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ABSTRACT

Federated learning (FL) enables multiple data owners to collabora-
tively train machine learning (ML) models without disclosing their
raw data. In the vertical federated learning (VFL) setting, the collab-
orating parties have data from the same set of users but with disjoint
attributes. After constructing the VFL models, the parties deploy the
models in production systems to infer prediction requests. In prac-
tice, the prediction output itself may not be convincing for party
users to make the decisions, especially in high-stakes applications.
Model interpretability is therefore essential to provide meaningful
insights and better comprehension on the prediction output.

In this paper, we propose Falcon, a novel privacy-preserving and
interpretable VFL system. First, Falcon supports VFL training and
prediction with strong and efficient privacy protection for a wide
range of ML models, including linear regression, logistic regression,
and multi-layer perceptron. The protection is achieved by a hy-
brid strategy of threshold partially homomorphic encryption (PHE)
and additive secret sharing scheme (SSS), ensuring no intermediate
information disclosure. Second, Falcon facilitates understanding
of VFL model predictions by a flexible and privacy-preserving in-
terpretability framework, which enables the implementation of
state-of-the-art interpretable methods in a decentralized setting.
Third, Falcon supports efficient data parallelism of VFL tasks and
optimizes the parallelism factors to reduce the overall execution
time. Falcon is fully implemented, and on which, we conduct ex-
tensive experiments using six real-world and multiple synthetic
datasets. The results demonstrate that Falcon achieves comparable
accuracy to non-private algorithms and outperforms three secure
baselines in terms of efficiency.
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1 INTRODUCTION

Federated learning (FL) 8, 23, 29, 39, 40, 42, 44, 50, 68, 75] enables
collaborations among multiple parties, as it provides a framework
with which the parties can jointly build machine learning [47, 49,
58] (ML) models from their combined datasets. An essential feature
of FL is that it supports such collaborative computation without
requiring the parties to disclose their sensitive data, which is im-
portant under recent privacy regulations such as GDPR [1] and
CCPA [2]. FL can be classified into three settings depending on
how the data is partitioned, namely horizontal FL [8, 50], vertical
FL [27, 34, 46, 73], and hybrid [75]. In this paper, we focus on the
vertical federated learning (VFL) setting, in which the parties hold
the data of the same set of users but with different attributes.
Figure 1 shows an example of VFL, in which a bank wishes to
build an ML model to predict whether it should approve a credit
card application. To improve the model accuracy, it collaborates
with a FinTech company to obtain more attributes (features) for the
model. For example, the bank has the ‘age’ and ‘income’ features
while the FinTech company has the ‘deposit’, ‘monthly shopping
times’, and ‘shopping expense’ features. Only the bank has the
labels, i.e., the decisions on past applications. We refer to the party
which has the labels as the active party (e.g., the bank) and the
other parties providing only the features as the passive parties (e.g.,
the FinTech company). The bank and the FinTech company can
collaboratively train a VFL model using their joint datasets, and
then deploy the model in their production systems to evaluate new
applicants in the prediction dataset. Typically, the prediction output
consists of a vector of confidence scores, where each score indicates
the probability of the new applicant belonging to each class label.
For example, a prediction output (0.32, 0.68) represents that the
bank shall approve the application with a 32% probability. The bank
benefits from a more accurate model, while the FinTech company
benefits from providing the data via a pay-per-use model [72, 73].
However, the prediction output itself is usually insufficient for
the active party to make final decisions, especially in high-stakes
applications such as financial risk management [9] and healthcare
analytics [17, 48, 76]. For example, the Polish government enforces
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Figure 1: A vertical federated learning example.

that a customer has the right to receive an explanation in case of
a negative credit decision [52]. Thus, simply returning a negative
decision with a number 32% to the customer is unacceptable, and it
is essential to provide proper explanations (aka. interpretability) so
that customers can obtain meaningful insights about the decisions.
Recently, various solutions [14, 25, 26, 30, 34, 43, 57, 66, 69, 73],
and several systems, such as SecureML [54], FATE [71], PaddleFL [5],
and PySyft [59], have been proposed for privacy-preserving model
training and prediction in VFL. However, they suffer from sev-
eral limitations. First, most existing works [14, 25, 30, 43, 59, 71]
protect each party’s data through partially homomorphic encryp-
tion (PHE) [18, 60] or split learning [70]. However, they may leak
sensitive information during training and prediction when some
participating parties are semi-honest [24, 38] or malicious [61] be-
cause the revealed intermediate results are vulnerable to various
inference attacks. Second, while generic secure multiparty com-
putation (MPC) solutions (e.g., MP-SPDZ [36]) can ensure strong
privacy protection, i.e., no leakage during the computation, they
incur high performance overheads. Several works [5, 26, 32, 54]
improve the performance of generic MPC by allowing the parties
to outsource their private data to a small number of non-colluding
servers, which is not always acceptable. Third, approaches based
on trusted hardware [57, 66] can achieve good trade-offs between
performance and privacy. However, they make a strong assumption
that both the hardware and the software inside the protected envi-
ronments are trusted, which is often violated in practice [74, 77].
Moreover, none of these works considers the interpretability calcu-
lation, which is particularly important in VFL because the active
party cannot see the passive parties’ data for making a decision.
To bridge the gap, we present Falcon, a privacy-preserving and
interpretable vertical federated learning system. Falcon has the
following three novelties. First, it supports private and efficient VFL
training for a variety of ML models, including linear regression, lo-
gistic regression, and multi-layer perceptron (MLP). It eliminates the
need for outsourcing parties’ private data to several non-colluding
servers while ensuring there is no intermediate information leakage
during the computation. We achieve this strong privacy protection
through a hybrid of threshold partially homomorphic encryption
(PHE) and additive secret sharing scheme (SSS). In particular, PHE
is communication efficient but can only support limited compu-
tations, while SSS can execute arbitrary computations but incurs
high communication costs. Falcon employs the hybrid strategy with
novel designs to improve the VFL model training efficiency.
Second, Falcon provides a flexible and privacy-preserving inter-
pretability framework Falcon-INP that supports state-of-the-art
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interpretable methods in a decentralized setting, such as local in-
terpretable model-agnostic explanations (LIME) [64]. Integrating
interpretability in VFL is challenging as the calculation involves
features across different parties in multiple stages. If the outputs of
intermediate stages are revealed, a party’s private information may
be inferred by other parties. Falcon-INP addresses this challenge by
ensuring each stage’s output is securely protected and efficiently
adapting the following stages to accommodate the input variations.

Third, our system enables system-level optimizations to improve
efficiency. It achieves high performance by organizing the execu-
tors in each party into a parameter server architecture for parallel
execution of both PHE and SSS operations. And we design an auto-
parallelism mechanism that finds an effective scheduling strategy
to speed up the interpretability calculation.

Falcon consists of three main components: coordinator, agent,
and executor, as illustrated in Figure 2. The coordinator accepts
a VFL job and schedules it to the agent on each party. The job
specifies the parties involved, the private data location of each
party, and job configurations such as the hyper-parameters. The
coordinator is only responsible for scheduling, and it cannot see
the private data and the trained model parameters. Upon receiving
the job, the agent on each party launches a set of executor(s) and
periodically reports the execution status to the coordinator for
further scheduling. The executors across different parties jointly
execute the job in a privacy-preserving and peer-to-peer manner.

In summary, we make the following contributions in this paper.

We propose Falcon, a system that supports VFL training and

prediction for a wide range of ML models. It employs PHE and

SSS techniques with novel designs to provide strong and efficient

privacy protection during the entire execution.

We design a flexible and privacy-preserving interpretability frame-
work Falcon-INP that supports interpretable solutions such as

LIME. To the best of our knowledge, Falcon is the first system

that offers prediction interpretability in VFL.

We present system-level data parallelism optimizations that im-
prove the efficiency of both PHE and SSS operations in Falcon.
Moreover, we propose an auto-parallelism mechanism to further

speed up the interpretability calculation.

We implement Falcon system and evaluate its performance using

six real-world datasets and multiple synthetic datasets on a dis-
tributed cloud cluster. The experimental results demonstrate that

Falcon achieves comparable accuracy to non-private algorithms

and is more efficient compared to three secure baselines.

The rest of this paper is structured as follows. We introduce
preliminaries in Section 2 and give an overview in Section 3. We
elaborate the training protocols and the interpretable framework in
Sections 4 and 5, respectively. Section 6 presents the optimizations.
The experimental evaluation is given in Section 7. We review the
related work in Section 8, followed by the conclusions in Section 9.

2 PRELIMINARIES

2.1 Secure Building Blocks

Threshold partially homomorphic encryption. A partially ho-
momorphic encryption (PHE) scheme typically consists of three al-
gorithms (Gen, Enc, Dec). The key generation algorithm (sk, pk) =



Gen(keysize) returns secret key sk and public key pk, given a se-
curity parameter keysize. The encryption algorithm ¢ = Enc(x, pk)
maps a plaintext x to a ciphertext ¢ using pk. The decryption algo-
rithm x = Dec(c, sk) reverses the encryption by sk and outputs the
plaintext x. For simplicity, we write Enc(x, pk) as [x].

We adopt the Paillier cryptosystem [18, 60], which offers two ho-
momorphic properties. The first is addition, which allows obtaining
the ciphertext of the sum given two ciphertexts, i.e., [x1] ® [x2] =
[x1 +x2]. The second is plaintext multiplication, which allows com-
puting the ciphertext of the product of given a plaintext and a
ciphertext, i.e., x; ® [x2] = [x1x2]. Since Paillier works on integers,
we use fixed-point integer representation [73] to encode floating-
point values. Moreover, we employ a threshold variant of Paillier,
where the public key pk is known to everyone while each party
only holds a partial secret key. Decrypting a ciphertext requires
inputs from a minimum (threshold) number of parties. In Falcon,
we require all parties to participate in the decryption.

Additive secret sharing scheme. Secure multiparty computation
(MPC) allows multiple parties to compute a function over their
inputs while keeping the inputs private. In this paper, we use the
additive secret sharing scheme (SSS) in MP-SPDZ [19, 36]. Specifi-
cally, a value x € Zg is additively shared among parties by creating a
secret share (x), for party P;(i € [1,m]), such that x = (]2, {x),)
mod q for a large value of q. For ease of exposition, we omit the
modular operation in the following. Given additive secret shares,
we can construct secure primitives (or building blocks), such as
addition, multiplication [6], division [11], comparison [10, 11], and
exponential [31]. The outputs are also secretly shared and can be
reconstructed with the additive secret sharing scheme.

PHE and SSS conversion. PHE allows each party to locally com-
pute necessary statistics and transfer the aggregate data to other
parties for further computations. Thus, the communication cost is
low, and it can easily scale to multiple parties as the parties can
do the local computations in parallel. However, PHE only supports
limited computations, i.e., addition and plaintext multiplication,
therefore it cannot support complex protocols. In contrast, SSS is
able to support arbitrary computations but is communication heavy,
as most SSS computations require the parties to communicate with
each other, resulting in low performance.

PHE and SSS can be converted from one to another [19, 73, 77].
On the one hand, a ciphertext [x] can be converted into (x) by
the PHE2SSS([x]) primitive: (1) each party P;(i € [1,m]) randomly
chooses a value r;, encrypts the value, and sends it to a designated
party, say Pi; (2) Py aggregates [e] = [x] @ [r1] @ - ® [rm]; 3)
all parties jointly decrypt [e] to obtain e; (4) finally, P; sets its
secret share (x); = e — r; while the other parties P;(i € [2,m])
sets (x); = —r;. On the other hand, the additive secret shares (x) =
((x)1,-+ (x),,) can be converted into a PHE ciphertext [x] via
SSS2PHE((x)) as follows. Each party P;(i € [1,m]) encrypts its
secret share (x); and broadcasts the encrypted share [x;] to all
parties. Each party aggregates the received encrypted shares via
homomorphic addition, i.e., [x] = [x1] ® - ® [xm].

2.2 Supervised Machine Learning

Given a training dataset (X,Y), where X is the training features
and Y is the ground truth labels, supervised machine learning (ML)
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aims to learn an ML model f with parameters 6 that minimizes the
following objective function:

LXY30) =~ B e (o)) + 400, ()

where ¢ is the loss function, |X| is the number of training instances,
(x,y) is an instance, A is the regularization parameter, and Q(f) is
the regularization term to avoid overfitting. Typically, Q(-) is L2
regularization | 0 Hg or L1 regularization | @] ;. To train an ML model,
a popular solution is mini-batch stochastic gradient descent (SGD),
which is an iterative method. In each iteration, we randomly sample
a batch of b instances (X b Yb) and compute the gradients of model
parameters VO = dL/90; then, we can update the parameters by
6 := 0 — aV 6, where « is the learning rate. Unless noted otherwise,
we omit the superscript b that denotes the batch.

2.3 Model-Agnostic Interpretability

Local interpretable model-agnostic explanations (LIME) [64] is one
of the most popular interpretable methods [55]. It trains a simple
and explainable model (e.g., linear regression) to approximate the
predictions of the underlying black box model. The loss function is:

explanation(x) = arg rgréicr;lL(f,g, 7x) + Q(9), 2)

where x is the instance being explained and g is the explainable
model. L measures how close the explanation that the explainable
model g produces to the prediction of the original model f (e.g.,
the trained VFL model), and the loss function is the weighted mean
square error [64]. The proximity measure 7y defines how large
the neighborhood around instance x is for the explanation. Q(g)
denotes the model complexity, which prevents g to be too complex
for explaining the prediction. To train the model g for instance
x, we sample a set of instances S = {s1,-, sn} and compute the
predictions given f, i.e., Y = f(S). Then, we weight the instances
according to mx, obtaining w = {wy, -, wn}. Finally, we train a
weighted model based on (S, Y,w) to explain the prediction.

3 FALCON OVERVIEW
3.1 System Model and Threat Model

There are m parties (or data owners) {Py, -+, Pm} with the their
private datasets {Xj, -+, Xmm } used for model training and predic-
tion. Each row in the datasets corresponds to a data instance, and
each column corresponds to a feature. Let d;(i € [1,m]) be the
number of features held by P;, respectively. Since we focus on the
model training and prediction protocols, we follow the same as-
sumption in existing VFL works [5, 25, 26, 46, 73] that the datasets
{Xj,+*, Xm } have a common identifier (e.g., national ID or phone
number) and are already aligned beforehand, for example, using pri-
vate set intersection techniques [12, 51, 62, 63]. When such common
identifiers do not exist, the parties could employ entity resolution
techniques [30, 56] to align the datasets. We consider it an orthogo-
nal direction to this paper. Without loss of generality, we assume
that P; is the active party that has the labels.

We consider the semi-honest model [15, 16, 28, 54, 73] where
every party (i.e., the adversary) follows the protocol, but it tries to in-
fer other parties’ private data based on the messages received. Like
any other party, no additional trust is assumed of the active party.
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Figure 2: Overview of Falcon system architecture.

The adversary can corrupt up to m — 1 parties. In other words, up to
m — 1 parties can collude to infer the remaining party’s private data.
Also, we make the standard cryptographic assumptions; for exam-
ple, the adversary cannot break the PHE and SSS schemes. Finally,
Falcon does not protect against attacks launched on the published
models or prediction results. Our objective is to guarantee that the
computation process does not disclose intermediate information.
Investigating techniques such as differential privacy [3, 15, 33, 35]
to protect the released outputs is a complementary direction to
Falcon, and we expect these techniques could be plugged into our
system for further privacy protection.

3.2 System Architecture

Figure 2 shows Falcon’s system architecture, which consists of three
main components: coordinator, agent, and executor.
Coordinator. The coordinator schedules jobs on the other compo-
nents of the system. It can run on a party involved in the VFL task,
or be outsourced to a third party. It does not have to be trusted,
since it only collects execution status to make scheduling decisions.
In other words, it does not see the party’s data or model parame-
ters, even in the encrypted format. This is different from other VFL
systems, such as FATE [71] and PySyft [59], where the coordinator
sees some of the party’s intermediate data. The coordinator accepts
jobs, such as model training, prediction, and interpretability com-
putation, from the users (e.g., data analysts) and returns the results.
The job specifies the parties involved, the private data location for
each party, and the job’s hyper-parameters.

The coordinator consists of a job manager and metadata. The
job manager parses a submitted job into a set of tasks and stores
them in the metadata. The task is the scheduling unit in Falcon.
Then, the job manager fetches a job and its tasks from metadata
and generates a directed acyclic graph (DAG) based on the task de-
pendencies. For each task, the job manager spawns a task manager
at the coordinator, referred to as TM master, and dispatches the
task to the agent on each party, which also spawns a corresponding
task manager, referred to as TM worker, to execute the task. Once it
finishes, the job manager schedules the next task(s) based on DAG.
Agent. The agent is local to each party. It receives a task from the
coordinator and creates one or multiple task managers (i.e., TM
workers), depending on whether the task is running in the central-
ized mode (see Sections 4 and 5) or distributed mode (see Section 6).
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Each TM worker creates an executor, manages the life-cycle of that
executor, and periodically reports the status to the TM master on
the coordinator. If the task is running in the distributed mode, one
TM worker creates an executor that runs as the parameter server,
while the others create executors that run as workers.

Executor. Each executor consists of six main modules. The crypto-
graphic primitive module includes the PHE and SSS building blocks
introduced in Section 2.1. The secure operator module supports
operations based on the primitives, for example, converting one
primitive to another. The VFL algorithm module leverages the se-
cure operators to implement privacy-preserving linear regression,
logistic regression, and multi-layer perceptron models. The model
trainer module performs model fitting, while the predictor module
computes predictions using a trained VFL model. Finally, the inter-
pretability module computes the explanation for a given prediction
result. Each executor has a storage module that maintains the data,
cryptographic keys, and trained VFL models.

4 MODEL TRAINING

In this section, we present model training in Falcon. We aim to
provide the same level of privacy protection as secure multiparty
computation (MPC) such that no intermediate information other
than the agreed output (i.e., the trained VFL model) is disclosed.
We note that MPC incurs high communication overhead, while
PHE is efficient but can only support limited computations. Our
approach is to employ a hybrid of PHE and SSS techniques. The
intuition is to let each party compute encrypted statistics using
PHE locally (e.g., the aggregated information of the batch data and
encrypted model weights), and convert the ciphertexts to SSS when
PHE cannot support a given computation. Nevertheless, integrat-
ing this hybrid strategy in SGD-based model training still need to
address two issues to improve efficiency. First, to prevent interme-
diate information leakage, we need to encode the floating-point
model parameters by fixed-point representation, encrypt and up-
date them with PHE securely. But the parameter update step may
contain ciphertexts with different encoding precision due to the
homomorphic computations. Thus, we need to handle the incompat-
ible ciphertexts for parameter updates efficiently. Second, an MLP
model often contains multiple non-linear layers that PHE does not
support. If we simply use SSS to execute the forward-propagation
and backward-propagation steps on these non-linear layers, the
computation will be degraded to the generic SSS solution, incurring
significant overheads. Thus, we need to improve the training effi-
ciency in a scalable manner. We shall discuss them in more detail
in subsequent subsections.

4.1 Linear Model Training

Linear regression. Figure 3 shows a running example of linear regres-
sion model training in Falcon with two parties. P; is the active party
that holds two features X; of an instance and its label Y, while P, is
the passive party that holds another two features X, of this instance.
Suppose P; and P, have initialized the encrypted model parameter
vectors [01] and [0;] for their own features, respectively. In this
iteration, each party P;(i € {1,2}) first computes the encrypted
local aggregation between X; and [6;] by a homomorphic matrix
multiplication operator MatMul (which will be introduced later),
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Figure 3: A linear regression model training example.

obtaining [A;]. Then, they exchange the ciphertexts and calculate
the encrypted global aggregation by [A] = [A1] @ [Az], where A is
exactly the prediction of this instance as A = A1 + Az = X101 +X20,.
Next, P; calculates the encrypted residual [R] given the encrypted
prediction [A] and the ground-truth label Y, and sends [R] to P;.
Finally, P; updates [0;] based on the homomorphic properties. In
general, linear regression model training has three stages: initial-
ization, forward propagation, and backward propagation.
Initialization. Since the m parties hold different features, we let
each party P;(i € [1,m]) initialize the encrypted parameters [6;]
w.r.t. their own features. To prevent intermediate information leak-
age, the model parameters [0] = ([01],--, [0m]) will be kept en-
crypted and updated securely during the entire training process.
Forward propagation. In each iteration of the training, the active
party P; randomly samples a batch of b instance IDs and broadcasts
it to passive parties. Each party P; extracts the corresponding batch
instances. We abuse the notation X; to denote the batch instances.
The predictions of this batch, i.e., X, can be rewritten as follows:

X0 = (X1 || Xm) x (01] | 0m)" = 21 X1 ()
Therefore, each party first performs local aggregation through the
MatMul operator below between Xl.bXdi and [0;]%.

Definition 4.1. Homomorphic matrix multiplication operator
MatMul(U, [V]) between a plaintext matrix U"*® and a cipher-
text matrix [V]***. Let u;(j € [1,r]) be a row vector in U and
[vk](k € [1,t]) be a column vector in V, which have the same
dimension s. Let [W]"* be the multiplication result, then each
element [W; ;] is the dot product of u; and [v)], which equals
(uj10fvj1])@ 0 (ujs0[v)s]) = [uj10j1++ujsvjs] = [ujovr].

Let [A;] € R”*! be the encrypted local aggregation result. Each
party P; then broadcasts its [ A;] to all parties so that each party can
homomorphically aggregate them, obtaining [A] = [A1 ]®--®[Am],
which is the encrypted predictions. P; also extracts the ground-
truth labels Y to compute the instance-wise residual [R] of this
batch by [Y] ® ([A] ® (-1)), and broadcasts [R] to passive parties.
Backward propagation. Given the encrypted residuals, each party
P; can update its encrypted parameters, i.e.,

[16:] = [6:] - (> 0 ([Rj] @) + 2 [ o

00;

5 D@

2475

where x; is an instance in X; and [R}] is its encrypted residual.
Q

For the gradient of the regularization term [ 50, ], there are two
cases. First, for L2 regularization, each party can directly compute
homomorphic multiplication 24 ® [0;]. Second, for L1 regulariza-
tion, each party needs to compute the signs of [6;], which cannot
be directly accomplished as PHE does not support comparison.
Thus, the parties need to jointly convert it into secret shares by
PHE2SSS([0;]), compute secure comparison, and convert the signs
back to ciphertext using SSS2PHE((signs})).

A noteworthy aspect is that the precision of the ciphertexts in
Eqn 4 may not be aligned. Note that the precision of two ciphertexts
needs to be the same for homomorphic addition, and the precision
of a homomorphic multiplication is the sum of the precision of the
input plaintext and ciphertext. Since we use fixed-point represen-
tation in PHE, we transform the plaintext values into fixed-point
integers for homomorphic multiplications. But the precision of the
resulted ciphertexts increases by the precision of plaintext values,
making them not aligned with [6;] in Eqn 4. One solution is to
truncate the precision to the same level using a PrecTrunc operator
(defined as follows) in each iteration.

Definition 4.2. PHE ciphertext precision truncation operator
PrecTrunc(prec,, prec,, [u]), where prec, is the current precision
and prec, is the target precision. The parties first convert [u] into se-
cret shares (u) using PHE2SSS([u]), and then invoke SSS2PHE((u))
to re-encrypt it into ciphertext [u] with precision prec,.

However, this operator requires threshold decryption, which
is computational expensive. Instead, we align the precision by in-
creasing the precision of each ciphertext to the largest precision in
Eqn 4. This can be achieved by multiplying a plaintext 1.0 with the
designated precision, which is lightweight and can be executed lo-
cally. We truncate the precision only when it reaches the maximum
precision allowed by the ciphertext to reduce the overheads.
Logistic regression. The training process for logistic regression mod-
els is similar to linear regression training, except that the parties
need to further compute the non-linear Sigmoid function h(-) on
the global aggregation [A]. To do so, the parties convert [A] into
secret shares (A) and compute h({A)) with SSS. Afterward, the
parties convert it back to PHE for the rest computations similarly.

4.2 Multi-layer Perceptron Training

For MLP model training, a straightforward solution is: the parties
compute the encrypted inputs of the first hidden layer, convert them
into secret shares, execute all the forward and backward operations
with SSS, and update the encrypted model parameters. However,
it degrades to a generic SSS protocol as most computations are
executed by SSS. To mitigate this problem, we propose a layer-wise
MLP training method, in which the parties use SSS to compute the
layer-wise activation function and output function, while PHE does
the encrypted gradient computation and parameter updates. This
provides a flexible and efficient solution. The training process also
consists of initialization, forward and backward propagation stages.
Figure 4 shows an example with three layers on two parties.

Initialization. Let L be the number of layers in the MLP model.
The parties first initialize the encrypted model parameters [0]

([9(1)], [G(L_l)]), where [9(1)] is the parameters of layer [ + 1,
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Figure 4: A two-party MLP model training example.

and [ € [1,L — 1]. Specifically, we let each party P;(i € [1,m])
initialize [951)] w.r.t. its features for the first hidden layer. The
active party initializes the parameters of the remaining layers, say
[0(2)] in the example, and broadcasts them to all passive parties.
Forward propagation. We differentiate two types of layers in for-
ward propagation: the first hidden layer and the remaining layers.
First, for the input to neurons in the first hidden layer, it is calculated
based on [9(1)] and the input layer X. Since X is distributed on
m parties, each party P; computes MatMul(X;, [051)]), the partial
aggregation w.r.t. its own features. Next, the parties jointly aggre-
gate these partial results (similar to that in linear regression model
training) to get the encrypted input to the first hidden layer, say
[A(l) ]. For example, the encrypted input in Figure 4 is:

[AD] = MatMul(x;, [6{]) @ MatMul(X,, [857]).  (5)

Note that the hidden layer often contains non-linear activation
functions (e.g., Sigmoid or ReLU), which PHE cannot compute.
Hence, we convert the ciphertexts into secret shares (A(l)) and
calculate (Z(l)) = h((A(l) )), where (Z(l)) is the secretly shared
output of the first hidden layer and h(-) denotes the activation
function. We keep this output in the SSS form instead of converting
it back to PHE ciphertexts for easier calculation of the following
forward and backward propagation steps.

Second, for the remaining layers, the parties can jointly compute
the input given the encrypted parameters [9(1) ] and secretly shared
output of the previous layer (Z(l_l)) for each layer [ € [2,L - 1].
Specifically, we define the following operator.

Definition 4.3. Homomorphic matrix share multiplication oper-
ator MatShareMul({U), [V]) between a ciphertext matrix [V]**
and a secretly shared matrix (U)"®, where each party P; (i € [1,m])
holds a matrix share (U); in the plaintext form. Thus, P; first com-
putes [(W);] = MatMul({U),, [V]) to obtain a partial ciphertext
matrix. Then, each party P; sends [(W);] to a designated party,
which aggregates them, ie,, [(W); @ - & (W),,] = [W].

Let [A(l)] = MatShareMuI((Z(lfl)), [9(1)]) be the resulted en-
crypted input to layer [ + 1. Similarly, the parties can convert it into
secret shares for activation function computations until reaching

the output layer. Let (Z (L_l)) be the secretly shared predictions.
The parties convert it back into PHE ciphertexts [Z (L_l)].
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Backward propagation. Now we compute the encrypted back-
propagation error and gradients w.r.t. the output layer and the
hidden layers. There are three cases. First, if the current layer is the
output layer, the back-propagation error is the encrypted residual
between the encrypted predictions and ground-truth labels, i.e.,
[E(L_l)] =[Y]e& ([Z(L_l)] ® (-1)). Given this error and the
secretly shared input to this layer, the parties can calculate the
encrypted gradient according to the plaintext update rules [7].

[vo™ V] = MatShareMul((zE2), [EE"DTT). (6)

Second, if the current layer is a hidden layer but not the first hid-

den layer, i.e., when I € [3, L — 1], the parties compute the encrypted
back-propagation error by:

[ED] = MatShareMul(ED), [60]T) o (2D

deriv

y ()

where (E(l)> is the back-propagation error of the next layer com-

puted by PHE2SSS( [E(l) )], and (Zéir_ull)) is the secretly shared de-
rivative of the current layer, which can be computed together with

(Z(l_l)) using SSS and cached in forward propagation. Moreover,
the operation ® denotes the element-wise multiplication between
a ciphertext matrix and a secretly shared matrix, which can be
computed by an element-wise homomorphic multiplication and a
global aggregation via element-wise homomorphic addition among
parties. The encrypted gradient calculation is similar to Eqn 6.

Third, if the current layer is the first hidden layer, the parties also
use Eqn 7 to compute the back-propagation error. But the encrypted
gradient calculation is different because the input to the first hidden
layer is the original data held by m parties. Therefore, each party
P; executes the encrypted gradient as follows:

(v = MatMul(x], [ED]). (8)
In Figure 4, the parties first calculate the error and the gradient
of the output layer by [E(Z)] =[Y]e [—Z(Z)] and [VO(Z)] =
MatShareMul((Z(l) ), [E(z)]T). As there is only one hidden layer,
they compute [E(l)] = MatShareMuI((E(z)), [0(2)]) o} (Z(l) ),

deriv/’
and then each party can obtain its encrypted gradient by Eqn 8.
After back-propagation, the regularization can be calculated simi-
larly to that in the linear model training, and the encrypted model

parameters [ 0] can be updated accordingly (see Section 4.1).

4.3 Discussion

It can be seen that the messages exchanged between the parties
during training are in either ciphertext or secret shares. Given the
security of PHE and SSS, it follows that there is no leakage during
training. Therefore, Falcon provides a stronger privacy protection
level compared to FATE [71] and PySyft [59], because they require
the parties to reveal plaintext information during training. More-
over, since Falcon employs a general hybrid framework based on
PHE and SSS, it tolerates up to m — 1 corrupted parties, i.e., each
party’s data privacy is broken only if all m parties are corrupted. In
contrast, SecureML [54] and PaddleFL [5] are built on two-party
or three-party protocols [22, 53]. That is, each party’s data is out-
sourced to two or three non-colluding external parties. Therefore,
their assumption is stronger.
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5 PREDICTION AND INTERPRETABILITY

Given a trained VFL model, the predictions can be computed fol-
lowing the same forward-propagation step as in model training and
then decrypting the outputs. However, as discussed in Section 1,
the prediction itself may not be sufficient for the active party to
make final decisions, where interpretability is needed to provide
more insights into how the prediction is generated.

We focus on model-agnostic interpretability in Falcon so that it
can work with any VFL model. We note that existing interpretable
methods, such as LIME [64], cannot be directly applied to the VFL
setting. The reason is that the calculation involves features held by
m participating parties in multiple stages, which cannot be shared
due to the privacy requirement. A feasible solution is to adopt the
PHE and SSS techniques to protect each stage. However, two issues
need to be solved. First, we shall carefully protect the output of each
stage since it is calculated on the parties’ joint sensitive data. To do
so0, we can ensure that the outputs of the intermediate stages are in a
secure format. Nevertheless, it brings new difficulties to the follow-
ing calculations due to the input variations. Thus, we shall design
the VFL algorithms in the following stages to efficiently accommo-
date these secure-format inputs. Second, since the interpretability
calculation entails expensive cryptographic computations in multi-
ple stages, we shall make it flexible so that it is easier to optimize
the execution time and extend with new algorithms.

5.1 Privacy-Preserving Interpretability in VFL

We first formulate the privacy-preserving interpretability problem
under VFL. Suppose the parties have already built a VFL model
f. In the model prediction stage, the active party P; broadcasts a
predicting data instance ID, then all the parties jointly compute the
model prediction y = f(x), where x = (x1,---,xm) is the predict-
ing instance and x; denotes the feature values held by P;. When
f is a classification model, y = (y', - y°) is the probability vec-
tor for being in each class, and c is the number of classes. When
f is a regression model, y is a single value. Interpretability is de-
fined as an explanation e for the prediction y. The active party
uses this explanation to understand how the prediction is derived.
Similarly, we require no additional information leakage during the
computation of e. More formally, the interpretability computation
takes {f,x,y} as an input and returns e, while the intermediate
information calculated on the parties’ data is protected.

5.2 Falcon-INP Framework

To solve the problem, we design a flexible and extensible frame-
work Falcon-INP, which consists of five stages: instance sampling,
original model prediction, instance weighing, feature selection, and
interpretable model training, as illustrated in Figure 5. Each stage
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is defined as a task in Falcon (see Section 3.2) and can be easily
extended with new algorithms. We detail each stage as follows.
Instance sampling. To explain a prediction y = (y', - y°) of an
instance x = {x1, -, xm } in VFL, the parties first sample instances
for training the interpretable model. We let P; sample a dataset S;
(s, sh} with n instances, where s;‘- = {5;1 s;.,di} (je[Ln]),
and d; is the number of local features held by P;. For example,
regarding LIME, P; samples n instances with d; features around
the predicting instance x;. Then, the parties organize the sampled
instances S = {Sy,-, Sm} in a vertically partitioned manner. Note
that each party’s local instance set S; implicitly contains the statistic
information of its private data of x;, we therefore need to protect
S; during the calculation process to uphold each party’s privacy.
Original model prediction. In this stage, the parties compute the
predictions Y = {y,, -, y,,} based on S and the trained VFL model
f. In Falcon-INP, we treat f as a blackbox and invoke its secure
prediction API for the calculation. For example, f can be the linear
and MLP models presented in Section 4, or other VFL models (e.g.,
in [54, 73]) as long as they provide a prediction APL This design
enables our framework to easily support the VFL models trained
by other systems and provide explanations. We assume that the
VFL prediction process is secure such that it satisfies our privacy
requirement in Section 5.1. However, privacy risks may exist if we
reveal the plaintext predictions Y to the parties. For instance, the
active party can infer the passive parties’ feature values with high
accuracy if given the plaintext model predictions [46], and thus sen-
sitive information may be disclosed. To mitigate possible leakages,
we require the calculated predictions to be in the encrypted format,
say [Y] = {[y;].--- [y,]} as the output of this stage.

Instance weighing. Next, the parties compute the proximity of the
sampled instances S from the predicting instance x, and derive the
instance weights, denoted by w. Falcon-INP supports the Euclidean
distance for proximity measurement 7 and Exponential kernel
function «. For each instance s € S, where s = (s1,-,sm) and
si(i € [1,m]) is held by party P;, each party first computes the

square of Euclidean-norm a; = |x; — z; ||§ locally. Afterward, the
parties provide their partial results ay, ---, am as secret shares, and
compute the instance weight (w) = exp(—%ﬁf"))z) using SSS,
where ¢ is the kernel width, and exp is the secure exponential
function. We require that these instance weights are also protected
and keep them in the secret-share format, say (w).
Feature selection. Given the sampled instances S, encrypted pre-
dictions [Y], and secretly shared weights (w), the parties can ex-
plain the prediction for each label k € [1, c], where ¢ is the number
of classes for classification and is one for regression. For a given k to
be explained, the parties first extract the corresponding encrypted
predictions [Yk] = {[ylf], e [y],i]} from [Y], i.e., the probability of
predicting class k in classification. We abuse [Y] to denote [Y¥]
in the following for simplicity. Then, an optional stage is feature
selection to explain several significant features, say dge| features.
We currently support a simple but effective method based on
the weighted Pearson correlation coefficient (WPCC). The plaintext
WPCC between a feature F and the label Y can be calculated by:

Sy we(ye — py) (ft — pr) o
VI wi(fe — pp) 2/ Sy we(ye — py )?

p(F.Y;w) =




_ X wa oy = e we(ar—pa)(be=pp)
- Zé[i‘f"tz and cov(A, Byw) = =0 o L are

the weighted mean of a vector and weighted covariance between
two vectors, respectively. Note that the instance weight w; and the
prediction y; are in secret formats. One straightforward method
is to simply utilize the hybrid framework of PHE (e.g., for local
statistics computation) and SSS (e.g., for ciphertext multiplication)
in Section 4. However, it results in frequent conversion back and
forth, which is undesirable as the conversion operations are costly.
Specifically, it needs O(dn) conversions to calculate Eqn 9, where d
and n are the numbers of total features and instances, respectively.

We devise an optimized method for the WPCC-based feature se-
lection. The basic idea is to identify the common terms used in Eqn 9
for different features, and reuse the results in the following execu-
tions. In particular, we observe that the element-wise we (y: — iy )
in Eqn 9 can be reused for different features. We first calculate the
MatShareMul ({w),[Y])

Z?:t ( Wi )

[uy ], where the dimensions of the inputs in the MatShareMul oper-
ator are 1 x n and n x 1, respectively. Then, we compute the element-
wise term above using (r¢) = PHE2SSS(MatShareMul ({w: ), [y¢] -
[uy])) for t € [1,n]. Let (r) be the resulting vector, which only
needs to be computed once, and we can calculate the second item of
the denominator in Eqn 9 by (g2) = MatMulShare({r), [Y] - [uy])-

Next, we calculate feature-dependent items. For each feature

F, we compute [pp] = SSSZPHE(%M
t=1

where iq

and convert it to

weighted mean by (uy) =

wt[) ), and [;112;] as an
auxiliary term to reduce the computations later. Afterward, we
obtain the numerator by (p) = PHE2SSS(MatShareMul({r),[F] -
[#r])) in Eqn 9. Then, we compute element-wise values [v¢]
(fi = [or])* = ([ff] ® (-2fi) ® [ur] @ [1p]), where fi is the
plaintext feature value held by each party and [;112:] is cached in the
previous step. Let [v] be the resulting vector. The parties can obtain
(q1) = PHE2SSS(MatShareMul({w), [v])) as well as the WPCC of
this feature by (p)/(v/{g1)v/{g2)).

Finally, the parties can sort and compare the WPCC values using
SSS [73] and select the top-ds| features with the largest ones. Each
party P; then filters its dataset S; based on the selected features
belonging to itself. Notice that the proposed method requires only
O(d + n) conversion operations, which is much more efficient.
Interpretable model training. Falcon-INP uses linear regression
as the interpretable model. Since both the predictions and instance
weights are in secure formats, the linear regression model training
algorithm in Section 4.1 is not applicable. Thus, we modify it to
accommodate the input changes, i.e., [Y] and (w). For [Y], we can
directly incorporate it when calculating the encrypted residual us-
ing the global aggregation [A] based on homomorphic properties.
For (w), we use the MatShareMul operator to calculate the multipli-
cation between (w;) and [R;] ® x; in Eqn 4. The rest computations
are the same, and the trained model parameters are the explanation.

5.3 Discussion

Similar to model training in Section 4, Falcon-INP ensures that only
the final explanation is disclosed as the intermediate information
computed on the parties’ data is in secure formats (i.e., PHE or SSS).
Note that the feature selection stage reveals the selected feature
IDs, which are part of the final explanation. Therefore, the privacy
guarantee in Section 5.1 is satisfied.

2478

Active party Passive parties

parallelism factor g parallelism factor g

TM Worker

TM Worker

4. aggregate [0;]

4. aggregate [6;]

N | {IDy, ..., IDg}

PS Executor PS Executor

1. PS broadcast 1. PS broadcast

s

>

L 10u]
residual [Ry] | ! IT

residual [R,] 1 {
/I \\

Worker Executor 1

ID, 3. upload

[0iq] 3. upload

(N
e N,

i
|
I
'
'
H
H { Worker Executor 1
'
'
'
I
'
.

Worker Executor q Worker Executor q

2. execute

2. execute

Figure 6: The intra-party PS architecture in Falcon.

6 OPTIMIZATIONS
6.1 Data Parallelism

We employ the parameter server (PS) architecture [37] within each
party for data parallelism. However, we need to ensure that the
PS and workers on each party match with the corresponding PS
and workers on other parties during the execution. This is because
the parties conduct a number of SSS operations, which require the
exchanged information to be consistent with their private shares.
Figure 6 shows the PS architecture in Falcon. Given a task, each
party P;(i € [1,m]) creates a PS and a set of workers, each of
which runs a Falcon executor (see Section 3.2) that executes the
task. Specifically, the coordinator determines a parallelism factor g
for a task, i.e., the number of workers to be created. It then informs
the agent on each party to start a PS and q workers. Let PS; and W; ;
denote the PS and the j-th worker of party P;, respectively, where
i€[1l,m]and j€[1,q]. In addition to the inter-party peer-to-peer
(P2P) communication among PSs (i.e., {PSy, -, PSm }) and among
workers (i.e., {Wy, ottt Wi, j }) from different parties, there are intra-
party communication between PS; and each worker W ; (j € [1,4]).

Take the distributed linear model training as an example. In
each iteration, the active party’s PS; selects a batch and partitions
the instance IDs into g subsets, say ID = {IDy, -, IDg}. Next, PS;
broadcasts them to the passive parties’ PSs, and each PS; (i € [1,m])
distributes a subset ID; to each worker Wj ;. This ensures that each
group of workers across multiple parties uses the same instances.
Then, each group of workers securely executes the forward and
backward computations, and obtains the updated model parameters
[6;,;]. Afterward, each worker uploads [6; ;] to PS; for aggregation.
Finally, PS; obtains [0;] and broadcasts it to its workers. The dis-
tributed workflow of the stages in Falcon-INP is similar, except for
WPCC-based feature selection, which needs feature-level partition
as each WPCC calculation requires all sampled instances.

6.2 Auto-Parallelism in Falcon-INP

Now we introduce an auto-parallelism method that finds effective
parallelism factors for the stages in Falcon-INP to reduce the overall
computation time under resource constraints.

Suppose we can create at most Q containers (including PS and
workers) for a submitted job. We note that the original model pre-
diction and instance weighing stages are independent, and there-
fore can be executed in parallel. Similarly, when there are multiple



Table 1: Evaluation of training accuracy

Dataset Energy | Bike Bank | Credit | News | Connect
Falcon-LR 0.0869 0.0363 | 90.49% | 78.56% - -
Falcon-MLP 0.0845 0.0355 | 90.49% | 78.57% | 42.28% 71.08%
NP-LR 0.0869 0.0341 | 90.49% | 78.56% - -
NP-MLP 0.0844 0.0358 | 90.49% | 78.57% | 42.30% 71.14%

Table 2: Evaluation of Falcon-INP explanation results

Dataset Energy Bike Bank Credit News | Connect
Weighing 6.4e-10 | 3.1e-09 | 5.2e-10 | 9.5e-09 | 1.7e-07 3.6e-09
Feature sel. 2.2e-07 | 2.9e-07 | 2.1e-07 | 1.5e-07 | 9.1e-08 1.9e-09
Falcon (LR-L1) | 7.1e-05 | 3.1e-05 | 3.7e-05 | 4.7e-05 | 5.9e-04 | 5.2e-05
Falcon (LR-L2) | 1.5e-09 | 5.2e-10 | 5.6e-09 | 4.4e-09 | 1.8e-09 2.1e-09

classes to be explained, their computation can be done in parallel
(see Figure 5). Also, at least one worker needs to be allocated to each
stage and each label. Let t = (1, 3, 3, 14, t5) be the execution time of
the five stages without parallelism, and q = (q1. g2, g3, g4, g5 ) be the
parallelism factors of the corresponding stages, respectively. We set
q1 = 1 by default. We find that the speedup cannot increase linearly
with the number of workers due to communication overhead under
data parallelism; thus, we estimate the decay of each stage with sep-
arated functions. Let o = (07, 03, 03, 04, 05) be the decay functions,
where 0;(i € [1,5]) takes g; as input and outputs an inverse of the
speedup ratio. Since the cryptographic computations are relatively
stable, we can estimate the time ¢ and fit the decay functions by pro-
filing operations (e.g., execute dummy computations). The profiling
is invoked before the interpretability calculation service is enabled
for handling new prediction requests. Given a trained original VFL
model f, the profiling only needs to be executed once if the number
of sampled instances n, the number of explained features dg), and
the batch size b for interpretable model training are fixed. Finally,
we define the objective function w.r.t. execution time as follows.

T = t; + max {l’zo’z(qz), t30'3(613)} + t40'4(q4) + t505(q5)

3 5
1+ (g +algi) + 0 clgi +a(gi) < Q,
Vgie€q, a(qi)=0ifg; =1, a(q;) = 1 otherwise,
Vgieq,1<q; <Q.
The «(+) function checks whether a parallelism factor g; is 1. If so,

no PS will be created. Eqn 10 is a mixed integer nonlinear program-
ming problem; we use Scipy-Optimize [65] to solve it.

min
q

s.t. (10)

7 PERFORMANCE EVALUATION
7.1 Methodology

Implementation. We implemented Falcon in 27K lines of code
(LoC). It consists of 9K LoC in Golang for the coordinator and
agent, 17K LoC in C++ for the executor, and 1K LoC in MP-SPDZ
for SSS programs. We use libhcs [41] for the PHE primitives and
MP-SPDZ [20] for SSS programs.

Experimental setup. We conduct experiments on Amazon EC2 [4]
using c5.4xlarge instances. The instances are created in a local area
network (LAN) cluster in Northern Virginia. Each machine has 16
vCPUs and 32GB memory, running Ubuntu 20.04 LTS. We set the
keysize of PHE as 2048 bits and the default security parameter of
SSS programs as 128 bits. We use 16 bits to encode the floating-point
values by default. Besides, the default number of parties is 3 unless
specified otherwise.
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Datasets. We use six real-world datasets: (i) Energy dataset, with
19735 samples and 29 features for regression; (ii) Bike dataset, with
17389 samples and 14 features for regression; (iii) Bank dataset,
with 4521 samples and 17 features with two classes; (iv) Credit Card
dataset, with 30000 samples and 23 features with two classes; (v)
News dataset, with 39797 samples and 59 features with five classes;
and (vi) Connect-4 dataset, with 67557 samples and 42 features with
three classes. In addition, we generate synthetic datasets by varying
the number of parties (m), the number of features per party (d'), the
number of samples (n), and the number of classes (c). We normalize
the data into [0,1] to transform features into the same scale.
Baselines. We compare Falcon with four sets of baselines:

e Non-private (NP) algorithm is used to evaluate the accuracy of
the trained model and explanation and the efficiency. We imple-
ment it based on the same logic of Falcon’s secure algorithms.
MP-SPDZ [20] is an MPC library that supports various secure
protocols. We use its SSS protocol to implement training and
interpretability calculation for efficiency evaluation.

FATE [71] is an industrial-grade federated learning system devel-
oped by WeBank. We adopt its logistic regression model training
algorithm for efficiency comparison.

SecureML [54] is a secure ML system based on secure two-party
computation. Since the system is not open-sourced, we imple-
ment its secure logistic regression algorithm for comparison.
Average-Parallelism is a baseline method for generating paral-
lelism factors. It assigns one container to the instance sampling
stage and equally splits the remaining containers to other stages.

Metrics. For model accuracy, we use prediction accuracy for clas-
sification tasks and mean square error (MSE) for regression tasks.
To evaluate Falcon-INP’s effectiveness, we measure the MSE of
each stage between the results computed by Falcon-INP and NP
algorithms. For efficiency, we measure the total running time. The
training time reported is for one epoch unless noted otherwise.

7.2 Accuracy

Model accuracy. We train the LR (linear regression and logistic
regression for regression and classification tasks, respectively) and
MLP models on the six datasets, and compare their performance
with those trained with NP algorithms. Table 1 reports the compar-
ison results. Since we use cryptographic primitives (i.e., PHE and
SSS) to build our training algorithms, the performance is compara-
ble to the NP algorithms. There is a slight loss of accuracy due to
the precision loss caused by fixed-point representation. Note that
the MLP model accuracy on News is low because this classification
task is relatively complex.
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Figure 9: The efficiency evaluation on real-world datasets.
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Figure 10: Training and prediction time w.r.t. parameters.

Interpretability accuracy. We use the VFL model trained in the
model training stage as f in Eqn 2 to compute predictions. We
employ linear regression with L1/L2 regularization (LR-L1/LR-L2)
for training the interpretable models. Table 2 summarizes the MSEs
of each stage’s outputs between Falcon-INP and NP. The MSEs of
all the stages are small, demonstrating that the privacy-preserving
calculations are accurate. Note that the MSE of LR with L2 regular-
ization is smaller than that of LR with L1 regularization. The reason
is that, unlike L1 regularization which requires parties to convert
each encrypted parameter [6;] into secret shares for calculating
the sign in each iteration, L2 regularization allows the parties to
directly calculate the encrypted gradient (i.e., 24 ® [6;]) and update
the encrypted parameter. Conversion is only required when the
precision reaches the maximum allowed by PHE. Thus, the preci-
sion loss of L1 regularization has a larger impact on the trained
parameters, particularly when the parameters tend to be close to
zero, as the sign may be mistakenly calculated, e.g., leading the
regularized gradient to be [A] while the actual gradient is [-A].

To further investigate the impact of fixed-point encoding pre-
cision on interpretability accuracy, we conduct experiments with
different precisions {8, 12, 16, 20, 24}. Figure 7 presents the MSEs of
the interpretable models (with LR-L1 and LR-L2) between Falcon-
INP and NP on Energy and Credit. We see that the MSEs of both
LR-L1 and LR-L2 decrease as the precision level increases. This is
expected because, with higher encoding precision, the effect of the
truncation loss is reduced, resulting in higher accuracy.

We also examine how the distribution of important features
among parties affects interpretability accuracy. We use three parti-
tion methods to split the important features: random, balanced (the
important features are evenly distributed among parties), and un-
balanced (e.g., party 1 holds the most important features). Figure 8
compares the results of Falcon-INP and NP w.r.t. LR-L2, with vary-
ing numbers of explained features dy. on the Energy dataset. The
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Figure 11: Falcon-INP efficiency evaluation.

MSEs of the three methods are similar (around 1e-8). The rationale
is that the feature distribution has little effect on the aggregation
result and the model parameters. Additionally, the MSEs slightly
decrease as dg increases, as including more features with smaller
parameter values leads to lower MSEs of all explained features.

7.3 Efficiency

7.3.1  Model Training and Prediction. We first evaluate the model
training and prediction efficiency of Falcon in the centralized mode.
Evaluation on real-world datasets. Figure 9a reports the train-
ing time of Falcon-LR and Falcon-MLP. For the Energy and Bike
datasets, Falcon-LR indicates linear regression, while for others, it
indicates logistic regression. For Falcon-MLP models, we use one
hidden layer with eight neurons.

There are three observations. First, Falcon-MLP is much slower
than Falcon-LR as the MLP model consists of more neurons and
therefore requires more computations. Second, Falcon-LR with L2
regularization is slightly faster than Falcon-LR with L1 regulariza-
tion. The reason is that Falcon-LR (L1) relies on the SSS program
to check whether a parameter is larger than 0, incurring additional
conversions and computations, whereas Falcon-LR (L2) training
does not need this step. Third, training Falcon-MLP with ReLU is
faster than that with Sigmoid because the secure computation of
the Sigmoid function (requiring exponential calculations) is more
complex than the ReLU function (requiring simple comparison).

Figure 9b summarizes the prediction time per sample of the
trained models. We see that the prediction time of linear regression
models is the fastest as each party only needs to compute a local dot
product operation with PHE, and the parties aggregate the cipher-
texts. For example, it takes about 5.1ms to predict a sample on Bike.
In comparison, the logistic regression model prediction requires
PHE2SSS conversions and calculates the logistic function using
secure operations, incurring a longer prediction time (e.g., around
43.3ms on Credit). Also, Falcon-MLP models take much longer to
compute the prediction, and Falcon-MLP (ReLU) is relatively faster
than Falcon-MLP (Sigmoid) due to the reasons explained above.
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Evaluation on synthetic datasets. We further investigate the
effects of the party number m and the feature number per party
d’ on the efficiency. We generate a set of synthetic datasets with
two classes by varying the number of participating parties m
{2,3,4,5,6} and the number of features each party holds d e
{10, 20, 30,40, 50}. Figure 10a shows that the training and predic-
tion time increases slightly when m grows for both models as it
requires more communications for SSS executions. Nevertheless,
the increased time is insignificant, indicating that Falcon can scale
well with more parties. Similarly, Figure 10b evidences that the time
is stable when d’ increases. This is because d’ only affects each
party’s local aggregation and encrypted parameter update, which
are less dominant operations in the overall execution time.

7.3.2  Interpretability Computation. Next, we evaluate Falcon-INP’s
efficiency in the centralized mode. We generate synthetic datasets
by varying the number of features per party d’ € {10, 20, 30,40, 50},
the number of sampled instances n € {2000, 4000, 6000, 8000, 10000},
the number of explained features dg) € {10, 20,30, 40,50}, and the
number of classes ¢ € {1,2,4,6,8}. We use these datasets as sam-
pled instances S and report the execution time of instance weighing,
feature selection, and interpretable training with ten epochs.
Effect of feature number. Figure 11a shows the execution time
for varying d’. The execution time increases linearly with d’. We
observe that the time of instance weighing and interpretable model
training stages are stable when d’ increases. This is because the
most time-consuming part in instance weighing is the distance and
kernel calculation using SSS, which is on the aggregated statistics.
Meanwhile, the training time is roughly the same as they only train
on dg features. The feature selection time is dominant as d’ grows
since it needs to compute WPCC for more features, and each WPCC
calculation involves all instances, consuming more time.

Effect of sample number. Figure 11b shows the execution time
for varying n, which goes up linearly when n increases. Specifically,
we can see that the three stages have a similar trend when n grows,
because they need to handle more sampled instances for calculating
weights, WPCC, and iterative model training.
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Effect of explained feature number. Figure 11c shows the exe-
cution time for varying dg.. Note that dg only affects the inter-
pretable model training stage, and it is a minor factor in the LR
model training, as discussed in Section 7.3.1. Thus, the execution
time only increases slightly when d increases.

Effect of class number. Figure 11d shows the execution time for
varying c¢. We observe that the execution time increases signifi-
cantly with ¢, because we need to execute the feature selection
and interpretable model training stages for each class label. In the
centralized mode, we execute the stages for different classes se-
quentially; therefore, the execution time doubles when ¢ doubles.

7.3.3 Baseline Comparison. We compare Falcon with four base-
lines: MP-SPDZ [36], FATE [71], SecureML [54], and NP. We do not
compare to SplitNN-based solutions (PySyft and FATE MLP), as
they disclose too much intermediate information during training.
Similarly, we do not compare to PaddleFL, which uses ABY3, as
it assumes an honest majority [53] setting (i.e., two of the three
servers are honest), relaxing the security to achieve performance.
Model training. We use synthetic datasets with the number of
parties m € {2,3,4,5,6} and the number of features per party d’ €
{10, 20, 30,40,50}. We set the number of instances n = 10000.
Figures 12a and 12b show the time comparison for varying m
w.r.t. LR and MLP models, respectively. There are four main obser-
vations. First, NP algorithms are efficient (less than 3 seconds) in
all experiments, but it sacrifices data privacy. Second, when m = 2,
Falcon’s execution time is comparable to those of SecureML and
MP-SPDZ, with SecureML being slightly faster for the LR model.
This is because two-party MPC is relatively efficient, and SecureML
uses a lightweight piecewise function approximation of the logis-
tic function, while PHE operations in Falcon are time-intensive.
Third, as m increases, MP-SPDZ and SecureML experience signifi-
cant time increases compared to Falcon. This is expected because
Falcon executes many computations locally, while MP-SPDZ and
SecureML require more communication rounds, resulting in lower
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Table 3: Parallelism strategy comparison

Q 10 15 20 25 30 35 40
Average | 1162.7 | 1003.7 | 736.3 | 594.2 | 565.9 | 505.5 | 473.4
Auto 1073.6 816.1 673.1 | 563.1 | 512.1 | 472.4 | 4453

performance. Falcon achieves up to 2.5x and 1.7x speedup over
MP-SPDZ and SecureML for the LR model, and up to 4.5x speedup
over MP-SPDZ for the MLP model. Fourth, Falcon outperforms
FATE-LR, which also uses PHE for privacy, by up to 1.4x, due to
its use of the C++-implemented libhcs library for Paillier instead
of the Python-based Paillier library used by FATE. Specifically, a
micro-benchmark (see Figure 13) comparing the two libraries for en-
cryption, homomorphic addition, and homomorphic multiplication
shows that libhcs-Paillier is up to 1.56x, 2.09x, and 2.12x faster than
Python-Paillier for the three operators. Moreover, Falcon provides
stronger privacy protection, while FATE allows parties to decrypt
some information for easier computations.

Figures 12c and 12d show the comparison for varying d’. Falcon
is stable as d’ only affects each party’s local computations, a minor
factor in execution time. Specifically, Falcon achieves up to 2.7x,
2.4x, and 1.7x speedup over MP-SPDZ, SecureML, and FATE for LR,
and up to 4.9x speedup over MP-SPDZ for MLP.

Interpretability calculation comparison. We compare Falcon-
INP with the MP-SPDZ and NP baselines. We consider the computa-
tion for one class label, and measure the time of the instance weigh-
ing and interpretable model training stages. Figure 14 shows the
comparison by varying d’ and n. Similarly, NP’s time is very small
due to no privacy protection. The execution time of Falcon-INP
slightly increases as d’ increases, while that of MP-SPDZ increases
significantly, which is similar to the comparison in Section 7.3.1.
Besides, when n increases, both Falcon-INP and MP-SPDZ have
longer execution times, since each stage handles more sampled in-
stances. In all cases, Falcon-INP is more efficient and is up to 4.49x
and 2.95x compared to MP-SPDZ for varying d’ and n, respectively.

7.3.4 Distributed Data Parallelism. Finally, we evaluate the effi-
ciency of our optimizations in Section 6. Figure 15a-15b present the
execution time w.r.t. the different number of workers g € [1, 8] for
Falcon training and Falcon-INP stages, respectively. When q = 1, the
execution is the same as in the centralized mode. In Figure 15a, we
observe that Falcon-MLP results in a higher speedup than Falcon-LR
on both Bike and Credit. The reason is that Falcon-LR is already fast,
and there are communication and computation overheads in the
distributed mode, which dominate the execution time, leading to a
lower speedup. For Falcon-INP stages in Figure 15b, we can see that
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the improvements for the original model prediction and instance
weighing stages are more pronounced. For example, when q = 8,
the speedup of these two stages are 5.055x and 4.973x, while the
feature selection and model training stages are 2.872x and 1.921x,
respectively. Similarly, this is due to the overheads introduced.

Table 3 compares the auto-parallelism method with the average-
parallelism baseline w.r.t. the different number of total containers
Q € {10, 15,20, 25,30, 35,40}. The time reported is the estimation
of the total execution time of all five stages. We use the logistic
regression model for prediction. Given n = 4000, dg) = 20, and b =
512, it takes around 3925s for profiling the five stages, and the result
is used for this set of experiments. We see that the execution time
gradually decreases as Q increases, because given more resources,
we can benefit more from the parallel execution. Further, auto-
parallelism results in a faster execution time, indicating that it finds
more effective parallelism factors for scheduling.

8 RELATED WORK

Existing VFL systems, including SecureML [54], FATE [71], Pad-
dleFL [5], and PySyft [59], share a similar goal with Falcon, that is,
to provide privacy for model training and prediction. However, they
either disclose intermediate information during training (e.g., FATE
and PySyft) or assume a weaker security model (e.g., SecureML
and PaddleFL require the parties to outsource private data to non-
colluding servers). Furthermore, none of existing systems considers
interpretability, which is important and challenging in VFL.

Model-agnostic interpretable methods [13, 21] require black-box
access to the target models and interpret model predictions by
analyzing the difference in model outputs w.r.t. different inputs.
State-of-the-art methods, such as LIME [64, 78] and SHAP [45, 67]
are not designed for security and cannot be applied directly to
VFL. We propose a privacy-preserving framework Falcon-INP that
addresses this challenge. Besides, [44] considers model debugging
when a VFL model produces unexpected predictions. However, it
does not provide interpretability to the prediction.

9 CONCLUSIONS

In this paper, we presented a privacy-preserving and interpretable
vertical federated learning system Falcon, which allows multiple
parties to train VFL models and make interpretable predictions in a
privacy-preserving manner. To the best of our knowledge, Falcon
is the first system that supports prediction interpretability in VFL.
The system consists of a series of novel algorithms based on partial
homomorphic encryption and secret sharing schemes. It introduces
system-level optimizations that improve performance by support-
ing parallel execution of the model training and interpretability.
We fully implement Falcon and evaluate against both real-world
and synthetic datasets. The results show that Falcon achieves high
accuracy, and it outperforms secure baselines in terms of efficiency.
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