
DeepJoin: Joinable Table Discovery with Pre-trained Language
Models

Yuyang Dong

NEC Corporation

dongyuyang@nec.com

Chuan Xiao

Osaka University

Nagoya University

chuanx@ist.osaka-u.ac.jp

Takuma Nozawa

NEC Corporation

nozawa-takuma@nec.com

Masafumi Enomoto

NEC Corporation

masafumi-enomoto@nec.com

Masafumi Oyamada

NEC Corporation

oyamada@nec.com

ABSTRACT
Due to the usefulness in data enrichment for data analysis tasks,

joinable table discovery has become an important operation in data

lake management. Existing approaches target equi-joins, the most

common way of combining tables for creating a unified view, or

semantic joins, which tolerate misspellings and different formats

to deliver more join results. They are either exact solutions whose

running time is linear in the sizes of query column and target table

repository, or approximate solutions lacking precision. In this pa-

per, we propose DeepJoin, a deep learning model for accurate and

efficient joinable table discovery. Our solution is an embedding-

based retrieval, which employs a pre-trained language model (PLM)

and is designed as one framework serving both equi- and semantic

(with a similarity condition on word embeddings) joins for tex-

tual attributes with fairly small cardinalities. We propose a set of

contextualization options to transform column contents to a text

sequence. The PLM reads the sequence and is fine-tuned to embed

columns to vectors such that columns are expected to be joinable if

they are close to each other in the vector space. Since the output

of the PLM is fixed in length, the subsequent search procedure

becomes independent of the column size. With a state-of-the-art

approximate nearest neighbor search algorithm, the search time is

sublinear in the repository size. To train the model, we devise the

techniques for preparing training data as well as data augmentation.

The experiments on real datasets demonstrate that by training on a

small subset of a corpus, DeepJoin generalizes to large datasets and

its precision consistently outperforms other approximate solutions’.

DeepJoin is even more accurate than an exact solution to semantic

joins when evaluated with labels from experts. Moreover, when

equipped with a GPU, DeepJoin is up to two orders of magnitude

faster than existing solutions.

PVLDBReference Format:
Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto,

and Masafumi Oyamada.DeepJoin: Joinable Table Discovery with
Pre-trained Language Models. PVLDB, 16(10): 2458 - 2470, 2023.

doi:10.14778/3603581.3603587

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.

doi:10.14778/3603581.3603587

1 INTRODUCTION
Given a table repository and a query table with a specified join

column, joinable table discovery finds the target tables that can

be joined with the query. Due to the demonstrated usefulness in

data enrichment [10, 16], joinable table discovery has become a key

procedure in data lake management and serves various downstream

applications, especially those involving data analysis.

For joinable table discovery, early attempts mainly targeted equi-

joins [64, 66], which are the most common way of combining tables

for creating a unified view [15] and can be easily implemented using

SQL. To deliver more joins results for heterogeneous data, recent

approaches [16, 17] studied semantic joins, which join on cells with

similar meanings via word embedding, so as to handle data with

misspellings and discrepancy in formats/terminologies (e.g., “Amer-

ican Indian & Alaska Native” v.s. “Mainland Indigenous”). There

are two major limitations in these solutions. First, they only apply

to a single join type. Second, most of them are exact algorithms

with a worst-case time complexity linear in the product of query

column size and table repository size, and thus their scalability is

dubious. Despite the existence of an approximate algorithm for equi-

joins [66], it is based on MinHash sketches [6] and has to convert

the joinability condition to a Jaccard similarity condition, which is

non-equivalent and introduces many false positives. Moreover, it is

sometimes even slower than an exact algorithm [64].

Seeing the limitations of existing solutions, we propose Deep-
Join, a deep learning model designed in a two-birds-with-one-stone
fashion such that both equi- and semantic joins can be served with

one framework. In particular, DeepJoin targets textual attributes

with fairly small cardinalities that can fit with language models.

To cope with semantic joins, it works on a similarity condition of

word embeddings and finds similar textual columns as exactly as

possible. To resolve the efficiency issue, it finds joinable tables via

an embedding-based retrieval. In particular, we employ an em-

bedding model to transform columns to a vector space. By metric

learning, columns with high joinability are close to each other in

the vector space. Then, to find the top-𝑘 target columns ranked

by joinability, we resort to a state-of-the-art approximate nearest

neighbor search (ANNS) algorithm [38], whose time complexity is

sublinear in the table repository size.

DeepJoin utilizes a pre-trained languagemodel (PLM) for col-

umn embedding. PLMs, such as BERT [14], have gained popularity

in various data management tasks that involve natural language

processing. A salient property of modern PLMs is that they are

2458

https://doi.org/10.14778/3603581.3603587
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603587

transformer networks [55] featuring the attention mechanism, thus

not only good at capturing the semantics of column contents for

semantic joins, but also able to focus on the cells that are more

probable to match in equi-joins, assuming that the query column

has a similar distribution to those in the repository. As such, our

model gains the capability of handling both join types, only needing

the PLM to be fine-tuned on the data labeled for either equi- or

semantic joins. In addition, PLMs produce a fixed-length vector,

meaning that the following index lookup and search are indepen-
dent of the column size, hence along with the ANNS, addressing

the scalability issue in existing solutions. Since PLMs take a text se-

quence as input, by prompt engineering, we propose a set of options

that contextualizes a column to a text sequence. To train the model

in a self-supervised manner, we devise a series of techniques to

effectively generate positive and negative examples. Moreover, our

training features a data augmentation technique, through which

our model can learn that the joinability is insensitive to the order

of cells in a column.

We conduct experiments on two real datasets and evaluate Deep-
Join equipped with two state-of-the-art PLMs. We show that by

training on a small subset (30k columns) of the corpus, DeepJoin
generalizes well to large datasets (1M columns). In particular, Deep-
Join outperforms alternative approximate solutions in all the set-

tings, and reports an average precision of 72% for equi-joins and

91% for semantic joins and an average NDCG of 81% for equi-joins

and 75% for semantic joins. To test the effectiveness of semantic

joins, we also evaluate DeepJoin using data labeled by our database

researchers, and the results show that DeepJoin is even better by

a margin of 0.105 – 0.165 F1 score than PEXESO [17], an exact

solution we use to label DeepJoin’s training data. An ablation study

demonstrates the usefulness of the proposed contextualization and

data augmentation techniques. For scalability test, we vary dataset

size from 1M to 5M columns. Even if equippedwith a CPU,DeepJoin
exhibits superb scalability and is 7 – 57 times faster than existing

solutions. With the help of a GPU, DeepJoin outperforms them by

up to two orders of magnitude.

Contributions. (1) We proposeDeepJoin, a framework for joinable

search discovery in a data lake. Our solution targets targets textual

attributes with fairly small cardinalities, and is able to detect both

equi-joinable and semantically joinable tables. (2) We design the

search in DeepJoin as an embedding-based retrieval which employs

a fine-tuned PLM for column embedding andANNS for fast retrieval.

The search time complexity is sublinear in the table repository size,

and except the column embedding, the search time is independent

of the column size. (3) We propose a prompt engineering method

to transform column contents to a text sequence fed to the PLM.

(4) We devise techniques for training data preparation and data

augmentation, as well as a metric learning method to fine-tune the

PLM in a self-supervised manner. (5) We conduct experiments to

show that our model generalizes well to large datasets and it is

accurate and scalable in finding joinable tables.

Furthermore, wewould like tomention the following facts: (1) For

the embedding-based retrieval in our model, the results of ANNS

are directly output as the results of joinable table discovery, whereas

more advanced paradigms exist, such as two-stage retrieval [11]

which finds a set of candidates by ANNS and ranks the candidates

by a more sophisticated model. (2) DeepJoin is not limited to the

two PLMs evaluated in our experiments, because the PLM can be

regarded as a plug-in in our framework. As such, we expect the

performance of DeepJoin can be further improved by using more

advanced retrieval paradigms or PLMs.

2 PRELIMINARIES
2.1 ProblemDefinition
Given a data lake of tables, we extract all the columns in these tables,

except those unlikely to appear in a join predicate (e.g., BLOBs), and

create a repository of tables, denoted by X. Given a query column

𝑄 , our task is to search X and find the columns joinable to 𝑄 . In

this paper, we target equi-joins and semantic joins. Next, we define

the joinability for these two types, respectively.

Given a query column 𝑄 and a target column 𝑋 in X, the join-

ability from 𝑄 to 𝑋 is defined by the following equation.

𝑗𝑛(𝑄,𝑋) = |𝑄𝑀 |
|𝑄 | , (1)

where | · | measures the size (i.e., the number of cells) of a column,

and 𝑄𝑀 is composed of the cells in 𝑄 that have at least one match

in 𝑋 . Here, the term “match” depends on the join type, i.e., an equi-

join or a semantic join. We normalize the size of 𝑄𝑀 by the size of

𝑄 to return a value between 0 and 1. Moreover, the joinability is

not always symmetric, depending on the definition of 𝑄𝑀 .

For equi-joins, wemodel each column as a set of cells by removing

duplicate cell values, and define the equi-joinability as follows.

Definition 2.1 (Equi-Joinability). The equi-joinability from the

query column 𝑄 to a target column 𝑋 in X counts the intersection

between 𝑄 and 𝑋 , normalized by the size of 𝑄 ; i.e., in Equation 1,

𝑄𝑀 = 𝑄 ∩ 𝑋 . (2)

The equi-joinability defined above counts the the distinct num-

ber of cells in 𝑄 that match those in 𝑋 , and thus can be used to

measure the equi-joinability [64]. Our method can be also extended

to the case when columns are modeled as multisets, so as to sup-

port one-to-many, many-to-one, and many-to-many joins. In this

case, we may measure the joinability by the number of join results

and normalize it by the product of |𝑄 | and |𝑋 |, instead of |𝑄 | in
Equation 1.

For semantic joins, we consider string columns and embed the

value of each cell to a metric space V (e.g., word embedding by

fastText [19]). As such, each string column is transformed to a

multiset of vectors. We abuse the notation of a column to denote its

multiset of vectors. Then, the notion of vector matching is defined

as follows.

Definition 2.2 (Vector Matching). Given two vectors 𝑣1 and 𝑣2 in

V , a distance function 𝑑 , and a threshold 𝜏 , 𝑣1 matches 𝑣2 if and

only if the distance between 𝑣1 and 𝑣2 does not exceed 𝜏 . We use

notation𝑀𝑑
𝜏 (𝑣1, 𝑣2) to denote if 𝑣1 matches 𝑣2; i.e.,𝑀

𝑑
𝜏 (𝑣1, 𝑣2) = 1,

iff. 𝑑 (𝑣1, 𝑣2) ≤ 𝜏 , or 0, otherwise.

Given a query column 𝑄 and a target column 𝑋 , the semantic-

joinability is defined using the number of matching vectors
1
.

1
Besides this definition, semantic joins are also investigated in [23], yet it studies the

problem of performing joins rather than searching for joinable columns.

2459

Definition 2.3 (Semantic-Joinability). The semantic-joinability

from 𝑄 to 𝑋 counts the number of vectors in 𝑄 having at least one

matching vector in𝑋 , normalized by the size of𝑄 ; i.e., in Equation 1,

𝑄𝑀 = {𝑞 | 𝑞 ∈ 𝑄 ∧ ∃𝑥 ∈ 𝑋 s.t. 𝑀𝑑
𝜏 (𝑞, 𝑥) = 1 }. (3)

An advantage of the above definitions is that for both equi- and

semantic-joinability, the training data can be labeled by an exact

algorithm (e.g., JOSIE [64] and PEXESO [17]) rather than experts, so

that our model can be trained in a self-supervised manner. Follow-

ing the above definitions, we model the problem of joinable table

discovery as the following top-𝑘 search problem, where joinability

𝑗𝑛 is defined using either Definition 2.1 or 2.3.

Problem 1 (Joinable Table Discovery). Given a query column
𝑄 and a repository of target columns X, the joinable table discov-
ery problem is to find the top-𝑘 columns in X with the highest join-
ability from 𝑄 . Formally, we find a subset R ⊆ X, |R | = 𝑘 , and
min{ 𝑗𝑛(𝑄,𝑋) | 𝑋 ∈ R) } ≥ 𝑗𝑛(𝑄,𝑌),∀𝑌 ∈ X\R.
In this paper, we focus on dealing with textual columns. For

numerical columns, a typical solution is utilizing the statistical

feature vector in Sherlock [28], which converts a numerical column

to a vector, and then we can invoke a vector search to look for

joinable columns having similar statistics to the query column.

2.2 State-of-the-Art
JOSIE [64], a state-of-the-art solution to the equi-joinable table

discovery problem, regards the problem as a top-𝑘 set similarity

search with overlap |𝑄 ∩ 𝑋 | as similarity function, and builds its

search algorithm upon prefix filter [7] and positional filter [59],

which have been extensively used for solving set similarity queries.

JOSIE creates an inverted index over X, which regards each cell

value as a token and maps each token to a postings list of columns

having the token. Then, it finds a set of candidate columns by re-

trieving the postings lists for a subset of the tokens in 𝑄 (called

prefix). Candidates are verified for joinability and the top-𝑘 is up-

dated. While index access and candidate verification are processed

in an alternate manner, JOSIE features the techniques to determine

the their order, so as to optimize for long columns and large token

universes, which are often observed in data lakes.

PEXESO [17] is an exact solution to semantic-joinable table dis-

covery. It employs pivot-based filtering [8], which selects a set of

vectors as pivots and pre-computes distances to these pivots for

all the vecotrs in the columns of X. Then, given the vectors of

the query 𝑄 , non-matching vectors can be pruned by the triangle

inequality. A hierarchical grid index is built to filter non-joinable

columns when counting the number of matching vectors.

As for the weakness, JOSIE inherits the limitation of prefix filter,

whose performance highly depends on the data distribution and

yields a worst-case time complexity of𝑂 (|X| · (|𝑄 |+|𝑋 |)), where |𝑋 |
stands for the average size of the columns inX. For PEXESO, despite
a claimed sublinear search time complexity of𝑂 (log |X𝑉 | · log |𝑄 |),
where X𝑉 denotes the multiset of all the vectors in the repository,

it relies on a user-specific threshold for the count of matching

vectors. This does not apply to the top-𝑘 case, and the algorithm is

downgraded to be linear in |X𝑉 | · |𝑄 |, because at the early stage of

search, due to the low count of matching vectors in the temporary

top-𝑘 results, the pruning power of the grid index is next to none.

column X fine-tuned PLMcolumn-to-text
transformation

column Y fine-tuned PLMcolumn-to-text
transformation

shared weights

vector X

vector Y

text X

text Y

cosine(X, Y)

training

searching

column X1
column X2

...

text X1
text X2

...

fine-tuned PLM
vector X1
vector X2

...

ANN
index

column-to-text
transformation

column Q text Q fine-tuned PLM vector Q

search

offline

online

column-to-text
transformation

Figure 1: Overview of theDeepJoinmodel.

Table 1: Column-to-text transformation options.

Name Pattern

col $cell_1$, $cell_2$, . . ., $cell_n$

colname-col $column_name$: col.

colname-col-context $colname-col$: col. $table_context$

colname-stat-col $column_name$ contains n values
(max_len, min_len, avg_len): col

title-colname-col $table_title$. $colname-col$

title-colname-col-context $title-colname-col$. $table_context$

title-colname-stat-col $table_title$. $colname-stat-col$.

In general, for search time, both JOSIE and PEXESO are linear in

the product of column size and repository size, which compromises

their scalability to long columns and large datasets. On the other

hand, it is unnecessary to always find an exact answer, because data

scientists are usually concerned with only part of the top-𝑘 results

and will choose a subset of them for the join. For this reason, we will

design our solution with the following two goals: (A) it returns an

approximate answer with sublinear time in |X|, and (B) by encoding
the query column to a fixed length, it is independent of |𝑄 | and |𝑋 |
during index lookup and search.

Apart from exact solutions, LSH Ensemble [66] is an approxi-

mate solution to equi-joinability. It partitions the repository and

computes MinHash sketches [6] with parameters tuned for each

partition. Unlike JOSIE, it targets the thresholded problem (i.e.,

|𝑄∩𝑋 |
|𝑄 | ≥ 𝑡), which requires a user-specified threshold 𝑡 and thus

is less flexible than computing top-𝑘 . Although adaptation for the

top-𝑘 problem is available, it suffers from low precision due to the

many false positives introduced by transforming overlap similarity

to Jaccard similarity for the use of MinHash, and it sometimes runs

even slower than JOSIE [64].

3 THEDEEPJOINMODEL
Figure 1 illustrates the overview of our DeepJoin model. In Deep-
Join, the joinable table discovery is essentially an embedding-based

retrieval, which has recently been adopted in various retrieval tasks,

such as long text retrieval [33] and search in social networks [27].

An embedding-based retrieval usually employs metric learning or

meta embedding search to learn embeddings for target data such

that the semantics can be measured in the embedding space, es-

pecially when target data are highly sparse or the semantics is

hard to define by an analytical model. Another key benefit is, by

2460

Company State Founded

Apple CA 1976

GE NY 1892

Microsoft WA 1975

Yahoo! CA 1994

Amazon WA 1994

Name Location Revenue

Apple California $274B

Yahoo! California $5B

Microsoft Washington $143B

GE New York $76B

Amazon Texas $71B

NEC Tokyo $21B

Company information.
Company contains 5 values
(9, 2, 5.6): Apple, GE,
Microsoft, Yahoo!, Amazon.

column-to-text
transformation

(title-colname-stat-col)

Company information

query
column

column
embedding

Race Life
expectancy

White 76.4

Black 70.8

Asian 83.5

Hispanic 77.7

Indigenous 65.2

0.11

0.19

-0.12

iPad Australia

iPhone Japan

MacBook UK

ANN
index

...

...

...

ANN
search

0.09

0.19

-0.11......

...

...

0.25

-0.13

0.05

0.09

0.19

-0.11

-0.16

0.02

0.15

text
vector

vector

text
repository

top-1
X1 X2 X3

X4 X5

X6 X7

Figure 2: A running example of DeepJoin over a repository of 7 columns, 𝑘 = 1.

embedding original data objects (i.e., columns) to a fixed-length

vector, the subsequent procedure can be independent of the size of

the data object, thereby achieving goal (B) stated in Section 2.2.

Since semantic joins are also in our scope, an immediate idea

is employing a PLM to capture the semantics. By unsupervised

training for language prediction tasks on a large text corpora such

as Wikipedia pages, PLMs are able to embed texts to a vector space

such that texts are expected to be similar in meaning if they are

closer in the vector space. A key advantage of PLMs is that they

are deep models that can be tailored to downstream tasks (e.g.,

data preparation [54], entity matching [37], and column annota-

tion [52]) by fine-tuning with task-specific training data. Moreover,

state-of-the-art PLMs utilize the attention mechanism to focus on

informative words than stop words. Besides handling the semantics,

the attention mechanism can be also useful for identifying equi-

joinable columns, because it can focus on the cells that are more

probable to yield a match for equi-joins, assuming that the query

column has a similar cell distribution to those in the repository. As

such, we are able to use one model framework to cope with both

equi-joins and semantic joins. The only difference is that the model

is trained with data labeled for the target join type. In DeepJoin,
we use a fine-tuned PLM to embed columns to a vector space such

that columns with high joinability are close to each other in the

vector space. Since PLMs take as input raw text, we transform (i.e.,

contextualize) the contents in each column to a text sequence, and

then feed the sequence to the fine-tuned PLM to produce a column

embedding.

3.1 Column-to-Text Transformation
The column-to-text transformation belongs to prompt engineering,

which works by including the description of the task in the input

to train a model and has shown effectiveness in natural language

processing tasks such as question answering [58]. In DeepJoin, we
take advantage of metadata and consider seven options, shown in

Table 1, where variables are quoted in dollar signs. In particular, n
denotes the number of distinct cell values of the column; cell_i
denotes the value of the 𝑖-th cell of the column, with duplicate values

removed; stat denotes the statistics of the column, including the

maximum, minimum, and average numbers of words in a cell; and

table_context denotes the accompanied context of the table (e.g.,

a brief description). Some patterns are also used for creating other

patterns. For example, col stands for the concatenation of all the

cell values, with a comma as delimiter, and colname-col stands for
the column name followed by a colon and the content of col.

Example 3.1. Consider the query column in Figure 2. Suppose

title-colname-stat-col is used for column-to-text transforma-

tion. The table title is “Company information”. The column name

is “Company”. There are 5 cell values: “Apple”, “GE”, “Microsoft”,
“Yahoo!”, and “Amazon”, with a maximum of 9 characters, a mini-

mum of 2 characters, and an average of 5.6 characters. Therefore,

according to the patterns shown in Table 1, the column is trans-

formed to a text sequence “Company information. Company con-
tains 5 values (9, 2, 5.6): Apple, GE, Microsoft, Yahoo!, Amazon.”, as
shown in Figure 2. For the repository, we can transform the 7 target

columns to 7 text sequences using the same technique.

3.2 Column Embedding
InDeepJoin, we fine-tune two state-of-the-art PLMs: DistilBERT [49],

a faster and lighter variant of BERT [14], and MPNet [51], which

leverages the dependency among predicted tokens through per-

muted language modeling and takes auxiliary position information

2461

as input to make the model see a full sentence, thereby reducing po-

sition discrepancy. We use sentence-transformers [47] to output a

sentence embedding for a sequence of input text. It is also notewor-

thy to mention that for semantic joins, unlike PEXESO, we do not

need to generate embeddings in the vector spaceV (Definition 2.2).

Instead, the semantics is captured by the fine-tuned PLM.

Since PLMs have an input length limit max_seq_length (e.g., 512

tokens for BERT), in the case of a tall input column, we choose a

frequency-based approach, e.g., taking a sample of the most fre-

quent cell values from the column, whose number of tokens is just

within max_seq_length. Then, we use the sample for column-to-

text transformation. The reason is that they are more likely to yield

join results. Here, the frequency of a cell value is defined as docu-

ment frequency, i.e., the number of target columns in the repository

that have this cell value. If columns are modeled as multisets, we

may resort to other frequency-based approaches, such as TF-IDF

and BM25 [39].

3.3 Indexing and Searching
In order to scale to large table repositories, we resort to approx-

imate nearest neighbor search (ANNS). The embeddings of the

columns in X are indexed offline. For online search, we find the 𝑘

nearest neighbors (kNN) of the query column embedding under

Euclidean distance as search results. In particular, we use hierar-

chical navigable small world (HNSW) [38], which is among the

most prevalent approaches to ANNS [45]. Since the search time

complexity of HNSW is sublinear in the number of indexed ob-

jects [38], the search can be done with a time complexity sublinear

in the number of target columns, thereby achieving goal (A) stated

in stated in Section 2.2. Moreover, for billion-scale datasets, we may

use an inverted index over product quantization (IVFPQ) [31], and

construct HNSW over the coarse quantizer of IVFPQ. Such choice

has become the common practice of billion-scale kNN search (e.g.,

using the Faiss library [18]).

Example 3.2. Following Example 3.1, the text sequences for query

and target columns are embedded to vectors by a fine-tuned PLM,

as shown in Figure 2. The vectors for the 7 target columns are

indexed in the approximate nearest neighbor (ANN) index. Given

the vector of the query column, we search for its kNN (𝑘 = 1 in

this example) by looking up the ANN index. Then the result is

output as the joinable column, which refers to a target column in

the repository.

3.4 Complexity Analysis
The search consists of two parts: query encoding and ANNS. In

query encoding, we transform the column to text, with a time

complexity of 𝑂 (|𝑄 |), and then we feed the text to the PLM, with

a time complexity of 𝑂 (|𝑀 | · |𝑄 |), where |𝑀 | denotes the model

size. In ANNS, thanks to the use of HNSW, the time complexity
2

is 𝑂 (𝑣𝑙 log |X|, where 𝑣 is the maximum out-degree (controlled

by a parameter for index construction) in HNSW’s index and 𝑙 is

the dimensionality of column embedding. Compared to JOSIE and

PEXESO, which are linear in |X| · (|𝑄 | + |𝑋 |), we reduce the time

complexity to sublinear in |X| and it is independent of |𝑄 | and |𝑋 |
2
We follow the complexity analysis in [38].

in the ANNS. Although the query encoding is still linear in |𝑄 |, the
column embedding procedure can be accelerated by GPUs.

4 MODEL TRAINING
To fine-tune the PLM for joinability table discovery, we initialize

the embedding model with the parameters of the PLM, and then

train it with our training data and loss function.

4.1 Training Data
Given a repository X, we collect column pairs in X with high

joinability as positive examples. This can be done by a self-join

on X with a threshold 𝑡 , i.e., finding column pairs (𝑋,𝑌) such that

𝑋 ∈ X, 𝑌 ∈ X, and 𝑗𝑛(𝑋,𝑌) ≥ 𝑡 . To this end, we invoke a set

similarity join [7] for equi-joins or use PEXESO for semantic joins.

In case X is large, we can perform the self-join on a sample of X.

In Definitions 2.1 and 2.3, the joinability is insensitive to the

order of cells in a column, whereas PLMs are order-sensitive in

their input. In order to make our model learn that the joinability

is order-insensitive, we consider data augmentation by shuffling

the cells in a column. In particular, we pick a percentage (called

shuffle rate) of pairs (𝑋,𝑌) in the aforementioned positive examples,

generate a random permutation of the cells of 𝑋 , denoted by 𝑋 ′
,

and insert (𝑋 ′, 𝑌) to the set of positive examples. As such, the

training set contains both (𝑋,𝑌) and (𝑋 ′, 𝑌), hence to suggest the

order-insensitive joinability. Given a shuffle rate of 𝑟 , out of all the

positive examples, 𝑟/(1 + 𝑟) of them are obtained from cell shuffle.

To define negative training examples, we choose to use in-batch

negatives, an easy and memory-efficient way that reuses the nega-

tive examples in the batch and has demonstrated effectiveness in

text retrieval tasks [33]. Given a batch of positive training examples

{ (𝑋𝑖 , 𝑌𝑖) } (note that𝑋𝑖 may be a shuffled column), we assume each

(𝑋𝑖 , 𝑌𝑗), 𝑌𝑖 ≠ 𝑌𝑗 as a negative pair. Despite a very small chance that

(𝑋𝑖 , 𝑌𝑗) are joinable, this can be regarded as noise in the training

data and our model is robust against this case. In our experiments,

it shows better empirical results than other options of making neg-

atives such as removing matching cells from positives.

4.2 Loss Function
Given a batch of 𝑁 training examples { (𝑋𝑖 , 𝑌𝑖) }, we minimize the

multiple negative ranking loss [25], which measures the negative

log-likelihood of softmax normalized scores:

𝐿(X,Y) = − 1

𝑁

𝑁∑︂
𝑖=1

log 𝑃approx (𝑌𝑖 | 𝑋𝑖)

= − 1

𝑁

𝑁∑︂
𝑖=1

⎡⎢⎢⎢⎢⎣𝑆 (𝑋𝑖 , 𝑌𝑖),− log

𝑁∑︂
𝑗=1

exp

(︁
𝑆 (𝑋𝑖 , 𝑌𝑗)

)︁⎤⎥⎥⎥⎥⎦ .
The above loss function is one of the prevalent options [44]

for fine-tuning sentence-transformers [47]. For the scoring func-

tion 𝑆 (·, ·), we choose the cosine similarity of column embeddings,

which shows the best empirical results. The subtlety here is that in

the top-𝑘 retrieval, Euclidean distance is used instead for the ANNS.

The choice of metrics will be evaluated in Section 5.3.

2462

Table 2: Dataset statistics.

Dataset |X | max. |𝑋 | min. |𝑋 | avg. |𝑋 | # positive examples

Webtable-train 30k 5454 5 20.77 190k (equi-), 220k (semantic)

Wikitable-train 30k 1197 5 18.58 490k (equi-), 540k (semantic)

Webtable-test 1M 6031 5 20.25 N/A

Wikitable-test 1M 3454 5 18.71 N/A

5 EXPERIMENTS
5.1 Experimental Settings

Datasets. The following two datasets are used in the evaluation.

(1) Webtable is a dataset of the WDC Web Table Corpus [48]. We

use the English relational web tables 2015 and for each table, we

extract the key column defined in the metadata. (2)Wikitable is
a dataset of relational tables from Wikipedia [3]. For each table,

we take the column which contains the largest number of distinct

values in the table. Both datasets contain metadata for table title,

column name, and context, and have been used in previous works [2,

17, 56, 60, 64, 66]. Columns that are too short (< 5 cells) are removed.

For semantic joins, fastText [19] is used to embed cells, Euclidean

distance is used for distance function 𝑑 , and the threshold 𝜏 for

vector matching is 0.9, unless otherwise specified.

In order to show that DeepJoin learned from a small subset of a

corpus is able to generalize to a large subset, we randomly sample

two subsets of 30k and 1M columns, respectively, from each corpus.

From the 30k training set, we randomly sample column pairs whose

𝑗𝑛 ≥ 0.7 as initial positive examples, where 𝑗𝑛 is defined using

Equation 2 for equi-joins or Equation 3 for semantic joins. We

then apply the techniques in Section 4.1 for data augmentation

and making negative examples. The 1M testing set is used as the

repository X for search. To generate queries and avoid data leaks,

we randomly sample 50 columns from the original corpus except

those in X. The dataset statistics are given in Table 2.

Methods.We compare the following methods. (1) DeepJoin: This is
our proposed model. We equip our model with DistilBERT [49] and

MPNet [51] as PLM and denote the resultantmodel asDeepJoinDistilBERT
and DeepJoinMPNet, respectively. (2) JOSIE [64]: This is an exact

solution to equi-joinable table discovery, based on top-𝑘 set sim-

ilarity search. (3) LSH Ensemble [66]: This is an approximate so-

lution to equi-joinable table discovery, based on partitioning and

MinHash. (4) fastText, BERT,MPNet: We replace the column em-

bedding in DeepJoin by averaging (no fine-tuning) the word em-

beddings from fastText [19], BERT [14], and MPNet [51], respec-

tively. (5) TaBERT [60]: This is a table embedding approach which

uses BERT and learns column embeddings for question answering

tasks. We use its column embedding to replace that in DeepJoin.
(6) TURL [13]: This is a representation learning approach for table

understanding tasks. We use its column embedding to replace that

in DeepJoin. (7) MLP: We replace the PLM in DeepJoin with a 3-

layer perceptron trained for a regression, which takes as input the

fastText embeddings of two columns and outputs the joinability.

Then, we take the output of the last hidden layer as column embed-

ding. (8) PEXESO [17]: This is an exact solution to semantic-joinable

table discovery, using pivot-based filtering and a grid index.

Metrics. For accuracy, we evaluate precision@𝑘 and normalized

discounted cumulative gain (NDCG@𝑘). Precision@𝑘 measures the

overlap between the model’s top-𝑘 results and the top-𝑘 of an ex-

act solution to Problem 1. NDCG@𝑘 is defined as
𝐷𝐶𝐺model

𝐷𝐶𝐺exact

, where

𝐷𝐶𝐺 =
∑︁𝑘
𝑖=1

𝑗𝑛 (𝑄,𝑋𝑖)
log

2
(𝑖+1) , and the𝑋𝑖 ’s for𝐷𝐶𝐺model

and𝐷𝐶𝐺exact are

the top-𝑘 of the model and the exact solution, respectively. For se-

mantic joins, we also request our colleagues of database researchers

to label whether a retrieved table is really joinable, and then mea-

sure precision, recall, and F1 score. Precision = (# retrieved joinable

columns) / (# retrieved columns). Since it is too laborious to label

every table in the dataset, we follow [30] and build a retrieved pool

using the union of the tables identified by the compared methods,

which is also common practice for the evaluation of Web search en-

gines. Recall = (# retrieved joinable columns) / (# joinable columns

in the retrieved pool), where joinable columns are labeled by our

experts. For efficiency, we evaluate the end-to-end processing time,

including column-to-text transformation, query embedding, and

ANNS. The above measures are averaged over all the queries.

Environments. DeepJoin are implemented with PyTorch. we use

the Sentence-BERT [46] and the Hugging Face [1] libraries to build

and train the DeepJoin model. We use the following setting: batch

size = 32, learning rate = 2e-5, warmup steps = 10000, and weight

decay rate = 0.01. Like DeepJoin, other column embedding methods

(fastText, BERT,MPNet, TaBERT, TURL, andMLP) follow the same

ANNS scheme, for which we use IVFPQ [31] and HNSW [38] in the

Faiss library [18]. Experiments are run on a server with a 2.20GHz

Intel Xeon CPU E7-8890 and 630 GB RAM. Models are (optionally)

accelerated using a NVidia A100 Tensor Core. All the competitors

are implemented in Python 3.7.

5.2 Accuracy Evaluation
For equi-join, Table 3 reports the precision and the NDCG for 𝑘

from 10 to 50. JOSIE is omitted as it returns exact answers. For most

competitors, the general trend is that both precision and NDCG

increase with 𝑘 . DeepJoin always outperforms alternatives and ex-

hibits outstanding generalizability (trained on 30k columns and

tested on 1M columns). The best performance, with an average

precision of 72% and NDCG of 81%, is observed when MPNet is

equipped.DeepJoinMPNet is better thanDeepJoinDistilBERT because
MPNet is pre-trained on a larger corpora and under a unified view of

masked language modeling and permuted language modeling. LSH
Ensemble’s performance is mediocre due to the conversion from

overlap condition to Jaccard condition, which becomes very loose

when the sizes of query and target significantly differ. For embed-

ding methods, TURL is better than TaBERT because the pre-trained

tasks (column type annotation, etc.) of TURL are closer to joinable

table discovery than TaBERT’s question answering. Nonetheless,

these tasks still significantly differ from joinable table discovery,

and thus both are in general no better than fastText and BERT. An-
other reason why TaBERT and TURL exhibit inferior performance

is due to the limited data for pre-training; e.g., TURL is pre-trained

on entity-focused Wikipedia tables. fastText is better than BERT
andMPNet, indicating that simply using PLMs without fine-tuning

does not translate to higher accuracy than context-insensitive word

embeddings.MLP roughly performs the best among the methods

other than DeepJoin, showing that a regression on top of word

embeddings further improves the performance.

2463

Table 3: Accuracy of equi-joins.

Precision@𝑘 NDCG@𝑘

Methods 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

Webtable

LSH Ensemble 0.634 0.647 0.656 0.676 0.688 0.715 0.714 0.701 0.702 0.698

fastText 0.680 0.726 0.752 0.754 0.773 0.731 0.721 0.743 0.748 0.764

BERT 0.652 0.695 0.712 0.722 0.729 0.698 0.713 0.708 0.707 0.708

MPNet 0.610 0.629 0.644 0.649 0.654 0.674 0.677 0.678 0.680 0.677

TaBERT 0.622 0.637 0.645 0.656 0.671 0.694 0.685 0.690 0.693 0.691

TURL 0.653 0.669 0.689 0.711 0.721 0.688 0.706 0.716 0.727 0.732

MLP 0.683 0.719 0.755 0.758 0.778 0.737 0.735 0.748 0.755 0.769

DeepJoinDistilBERT (ours) 0.702 0.741 0.775 0.793 0.805 0.744 0.752 0.758 0.761 0.788

DeepJoinMPNet (ours) 0.732 0.775 0.791 0.812 0.832 0.768 0.786 0.799 0.803 0.822
Wikitable

LSH Ensemble 0.480 0.450 0.466 0.470 0.474 0.714 0.688 0.681 0.674 0.672

fastText 0.574 0.551 0.581 0.605 0.621 0.799 0.794 0.791 0.793 0.791

BERT 0.436 0.460 0.497 0.520 0.541 0.719 0.721 0.731 0.736 0.740

MPNet 0.442 0.464 0.504 0.524 0.543 0.711 0.721 0.729 0.735 0.736

TaBERT 0.431 0.445 0.488 0.520 0.539 0.701 0.708 0.732 0.725 0.737

TURL 0.504 0.525 0.529 0.545 0.578 0.707 0.711 0.745 0.766 0.778

MLP 0.578 0.576 0.585 0.610 0.619 0.801 0.802 0.800 0.804 0.802

DeepJoinDistilBERT (ours) 0.588 0.593 0.612 0.635 0.807 0.813 0.822 0.825 0.823 0.827

DeepJoinMPNet (ours) 0.614 0.622 0.641 0.666 0.678 0.821 0.824 0.830 0.833 0.833

Table 4: Accuracy of semantic joins, 𝜏 = 0.9 (labeled by PEXESO [17]).

Precision@𝑘 NDCG@𝑘

Methods 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

Webtable

LSH Ensemble 0.696 0.670 0.613 0.554 0.508 0.578 0.599 0.615 0.618 0.626

fastText 0.842 0.917 0.945 0.957 0.964 0.575 0.588 0.631 0.647 0.647

DeepJoinDistilBERT (ours) 0.861 0.926 0.951 0.961 0.966 0.610 0.622 0.641 0.676 0.671

DeepJoinMPNet (ours) 0.874 0.934 0.954 0.963 0.970 0.640 0.657 0.664 0.685 0.680
Wikitable

LSH Ensemble 0.578 0.611 0.581 0.570 0.567 0.633 0.655 0.660 0.669 0.678

fastText 0.543 0.610 0.645 0.669 0.721 0.353 0.353 0.358 0.370 0.371

DeepJoinDistilBERT (ours) 0.788 0.835 0.876 0.880 0.913 0.803 0.807 0.810 0.826 0.831

DeepJoinMPNet (ours) 0.813 0.881 0.889 0.889 0.936 0.814 0.820 0.833 0.842 0.852

For semantic join, Table 4 reports the precision and NDCG eval-

uated under PEXESO’s definition (Definition 2.3). DeepJoinMPNet
reports an average precision of 91% and NDCG of 75%, delivering

higher accuracy than alternatives for all the settings. fastText is
competitive on Webtable but is not good on Wikitable. We also

change the threshold 𝜏 for vector matching to 0.8 and 0.7, and re-

port the accuracy in Tables 5 and 6, respectively. DeepJoinMPNet
is still the best for low 𝜏 settings, though its precision and NDCG

generally drop with 𝜏 . Such trend is also observed in most other

methods. This is because a lower 𝜏 suggests that more cell values

are regarded as matching, and thus it tends to introduce less similar

contents to the training examples, which are harder to deal with.

We then evaluate these methods using the labels from our data-

base researchers. The precision, recall, and F1 score when 𝑘 = 10

are reported in Table 7. DeepJoinMPNet still performs the best. It is

even better than PEXESO, and the advantage is remarkable, by a

margin of 0.105 – 0.165 in F1 score. We believe there are two reasons.

First, DeepJoinMPNet uses a fine-tuned PLM, which captures the se-

mantics of table contents in a better way than PEXESO which uses

fastText to embed cell values. Second, PEXESO defines matching

cells with a threshold. When judged by experts for joinability, the

matching condition may differ across cell values, queries, and target

columns, whereas a fixed threshold may not fit all of them. For a

detailed comparison, we show three typical win/lose examples in

Table 8. “Win” means only DeepJoin is able to correctly identify

this entry, while “lose” means a false positive for DeepJoin but a

true negative for at least one other competitor. The first example,

which pertains to headboards, shows that the attention mechanism

focuses on the word “headboard” in the table title and the words

indicating bed size in the cell values. The second example, which

pertains to tall buildings, shows that the PLM captures the sim-

ilarity between the titles of the query and the target, as well as

the building names in their contents. The third example, a false

positive of DeepJoin, is potentially due to incorrect alignment of

2464

Table 5: Accuracy of semantic joins, 𝜏 = 0.8 (labeled by PEXESO [17]).

Precision@𝑘 NDCG@𝑘

Webtable

Methods 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

LSH Ensemble 0.571 0.592 0.621 0.613 0.633 0.604 0.613 0.622 0.628 0.636

fastText 0.551 0.561 0.565 0.599 0.614 0.597 0.619 0.618 0.625 0.621

DeepJoinDistilBERT (ours) 0.734 0.746 0.776 0.831 0.850 0.621 0.637 0.676 0.699 0.704

DeepJoinMPNet (ours) 0.774 0.791 0.823 0.845 0.881 0.655 0.684 0.723 0.729 0.737
Wikitable

LSH Ensemble 0.499 0.529 0.497 0.491 0.504 0.573 0.570 0.569 0.573 0.582

fastText 0.395 0.480 0.523 0.549 0.607 0.203 0.204 0.210 0.222 0.223

DeepJoinDistilBERT (ours) 0.621 0.714 0.758 0.776 0.811 0.598 0.632 0.676 0.688 0.703

DeepJoinMPNet (ours) 0.659 0.758 0.803 0.805 0.846 0.620 0.670 0.694 0.710 0.722

Table 6: Accuracy of semantic joins, 𝜏 = 0.7 (labeled by PEXESO [17]).

Precision@𝑘 NDCG@𝑘

Methods 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

Webtable

LSH Ensemble 0.321 0.368 0.389 0.394 0.390 0.333 0.338 0.355 0.364 0.377

fastText 0.397 0.505 0.594 0.663 0.722 0.352 0.370 0.384 0.422 0.440

DeepJoinDistilBERT (ours) 0.411 0.509 0.601 0.673 0.738 0.359 0.381 0.396 0.433 0.461

DeepJoinMPNet (ours) 0.426 0.527 0.604 0.679 0.742 0.363 0.388 0.411 0.435 0.471
Wikitable

LSH Ensemble 0.310 0.346 0.336 0.351 0.342 0.474 0.477 0.470 0.467 0.470

fastText 0.093 0.140 0.190 0.230 0.256 0.058 0.067 0.075 0.082 0.086

DeepJoinDistilBERT (ours) 0.431 0.497 0.523 0.554 0.575 0.601 0.607 0.611 0.626 0.624

DeepJoinMPNet (ours) 0.476 0.539 0.568 0.593 0.604 0.623 0.627 0.631 0.646 0.647

Table 7: Accuracy of semantic joins, 𝜏 = 0.9 (labeled by ex-
perts).

Methods Precision Recall F1

Webtable

LSH Ensemble 0.181 0.228 0.202

fastText 0.138 0.277 0.183

PEXESO 0.212 0.506 0.300

DeepJoinMPNet (ours) 0.350 0.693 0.465
Wikitable

LSH Ensemble 0.652 0.385 0.484

fastText 0.467 0.380 0.419

PEXESO 0.683 0.492 0.572

DeepJoinMPNet (ours) 0.842 0.568 0.677

metadata. While these examples suggest that PLMs perform better

than context-insensitive word embeddings when there are phrases

indicating strong joinability, we also observe opportunities for im-

provement.

To drill down the cases of semantic joins, we randomly sample

100 query columns from the original corpus and request our experts

to label the search results (𝑘 = 10) of four methods, LSH Ensemble,
fastText, PEXESO, and DeepJoinMPNet. We divide the results into

two cases: joins for data cleaning (near duplicates) references and

joins for related columns (attribute enrichment). In Webtable, there

are 68 tables for near duplicates and 177 tables for attribute enrich-

ment. In Wikitable, there are 164 tables for near duplicates and 330

tables for attribute enrichment. We report the recalls of the four

competitors in Table 9. In general, lower recalls show that attribute

enrichment is harder than near duplicates. This is expected, because

for attribute enrichment, the matching condition is looser, meaning

that we need to consider more columns that can be joined in a

semantic manner. Nonetheless, DeepJoinMPNet exhibits superior

performance in both cases, and the gap to the runner-up competi-

tors are remarkable, especially for near duplicates, wherein the

recall is around twice as much as the runner-up’s.

To investigate how the performance changes with column size,

we divide target columns of Webtable into three groups according

to their size: short (5 – 10 cells), medium (11 – 50 cells), and long

(> 50 cells). We only perform this experiment on Webtable because

the number of columns in the long group is too small on Wikitable.

For each group, we ensure that the query length is in the same

range, and report the results in Table 10. For all the methods, the

accuracy decreases with column size. This is because each column

is transformed to a fixed-length object (MinHash sketch or vector).

From the information perspective, the object after transformation

has redundancy for short columns, but is compressed and more

lossy for long columns. Nonetheless, DeepJoinMPNet is always the

best, in line with what we have witnessed in the above experiments.

We also perform an experiment on a synthetic dataset with 512 to

4,096 rows, in order to investigate the case when the input sequence

length exceeds the max_seq_length limit of PLMs (e.g., 512 tokens

for DeepJoin). We synthesize 10k columns of 5 attributes: address,

company, job, person, and profile, by using Faker [20] with the

2465

Table 8:Win/lose examples forDeepJoinMPNet v.s. non-DeepJoin competitors on semantic joins labeled by experts.

Query DeepJoinMPNet’s result Win/Lose Possible reason

title: Headboard Buying Guide title: Carved Headboard | west elm The attention mechanism inDeepJoinMPNet
colname: Mattress Size colname: Item Win focuses on the word “Headboard” and

col: California King, Full/Double, King, Queen, Twin, ... col: Carved Headboard Full, Carved Headboard King, ... bed size words such as “King” and “Double”.

title: Tallest buildings title: Buildings above 140m The PLM inDeepJoinMPNet captures the semantic similarity

colname: Name colname: Name Win between “Tallest buildings” and “Buildings above 140m” in titles,

col: City Tower, City-Haus, City-Hochhaus Leipzig, ... col: Centrum LIM, City-Haus, City-Hochhaus, ... as well as tall building names in cell values.

title: How to call Kazakhstan from Korea South title: How to call Georgia from Georgia The PLM inDeepJoinMPNet pays too much attention

colname: City colname: City Lose to metadata, but ignores that there are

col: Aktubinsk, Almaty, Arkalyk, ... col: Akhalgori, Akhmeta, Aspindza, ... no similar values between the column contents.

Table9:Recall@10, semantic joinsdrill-down:nearduplicates
(ND) and attribute enrichment (AE).

Webtable Wikitable

Methods ND AE ND AE
LSH Ensemble 0.320 0.381 0.344 0.274

fastText 0.195 0.262 0.373 0.334

PEXESO 0.355 0.399 0.215 0.335

DeepJoinMPNet 0.701 0.561 0.649 0.418

Table 10: Effect of varying column size.

Precision@10 NDCG@10

Methods |𝑋 | = 5 – 10 10 – 50 > 50 |𝑋 | = 5 – 10 10 – 50 > 50

Webtable, equi-joins

LSH Ensemble 0.647 0.633 0.617 0.722 0.693 0.688

fastText 0.692 0.694 0.673 0.764 0.751 0.719

BERT 0.684 0.663 0.642 0.755 0.731 0.714

MPNet 0.627 0.619 0.614 0.718 0.698 0.699

TaBERT 0.652 0.651 0.649 0.724 0.731 0.702

TURL 0.678 0.667 0.645 0.729 0.744 0.715

MLP 0.695 0.691 0.664 0.765 0.755 0.701

DeepJoinDistilBERT (ours) 0.724 0.711 0.703 0.777 0.768 0.761

DeepJoinMPNet (ours) 0.765 0.741 0.737 0.789 0.773 0.764
Webtable, semantic joins

LSH Ensemble 0.722 0.721 0.714 0.621 0.618 0.605

fastText 0.851 0.841 0.837 0.613 0.622 0.616

DeepJoinDistilBERT (ours) 0.878 0.851 0.849 0.645 0.640 0.638

DeepJoinMPNet (ours) 0.884 0.871 0.856 0.677 0.655 0.651

Table 11: Evaluation on tall columns, synthetic, equi-joins.

Precision@10 NDCG@10

Methods |𝑋 | = 512 1024 2048 4096 |𝑋 | = 512 1024 2048 4096

LSH Ensemble 0.518 0.521 0.505 0.511 0.611 0.606 0.597 0.593

fastText 0.577 0.568 0.561 0.563 0.634 0.639 0.624 0.615

BERT 0.578 0.554 0.545 0.547 0.635 0.622 0.621 0.600

MPNet 0.545 0.531 0.537 0.534 0.622 0.615 0.611 0.601

TaBERT-random 0.523 0.521 0.517 0.529 0.619 0.610 0.606 0.592

TURL-random 0.534 0.529 0.511 0.521 0.627 0.612 0.601 0.587

MLP 0.581 0.569 0.563 0.571 0.639 0.638 0.626 0.617

DeepJoinDistilBERT-frequency (ours) 0.664 0.647 0.622 0.617 0.677 0.668 0.657 0.644

DeepJoinMPNet-frequency (ours) 0.697 0.671 0.666 0.669 0.696 0.674 0.677 0.665
DeepJoinMPNet-random (ours) 0.684 0.669 0.643 0.641 0.691 0.674 0.664 0.649

DeepJoinMPNet-truncate (ours) 0.681 0.657 0.645 0.642 0.683 0.655 0.661 0.654

default parameters that match real-world English word frequencies.

We randomly take 50 columns as queries and the others are targets.

The method that samples the most frequent cell values within

max_seq_length tokens (see Section 3.2), is dubbed -frequency. For
comparison, we consider another two options: -random, which

randomly samples cell values with no more than max_seq_length
tokens, and -truncate, which truncates to the first max_seq_length
tokens. The results are reported in Table 11. DeepJoinMPNet still

consistently outperforms other models. For the three sampling

options, -random is generally better than -truncate, and -frequency
is always the best, justifying our argument that frequent cell values

are more likely to yield join results.

5.3 Ablation Study
We first evaluate the impact of column-to-text transformation and

test the seven options in Table 1. The results are reported in Ta-

bles 12 and 13. Adding column name at the beginning (colname-col)
improves the performance of simply concatenating cell values (col).
Adding table title at the beginning (options with title) also has a

positive impact. Appending statistical information (options with

stat) further improves the performance, whereas appending con-

text (options with context) has a negative impact. The latter is

because the context includes information irrelevant to the column.

Among the seven options, title-colname-stat-col is the best.
We then evaluate the impact of cell shuffle for data augmentation.

We vary the shuffle rate (defined in Section 4.1) and report the

results in Tables 14 and 15. 0.0means there is no shuffle.We observe

that a moderate shuffle rate achieves the best performance (0.2 and

0.3 for equi-joins and semantic joins on Webtable, respectively,

and 0.3 and 0.4 for equi-joins and semantic joins on Wikitable,

respectively), indicating that shuffling the cells in columns helps

themodel learn that the joinability is order-insensitive. On the other

hand, over-shuffling is negative and even worse than no shuffle. We

suspect this is because the original order of cells in both datasets

follows some distribution. The attention mechanism in the PLM

can capture such distribution and focus on the cells that are more

probable to match. When the order is too random, the attention

mechanism loses focus and thus a detrimental impact is observed.

For the column embedding metrics used in offline training and

online searching, we perform an evaluation of two metrics: cosine

similarity and Euclidean distance. Since the Faiss library does not

support cosine similarity for ANNS, we normalize column embed-

dings before ANNS and use the inner product as the metric, so

as to output the same kNN results as using cosine similarity. The

precisions when 𝑘 = 10 are reported in Table 19. Cosine similarity is

better for training, while Euclidean distance is better for searching.

The combination of cosine similarity for training and Euclidean dis-

tance for searching is overall the best. Since the performances of the

two metrics are very close, users may address the discrepancy by

choosing the same metric for training and searching. Nonetheless,

we still use the best combination in our experiments.

5.4 Efficiency Evaluation
We vary the number of target columns and report the average

query processing time in Table 16. For embedding methods, we

also report query encoding time, which includes column-to-text

transformation and column embedding. JOSIE and PEXESO are the

slowest for equi-joins and semantic joins, respectively, and both

exhibit substantial growth of search time (e.g., around 2 times when

2466

Table 12: Evaluation of column-to-text transformation, equi-joins.

Precision@𝑘 NDCG@𝑘

Methods 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

Webtable

col 0.700 0.744 0.763 0.788 0.791 0.745 0.753 0.767 0.779 0.795

colname-col 0.709 0.750 0.771 0.795 0.799 0.751 0.757 0.770 0.785 0.802

colname-col-context 0.703 0.746 0.764 0.795 0.798 0.750 0.755 0.770 0.780 0.800

colname-stat-col 0.712 0.757 0.778 0.799 0.799 0.756 0.758 0.773 0.788 0.805

title-colname-col 0.729 0.771 0.785 0.807 0.821 0.761 0.769 0.788 0.795 0.818

title-colname-col-context 0.718 0.759 0.781 0.799 0.820 0.759 0.766 0.784 0.791 0.815

title-colname-stat-col 0.732 0.775 0.791 0.812 0.832 0.768 0.786 0.799 0.803 0.822
Wikitable

col 0.602 0.604 0.617 0.632 0.651 0.804 0.805 0.812 0.819 0.821

colname-col 0.600 0.607 0.615 0.630 0.654 0.801 0.816 0.817 0.821 0.822

colname-col-context 0.599 0.607 0.613 0.628 0.655 0.805 0.814 0.818 0.819 0.821

colname-stat-col 0.605 0.608 0.617 0.635 0.663 0.801 0.814 0.815 0.822 0.824

title-colname-col 0.611 0.614 0.627 0.647 0.671 0.813 0.820 0.824 0.827 0.833
title-colname-col-context 0.608 0.618 0.630 0.644 0.670 0.815 0.821 0.822 0.828 0.831

title-colname-stat-col 0.614 0.622 0.641 0.666 0.678 0.821 0.824 0.830 0.833 0.833

Table 13: Evaluation of column-to-text transformation, semantic joins.

Precision@𝑘 NDCG@𝑘

Methods 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

Webtable

col 0.826 0.833 0.866 0.885 0.925 0.610 0.615 0.623 0.637 0.644

colname-col 0.831 0.840 0.877 0.899 0.945 0.616 0.620 0.631 0.644 0.652

colname-col-context 0.831 0.839 0.875 0.886 0.945 0.620 0.631 0.640 0.650 0.661

colname-stat-col 0.834 0.846 0.887 0.904 0.956 0.625 0.641 0.659 0.654 0.671

title-colname-col 0.851 0.879 0.904 0.926 0.959 0.633 0.651 0.667 0.670 0.675

title-colname-col-context 0.850 0.877 0.915 0.927 0.954 0.631 0.650 0.671 0.675 0.677

title-colname-stat-col 0.874 0.934 0.954 0.963 0.970 0.640 0.657 0.664 0.685 0.680
Wikitable

col 0.773 0.810 0.837 0.845 0.891 0.791 0.803 0.807 0.822 0.825

colname-col 0.775 0.815 0.842 0.847 0.903 0.797 0.807 0.811 0.829 0.834

colname-col-context 0.774 0.812 0.841 0.847 0.901 0.794 0.807 0.810 0.830 0.833

colname-stat-col 0.784 0.820 0.850 0.855 0.913 0.804 0.811 0.815 0.833 0.841

title-colname-col 0.804 0.836 0.868 0.874 0.922 0.811 0.815 0.821 0.837 0.844

title-colname-col-context 0.803 0.835 0.868 0.877 0.923 0.811 0.817 0.826 0.840 0.845

title-colname-stat-col 0.813 0.881 0.889 0.889 0.936 0.814 0.820 0.833 0.842 0.852

we increase the Webtable size from 1M to 5M). LSH Ensemble is
also slow, despite transforming columns to fixed-length sketches. In

contrast, embedding methods are much faster, though the majority

of time is spent on query encoding. For example, DeepJoin (with

MPNet), even if equipped with a CPU, is 7 – 57 times (Webtable)

and 3 – 32 times (Wikitable) faster than the above methods. The

growth of search time is also slight (e.g., 1.09 times for equi-joins

and 1.05 times for semantic joins, with Webtable’s size from 1M to

5M), showcasing its scalability. With the help of a GPU, DeepJoin is

substantially accelerated and can be 103 and 421 times faster than

JOSIE and PEXESO, respectively, and even faster than fastText.
Table 17 reports the query processing time when we vary 𝑘 from

10 to 50. The general trend is that we spend more time for a larger

𝑘 . Nonetheless, the growth for DeepJoin is very slight, because

most of its overhead is query encoding, which is independent of the

choice of 𝑘 . As such, we roughly observe a greater speedup over

existing methods when we increase 𝑘 from 10 to 50.

To evaluate how the efficiency changes with column size, we

use the same setting as in the corresponding accuracy evaluation

(Table 10). Additionally, we sample and index only 300k target

columns for each group, in order to eliminate the impact of the

number of target columns. The results are reported in Table 18. The

exact methods, JOSIE and PEXESO, exhibit considerable growth
(1.9 and 1.5 times, respectively) of query processing time when we

switch from short to long columns, which reflects the analysis in

Section 2.2. In contrast, the growth for embedding methods is much

slighter. For example, we only observe a growth of 1.09 times for

DeepJoinwith a CPU, and this only affects its query encoding rather
than the ANNS. For DeepJoin with a GPU, we also observe a more

remarkable speedup over the exact methods on longer columns.

2467

Table 14: Evaluation of cell shuffle, equi-joins.

Precision@𝑘 NDCG@𝑘

shuffle rate 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

Webtable

0.0 0.720 0.759 0.781 0.803 0.819 0.752 0.771 0.784 0.791 0.812

0.1 0.725 0.766 0.784 0.809 0.825 0.755 0.778 0.793 0.796 0.817

0.2 0.732 0.775 0.791 0.812 0.832 0.768 0.786 0.799 0.803 0.822
0.3 0.729 0.770 0.785 0.792 0.815 0.754 0.773 0.788 0.791 0.806

0.4 0.711 0.755 0.774 0.780 0.782 0.733 0.758 0.766 0.780 0.781

0.5 0.701 0.751 0.760 0.781 0.787 0.726 0.754 0.760 0.765 0.777

Wikitable

0.0 0.605 0.615 0.631 0.657 0.670 0.811 0.813 0.815 0.826 0.821

0.1 0.608 0.618 0.635 659 0.675 0.809 0.814 0.829 0.828 0.829

0.2 0.611 0.622 0.664 0.639 0.677 0.815 0.820 0.831 0.832 0.830

0.3 0.614 0.622 0.641 0.666 0.678 0.821 0.824 0.830 0.833 0.833
0.4 0.584 0.598 0.613 0.634 0.644 0.803 0.801 0.813 0.815 0.821

0.5 0.576 0.579 0.591 0.623 0.634 0.800 0.797 0.802 0.808 0.810

Table 15: Evaluation of cell shuffle, semantic joins.

Precision@𝑘 NDCG@𝑘

shuffle rate 𝑘 = 10 20 30 40 50 𝑘 = 10 20 30 40 50

Webtable

0.0 0.868 0.917 0.950 0.954 0.959 0.631 0.649 0.651 0.677 0.679

0.1 0.870 0.919 0.949 0.959 0.963 0.633 0.651 0.655 0.679 0.683

0.2 0.872 0.922 0.950 0.961 0.966 0.639 0.655 0.659 0.681 0.687
0.3 0.874 0.934 0.954 0.963 0.970 0.640 0.657 0.664 0.685 0.680

0.4 0.871 0.930 0.939 0.961 0.968 0.631 0.654 0.654 0.683 0.686

0.5 0.863 0.919 0.945 0.955 0.961 0.632 0.649 0.648 0.679 0.681

Wikitable

0.0 0.798 0.856 0.865 0.877 0.914 0.801 0.804 0.813 0.820 0.833

0.1 0.801 0.861 0.870 0.881 0.921 0.803 0.806 0.819 0.822 0.839

0.2 0.806 0.866 0.875 0.883 0.925 0.806 0.810 0.822 0.825 0.840

0.3 0.808 0.870 0.877 0.887 0.929 0.809 0.812 0.825 0.826 0.843

0.4 0.813 0.881 0.889 0.889 0.936 0.814 0.820 0.833 0.842 0.852
0.5 0.809 0.871 0.873 0.880 0.931 0.809 0.813 0.829 0.829 0.844

6 RELATEDWORK

Table discovery and data lakemanagement. Besides joinable
table discovery [64, 66], techniques have been developed for search-

ing unionable tables [43]. Another important problem is related

table discovery. SilkMoth [12] models columns as sets and finds re-

lated sets under maximum bipartite matchingmetrics. JUNEAU [63]

finds related tables for data science notebooks using a composite

score of multiple similarities. D
3
L [5] is a dataset discovery method

which finds top-𝑘 results with a scoring function involving multiple

attributes of a table. DLN [4] discovers related datasets by exploiting

historical queries having join clauses and determines relatedness

with a random forest. Nextia𝐽 𝐷 [21] uses meta-features (cardinal-

ities, value distribution, entropy, etc.) to provide a join quality

ranking of candidate columns. EMBER [53] is a context enrichment

system for ML pipelines, leveraging transformer-based [55] repre-

sentation learning to automate keyless joins. Another notable work

is Valentine [36], in which an experiment suite was proposed for the

experiments of dataset discovery with joinability and unionability.

For data lake management, another problem which has been

extensively studied is column type annotation. Notable approaches

include Sherlock [28], Sato [61], and DODUO [52]. Among the three,

DODUO is the one that employs PLMs. To deal with the case when

tables differ in format, transformation techniques are often used

to convert data so they can be joined. To tackle this problem, auto-

join [65] joins two tables with string transformations on columns. A

similar method is auto-transform [24], which learns string transfor-

mations with patterns. Besides, SEMA-join [23] finds related pairs

between two tables with statistical correlation. Other representative

problems include data lake organization [42], data validation [50],

and data lake integration [34]. A recent advancement is regarding

data integration as prompting tasks for foundation models [41].

Table embedding. Language models have been used in under-

standing the contents of tables. For example, cell classification was

investigated in [22], with an RNN-based cell embeddingmethod pro-

posed. Table2Vec [62], featuring a series of embedding approaches

for words, entities, and headers based on the idea of skip-gram

model of word2vec [40], deals with the table retrieval problem that

2468

Table 16: Processing time per query, varying |X|, 𝑘 = 10.

query encoding (ms) total (ms)

Methods |X| = 1M 2M 3M 4M 5M

Webtable, equi-joins

LSH Ensemble - 508 597 634 689 785

JOSIE - 506 751 874 980 1103

fastText 9 9.7 10.3 11.5 12.1 13.6

DeepJoin (CPU) 66 68.1 69.3 71.4 73.2 74.1

DeepJoin (GPU) 7 8.0 8.7 9.6 10.8 10.7
Webtable, semantic joins

PEXESO - 2566 3116 3780 4122 4590

DeepJoin (CPU) 74 76.1 77.9 78.4 80.1 79.9

DeepJoin (GPU) 7 8.4 8.8 9.5 9.7 10.9
|X| = 200k 400k 600k 800k 1M

Wikitable, equi-joins

LSH Ensemble - 236 338 467 514 652

JOSIE - 304 377 455 556 647

fastText 6 6.7 6.6 6.8 6.9 7.4

DeepJoin (CPU) 76 76.4 76.7 76.9 77.0 77.1

DeepJoin (GPU) 5 5.4 5.8 5.8 6.1 6.3
Wikitable, semantic joins

PEXESO 1665 1874 1995 2310 2551 2789

DeepJoin (CPU) 86 86.5 86.9 87.1 87.4 87.7

DeepJoin (GPU) 9 9.5 9.6 10.1 10.3 10.5

Table 17: Processing time per query, varying 𝑘 .

query encoding (ms) total (ms)

Methods 𝑘 = 10 20 30 40 50

Webtable, equi-joins

LSH Ensemble - 496 506 590 595 508

JOSIE - 535 556 578 580 506

fastText 9 10.3 10.5 10.2 10.8 11.1

DeepJoin (CPU) 66 67.1 67.1 67.1 67.2 68.1

DeepJoin (GPU) 7 8.4 8.1 8.2 8.1 8.0

Webtable, semantic joins

PEXESO - 2345 2444 2356 2754 2566

DeepJoin (CPU) 74 75.6 76.8 76.1 75.8 76.1

DeepJoin (GPU) 7 8.1 8.3 8.0 8.2 8.4

Wikitable, equi-joins

LSH Ensemble - 652 720 715 678 736

JOSIE - 647 667 708 697 788

fastText 6 7.4 7.2 7.8 7.3 7.7

DeepJoin (CPU) 76 77.1 78.1 77.4 77.5 77.6

DeepJoin (GPU) 5 6.3 7.0 6.6 6.7 6.4

Wikitable, semantic joins

PEXESO - 2655 2776 2557 2743 2789

DeepJoin (CPU) 86 87.4 87.3 87.1 87.2 87.7

DeepJoin (GPU) 9 10.5 11 10.2 10.7 10.4

returns a ranked list of tables for a keyword query. Besides, PLMs

such as BERT [14] have also been used for table retrieval [9].

More advanced approaches enlarged the scope of downstream

tasks to include entity linkage, column type annotation, cell filling,

etc., and designed pre-trained models that can be fine-tuned for

them. TURL [13] features a contextualization technique to con-

vert table contents to sequences and leverages a masked language

model (MLM) initialized by TinyBERT [32]. TaPas [26] is built upon

a similar MLM but employs BERT [14], with additional information

embedded such as positions and ranks. TaBERT [60] pre-trains for

question answering tasks and learns embeddings for cells, columns,

and utterance tokens in the questions using BERT. By adopting

two transformers to independently encode rows and columns, TAB-

BIE [29] embeds cells, columns, and rows, and achieves one order

of magnitude less training time than TaBERT. TUTA [57] creates

Table 18: Processing time per query, varying |𝑋 |, 𝑘 = 10.

query encoding (ms) total (ms)

Methods |𝑋 | = 5 – 10 11 – 50 > 50 |𝑋 | = 5 – 10 11 – 50 > 50

Webtable, equi-joins

LSH Ensemble - - - 455 487 467

JOSIE - - - 410 589 792

fastText 5 6 6 5.8 6.7 6.9

DeepJoin (CPU) 71 75 78 71.7 75.4 78.5

DeepJoin (GPU) 4 5 6 4.9 5.8 6.9

Webtable, semantic joins

PEXESO - - - 2123 2785 3244

DeepJoin (CPU) 81 84 89 81.9 84.7 89.3

DeepJoin (GPU) 8 9 9 8.8 9.6 10.0

Table 19: Evaluation of embeddingmetrics, precision@10.

DeepJoinDistilBERT DeepJoinMPNet
Webtable, equi-joins

PPPPPPtrain

search

cosine Euclidean cosine Euclidean

cosine 0.701 0.702 0.730 0.731

Euclidean 0.697 0.700 0.732 0.732
Wikitable, equi-joins

PPPPPPtrain

search

cosine Euclidean cosine Euclidean

cosine 0.588 0.588 0.614 0.614
Euclidean 0.587 0.585 0.611 0.612

Webtable, semantic joins

PPPPPPtrain

search

cosine Euclidean cosine Euclidean

cosine 0.861 0.861 0.870 0.874
Euclidean 0.859 0.859 0.870 0.866

Wikitable, semantic joins

PPPPPPtrain

search

cosine Euclidean cosine Euclidean

cosine 0.787 0.788 0.810 0.813
Euclidean 0.785 0.783 0.808 0.810

trees to encode the information in hierarchical tables, while most

previous studies focused on flat tables. Another method for hierar-

chical tables is GTR [56], which models cells, rows, and columns as

nodes in a graph and employs a graph transformer [35] to capture

the neighborhood information of cells, rows, and columns.

7 CONCLUSION
We proposed DeepJoin, a deep learning model that fits both equi-

and semantic-joinable table discovery in a data lake. DeepJoin was

designed in an embedding-based retrieval fashion, which embeds

columns with a fine-tuned PLM and resorts to ANNS to find joinable

results, thereby achieving a search time sublinear in the repository

size. The experiments demonstrated the generalizability of Deep-
Join, which is consistently more accurate than alternatives methods,

as well as the superiority of DeepJoin in search speed, which is

up to two orders of magnitude faster than alternatives. We expect

that by employing more advanced retrieval strategies or PLMs, the

performance of DeepJoin can be further improved.

ACKNOWLEDGMENTS
This work is mainly supported by NEC Corporation and partially

supported by JSPS Kakenhi 22H03903 and CREST JPMJCR22M2.

2469

REFERENCES
[1] Hugging face transformers. https://huggingface.co/docs/transformers/index,

2022.

[2] C. S.Bhagavatula,T.Noraset, andD.Downey. Tabel: Entity linking inweb tables. In

ISWC, volume 9366 of Lecture Notes in Computer Science, pages 425–441. Springer,
2015.

[3] C. S. Bhagavatula, T. Noraset, and D. Downey. Wikitables. http://websail-fe.cs.

northwestern.edu/TabEL/, 2015.

[4] S. Bharadwaj, P. Gupta, R. Bhagwan, and S. Guha. Discovering related data at

scale. PVLDB, 14(8):1392–1400, 2021.
[5] A.Bogatu,A.A.A. Fernandes,N.W.Paton, andN.Konstantinou. Dataset discovery

in data lakes. In ICDE, pages 709–720, 2020.
[6] A. Z. Broder. On the resemblance and containment of documents. In SEQUENCES,

pages 21–29. IEEE, 1997.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins

in data cleaning. In ICDE, page 5. IEEE Computer Society, 2006.

[8] L. Chen, Y. Gao, B. Zheng, C. S. Jensen, H. Yang, and K. Yang. Pivot-based metric

indexing. PVLDB, 10(10):1058–1069, 2017.
[9] Z. Chen, M. Trabelsi, J. Heflin, Y. Xu, and B. D. Davison. Table search using a deep

contextualized language model. In SIGIR, pages 589–598. ACM, 2020.

[10] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fernandez, T. Kraska, and D. Karger.

ARDA: automatic relational data augmentation for machine learning. PVLDB,
13(9):1373–1387, 2020.

[11] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube recom-

mendations. In RecSys, pages 191–198. ACM, 2016.

[12] D. Deng, A. Kim, S. Madden, and M. Stonebraker. Silkmoth: An efficient method

for finding related sets withmaximummatching constraints. PVLDB, 10(10):1082–
1093, 2017.

[13] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu. TURL: table understanding through

representation learning. PVLDB, 14(3):307–319, 2020.
[14] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirec-

tional transformers for languageunderstanding. InNAACL-HLT, pages 4171–4186.
ACL, 2019.

[15] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan

Kaufmann, 2012.

[16] Y. Dong and M. Oyamada. Table enrichment system for machine learning. In

SIGIR, pages 3267–3271. ACM, 2022.

[17] Y. Dong, K. Takeoka, C. Xiao, and M. Oyamada. Efficient joinable table discovery

in data lakes: A high-dimensional similarity-based approach. In ICDE, pages
456–467. IEEE, 2021.

[18] facebook AI research. Faiss: Facebook ai similarity search. https://github.com/

facebookresearch/faiss/wiki/Faiss-indexes, 2022.

[19] Facebook AI Research Lab. fastText: Library for efficient text classification and

representation learning. https://fasttext.cc/, 2015.

[20] D. Faraglia. Faker. https://github.com/joke2k/faker, 2023.

[21] J. Flores, S. Nadal, and O. Romero. Effective and scalable data discovery with

nextiajd. In EDBT, pages 690–693. OpenProceedings.org, 2021.
[22] M. Ghasemi-Gol, J. Pujara, and P. A. Szekely. Tabular cell classification using

pre-trained cell embeddings. In ICDM, pages 230–239. IEEE, 2019.

[23] Y. He, K. Ganjam, and X. Chu. SEMA-JOIN: joining semantically-related tables

using big table corpora. PVLDB, 8(12):1358–1369, 2015.
[24] Y.He,Z. Jin, andS.Chaudhuri. Auto-transform:Learning-to-transformbypatterns.

PVLDB, 13(11):2368–2381, 2020.
[25] M. L. Henderson, R. Al-Rfou, B. Strope, Y. Sung, L. Lukács, R. Guo, S. Kumar,

B. Miklos, and R. Kurzweil. Efficient natural language response suggestion for

smart reply. CoRR, abs/1705.00652, 2017.
[26] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos. Tapas:Weakly

supervised table parsing via pre-training. InACL, pages 4320–4333. ACL, 2020.
[27] J. Huang, A. Sharma, S. Sun, L. Xia, D. Zhang, P. Pronin, J. Padmanabhan, G. Otta-

viano, and L. Yang. Embedding-based retrieval in facebook search. In KDD, pages
2553–2561. ACM, 2020.

[28] M. Hulsebos, K. Z. Hu, M. A. Bakker, E. Zgraggen, A. Satyanarayan, T. Kraska,

Ç. Demiralp, and C. A. Hidalgo. Sherlock: A deep learning approach to semantic

data type detection. In KDD, pages 1500–1508. ACM, 2019.

[29] H. Iida, D. Thai, V. Manjunatha, andM. Iyyer. TABBIE: pretrained representations

of tabular data. In NAACL-HLT, pages 3446–3456. ACL, 2021.
[30] C. S. J. and W. Peter. Estimating the recall performance of web search engines.

Aslib Proceedings, 49(7):184–189, Jan 1997.
[31] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor

search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, 2011.
[32] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu. Tinybert:

Distilling BERT for natural language understanding. In EMNLP (Findings), volume

EMNLP 2020 of Findings of ACL, pages 4163–4174. ACL, 2020.
[33] V. Karpukhin, B. Oguz, S.Min, P. S. H. Lewis, L.Wu, S. Edunov, D. Chen, andW. Yih.

Dense passage retrieval for open-domain question answering. In EMNLP, pages

6769–6781. ACL, 2020.

[34] A. Khatiwada, R. Shraga, W. Gatterbauer, and R. J. Miller. Integrating data lake

tables. PVLDB, 16(4):932–945, 2022.
[35] R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata, and H. Hajishirzi. Text gener-

ation from knowledge graphs with graph transformers. InNAACL-HLT, pages
2284–2293. ACL, 2019.

[36] C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, J. Brons, M. Fragkoulis, C. Lofi,

A. Bonifati, and A. Katsifodimos. Valentine: Evaluating matching techniques for

dataset discovery. In ICDE, pages 468–479. IEEE, 2021.
[37] Y. Li, J. Li, Y. Suhara, A. Doan, andW. Tan. Deep entity matching with pre-trained

language models. PVLDB, 14(1):50–60, 2020.
[38] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest

neighbor search using hierarchical navigable small world graphs. IEEE Trans.
Pattern Anal. Mach. Intell., 42(4):824–836, 2020.

[39] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.
Cambridge University Press, 2008.

[40] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed represen-

tations ofwords and phrases and their compositionality. InNIPS, pages 3111–3119,
2013.

[41] A. Narayan, I. Chami, L. J. Orr, and C. Ré. Can foundation models wrangle your

data? PVLDB, 16(4):738–746, 2022.
[42] F. Nargesian, K. Q. Pu, E. Zhu, B. G. Bashardoost, and R. J. Miller. Organizing data

lakes for navigation. In SIGMOD, pages 1939–1950. ACM, 2020.

[43] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union search on open data.

PVLDB, 11(7):813–825, 2018.
[44] Nils Reimers. Sentencetransformers.losses. https://www.sbert.net/docs/package_

reference/losses.html, 2019.

[45] J. Qin, W. Wang, C. Xiao, Y. Zhang, and Y. Wang. High-dimensional similarity

query processing for data science. In KDD, pages 4062–4063. ACM, 2021.

[46] N. Reimers. Sentence bert. https://www.sbert.net/, 2022.

[47] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese

bert-networks. In EMNLP-IJCNLP, pages 3980–3990. ACL, 2019.
[48] D. Ritze, O. Lehmberg, R. Meusel, C. Bizer, and S. Zope. WDCweb table corpus.

http://webdatacommons.org/webtables/2015/downloadInstructions.html, 2015.

[49] V. Sanh, L. Debut, J. Chaumond, and T.Wolf. Distilbert, a distilled version of BERT:

smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.
[50] J. Song and Y. He. Auto-validate: Unsupervised data validation using data-domain

patterns inferred from data lakes. In SIGMOD, pages 1678–1691. ACM, 2021.

[51] K. Song, X. Tan, T. Qin, J. Lu, andT. Liu. Mpnet:Masked and permuted pre-training

for language understanding. In NeurIPS, 2020.
[52] Y. Suhara, J. Li, Y. Li, D. Zhang, Ç. Demiralp, C. Chen, andW. Tan. Annotating

columns with pre-trained language models. In SIGMOD, pages 1493–1503. ACM,

2022.

[53] S. Suri, I. F. Ilyas, C. Ré, and T. Rekatsinas. Ember: No-code context enrichment

via similarity-based keyless joins. PVLDB, 15(3):699–712, 2021.
[54] N. Tang, J. Fan, F. Li, J. Tu, X. Du, G. Li, S. Madden, and M. Ouzzani. RPT: rela-

tional pre-trained transformer is almost all you need towards democratizing data

preparation. PVLDB, 14(8):1254–1261, 2021.
[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.
[56] F. Wang, K. Sun, M. Chen, J. Pujara, and P. A. Szekely. Retrieving complex tables

with multi-granular graph representation learning. In SIGIR, pages 1472–1482.
ACM, 2021.

[57] Z. Wang, H. Dong, R. Jia, J. Li, Z. Fu, S. Han, and D. Zhang. TUTA: tree-based

transformers for generally structured table pre-training. InKDD, pages 1780–1790.
ACM, 2021.

[58] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le, and D. Zhou.

Chain of thought prompting elicits reasoning in large language models. CoRR,
abs/2201.11903, 2022.

[59] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for

near-duplicate detection. ACM Trans. Database Syst., 36(3):15:1–15:41, 2011.
[60] P. Yin, G. Neubig,W. Yih, and S. Riedel. Tabert: Pretraining for joint understanding

of textual and tabular data. InACL, pages 8413–8426. ACL, 2020.
[61] D. Zhang, Y. Suhara, J. Li, M. Hulsebos, Ç. Demiralp, andW. Tan. Sato: Contextual

semantic type detection in tables. PVLDB, 13(11):1835–1848, 2020.
[62] L. Zhang, S. Zhang, and K. Balog. Table2vec: Neural word and entity embeddings

for table population and retrieval. In SIGIR, pages 1029–1032. ACM, 2019.

[63] Y. Zhang and Z. G. Ives. Finding related tables in data lakes for interactive data

science. In SIGMOD, pages 1951–1966, 2020.
[64] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller. JOSIE: overlap set similarity search

for finding joinable tables in data lakes. In SIGMOD, pages 847–864. ACM, 2019.

[65] E. Zhu, Y. He, and S. Chaudhuri. Auto-join: Joining tables by leveraging transfor-

mations. PVLDB, 10(10):1034–1045, 2017.
[66] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. LSH ensemble: Internet-scale

domain search. PVLDB, 9(12):1185–1196, 2016.

2470

https://huggingface.co/docs/transformers/index
http://websail-fe.cs.northwestern.edu/TabEL/
http://websail-fe.cs.northwestern.edu/TabEL/
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://fasttext.cc/
https://github.com/joke2k/faker
https://www.sbert.net/docs/package_reference/losses.html
https://www.sbert.net/docs/package_reference/losses.html
https://www.sbert.net/
http://webdatacommons.org/webtables/2015/downloadInstructions.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 State-of-the-Art

	3 The DeepJoin Model
	3.1 Column-to-Text Transformation
	3.2 Column Embedding
	3.3 Indexing and Searching
	3.4 Complexity Analysis

	4 Model Training
	4.1 Training Data
	4.2 Loss Function

	5 Experiments
	5.1 Experimental Settings
	5.2 Accuracy Evaluation
	5.3 Ablation Study
	5.4 Efficiency Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

