. Section 4 discusses the cold start prob-
lem migrated from serverless computing, provides the problem
definition in TEE, and describes PAC. Section 5 details the imple-
mentation of SecCask. Section 6 presents the evaluation results.
Section 7 reviews the related work before Section 8 concludes.

2 BACKGROUND
2.1 Data Analytics Pipeline
A pipeline represents a series of tasks or procedures serving a data
analytics objective, consisting of various components (or phases), for
example, data gathering, cleaning, preprocessing, model training,
and deployment. The output of one component can become the
input of another. The components are executed in a sequential
or pipelined manner, as the intermediate results are transformed
from the original form to the final output. A pipeline can be linear,
that is, components have at most one input and one output, or the
components with multiple inputs or outputs can form a directed
acyclic graph (DAG). A pipeline management system automates
the creation and management of pipelines.

Most modern pipeline management systems focus on machine
learning pipelines. For example, ModelDB [58] allows users to spec-
ify parameter-metric records, MLflow [10, 65] supports parameter
injection and framework dependency, while ModelOps [20] sup-
ports quality control metrics with a flexible system design. Model-
Hub [35] uses versioning to track model lineage, and MLCask [32]
offers non-linear versioning semantics (e.g., branch and merge) and
a pipeline search tree for efficient merging. These systems, however,
do not protect the security of the data and its computation.

2.2 Trusted Execution Environment
A trusted execution environment (TEE) ensures the confidentiality
and integrity of the data and computation inside the environment
from outside attackers. A TEE can be provisioned by hardware,
software, or a combination thereof. In this work, we focus on utiliz-
ing hardware-based TEEs, in particular ones based on Intel SGX.
However, other TEEs, such as those based on Arm TrustZone or
Arm Confidential Computing, can also be used.

Intel SGX supports TEEs in the form of enclaves [11]. A user
application can create an enclave, and provision private data and
computation to it. The enclave should secure the processing against
powerful attackers, including malicious operating systems and
physical attackers. The CPU provides a series of instructions to
create, enter, and exit the enclave. Enclaves on the CPU share a
protected memory region called Enclave Page Cache (EPC). Until
recently, the system-wise hard limit on EPC is 128MB. The latest
release of SGX, however, extends this limit to 64GB [16, 34].

The security model of SGX makes it challenging to port existing
applications to run inside enclaves. To address this problem, there

2486

are several shielding frameworks [4, 44, 49, 50, 56] that allow running
unmodified applications inside enclaves. The framework runs in an
enclave, transparently handles requests for operating system (OS)
services, and verifies the OS responses before returning them to
the application. SecCask uses Gramine [56] as it is the most feature-
rich. Other frameworks, such as Occlum, have limited support for
commonly used programming languages and packages.

3 DESIGN
3.1 Threat Model
The goal of the adversary is to learn the raw data or to tamper
with the pipeline execution. SecCask assumes that it has full con-
trol of the software stack in the cloud, either via insider threats
or software vulnerabilities. Also, the adversary can compromise
the cloud file storage to perform attacks on any system metadata,
owners’ uploaded components, and intermediate results of compo-
nent executions. This cloud software stack is mostly closed-source
and represents a significantly larger attack surface. However, the
process running in the enclave, including both the shielding frame-
work and the component code, is trusted not to violate security. For
example, the runtime does not contain exploitable vulnerabilities
and offers secure isolation between different library executions. We
note that this is a common assumption in systems that leverage
TEE [37, 41, 45, 64]. Furthermore, the attack surface of libraries can
be reduced by software verification or state-of-the-art hardening
techniques, e.g., software fault isolation, data flow integrity, and
memory-safe system languages. In addition, the attacker cannot
compromise the hardware protection of the TEEs. The remote at-
testation procedure by Intel SGX is trusted, and we assume that the
owners and the users know the identities of the trusted modules,
e.g., by verifying their public source code.

SecCask does not consider denial-of-service attacks, which are
possible because the cloud provider can refuse to run the enclaves or
trigger random errors during the component execution. We assume
that such attacks can be detected by the end users of the system.
Side-channel attacks (e.g., those based on enclave memory access
patterns [9, 57]), membership inference [51], and model inversion
attacks [36] are also out of scope.

3.2 Goals and Challenges
Our goal is to secure data analytic pipelines with less overhead.
In particular, the system ensures the privacy of inputs, outputs,
intermediate data, and management data, e.g., stages and evolution
history, for pipelines. To achieve these goals with performance
addressed, we leverage Intel SGX to create TEEs to secure pipelines.

A naive design using SGX is to create one enclave per user per
pipeline, where the user attests and provisions the enclave with
the keys for decrypting data. Upon submission of the pipeline via a
secure channel, all pipeline components are executed within the
enclave. However, this design has two limitations. First, there is
no opportunity for sharing pipeline components between different
users, as each enclave holds the entire pipeline. Second, the available
EPC is limited, and the pipeline must fit into EPC to avoid paging
that severely affects performance. However, different pipeline com-
ponents may require different packages, where all packages must
load at the execution’s start, increasing EPC usage. Additionally,

Python, the most prevalent runtime for data analytics and ML tasks,
cannot unload packages. Consequently, components using different
package versions cannot both be executed.

Our approach to addressing the limitations of this naive design
is to break up the pipeline into smaller components and run them
in separate enclaves. There are two challenges with this design.
First, the data flows between enclaves must not leak data. Second,
the cold start overheads, which are needed to prepare the runtimes,
can be large. These overheads comprise enclave creation, runtime
initialization, and package loading, where the first is proportional
to the maximum heap size [16] that is directly related to the mem-
ory consumption of the running components. To address the first
challenge, SecCask ensures that data flow between enclaves is en-
crypted, and only the intended enclave can decrypt the data. For the
second challenge, we design a novel enclave sharing and caching
mechanism that reduces the number of cold starts.

3.3 SecCask Overview
SecCask is a performance-oriented trusted data analytics pipeline
management system for untrusted clouds (Figure 1). It involves four
roles: dataset owners, library owners, users, and the cloud service
provider. Owners prepare component manifests summarizing data
or the required runtime, encrypt them together with component
files, and upload them to the cloud storage. They then attest and
establish a secure channel with a trusted key delivery service (KDS)
and send component keys. Users attest to the coordinator before
submitting pipeline structures. The workspace handles pipeline evo-
lution, metadata, and performance metrics, while the coordinator
schedules pipeline execution over workers. New workers are ini-
tialized with the corresponding component manifest’s runtime and
retrieve keys from the KDS. All entities, including the coordinator,
KDS, workspace, and workers, run inside SGX enclaves.
Pipeline management. Pipelines’ metadata and performance met-
rics, stored in the workspace, are tracked and updated by the co-
ordinator’s workspace manager. SecCask inherits both workspace
and its manager from MLCask [32], which supports collaborative
pipeline evolution and efficient non-linear branching and merging.
Coordinator. Being the core module, the coordinator handles the
pipeline submission requests from users. Internally, it monitors
the running workers, handles requests for new workers, performs
worker-component compatibility checks, sends component mani-
fests to workers to trigger component execution, and manages the
metrics to the workspace through the workspace manager.
Active worker. In SecCask, each library component contains the
code run over some data. It is done by an active worker, managed
by the coordinator. Each worker retrieves the dataset or the output
of the previous component, executes the component code, securely
persists its output to the storage engine, and sends metadata and
performance metrics generated from the execution process back to
the coordinator. The workers can be created on different nodes to
mitigate the EPC limitation.
Cached worker. To reduce component execution overheads due
to cold starts, different components can reuse a worker. A cached
worker is one that finishes a component execution task. Instead of
being terminated, it is marked as inactive and then handed over

2487

Untrusted Cloud

WorkerWorker

Workspace
Dataset
Owner

Library
Owner

Coordinator

Cloud File Storage

Trusted

Untrusted

Active (Running)

Inactive (Cached)

keys

code*

encrypted data flow*

instantiation

Worker

data flow

data*

worker
manifest

User

requests

Testing, 0.1Workspace Manager

Pipeline Manager

Dataset
Manager

Library
Manager

Worker
code*

keys component manifest

data*

Key
Delivery
Service
(KDS)

ImageNet
Data Cleansing

Feature Exrtaction
Training & Validation

Testing

dev@0.0

0.0master@0.0

master@0.1

0.0 0.0 0.0 0.0

0.1 0.1 0.0 0.0 0.0

0.0 1.0 0.10.0 0.0

Name CVTask1
User IDs xxx, yyy, ...
...

Workflow Information Wikipedia
Preprocessing

Generate Embedding
Generate Vector

MLP

Name SentimentA1
User IDs aaa, bbb, ...
...

Workflow Information

master@0.1

0.0master@0.0

master@0.2

0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.0 1.0

0.0 1.0 2.00.2 0.0

...

Worker RT Worker RT
MLP, 2.0

 Python RTEncFS Python RTEncFS
FS Non-FSNon-FSFS

Figure 1: SecCask’s architecture.

to the coordinator. When a compatible component is found, the
coordinator activates it by sending the component manifest.
Storage service. The system relies on untrusted cloud storage
infrastructure to persist pipeline metadata and owners’ component
files, which is vulnerable to unauthorized access. We implement
a utility that encrypts component files with EncFS, discussed in
detail in Section 3.5. The owners run this utility locally to encrypt
their components and upload them to the untrusted cloud storage,
with their keys sent to KDS, dispatched on behalf of the owners.

3.4 Manifest Compatibility
In SecCask, a manifest contains the metadata of a specific entity.
In particular, it can represent a component or a worker. The sys-
tem uses information on manifests to determine whether a given
component can be executed by a given worker.

A dataset manifest contains the owner-specified dataset name
and a version assigned by the workspace manager. Since a dataset
is only used as input for another component, we do not consider its
compatibility with aworker. A librarymanifest specifies its required
environment with the package dependencies. The compatibility
of a library with a worker is determined by the coverage of APIs,
represented by the package versions.

Aworker can be reused to execute a component when the worker
is compatible with the component. We define this compatibility as
the condition that the worker is able to call all its required APIs
without state changes to its manifest by loading packages.

Definition 3.1 (Worker-Component Compatibility). Given aworker
𝑤 with a set of modules 𝑀𝑤 imported, each module𝑚 ∈ 𝑀𝑤 be-
longs to a package 𝐾 (𝑚) with version 𝑉 (𝐾 (𝑚)). For a component
𝑓 which requires a set of packages 𝐾𝑓 with each package 𝑘 ∈ 𝐾𝑓

having version 𝑉 (𝑘), worker 𝑤 is compatible with component 𝑓 ,
defined by 𝜋 (𝑓 ,𝑤), when

𝜋 (𝑓 ,𝑤) ≔ ∀𝑘 ∈ 𝐾𝑓 , ∃𝑚 ∈ 𝑀𝑤 ,𝑉 (𝐾𝑓)
𝑐
= 𝑉 (𝐾 (𝑚)),

where 𝑐
= means two versions are compatible.

Two types of version compatibility are available. Exact Version
Match regards two versions compatible onlywhen they are identical.
However, this can be too restrictive, especially when upgrading
packages does not affect APIs. To tackle this, the more fine-grained
Semantic Version Match is used to capture API-level compatibility.
Packages adopting this matching strategy must be versioned with
conventions to explicitly indicate API-level compatibility.

Definition 3.2 (Semantic Version Match). Two versions defined
by [43] with the format MAJOR.MINOR.PATCH are semantically
compatible, namely 𝑎 𝑐

= 𝑏, if
(MAJOR(𝑎) = MAJOR(𝑏)) ∧ (MINOR(𝑎) ≤ MINOR(𝑏)).

Note that 𝑐
= is not commutative for semantically compatible.

The examples in Figure 2 demonstrate the compatibility check
results for different scenarios. For Exact Version Match, the runtime
must contain packages with the same versions as specified in the
manifest. If a package is missing or has a different version, the
check fails. For Semantic Version Match, the runtime must contain
packages with compatible versions as defined by Definition 3.2. The
system extracts a list 𝐾𝑤 from the runtime and compares it with
the manifest to perform the check. This list is referred to as the
active packages and is discussed in detail in Section 5.1.
Discussion. The component owner defines the manifest, and there-
fore is responsible for ensuring worker-component compatibility.
In particular, for semantic versioning, the owner needs to check

2488

Runtime Component
Manifest

Kw

1.23.0
1.8.2

Kf

numpy
torch

0.2.5
Py

YAML 0.2.5

numpy 1.23.0

Mw

numpy
torch
yaml

Component
Manifest

Kw

1.8.2

Kf

torch

0.2.5

numpy1.23.0

Runtime

torch
yaml

Mw

0.2.5 Py
YAML 0.2.5Py

YAML
Py

YAML

(a)

Component
Manifest

tqdm

Kw

1.5.0

Kf

PyNaCl
4.64.1 tqdm 4.61.2

tensor
flow 2.9.0

Runtime

Mw

tensor
flow
nacl

tqdm

Component
Manifest

tqdm

Kw

1.5.0

Kf

PyNaCl
4.60.0 tqdm 4.61.2

Runtime

Mw

nacl
tqdm

tensor
flow 2.9.1

tensor
flow 2.9.0

(b)

Figure 2: Examples of compatibility with (a) Exact Version Match (b) Semantically Compatible. 𝐾𝑤 is the active package list.

that all packages and their dependencies adopt semantic version-
ing. We note that this versioning is increasingly common in prac-
tice [13, 14, 40], therefore we can expect more reusing of workers.
For packages that violate compatibility despite using semantic ver-
sioning [40, 67], we assume the users can detect incompatibility
issues during the execution, and then change the manifest to use
exact versioning. The exact version is automatically derived from
the last successful execution, as recorded in pipeline history.

3.5 Encrypted File Storage
The main challenge in the storage module of SecCask is to make
access to encrypted files transparent to the application. In par-
ticular, the system requires no changes to the code that runs on
a trusted, non-enclave environment. To achieve this, SecCask in-
troduces a middleware layer called Encrypted Filesystem (EncFS).
It sits between the interpreter (Python) and the shielding frame-
work, intercepting filesystem APIs and transparently performing
authenticated encryption and decryption1. EncFS supports random
access by using AES-CTR, where the counter is based on the offset
of the file divided by the block size. Combined with the Galois
message authentication code (MAC) and the Encrypt-then-MAC
approach, the authenticated encryption mode becomes AES-GCM.
EncFS computes one MAC for each page, respecting the page-level
access pattern of OS file maps. Hence, authenticated file accessing
is performed on the pages that cover the given bytes.

For each encrypted file, there is a separate MAC file for storing
the MACs of encrypted pages. For each write, EncFS identifies the
involved page IDs, then writes the encrypted pages to the file, and
writes each MAC at the offset ID ×Ms whereMs is the MAC size. A
read operation first retrieves the corresponding encrypted MACs,
then verifies the decrypted against those of the encrypted pages.

3.6 Key Delivery
In SecCask, the owners encrypt their components and upload them
to an untrusted storage service. The workers running EncFS are
provisionedwith the appropriate decryption keys. A special enclave,
called Key Delivery Service (KDS), receives the decryption keys
and dispatches them to the correct workers.
Encryption. Components are encrypted by AES-GCM. Specifically,
the owner generates a random key and IV as follows. The owner’s
password is hashed, using PBKDF2-HMAC-SHA512, resulting in
a 512-bit random number. The first 𝑘 bits (where 𝑘 ∈ {128, 256})

1We note that this layer is similar to Intel Protected File System, but the latter is not
fully supported by the shielding framework.

are used as the AES key, and the subsequent 96 bits are the IV. The
encryption is performed in parallel, at the page granularity.
KDS. The trusted workers need to load and decrypt components.
The decryption key can be provisioned to the worker directly by
the owner. However, this approach requires the owner to be online
during the execution, and it does not scale for a large number of
workers. The Key Delivery Service (KDS) enclave maintains the
decryption keys and only gives them to trusted workers. The owner
first sends the keys to KDS, using the attestation process described
below. The KDS then uses an SGX feature called sealing to store
the decryption keys on untrusted storage. Sealing ensures that the
keys are encrypted and can only be decrypted by the KDS enclave.

3.7 Attestation
Remote attestation is an important concept and procedure for build-
ing trust with TEE. In short, a hardware-signed quote packing a
computed measurement of an enclave is required to be sent to a
remote verifier to convince it that the enclave is trustworthy [11].
To let the system with multiple modules obtain the trust of user
entities, SecCask builds a custom attestation model with minimal in-
terference to the management process while addressing all security
requirements, illustrated by Figure 3.

There are three main attestation steps in SecCask. The first is
between the owners and KDS after encrypted components are
uploaded to the cloud. The owner checks that it is communicating
with the trusted KDS that faithfully manages and delivers the keys.
The measurement of KDS is known to the owner. SecCask uses
RA-TLS [27] for this attestation, which establishes a TLS channel
through which the decryption keys are sent.

The second attestation is between the users and the coordinator.
The user checks that it is communicating with a trusted coordinator
that correctly updates the pipeline history, schedules the pipeline
execution, and returns the trained models and metrics. The mea-
surement of this trusted coordinator is known to the user. RA-TLS is
used to establish a secure channel between the user and the trusted
coordinator. The user then uploads the pipeline via this channel.

The third attestation is done by KDS and the coordinator to
check that they are communicating with the trusted workers. The
measurements of the trusted workers are known to both KDS and
the coordinator. The KDS uses RA-TLS to attest the workers, and
so does the coordinator. If successful, the execution task and de-
cryption keys are sent to the worker, which loads the components
from the untrusted storage, and then starts the execution.

The TLS channels between workers, KDS, and coordinator, are
reused for different tasks, reducing remote attestation overheads.

2489

Untrusted Cloud

Owner 2

User 1

Worker 2

Worker 1

User 2

Owner 1

Worker N

Key Delivery
Service

Coordinator

Enclave

End User

remote attestation

Verifier Prover

Untrusted

1

2

3

Figure 3: SecCask’s attestation model. Three main attesta-
tion steps include (1) owners’ delivery of component keys (2)
users’ pipeline submission (3) workers’ task and key receiv-
ing from KDS and the coordinator.

3.8 Security Analysis
We now analyze how SecCask achieves the privacy goal discussed
in Section 3.2, given the threat model in Section 3.1.
Metadata.Themetadata in SecCask includesworkflowdata, namely
the name, the pipeline DAG, and versions of the pipeline history.
It also contains the outputs of the pipeline execution, including
the intermediate results as well as other system parameters. The
metadata is maintained by the coordinator enclave, either in its
enclave memory or in the encrypted files. The key for decrypting
the encrypted metadata is derived from the enclave’s sealing key,
therefore only the coordinator enclave can decrypt it.

The coordinator attests to the other enclaves, then establishes se-
cure channels with them before transmitting metadata through the
channels. This ensures that the data exchanged between enclaves
are protected, and only the correct enclaves can decrypt the data.
Worker. A worker loads and decrypts the component with the key
provisioned by KDS. It also exchanges encrypted metadata with
the coordinator. Both KDS and the coordinator attest to the worker
before sending the key or metadata. The security of the attestation
protocol ensures that only workers that are allowed by the pipeline
can receive the key and metadata. Since we assume that the enclave
for a worker is secure, all data and computation in it are protected.
Components. The component owner performs attestation with
KDS before sending it the key to decrypt the component on the
untrusted storage. The key stored in the enclave is sent only to
attested workers about to execute the corresponding component.
Since KDS is trusted, the adversary cannot introduce a malicious
component to the pipeline, as it will not be accepted by the coordi-
nator. Furthermore, after each execution, the worker runtime rolls
back to its initial state. Therefore, it can be reused for other tasks
without leaking information from past executions.
Side channels. SecCask starts modules and workers in separate
enclaves. Although the data communicated between them are en-
crypted, we acknowledge that the necessary cross-enclave inter-
actions introduce undesirable side-channel leakages. Compared to
the naive design of running the entire pipeline in one enclave (Sec-
tion 3.2), the adversary, by observing cross-enclave communication,
can learn two more things. First, it learns the structure of pipelines
by observing how many enclaves are created, and how data flows
between them. Second, for each component, it learns the resource
consumption profile and the sizes of the output. These can be used,

e.g., to infer the type of each component: the training component is
CPU intensive, the feature extraction component produces smaller
output than its input, etc. Closing this channel, however, is chal-
lenging. In particular, to hide output sizes, it is necessary to pad
the output to the maximum output size of all components. To hide
resource consumption, techniques such as oblivious data access
and computation padding are required. To hide the data flow, it may
be necessary to support oblivious or delayed data access, which
incurs significant overheads [21]. We leave the question of how to
use them in SecCask to future work.

4 MITIGATING COLD START
In this section, we describe the cold start problem in TEEs and
propose a novel caching policy called Pipeline-aware Caching (PAC)
that reduces cold starts while maintaining high resource utilization.

4.1 Cold Start
Starting an execution environment takes time. Cold start measures
the time taken from when the system starts the execution environ-
ment to when it is fully ready to execute, i.e., the latency of system
initialization. This depends on the environmental requirements of
the user, e.g., the package dependencies.

Our approach to reducing cold starts for TEEs is inspired by
works in a slightly different setting, namely serverless computing.
A serverless platform starts fresh runtime to serve user functions
when the workload increases, which includes starting a new con-
tainer and loading dependent packages. However, most user re-
quests are short-lived and the cold start overhead dominates the
end-to-end latency [47]. Approaches to reducing it include main-
taining a pool of warm containers that are ready to handle request
spikes [31, 52, 54], predicting future loads and provisioning the
runtime in advance based on user history [12, 19, 47], lightweight
isolation that reuses dependencies and runtimes [2, 3, 17], etc.

4.2 Worker Reusing Objective
Reuse of workers effectively reduces the cold start overhead when
more compatible workers are predicted and cached for incoming
components. Hence, the objective is to maintain a worker pool that
maximizes the probability of having a compatible worker for a new
component, which performance is determined by the caching policy.
To this end, we introduce representations of pipelines, their history,
and other prerequisite information to predict, before specifying the
worker reusing objective.
Pipeline. In a data analytics pipeline, the data is transformed
through a sequence of components. More precisely, a pipeline is de-
fined as a DAG𝐺 = {F , E}, where 𝑓 ∈ F represents a component
and 𝑒 ∈ E represents the data flow between consecutive compo-
nents. Given a component 𝑓 , its succeeding components (which
accept the output of 𝑓) and preceding components (which feed
their outputs to 𝑓) are defined as 𝑠𝑢𝑐 (𝑓) and 𝑝𝑟𝑒 (𝑓), respectively.
A pipeline 𝐺 preserves the following relationship:

∀𝑖, 𝑗,
(︁
𝑓𝑖 , 𝑓𝑗 ∈ F ∧ 𝑒𝑖 𝑗 ∈ E

)︁
−→

(︁
𝑓𝑗 ∈ 𝑠𝑢𝑐 (𝑓𝑖) ∧ 𝑓𝑖 ∈ 𝑝𝑟𝑒 (𝑓𝑗)

)︁
.

A component 𝑓𝑖 can either be a dataset containing the data, or a
library performing transformation𝑦 = 𝑓𝑖 (𝑥 | \𝑖) over the outputs of
its preceding component 𝑥 with the parameter\𝑖 . Each 𝑓𝑖 is assigned

2490

a semantic version 𝑣 (𝑓𝑖) of the form ⟨schema.increment⟩, where
schema represents the version of output schema which must be
increased once changed, and increment denotes the algorithm-
level changes not affecting the output schema.
Pipeline history. In order to achieve the objective, the history
of the users’ submitted pipelines can be important to realize an
effective worker reusing policy. We denote H as a sliding window
of pipeline submission history. It contains𝑀 pipelines with times-
tamps from 𝑖 −𝑀 + 1 to 𝑖:

H(𝑖) =
(︂
p(𝑖−𝑀+1) p(𝑖−𝑀+2) · · · p(𝑖)

)︂
,

where p(𝑖) contains the components’ version vector at 𝑖 , i.e.,

p(𝑖) =
(︂
𝑣 (𝑓1) (𝑖) 𝑣 (𝑓2) (𝑖) · · · 𝑣 (𝑓𝑗) (𝑖) · · ·

)︂⊤
.

Each component in a pipeline is given an index, and we define a
partial order on the indices as follows.

Definition 4.1 (Order of Component History). Given a pipeline p,
the following holds:

∀𝑓𝑖 , 𝑓𝑗 ∈ F ,
(︁
𝑖 < 𝑗

)︁
−→

(︁
𝑓𝑖 ≺ 𝑓𝑗

)︁
,

where ≺ satisfies

∀𝑖, 𝑗,
(︁
𝑓𝑖 ≺ 𝑓𝑗 ∧ 𝑒𝑖 𝑗 ∈ E

)︁
−→

(︁
𝑓𝑗 ∈ 𝑠𝑢𝑐 (𝑓𝑖) ∧ 𝑓𝑖 ∈ 𝑝𝑟𝑒 (𝑓𝑗)

)︁
.

Version score matrices. Components stored in the system have
different versions. We capture the probability of a component 𝑓𝑗
having a specific version using a version scorematrix (VSM), denoted
by S𝑗 . The matrix covers all possible versions of 𝑓𝑗 , where each
element 𝑠 𝑗𝑚𝑛 denotes the probability that the next occurrence of 𝑓
in a new pipeline has version ⟨𝑚.𝑛⟩. More specifically,

S𝑗 =

⎛⎜⎜⎜⎜⎜⎝
𝑠
𝑗

00 𝑠
𝑗

01 · · · 𝑠
𝑗

0𝑑
𝑠
𝑗

10 𝑠
𝑗

11 · · · 𝑠
𝑗

1𝑑
...

...
. . .

...

𝑠
𝑗

𝑐0 𝑠
𝑗

𝑐1 · · · 𝑠
𝑗

𝑐𝑑

⎞⎟⎟⎟⎟⎟⎠
,

where 𝑐 = max{schema(𝑓𝑗)}, 𝑑 = max{increment(𝑓𝑗)}.
Worker reusing objective. Given the definitions of VSM and
pipeline history, we observe the transformation of the VSM S𝑗 at the
timestamp 𝑡𝑖 given the pipeline history until 𝑡𝑖−1. The probabilities
of component versions at the next timestamp are only based on
those at the current timestamp and the pipeline history, i.e. the
next S𝑗 is determined by the current S𝑗 and H, hence denoted by
S(𝑖)
𝑗

= 𝐴(S(𝑖−1)
𝑗

;H(𝑖−1)). Here, we omit timestamp indicators to
simplify the formulation. The worker reusing objective can then
be realized by choosing the version in the transformed VSM with
min (max) probability to be reclaimed (preloaded), i.e.,

𝑣− (𝑓𝑗) = argmin
𝑣𝑚

{(𝐴(S𝑗 ;H))𝑚 | 𝑓𝑚 ∈ F ∗},

𝑣+ (𝑓𝑗) = argmax
𝑣𝑚

{(𝐴(S𝑗 ;H))𝑚 | 𝑓𝑚 ∈ F },

where F ∗ = {𝑓 | 𝑓 ∈ 𝑝, 𝑝 ∈ 𝐻𝑖 } represents the last executed
components (i.e., those components having a compatible worker
in the worker pool). This process can be repeated several times to
make multiple reclaiming and preloading.

The objective with the notion of VSM is then mapped to the
problem of designing the transformation function 𝐴 that supports
the state transition of S𝑗 across different timestamps.

4.3 Pipeline-aware Caching
Wedescribe a heuristic caching policy, called Pipeline-aware Caching
(PAC), that aims to realize the worker reusing objective. It is guided
by two locality properties: temporal locality and spatial locality,
each of which has a respective 𝐴 function transforming the VSM.
The policy enables predicting the component versions which are
more (less) likely to be chosen in the next submitted pipeline. We
first introduce a quantitative method to manipulate the VSM.
VSM scaling function. Given a set of versions being predicted
as more likely to occur in the future, the VSM scaling function
decreases the scores of the other versions in favor of the selected
one (i.e., the target) while preserving the grand sum of the VSM.

When the target is a single version, the entry-level scaling takes
as input the schema.increment pair ⟨𝑚,𝑛⟩, and uses a factor 𝛼 to
adjust the intensity. The VSM transformation then becomes

𝐴(S;𝑚,𝑛, 𝛼) = (1 − 𝛼)S + 𝛼e(𝑚,𝑛),

where

e(𝑚,𝑛) =
(︁
𝑒𝑖 𝑗

)︁
=

{︄
1, 𝑖 =𝑚 ∧ 𝑗 = 𝑛
0, otherwise

,∀𝑖, 𝑗 .

When the target is a set of versions V, the scaling cannot be per-
formed iteratively on each element in V, as the entry-level scaling
function is not associative. Instead, a batched scaling function is
used in the VSM transformation as follows:

𝐴(S;V, 𝛼) = (1 − 𝛼)S + 𝛼

𝑐𝑎𝑟𝑑 (V)
∑︂

𝑚,𝑛∈V
e(𝑚,𝑛) .

Using the aforementioned scaling functions, PAC utilizes two local-
ities extracted from the version patterns during pipeline evolution
to transform the VSM across different timestamps.
Temporal locality. The temporal locality refers to the property
that a component in a recently submitted pipeline is likely to be
submitted again. In particular, the user is likely to use the same
component with a different input in a new pipeline. This is similar
to the temporal locality property in the database and CPU caching.
To leverage it, the key idea is to favor the versions of recently
executed components. More specifically, PAC assigns lower scores
to the versions that are further in the pipeline history window.

Algorithm 1 details the function VSMTransformTL that trans-
forms VSMs based on temporal locality. Given the last VSMs of all
components S(𝑖−1) , the pipeline history H, and the intensity factor
𝛼 , it first makes a copy of VSMs, then goes through all components
in the pipeline, and for each component, it collects the versions
appeared in the previous pipelines into a set V (line 6). Then it
iterates over V and filters the version in the latest pipeline to the
set V𝑐 (line 7-10). The versions in V𝑐 are sent to the VSM scaling
function 𝐴 that assigns them lower scores in the VSM (line 11).
Spatial locality. The spatial locality refers to the property that if a
component changes between two consecutive submitted pipelines,
then it is likely to change again. This property captures the ex-
ploration phase for data analytics pipeline development, in which

2491

Algorithm 1: Transforming VSMs with temporal locality.
Input: S(𝑖−1) = {S(𝑖−1)

𝑗
}: Last VSMs; H(𝑖−1) : Last pipeline history;

𝛼 : Intensity.
Output: S(𝑖) : Next VSMs.

1 Function VSMTransformTL(S(𝑖−1) ,H, 𝛼)
2 S(𝑖) ← S(𝑖−1)

3 p←the last pipeline in H
4 for 𝑘 ← 1 to 𝑐𝑎𝑟𝑑 (p) do
5 ⟨𝑓1,𝑚1 .𝑛1 ⟩ ← 𝑘’s component in p
6 V← versions of 𝑓1 in H\{p}
7 V𝑐 ← {}
8 for (𝑣 = ⟨𝑓2,𝑚2 .𝑛2 ⟩) ∈ V do
9 if 𝑓1 = 𝑓2 and (𝑚1 ≠𝑚2 or 𝑛1 ≠ 𝑛2) then
10 V𝑐 ← V𝑐 ∪ {𝑣}

11 S(𝑖)
𝑓1
← 𝐴(S(𝑖)

𝑓1
;V\V𝑐 , 𝛼)

Algorithm 2: Transforming VSMs with spatial locality.
Input: S(𝑖−1) = {S(𝑖−1)

𝑗
}: Last VSMs; H(𝑖−1) : Last pipeline history;

𝛼 : Intensity.
Output: S(𝑖) : Next VSMs.

1 Function VSMTransformSL(S(𝑖−1) ,H, 𝛼)
2 S(𝑖) ← S(𝑖−1)

3 p(𝑡) , p(𝑡−1) ←the last, second pipeline in H
4 for 𝑘 ← 1 to 𝑐𝑎𝑟𝑑 (p(𝑡)) do
5 ⟨𝑓1,𝑚1 .𝑛1 ⟩, ⟨𝑓2,𝑚2 .𝑛2 ⟩ ← 𝑘’s component in p(𝑡) , p(𝑡−1)

6 if 𝑓1 = 𝑓2 and
7 ((𝑚1 =𝑚2 and 𝑛1 ≠ 𝑛2) or (𝑚1 ≠𝑚2 and 𝑛1 = 𝑛2)) then
8 for ℎ ∈ {from first to 𝑘’s component in p(𝑡−1) } do
9 S(𝑖)

ℎ
← 𝐴(S(𝑖)

ℎ
;V\{versions of ℎ in p(𝑡−1) }, 𝛼)

10 if𝑚1 =𝑚2 and 𝑛1 ≠ 𝑛2 and
11 version ⟨𝑚1, 2𝑛2 − 𝑛1 ⟩ exists for 𝑓1 then
12 S(𝑖)

𝑓1
← 𝐴(S(𝑖)

𝑓1
;𝑚1, 2𝑛2 − 𝑛1, 𝛼)

13 if𝑚1 ≠𝑚2 and 𝑛1 = 𝑛2 and
14 version ⟨2𝑚1 −𝑚2, 𝑛1 ⟩ exists for 𝑓1 then
15 S(𝑖)

𝑓1
← 𝐴(S(𝑖)

𝑓1
; 2𝑚1 −𝑚2, 𝑛1, 𝛼)

users try different versions of the code or data until satisfied with
the results. This property is similar to the spatial locality in the
database and CPU caching, as the versions are closer in number. To
leverage it, the policy assigns higher scores to the next versions of
the component that is modified more recently.

Algorithm 2 details the function VSMTransformSL that trans-
forms VSM based on temporal locality. Given the same inputs as
VSMTransformTL, after performing the same VSM copying, the al-
gorithm fetches two consecutive pipelines in the submission history
(line 5). Then, for each component 𝑓 in the two pipelines, it checks
for a pattern of continuous version increment, by checking if the
consecutive versions change only in either schema or increment
(line 6-7). If so, the algorithm uses this pattern to update VSMs
to better predict the next submission. Specifically, it predicts the
next iteration of this pattern, namely ⟨𝑚1, 2𝑛2 −𝑛1⟩ for the schema
change and ⟨2𝑚1−𝑚2, 𝑛1⟩ for the increment change, as more likely

to occur in future pipeline submissions. It then increases the cor-
responding values in 𝑓 ’s VSM, if the component with that version
has already been submitted to the system (line 10-15).

5 IMPLEMENTATION
In this section, we describe some implementation details of SecCask.
We explain how a worker runtime tracks packages based on the
imported modules, how manifests are extended to accelerate the
compatibility check, and how EncFS is implemented for Python.

5.1 Active Packages
In programming languages like Python, a package is a software
library that implements a set of functionalities. It can contain one
or more modules that are loaded statically or dynamically at run-
time. Developers organize the modules without standard rules. For
instance, modules may have different names from their package,
adding difficulty as the version numbers are only applicable to pack-
ages. To tackle them in compatibility check, SecCask introduces the
notion of active packages, which have at least one module imported
in the runtime. The checks are then performed by comparing active
packages with package requirements in the component manifest.

Deriving the active packages of a worker comprises two parts:
building a module-package mapping and retrieving packages for
the active modules. The former gets all the module names related
to a specific package. For Python, this is done by reading the file
"top_level.txt" inside the "egg_info" metadata directory of the pack-
age. Being trusted files in the shielding framework, the hash of these
files is stored in the enclave to protect them against tampering.

5.2 Compatibility Check
For data analytics tasks, checking the compatibility for individual
packages can be expensive, as many packages are used to simplify
the development. SecCask accelerates it by extending the library
component manifest (see Listing 1 for an example) to perform a
three-phase check. The first phase compares the semantic version
of the new component to that of the last executed one, and checks
if the names and versions match. Note that matching the major
versions alone is not sufficient, as the output schema equivalence
does not mean the code generates outputs using the same pack-
ages. If phase 1 fails, the second phase uses a hash function to
summarize the package information and compares the hash with
the pre-computed hash of the required packages. Here we use SHA-
256 over the dumped JSON string of the sorted dictionary with all
packages and their versions. If phase 2 fails, the third phase checks
package compatibility by comparing the active packages against
the requirements in the manifest, using either of the version com-
patibility types introduced in Section 3.4. The package names and
their versions in the component manifest are used for this check.

5.3 Encrypted Filesystem
We modify the file object operational functions of the Python in-
terpreter to implement EncFS. The middleware also adds stubs of
global variables to store, e.g., encryption keys, which the modified
functions read. The worker links libpython.so and sets up EncFS
dynamically by initializing and configuring these global variables.

2492

type: library
name: imagenet -alexnet -cnn -training
Phase 1 - Library Version Compatibility
version: master@1 .4
Phase 2 - Package Hash
hash: c41447ee05f4ccd6 ...088082 dec5c92b30
Phase 3 - Package Version Compatibility
packages: # Exact Version Match

numpy: 1.22.4
matplotlib: 3.6.2
...

packages_semver: # Semantic Version Match
tensorflow: 2.9.1
tqdm: 4.64.1
...

Listing 1: Example of a library manifest.

We use OpenSSL 1.1.1 for AES. However, it does not provide
dedicated APIs for GMAC. As a workaround, we compute it by lever-
aging GCM’s authentication-only mode. Specifically, an AES-CTR
context is first used to encrypt pages. The ciphertext is then sent as
additional authenticated data into an AES-GCM context. Running
encryption in this context computes GMAC for the ciphertext.

6 EVALUATION
In this section, we evaluate the performance of SecCask.

6.1 Workloads
We use four sets of workloads in the experiments. PAC and MLPerf
Training workloads are for microbenchmarks, while AutoLearn and
Sentiment Analysis workloads are for case studies.
PAC workload. PAC depends on a number of hyperparameters,
namely the size of the worker pool 𝑃 , the size of pipeline history
𝑀 , and the factor 𝛼 for the VSM scaling function. To evaluate their
impact, we create a PAC workload with only version information.
It consists of 800 pipelines without branching, each of which has
5 components executing in linear order. This synthetic workload
captures real-world activities in which a user performs exploration
in the component search space of a final pipeline.
MLPerf Training workload. We use MLPerf Training [33] to
evaluate the storage overhead. This workload contains file access
patterns of real-world data analytics andmachine learning pipelines.
We use a recent version of MLPerf Training benchmark2 that con-
tains eight tasks. Among them, six preprocessing tasks are used for
evaluating the end-to-end performance of the storage component3.
AutoLearn workload. AutoLearn [25] is an algorithm that au-
tomates feature engineering by mining, generating, and selecting
correlated features to improve model training performance. Figure
4 shows the pipeline evolution of this workload, which uses UCI
Sonar dataset as the DS component and includes four library com-
ponents: IG for preprocessing based on Information Gain, DR for
dependent regression on processed data, and Stable for selecting
2https://github.com/mlcommons/training/commit/e6f45a4dbc7e85d2
3The reinforcement learning task does not have a dataset and its corresponding prepro-
cessing phase, while the single stage detector task stores processed data in a standalone
MongoDB database, which violates our system model.

0.0 0.0 0.0 0.0 0.0
DS IG DR Stable Model

dev@0.0 0.0 0.0 0.0 0.0 0.0

dev@0.1 0.0 0.0 0.0 0.0 0.1

dev@0.2 0.0 1.0 1.0 0.2 0.1

dev@0.3 0.0 1.0 1.0 0.2 0.2

master@0.20.0 0.0 1.0 0.2 0.0

master@0.10.0 0.0 0.0 0.1 0.0

master@0.0

master@0.30.0 0.0 1.0 0.3 0.0

master@1.00.0 A.B C.D E.F G.H

Figure 4: Pipeline evolution of AutoLearn workload.

dev@0.0

dev@0.1

master@1.0

master@0.10.0 0.0 0.1

master@0.20.0 1.0

master@0.30.0 1.0

0.0 A.B C.D

0.0 0.0

0.0 0.0

dev@0.2 0.0

dev@0.3 0.0

0.0

0.0

0.2

0.1

0.20.2

0.3

E.F

0.0

0.0

0.0

G.H

0.0

1.0

1.0 0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.3

0.4

master@0.00.0 0.0 0.0 0.0 0.0
DS PP GE GV MLP

Figure 5: Pipeline evolution of Sentiment Analysis workload.

stable features fed into Model component with different models,
such as SVM, AdaBoost, and Random Forest. The workflow cap-
tures a common pipeline evolution having two branches, master
and dev, which are developed independently and later merged us-
ing the metric-based mechanism from MLCask. For simplicity, we
ignore the merge operation in our experiments.
Sentiment Analysis workload. This workload is derived from
LDA-Reg’s experimental study, which tunes neural network param-
eters based on the knowledge extracted from external corpora [62].
Figure 5 shows the pipeline evolution of this workload, which
uses Sentence Polarity dataset with Large Movie Review dataset
as the external corpora, packed into the DS component. It includes
four library components: PP for preprocessing, GE for generating
embeddings, and GV for generating feature vectors fed into MLP
component with a multilayer perceptron. The workflow represents
another common pipeline evolution, in which the pipeline devel-
opment is incremental, with components updated iteratively as
hyperparameters are tuned. The best component combination is
then merged into the master branch using metric-based merging.

6.2 Baselines
To evaluate the PAC’s effectiveness, we implement different caching
policies in SecCask. In particular, we implement least-recently-used
(LRU), least-frequently-used (LFU), and first-in-first-out (FIFO), and
compare their performance with PAC.

For EncFS microbenchmark, Intel Protected Filesystem is com-
pared as a baseline solution. Besides in enclaves, tests also include
executing outside to analyze trusted overheads for storage.

To evaluate the overhead of end-to-end trustworthy pipeline ex-
ecution and PAC in production-ready pipelines, we implement four
variants of SecCask. Untrusted is a baseline that runs the system out-
side SGX enclaves. Trusted represents the system running modules
inside enclaves, with remote attestation enabled. Trusted, Singleton

2493

https://github.com/mlcommons/training/commit/e6f45a4dbc7e85d2

Table 1: Breakdown of cold start overhead excluding enclave creation and framework loading.

Setup Worker Check Worker Pool Establish TLS Connection Establish RA-TLS Connection Generate Worker Manifest Dispatch Execution Task
Untrusted New 15.8ms ± 3.7ms 21.9ms ± 4.5ms - 1669.9ms ± 568.6ms -

Cached 14.3ms ± 3.9ms - - - 12.5ms ± 12.2ms
Trusted New 25.1ms ± 22.8ms - 741.3ms ± 270.4ms 2674.6ms ± 963.9ms -

Cached 16.1ms ± 5.1ms - - - 11.8ms ± 8.3ms

20 21 22 23 24 25 26

Concurrent Workers

1
2
3
4
5
6
7
8

Re
l.

Ex
ec

. T
im

e

AL - IG SA - PP SA - GE SA - GV

20 21 22 23 24 25 26

Concurrent Workers

0

1

2

Pa

ge
 F

au
lts

 (×
10

8)

I/O
AL - IG
SA - PP
SA - GE
SA - GV

0

1

2

3

I/O
 (×10 6)

Rel. Exec. Time
Page Faults

Figure 6: Relative execution time together with numbers of
page faults and I/Os of concurrent workers.

is a special setup running all components in a single worker. This
has a strict assumption that all packages are compatible across a
workflow, as discussed in the challenges. We adapt the workloads
to this requirement. Trusted, PAC adds compatibility checks and
PAC to Trusted to reduce cold start overheads.

We omit the comparison against non-private pipeline manage-
ment systems, e.g., ModelDB [58],MLflow [10, 65], andMLCask [32].
All our experiments on the pipeline evolution of these systems show
negligible differences from the untrusted mode of SecCask.

6.3 Experimental Setup

Hardware andOS.We run our experiments on a server with 2 Intel
Xeon Gold 6342 CPUs @ 3.5GHz and 512GB of memory. This server
supports the second generation of SGX (SGXv2). The EPC size is
set to 32GB. The OS is Ubuntu 20.04 with Linux kernel 5.15.0-43.
Shielding framework. SecCask uses Gramine [56] for shielding
applications inside enclaves.We observe that giving fewer resources
to Gramine will improve the performance of a single-user appli-
cation, but are more likely to crash during the execution. Unless
explicitly indicated, we experimented with the configurable param-
eters (stack size, max heap size, thread number, etc.), and set them
to the lowest values that do not crash the workers.

6.4 Microbenchmark

Worker scalability.We analyze the scalability of workers by mea-
suring the execution time with increasing numbers of concurrently
executing components in one node, each occupying an enclave.
We use 8 library components from the AutoLearn and Sentiment
Analysis workloads, which have different execution patterns.

Figure 6 shows the relative execution time, the number of page
faults, and the number of I/O with concurrently running workers

1632 64 128 256
Max Heap Size (GB)

0

100

200

300

400

500

Ti
m

e
(s)

Worker Creation

1632 64 128 256
Max Heap Size (GB)

0

10

20

30

Ti
m

e
(s)

Framework Loading

Framework
PyTorch
Scikit-Learn
TensorFlow

Type
New
Cached

Figure 7: The two major overheads of cold starts.

over that of a single worker. We also measure the number of page
faults and I/Os, to understand whether the execution is memory
or I/O intensive. We omit the results for DR, Stable, Model, and
MLP, as they are similar to that of IG. It can be seen that the impact
of concurrent workers on IG is small. For PP and GV from the Sen-
timent Analysis workload, there are knee points after which the
overheads increase significantly, even though they remain reason-
able with fewer than 16 concurrent workers. This can be explained
by the sharp increases in page faults and I/O after the knee points,
indicating that the workers are contending for memory and I/O
resources. GV has a more stable increase for average execution time,
but the standard deviation becomes larger with more concurrent
workers. This is because this component writes a large amount of
data, which causes the hard disk to be the bottleneck.
Cold start overheads. To understand how SecCask reduces the
impact of cold starts, we measure the overhead for initializing a
pipeline component, both in trusted and untrusted settings (with
and without enclaves, respectively). We break down the duration
from when a component execution is requested, to when the com-
ponent begins its execution, into six stages.

Table 1 shows the latency of different stages, except for the
most time-consuming stage of worker creation and framework
loading, which we discuss later. Generating a worker manifest
incurs a large overhead, as it requires a number of reading from
the storage. However, this is a one-time cost, incurred only when
new packages are imported during component execution. The total
cost of performing remote attestation and establishing the secure
channel is less than one second. The other stages have similar costs
in the untrusted settings as in the trusted ones.

We examine the overhead of creating a worker and loading the
framework in more detail. Figure 7 shows this cost with increasing
heap sizes. The left figure shows the worker creation time, which
includes creating an enclave, loading the shielding framework, and
loading the runtime. The cost is linear with the heap size until
the size exceeds the EPC memory limit (32GB in our experiments).

2494

0.0 0.1 0.2 0.3 0.4 0.5 0.6
α

1000

2000

3000

of

 C
ol

d
St

ar
ts

P=8

0.0 0.1 0.2 0.3 0.4 0.5 0.6
α

P=9

0.0 0.1 0.2 0.3 0.4 0.5 0.6
α

P=10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
α

P=11

0.0 0.1 0.2 0.3 0.4 0.5 0.6
α

P=12

0.0 0.1 0.2 0.3 0.4 0.5 0.6
α

P=13
PAC (M=5) PAC (M=6) PAC (M=7) PAC (M=8) PAC (M=9) PAC (M=10) PAC (M=11) PAC (M=12) LRU LFU FIFO

Figure 8: Number of cold starts on PAC workload with PAC-TS, LRU, LFU, and FIFO.

imgcls imgseg langmdl objdtct recomm sphrcg
Experiment

0.0

0.2

0.4

0.6

0.8

1.0

Re
l.

Ex
ec

. T
im

e

Intel Protected Filesystem EncFS (AES-256-GCM) Untrusted

0

10

20

30

40

50

I/O
 Rate (%)

I/O Rate

Figure 9: Relative execution time and I/O rates of components
in MLPerf Training workload.

After that, the slope becomes steeper. For framework loading, we
measure the cost for PyTorch, Scikit-Learn, and TensorFlow. This
cost is lower than that of worker creation and is independent of the
heap size. In summary, the cold start latency can be in the order of
minutes, which is a significant overhead for small pipelines.
EncFS.We execute and record execution time for the preprocess-
ing tasks in MLPerf Training workload, namely image classifica-
tion (imgcls), image segmentation (imgseg), language modeling
(langmdl), object detection (objdtct), recommendation (recomm)
and speech recognition (sphrcg).

Figure 9 shows the latencies relative to the longest task. The
figure depicts the I/O rates, demonstrating that some tasks are
more I/O intensive than others. The result shows that EncFS in-
troduces small overheads across different I/O access patterns. It
significantly outperforms Intel PFS for I/O intensive tasks, since
EncFS is carefully designed to align with the OS file access patterns.
Impact of PAC. To show the effectiveness of PAC, we perform a
comprehensive grid search over the parameter space of the three
hyperparameters. The values of 𝑃 and𝑀 are chosen from 8 to 13
and from 4 to 13, respectively, while 𝛼 is in the range [0, 0.6].

Table 2 summarizes the benefits of PAC over the other caching
policies. It shows the impact of individual localities (TO for temporal
locality only, SO for spatial locality only) and of PAC that combines
both localities (TS). It can be seen that combining both spatial
and temporal locality helps achieve the best reduction over all the
parameter values. In particular, PAC helps decrease the cold start
time, and it is more effective than other policies, by up to 74.28%.
Figure 8 shows the number of cold starts when𝑀 is set between 5

Table 2: Cold start reduction of PAC (in percentage).

LRU LFU FIFO
TO SO TS TO SO TS TO SO TS

Min 19.29 6.66 6.86 19.29 6.66 6.86 19.29 6.66 6.86
Max 42.36 70.29 70.22 71.08 73.96 73.89 72.85 74.28 74.22
Avg 30.42 33.97 38.12 38.14 40.98 44.92 37.60 39.84 43.78

5 6 7 8 9 10 11 12P

1000

2000

3000

of
 C

ol
d

St
ar

ts

LRU
LFU
FIFO
PAC-TO
PAC-SO
PAC-TS

Figure 10: Distribution of cold starts with each and both
localities of PAC compared with LRU, LFU, and FIFO.

and 12. The result confirms that tuning 𝛼 and𝑀 is not necessary,
as the PAC curves are below the baselines in most cases.

To further study the effect of individual localities, we average
the results over 𝛼 and𝑀 and compute the distribution of cold starts
with 𝑃 from 5 to 12. The results, shown in Figure 10, demonstrate
two findings. First, the temporal locality has the potential to achieve
better performance at the expense of stability, as the distribution
contains more outliers. The spatial locality, conversely, is more
stable but is not always better than the baselines. Second, combining
both localities results in the lowest number of cold starts.

6.5 Case Study

End-to-end lifecycle.We evaluate the system’s end-to-end perfor-
mance using two realistic pipelines [25, 62]. We measure the total
execution time and their cache miss rates, shown in Figure 11.

The differences in end-to-end pipeline execution time are stable
as the workflows evolve. PAC achieves a 57.3% overhead reduction
for AutoLearn workflow, and a 79.4% of reduction for Sentiment
Analysis. We measure the latency of the naive design (discussed
in Section 3.2) and denote it as Trusted, Singleton in the figure. For
AutoLearn, SecCask consistently outperforms the naive design,

2495

0

2500

5000

7500

Ex
ec

ut
io

n
Ti

m
e

(s)

AutoLearn

Trusted Trusted, Singleton Trusted, PAC Untrusted

1 2 3 4 5 6 7 8
Pipeline Index

0

1000

2000

3000

Ex
ec

ut
io

n
Ti

m
e

(s)

Sentiment Analysis
0.00

0.25

0.50

0.75

1.00 Cache M
iss Rate

Miss Rate

0.00

0.25

0.50

0.75

1.00 Cache M
iss Rate

Figure 11: Cumulative pipeline time and PAC’s cache miss
rate for AutoLearn and Sentiment Analysis workflows.

Table 3: EPC costs for modules and functionalities (in MB).

Base Metadata Functionality
LibOS Python RT Worker Others RA Gen RA Ver EncFS
11.105 36.858 +7.130 +5.979 +0.873 +18.269 +0.045

because of the lower memory requirement per enclave and en-
clave component sharing. For Sentiment Analysis, the discrepancy
between the two setups is smaller. The main reason is that the
execution time is more evenly distributed across components. In
other words, more components have a large execution time in the
workload, decreasing the impact of cold starts. However, we note
that Trusted, Singleton is only available when all packages used
across the whole lifecycle are fixed and do not conflict, which is
unlikely in practice, because dependencies evolve and get updated
constantly over time [14]. In summary, PAC achieves a small over-
head over untrusted settings, and the use of multiple enclaves per
pipeline can be more efficient than the single-enclave design.
EPC overhead. The number of EPC pages consumed by each en-
clave in SecCask includes the pages used for the data, the model,
etc., and the pages introduced by SecCask to enable trusted pipeline
execution. We consider the latter as the system’s EPC overhead.
Measuring this overhead is challenging because the runtime envi-
ronment inside the enclave is highly coupled. We break down this
into the base, consisting of LibOS and the Python runtime (RT),
the metadata needed for core functionalities such as EncFS and
the coordinator, and the functionality themselves. We obtain this
breakdown by subtracting the enclave max EPC usage under the
minimal runtime environment with functionalities on and off.

Table 3 lists the EPC costs of SecCask. The metadata costs are
different between the workers and other types, i.e., coordinator,
workspace, and KDS. The worker consumes more resources because
the retrieval of package metadata requires storing more hashes for
verification (Section 5.1). PAC does not introduce significant EPC
overhead compared to non-worker enclaves. The cost of EncFS is
small, as it operates at the page level. For RA, quote verification

(Ver) is more expensive than quote generation (Gen), because the
verification logic happens within the enclave, as opposed to simply
invoking operating to generate quotes by the hardware (Gen).

7 RELATEDWORK
SecCask shares a similar goal of securing data analytics applications
with other works using TEEs. It addresses a similar problem, i.e.
cold start, to other works in the context of serverless computing.
We have discussed the cold start problem in depth in Section 4. In
this section, we discussed the related work on TEE-based systems.
Mitigating EPC limitation. Prior work on TEE-based secure ML
has focused on addressing the high overheads caused by limited
EPC, which can significantly impact application performance up to
1000x [39, 53]. To mitigate this issue, one approach is on-demand
weights loading, where model weights are loaded on-demand, typi-
cally layer-by-layer [26, 29, 30]. Delegation is another approach that
moves some computation outside of enclaves while preserving pri-
vacy, mostly matrix multiplication. Some of the works only target
model inference [53, 55], while others cover training as well [5, 18].
Other approaches include adaptive convolution layers partition-
ing [29] and using the compiler to reduce the tensor framework [24].
These works are orthogonal to ours. Moreover, although SGXv2
increases the EPC size, the cold start problem addressed by SecCask
remains challenging for applications that require low latency. The
techniques in the works discussed above can be implemented in
SecCask to further reduce cold start overheads, as it has been shown
that the enclave creation latency is proportional to its heap usage.
General TEE-basedML.Chiron [22] and Citadel [66] support both
data and model privacy. Each training enclave in Chiron creates a
sandbox [23] to confinemalicious activities. However, these systems
focus on specific components instead of entire, dynamic pipelines.
TensorSCONE [28], secureTF [45] and Perun [41] are general in-
enclave ML frameworks. Our work supports them as components
in the pipelines. Furthermore, it is flexible and can support other
non-ML components, for example, ones that perform data cleaning.

8 CONCLUSION
In this paper, we presented SecCask, a secure and efficient data an-
alytics pipeline management system. It leverages trusted execution
environments backed by hardware to achieve both security and
efficiency on end-to-end data analytics pipelines. It addresses the
cold start problem in the above context by runtime reusing and
caching. The novel caching policy, called PAC, exploits the pipeline
history and uses its access patterns on component versions to guide
the manipulation of the worker pool, resulting in a significant in-
crease in hit rates. We implemented the system and evaluated its
performance through case studies on real workflows. The results
show that SecCask ensures security with practical overheads.

ACKNOWLEDGMENTS
This research is supported by theNational Research Foundation, Sin-
gapore under its Emerging Areas Research Projects (EARP) Funding
Initiative. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do
not reflect the views of National Research Foundation, Singapore.

2496

REFERENCES
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security. ACM, Vienna, Austria, 308–318.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018. USENIX Association, Boston, MA, USA, 923–935.

[3] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. 2022.
Groundhog: Efficient Request Isolation in FaaS. arXiv:2205.11458

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Still-
well, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Association, Savannah,
GA, USA, 689–703.

[5] Aref Asvadishirehjini, Murat Kantarcioglu, and Bradley A. Malin. 2020. GOAT:
GPU Outsourcing of Deep Learning Training With Asynchronous Probabilistic
Integrity Verification Inside Trusted Execution Environment. arXiv:2010.08855

[6] Tian Bai, Shanshan Zhang, Brian L. Egleston, and Slobodan Vucetic. 2018. In-
terpretable Representation Learning for Healthcare via Capturing Disease Pro-
gression through Time. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2018. ACM, London,
UK, 43–51.

[7] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedham-
mer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian
Weinert. 2020. Offline Model Guard: Secure and Private ML on Mobile Devices.
In 2020 Design, Automation & Test in Europe Conference & Exhibition, DATE 2020.
IEEE, Grenoble, France, 460–465.

[8] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art and
Practice of Data Science Pipelines: A Comprehensive Study of Data Science
Pipelines In Theory, In-The-Small, and In-The-Large. In 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022. ACM, Pittsburgh,
PA, USA, 2091–2103.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium, USENIX Security
2018. USENIX Association, Baltimore, MD, USA, 991–1008.

[10] Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi,
Sue Ann Hong, Andy Konwinski, Clemens Mewald, Siddharth Murching, Tomas
Nykodym, Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia,
Richard Zang, Juntai Zheng, and Corey Zumar. 2020. Developments in MLflow:
A System to Accelerate the Machine Learning Lifecycle. In Proceedings of the
Fourth Workshop on Data Management for End-To-End Machine Learning, In con-
junction with the 2020 ACM SIGMOD/PODS Conference, DEEM@SIGMOD 2020.
ACM, Portland, OR, USA, 5:1–5:4.

[11] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained.
[12] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu: Mitigat-

ing cascading cold starts in serverless function chain deployments. In Proceedings
of the 21st International Middleware Conference. ACM, Delft, The Netherlands,
356–370.

[13] Alexandre Decan and Tom Mens. 2021. What Do Package Dependencies Tell Us
About Semantic Versioning? IEEE Trans. Software Eng. 47, 6 (2021), 1226–1240.

[14] Jens Dietrich, David J. Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
2019. Dependency versioning in the wild. In Proceedings of the 16th International
Conference on Mining Software Repositories, MSR 2019, Margaret-Anne D. Storey,
Bram Adams, and Sonia Haiduc (Eds.). IEEE / ACM, Montreal, Canada, 349–359.

[15] Kha Dinh Duy, Taehyun Noh, Siwon Huh, and Hojoon Lee. 2021. Confidential
Machine Learning Computation in Untrusted Environments: A Systems Security
Perspective. IEEE Access 9 (2021), 168656–168677.

[16] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch,
Zheguang Zhao, and Carsten Binnig. 2022. Benchmarking the Second Gen-
eration of Intel SGX Hardware. In International Conference on Management of
Data, DaMoN 2022. ACM, Philadelphia, PA, USA, 5:1–5:8.

[17] Bishakh Chandra Ghosh, Sourav Kanti Addya, Nishant Baranwal Somy,
Shubha Brata Nath, Sandip Chakraborty, and Soumya K. Ghosh. 2020. Caching
Techniques to Improve Latency in Serverless Architectures. In 2020 International
Conference on COMmunication Systems & NETworkS, COMSNETS 2020. IEEE,
Bengaluru, India, 666–669.

[18] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. 2021. DarKnight: An
Accelerated Framework for Privacy and Integrity Preserving Deep Learning
Using Trusted Hardware. In MICRO ’21: 54th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, Virtual Event, Greece, 212–224.

[19] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H. Hovy, and Eric P. Xing.
2016. Harnessing Deep Neural Networks with Logic Rules. arXiv:1603.06318

[20] Waldemar Hummer, VinodMuthusamy, Thomas Rausch, Parijat Dube, Kaoutar El
Maghraoui, Anupama Murthi, and Punleuk Oum. 2019. ModelOps: Cloud-Based
Lifecycle Management for Reliable and Trusted AI. In IEEE International Confer-
ence on Cloud Engineering, IC2E 2019. IEEE, Prague, Czech Republic, 113–120.

[21] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J.
Rossbach, and Emmett Witchel. 2020. Telekine: Secure Computing with Cloud
GPUs. In 17th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2020, Ranjita Bhagwan and George Porter (Eds.). USENIX Association,
Santa Clara, CA, USA, 817–833.

[22] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving Machine Learning as a Service.
arXiv:1803.05961

[23] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2018.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. ACM
Trans. Comput. Syst. 35, 4 (2018), 13:1–13:32.

[24] Nick Hynes, Raymond Cheng, and Dawn Song. 2018. Efficient Deep Learning
on Multi-Source Private Data. arXiv:1807.06689

[25] Ambika Kaul, SaketMaheshwary, and Vikram Pudi. 2017. AutoLearn - Automated
Feature Generation and Selection. In 2017 IEEE International Conference on Data
Mining, ICDM 2017, Vijay Raghavan, Srinivas Aluru, George Karypis, Lucio
Miele, and Xindong Wu (Eds.). IEEE Computer Society, New Orleans, LA, USA,
217–226.

[26] Kyungtae Kim, Chung Hwan Kim, Junghwan John Rhee, Xiao Yu, Haifeng Chen,
Dave (Jing) Tian, and Byoungyoung Lee. 2020. Vessels: efficient and scalable
deep learning prediction on trusted processors. In SoCC ’20: ACM Symposium on
Cloud Computing. ACM, Virtual Event, USA, 462–476.

[27] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
arXiv:1801.05863

[28] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. 2019. TensorSCONE: A Secure TensorFlow Framework using
Intel SGX. arXiv:1902.04413

[29] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. 2019. Occlumency:
Privacy-preserving Remote Deep-learning Inference Using SGX. In The 25th
Annual International Conference on Mobile Computing and Networking, MobiCom
2019, Stephen A. Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vassilis
Kostakos (Eds.). ACM, Los Cabos, Mexico, 46:1–46:17.

[30] Yuepeng Li, Deze Zeng, Lin Gu, Quan Chen, Song Guo, Albert Y. Zomaya, and
Minyi Guo. 2021. Lasagna: Accelerating Secure Deep Learning Inference in
SGX-enabled Edge Cloud. In SoCC ’21: ACM Symposium on Cloud Computing,
Carlo Curino, Georgia Koutrika, and Ravi Netravali (Eds.). ACM, Seattle, WA,
USA, 533–545.

[31] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Serverless
Platforms: A Pool-Based Approach. arXiv:1903.12221

[32] Zhaojing Luo, Sai Ho Yeung, Meihui Zhang, Kaiping Zheng, Lei Zhu, Gang Chen,
Feiyi Fan, Qian Lin, Kee Yuan Ngiam, and Beng Chin Ooi. 2021. MLCask: Efficient
Management of Component Evolution in Collaborative Data Analytics Pipelines.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
Chania, Greece, 1655–1666.

[33] Peter Mattson, Christine Cheng, Gregory F. Diamos, Cody Coleman, Paulius
Micikevicius, David A. Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor
Bittorf, David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim M. Hazelwood,
Andy Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery
Liao, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pente-
cost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie
Xu, Cliff Young, and Matei Zaharia. 2020. MLPerf Training Benchmark. In Pro-
ceedings of Machine Learning and Systems 2020, MLSys 2020, Inderjit S. Dhillon,
Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org, Austin, TX, USA,
336–349.

[34] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Re-
bekah Leslie-Hurd, and Carlos V. Rozas. 2016. Intel® Software Guard Extensions
(Intel® SGX) Support for Dynamic Memory Management Inside an Enclave. In
Proceedings of the Hardware and Architectural Support for Security and Privacy
2016, HASP@ICSA 2016. ACM, Seoul, Republic of Korea, 10:1–10:9.

[35] Hui Miao, Ang Li, Larry S. Davis, and Amol Deshpande. 2017. ModelHub: Deep
Learning Lifecycle Management. In 33rd IEEE International Conference on Data
Engineering, ICDE 2017. IEEE Computer Society, San Diego, CA, USA, 1393–1394.

[36] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma,
Abhishek Singh, Ramesh Raskar, and Hadi Esmaeilzadeh. 2020. Privacy in Deep
Learning: A Survey. arXiv:2004.12254

[37] Fan Mo, Zahra Tarkhani, and Hamed Haddadi. 2022. SoK: Machine Learning with
Confidential Computing. CoRR abs/2208.10134 (2022), 18 pages. arXiv:2208.10134

[38] Karthik Nandakumar, Nalini K. Ratha, Sharath Pankanti, and Shai Halevi. 2019.
Towards Deep Neural Network Training on Encrypted Data. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019.
Computer Vision Foundation / IEEE, Long Beach, CA, USA, 40–48.

2497

https://arxiv.org/abs/2205.11458

[39] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schiavoni, Pascal
Felber, and Daniel Hagimont. 2019. Everything You Should Know about Intel
SGX Performance on Virtualized Systems. In Abstracts of the 2019 SIGMETRIC-
S/Performance Joint International Conference on Measurement and Modeling of
Computer Systems. ACM, Phoenix, AZ, USA, 77–78.

[40] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen J. Vinju. 2022.
Breaking bad? Semantic versioning and impact of breaking changes in Maven
Central. Empir. Softw. Eng. 27, 3 (2022), 61.

[41] Wojciech Ozga, Do Le Quoc, and Christof Fetzer. 2021. Perun: Confidential
Multi-stakeholder Machine Learning Framework with Hardware Acceleration
Support. In Data and Applications Security and Privacy XXXV - 35th Annual IFIP
WG 11.3 Conference, DBSec 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12840), Ken Barker and Kambiz Ghazinour (Eds.). Springer, Calgary, Canada,
189–208.

[42] Manas A. Pathak, Bhiksha Raj, Shantanu Rane, and Paris Smaragdis. 2013.
Privacy-Preserving Speech Processing: Cryptographic and String-Matching
Frameworks Show Promise. IEEE Signal Process. Mag. 30, 2 (2013), 62–74.

[43] Tom Preston-Werner. 2013. Semantic Versioning 2.0.0. Retrieved 2023-06-05 from
https://semver.org/spec/v2.0.0.html

[44] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,
Vasily A. Sartakov, and Peter R. Pietzuch. 2019. SGX-LKL: Securing the Host OS
Interface for Trusted Execution. arXiv:1908.11143

[45] Do LeQuoc, Franz Gregor, Sergei Arnautov, Roland Kunkel, Pramod Bhatotia, and
Christof Fetzer. 2020. secureTF: A Secure TensorFlow Framework. InMiddleware
’20: 21st International Middleware Conference. ACM, Delft, The Netherlands, 44–
59.

[46] César Sabater, Aurélien Bellet, and Jan Ramon. 2020. Distributed Differentially
Private Averaging with Improved Utility and Robustness to Malicious Parties.
arXiv:2006.07218

[47] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference, USENIX ATC 2020. USENIX Association, Virtual Event, 205–218.

[48] Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and Aditya G.
Parameswaran. 2022. Operationalizing Machine Learning: An Interview Study.
CoRR abs/2209.09125 (2022), 20 pages. arXiv:2209.09125

[49] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking Inside a
Single Enclave of Intel SGX. InASPLOS ’20: Architectural Support for Programming
Languages and Operating Systems. ACM, Lausanne, Switzerland, 955–970.

[50] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:
Low-TCB Linux Applications With SGX Enclaves. In 24th Annual Network and
Distributed System Security Symposium, NDSS 2017. The Internet Society, San
Diego, CA, USA, 15 pages.

[51] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.
Membership Inference Attacks Against Machine Learning Models. In 2017 IEEE
Symposium on Security and Privacy, SP 2017. IEEE Computer Society, San Jose,
CA, USA, 3–18.

[52] Khondokar Solaiman and Muhammad Abdullah Adnan. 2020. WLEC: A Not So
Cold Architecture to Mitigate Cold Start Problem in Serverless Computing. In
2020 IEEE International Conference on Cloud Engineering, IC2E 2020. IEEE, Sydney,
Australia, 144–153.

[53] Zhichuang Sun, Ruimin Sun, Long Lu, and Somesh Jha. 2020. ShadowNet: A
Secure and Efficient System for On-device Model Inference. arXiv:2011.05905

[54] Kun Suo, Yong Shi, Xiaohua Xu, Dazhao Cheng, and Wei Chen. 2020. Tack-
ling Cold Start in Serverless Computing with Container Runtime Reusing. In

Proceedings of the 2020 Workshop on Network Application Integration/CoDesign,
NAI@SIGCOMM 2020. ACM, Virtual Event, USA, 54–55.

[55] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execu-
tion of Neural Networks in Trusted Hardware. In 7th International Conference on
Learning Representations, ICLR 2019. OpenReview.net, New Orleans, LA, USA,
19 pages.

[56] Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIX Annual Techni-
cal Conference, USENIX ATC 2017. USENIX Association, Santa Clara, CA, USA,
645–658.

[57] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2021.
SGAxe: How SGX Fails in Practice. Retrieved 2023-06-05 from https://
cacheoutattack.com/files/SGAxe.pdf

[58] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: a system
for machine learning model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2016. ACM, San Francisco,
CA, USA, 14.

[59] Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish, Beng Chin Ooi, and Kian-
Lee Tan. 2016. Database Meets Deep Learning: Challenges and Opportunities.
SIGMOD Rec. 45, 2 (2016), 17–22.

[60] Doris Xin, Hui Miao, Aditya G. Parameswaran, and Neoklis Polyzotis. 2021.
Production Machine Learning Pipelines: Empirical Analysis and Optimization
Opportunities. In SIGMOD ’21: International Conference on Management of Data,
Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
Virtual Event, China, 2639–2652.

[61] Cong Yang, Wenfeng Wang, Yunhui Zhang, Zhikai Zhang, Lina Shen, Yipeng Li,
and John See. 2021. MLife: A Lite Framework for Machine Learning Lifecycle
Initialization. In 8th IEEE International Conference on Data Science and Advanced
Analytics, DSAA 2021. IEEE, Porto, Portugal, 1–2.

[62] Kai Yang, Zhaojing Luo, Jinyang Gao, Junfeng Zhao, Beng Chin Ooi, and Bing
Xie. 2022. LDA-Reg: Knowledge Driven Regularization Using External Corpora.
IEEE Trans. Knowl. Data Eng. 34, 12 (2022), 5840–5853.

[63] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In 27th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society, Toronto, Canada, 162–167.

[64] Peterson Yuhala, Pascal Felber, Valerio Schiavoni, and Alain Tchana. 2021. Plinius:
Secure and Persistent Machine Learning Model Training. In 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2021. IEEE,
Taipei, Taiwan, 52–62.

[65] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Fen Xie, and Corey Zumar. 2018. Accelerating the Machine Learning Lifecycle
with MLflow. IEEE Data Eng. Bull. 41, 4 (2018), 39–45.

[66] Chengliang Zhang, Junzhe Xia, Baichen Yang, Huancheng Puyang, Wei Wang,
Ruichuan Chen, Istemi Ekin Akkus, Paarijaat Aditya, and Feng Yan. 2021. Citadel:
Protecting Data Privacy and Model Confidentiality for Collaborative Learning.
In Proceedings of the ACM Symposium on Cloud Computing, SoCC. ACM, Seattle,
WA, USA, 546–561.

[67] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen,
and Yang Liu. 2022. Has My Release Disobeyed Semantic Versioning? Static
Detection Based on Semantic Differencing. In 37th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2022. ACM, Rochester, MI, USA,
51:1–51:12.

[68] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao,
Hongwei Li, and Yu-an Tan. 2019. Secure Multi-Party Computation: Theory,
practice and applications. Inf. Sci. 476 (2019), 357–372.

2498

https://semver.org/spec/v2.0.0.html
https://cacheoutattack.com/files/SGAxe.pdf
https://cacheoutattack.com/files/SGAxe.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Data Analytics Pipeline
	2.2 Trusted Execution Environment

	3 Design
	3.1 Threat Model
	3.2 Goals and Challenges
	3.3 SecCask Overview
	3.4 Manifest Compatibility
	3.5 Encrypted File Storage
	3.6 Key Delivery
	3.7 Attestation
	3.8 Security Analysis

	4 Mitigating Cold Start
	4.1 Cold Start
	4.2 Worker Reusing Objective
	4.3 Pipeline-aware Caching

	5 Implementation
	5.1 Active Packages
	5.2 Compatibility Check
	5.3 Encrypted Filesystem

	6 Evaluation
	6.1 Workloads
	6.2 Baselines
	6.3 Experimental Setup
	6.4 Microbenchmark
	6.5 Case Study

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

