
Autonomously Computable Information Extraction
Besat Kassaie

Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada

bkassaie@uwaterloo.ca

Frank Wm. Tompa

Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada

fwtompa@uwaterloo.ca

ABSTRACT
Most optimization techniques deployed in information extraction

systems assume that source documents are static. Instead, extracted

relations can be considered to be materialized views defined by a

language built on regular expressions. Using this perspective, we

can provide an efficient verifier (using static analysis) that can be

used to avoid the high cost of re-extracting information after an

update. In particular, we propose an efficient mechanism to identify

updates for which we can autonomously compute an extracted

relation.We present experimental results that support the feasibility

and practicality of this mechanism in real world extraction systems.

PVLDB Reference Format:
Besat Kassaie and Frank Wm. Tompa. Autonomously Computable

Information Extraction. PVLDB, 16(10): 2431 - 2443, 2023.

doi:10.14778/3603581.3603585

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Besatkassaie/Differential-Maintenance-Engine.

1 INTRODUCTION
Information extraction is a crucial step in processing and under-

standing text. By identifying fields of interest in unstructured or

semi-structured data sources, extractors provide selected data to

populate relational records. For instance, an application can ex-

tract the relationships between events, dates, and venues as de-

scribed in a collection of documents. Knowledge Panels [33] show
how information extraction can improve the presentation of re-

trieval results in a commercial search engine. Extraction can be

performed using ad-hoc text processing programs, machine learn-

ing, or reusable components offered by systems such as GATE [15]

and SystemT [24]. In this paper, we address the third approach,

where extractors are defined by regular expressions.

Extraction time can be a bottleneck for many applications [30,

32], and therefore efficient processing is an important consideration

for information extraction. Some optimization approaches are gen-

eral and can be deployed in any system for specifying extractors.

For instance, Chandel et al. [5] propose an efficient algorithm for

dictionary-based entity recognition, which can be used on many

extraction platforms. Iperotis et al. [17] deal with many documents

by keeping only “promising” documents for the extraction process.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/urlor(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.

doi:10.14778/3603581.3603585

Shen et al. [32] propose a declarative approach to information ex-

traction using Datalog with embedded procedural predicates to

express extractors. This enables the creation of execution plans

for the extraction program and thus the application of cost-based

optimization techniques similar to query optimization in relational

databases. Similarly, Reiss et al. [30] recommend using a SQL-like

declarative language, AQL (used by SystemT), to be able to ex-

ploit query optimization strategies. Considering extractions within

larger applications, Jain et al. [18] treat information extraction

and subsequent relational queries as an integrated system and pro-

pose optimizations that takes into account the characteristics of

extractors, document retrieval methods, and join algorithms on the

extracted relations.

However, none of these strategies consider that an extraction

might need to be re-computed to keep extracted information syn-

chronized with source documents as they are updated. Recognizing

this situation, Chen et al. have developed an approach for incremen-

tally updating extracted relations [6]. They do not assume that a

description of the update is available, but instead compare each up-

dated document with the previous version to find regions that have

not changed. Then, based on user-provided properties of the extrac-

tor, they decide which of the extracted items from those regions

can be reused.

Doleschal et al. [10] explore conditions for determining that

a spanner is split-correct, that is, if the extracted relation can be

computed by combining the extractions from sub-documents. If so,

extractions from various sub-documents can be run in parallel, but

additionally incremental update is applicable: re-extraction after an

update can be avoided for those sub-documents that are not altered.

Freydenberger and Thompson [14] have investigated the com-

plexity of incrementally re-evaluating spanners in the presence of

updates. However, their update model assumes that a document is

encoded as a fixed-length word structure in which (essentially) there

is a special character that represents 𝜖 , and the only permissible

update is replacing one character from Σ ∪ {𝜖} by another.

In a previous short paper [21], we have noted that the prob-

lem of re-evaluating extractions after updates is analogous to the

problem of maintaining materialized views [7]. We identified up-

dates to source documents that can be reflected in the extracted

relation without re-computing the extractors (i.e., irrelevant up-

dates), and we formulated the condition of an update being pseudo-
irrelevant, where extracted regions are merely shifted in source

documents. In unpublished extended work [20], we describe verifi-

cation algorithms that attempt to determine whether an update is

pseudo-irrelevant with respect to an extractor. Unfortunately, the

algorithms rely on normalization that causes exponential blow-up

in the input size and on finding complements and intersections of

2431

https://doi.org/10.14778/3603581.3603585
https://github.com/Besatkassaie/Differential-Maintenance-Engine
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603585
https://www.acm.org/publications/policies/artifact-review-and-badging-current

automata, which in the worst case causes exponential blow-up in

time and space.

No other prior work proposes to apply static analysis to programs

that specify extractors and updates in order to determine whether

re-extraction can be avoided or reduced.

In this paper, we continue the investigation of pseudo-irrelevant

updates, one form of autonomously computable updates, for extrac-

tors expressed as document spanners (as defined below). To that

end, in this paper:

(1) We extend the update model formalized in our earlier work

to allow replacements to depend on the strings being re-

placed (Section 3).

(2) We propose a new algorithm to verify that an update is

pseudo-irrelevant with respect to an extractor and prove

that it runs in polynomial time via three theorems (Sec-

tion 5). The algorithm relies on four external tests (two for

verifying the precondition and two tests for independence)

that are each proven to execute in polynomial time in a

proposition,
1
and it is built upon four auxiliary algorithms,

each of which is proven to execute in polynomial time by

an accompanying lemma.

(3) We show experimentally that our algorithm is practical: it

can be used effectively in realistic update and extraction

scenarios, and it runs far faster than the time needed for re-

extraction. If this approach is combined with incremental

update, the overhead is relatively small, and it will often

perform much faster (Section 6).

2 PRELIMINARIES
We assume that extracted views are defined using SystemT, an in-

formation extraction platform that benefits from relational database

concepts to deal with text data sources [30]. SystemT processes

one document at a time and populates relational tables with spans,
directly extracted from the input document.With SystemT, users en-

code extractors using a SQL-like language, namely the Annotation
Query Language (AQL), to manipulate tables.

The underlying principles adopted by SystemT have been formal-

ized as document spanners by Fagin et al. [12]. Most of the material

in this section has been introduced in that work and additional

details can be found there.

2.1 Regular Expressions with Capture Variables
Given a finite alphabet Σ, a regular expression extended using

variables chosen from a set𝑉 is called a regex with capture variables
and conforms to 𝛾 in the grammar 𝐺𝑆 (Σ,𝑉) as follows:

𝛾 := ∅ | 𝜖 | 𝛼 | (𝛾 ∨ 𝛾) | (𝛾 • 𝛾) | (𝛾)∗ | 𝑥{𝛾}
𝛼 := 𝜎 | [𝜎, 𝜎] | 𝛿
𝛿 := Σ | (𝛿 − 𝜎)

(1)

where 𝜎 represents any character in Σ, [𝜎, 𝜎] represents the dis-
junction of characters having their encoding between or equal to

the encodings of the first and second character in the range, the

terminal symbol Σ represents the disjunction of all characters in

Σ, 𝛿 − 𝜎 represents the disjunction of all characters in 𝛿 with the

1
An additional test for constraints on the alphabet is embedded in the algorithm.

exception of 𝜎 , and (what distinguishes these expressions from

conventional regular expressions) 𝑥 represents any variable in 𝑉 .

Given a regex with capture variables 𝑟 , the corresponding regex
tree T (𝑟) represents the hierarchical structure of 𝑟 , in which the

tree’s leaves have labels ∅, 𝜖 , characters in Σ, character ranges in
Σ, or the character Σ itself, and internal nodes have labels •, ∨, ∗,
−, or a symbol in 𝑉 . For convenience of notation, when writing a

regex with capture variables, we follow common practice for regu-

lar expressions in allowing the following shorthand: omission of

parentheses (relying instead on left associativity of all operations

and precedence of − over ∗ over • over ∨) and omission of the

operator •.
If 𝐸 is a regex with capture variables, then we denote the set of

capture variables in 𝐸 as SVars(𝐸). The use of a subexpression of

the form 𝑛{𝑔} in 𝐸 signifies that whenever 𝐸 matches a string, the

span containing a substring matched by 𝑔 is to be marked by the
capture variable 𝑛 (as explained in Section 2.3). It is apparent from

the grammar that capture variables can be nested.

Example 2.1. Let Σ be the set of Latin alphanumeric, punctuation,

and space characters (the last represented by). 𝛾fullDate is a regex

with capture variables:
2

𝛾fullDate = Σ∗ mdate=" 𝐹 {𝑌 {𝛾𝑑𝛾𝑑𝛾𝑑𝛾𝑑 } -𝑀{𝛾𝑑𝛾𝑑 } - 𝐷{𝛾𝑑𝛾𝑑 }}Σ∗

where 𝛾𝑑 = [0 , 9] and SVars(𝐸) = {𝐹,𝑌 ,𝑀, 𝐷}. For this example,

we say that 𝑌 ,𝑀 , 𝐷 are nested variables and that 𝐹 is exposed. We

extend conventional set notation to write 𝑌 ⊂ 𝐹 and - ∈ 𝐹 .

2.2 Document Spans
A document 𝐷 is a finite string over some alphabet: 𝐷 ∈ Σ∗ (Fig-
ure 1). A span of document 𝐷 , denoted [𝑖, 𝑗⟩ (1 ≤ 𝑖 ≤ 𝑗 ≤ |𝐷 | + 1),

specifies the start and end offsets of a substring in 𝐷 , which is in

turn denoted 𝐷 [𝑖, 𝑗 ⟩ , and extends from offset 𝑖 through offset 𝑗 − 1.

Example 2.2. In the document presented in Figure 1, 𝐷 [56,70⟩
represents the substring James F. Allen .

[𝑖, 𝑖⟩ denotes an empty span at offset 𝑖 . Spans 𝑠1 = [𝑖1, 𝑗1⟩ and
𝑠2 = [𝑖2, 𝑗2⟩ are identical if and only if 𝑖1 = 𝑖2 and 𝑗1 = 𝑗2.

A substantial portion of our work is based on investigating var-

ious relationships between spans. Allen has defined a set of 13

possible relationships between non-empty intervals [1]. These can

be extended to capture the same basic relationships among spans

(including empty spans) as summarized in Table 1. All possible re-

lationships among spans can be described by disjunctions of these

basic relationships; for example, “X overlaps Y” (Γ(𝑋∩𝑌)) can be

expressed as the disjunction of the last nine basic relationships.
3
“X

overlaps but is not equal to Y” (Γ(𝑋⋒𝑌)) can be similarly expressed as

the disjunction of the fifth through the twelfth basic relationships.

2
Throughout this paper, characters in Σ appearing in a formula are represented

like this to distinguish them from the regular expression’s meta-characters.

3
The definition of overlapping spans given by Fagin et al. [12] is asymmetric for empty

spans, i.e., given a span [𝑖, 𝑗 ⟩ the empty span at [𝑖, 𝑖 ⟩ is considered overlapping with

[𝑖, 𝑗 ⟩ while the empty span at [𝑗, 𝑗 ⟩ is considered disjoint from [𝑖, 𝑗 ⟩. We treat both

as overlapping.

2432

< a r t i c l e k e y = " c a c m / A l l e n 8 3 " m d a t e = " 2 0 1 1 - 0 6 - 0 7 " > < a u

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

t h o r > J a m e s F . A l l e n < / a u t h o r > < t i t l e > M a i n t a i n i n g K n o

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

w l e d g e a b o u t T e m p o r a l I n t e r v a l s . < / t i t l e > < / a r t i c l e >

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

Figure 1: A sample input document 𝐷 for our running example.

Table 1: Allen’s interval relationships extended to spans.

1 Γ(𝑋<𝑌) X precedes Y
}︃
Σ∗𝑋 {Σ∗}Σ+𝑌 {Σ∗}Σ∗ 7 Γ(𝑋d𝑌) X during Y

}︃
Σ∗𝑌 {Σ+𝑋 {Σ∗}Σ+}Σ∗

2 Γ(𝑌>𝑋) Y is preceded by X 8 Γ(𝑌di𝑋) Y contains X
3 Γ(𝑋m𝑌) X meets Y

}︃
Σ∗𝑋 {Σ+}𝑌 {Σ+}Σ∗ 9 Γ(𝑋 s𝑌) X starts Y

}︃
Σ∗𝑌 {𝑋 {Σ∗}Σ+}Σ∗

4 Γ(𝑌mi𝑋) Y is met by X 10 Γ(𝑌 si𝑋) Y is started by X
5 Γ(𝑋o𝑌) X overhangs Y

}︃
Σ∗ (𝑋 ⊢)Σ+ (𝑌 ⊢)Σ+ (⊣ 𝑋)Σ+ (⊣ 𝑌)Σ∗

a
11 Γ(𝑋 f𝑌) X finishes Y

}︃
Σ∗𝑌 {Σ+𝑋 {Σ∗}}Σ∗

6 Γ(𝑌oi𝑋) Y is overhung by X 12 Γ(𝑌fi𝑋) Y is finished by X
13 Γ(𝑋=𝑌) X is equal to Y Σ∗𝑋 {𝑌 {Σ∗}}Σ∗ ∨ Σ∗𝑋 {𝜖 }𝑌 {𝜖 }Σ∗

a
This abuse of notation represents a spanner (as described in Section 2.3) matching an automaton with operators that open and close the variables 𝑋 and 𝑌 as indicated.

2.3 Extractors Expressed by Document Spanners
Determining membership in a language defined by a regex with

capture variables 𝐸 can be accomplished by executing a correspond-

ing vset-automaton A(𝐸). Given 𝐸 and 𝑉 = SVars(𝐸), A(𝐸) is a
non-deterministic finite state automaton augmented with a des-

ignated set (initially empty) and two operators for each variable

𝑥 ∈ 𝑉 , namely 𝑥 ⊢ (“open 𝑥”) and ⊣ 𝑥 (“close 𝑥”). Besides includ-

ing standard character transitions, A(𝐸) also includes operation
transitions that, instead of consuming a character from the input

string, insert the variable 𝑥 into the designated set if the transition

label is 𝑥 ⊢ and remove 𝑥 from the designated set if the label is ⊣𝑥 .
A document 𝐷 is accepted by A(𝐸) if, after scanning the whole

input, we end up in a final state and the designated set is empty.

A matching of 𝐸 against document 𝐷 is an accepting run in A(𝐸),
where for each variable 𝑥 ∈ SVars(𝐸), the spans marked by 𝑥 each

begin with the offset in 𝐷 when 𝑥 is inserted into the designated

set and end with the offset in 𝐷 when 𝑥 is removed from that set.

If 𝐸 is a regex with capture variables, it specifies a document
spanner, denoted as J𝐸K, with SVars(J𝐸K) = SVars(𝐸). Applying a

document spanner to a document 𝐷 produces a span relation, i.e., a
relation that contains spans of 𝐷 . Thus, J𝐸K is a function mapping

strings over Σ∗ to S |SVars (𝐸) | where S is the set of all spans of 𝐷 .

To ensure that the span relation is in first-normal form with no

null values, we restrict our attention to a specific class of document

spanners, namely functional document spanners, that mark exactly

one span for each variable for all accepting runs, regardless of

the input document 𝐷 . In particular, for a given document 𝐷 , the

spanner specified by 𝐸 produces a span relation J𝐸K(𝐷) in which

there is one column for each variable from SVars(𝐸) appearing
in 𝐸, each row corresponds to a matching of 𝐸 against 𝐷 when

the variables are ignored, and the value in a row for the column

corresponding to 𝑥 ∈ SVars(𝐸) is the span marked by 𝑥 .

Example 2.3. Let 𝛾𝑑 be as defined in Example 2.1. Applying the

spanner represented by 𝛾partialDate = Σ∗𝐹 {𝑀{𝛾𝑑𝛾𝑑 } - 𝐷{𝛾𝑑𝛾𝑑 }}Σ∗
to the document in Figure 1 results in the span relation in Figure 2.

F M D

[38, 43⟩ [38, 40⟩ [41, 43⟩
[41, 46⟩ [41, 43⟩ [44, 46⟩

Figure 2: The extracted relation J𝛾𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑒K(𝐷), where 𝐷 is
depicted in Figure 1.

Definition 2.4. Throughout this paper, a functional document

spanner used for the purpose of information extraction is called an

extractor, the regex with capture variables defining it is called an

extraction formula, and the span relation produced for a document

is called an extracted relation.

Let 𝑆 , 𝑆1, and 𝑆2 be extractors where the last two are union-

compatible (i.e., SVars(𝑆1) = SVars(𝑆2)); 𝑋 ⊆ SVars(𝑆); and 𝑥,𝑦 ∈
SVars(𝑆). An algebra over spanners can be defined with operators:

(1) union: 𝑆1 ∪ 𝑆2 having variables SVars(𝑆1 ∪ 𝑆2) = SVars(𝑆1),
(2) projection: 𝜋𝑋 (𝑆) having variables 𝑋 ,

(3) natural join: 𝑆 ⊲⊳ 𝑆1 having variables SVars(𝑆) ∪ SVars(𝑆1), and
(4) binary string selection: Z=𝑥,𝑦𝑆 having variables SVars(𝑆).
The set of core spanners (corresponding to the core of SystemT’s

AQL) includes extractors specified by any extraction formula (so-

called primitive extractors) together with all extractors in the closure
of core spanners under this algebra. Applying a core spanner to

any document 𝐷 is equivalent to applying each included primitive

spanner to 𝐷 and then applying the corresponding relational oper-

ators to the extracted relations. The set of core spanners define the

extractors and updates subject to analysis in this paper.

2.4 Efficient Construction of Extractors
Given one or more spanners as input, we use various algebraic oper-

ations defined over spanners to verify properties of those spanners

statically. Specifically, we convert the inputs to eVset-automata, a
variant of vset-automata with the same expressivity, as proposed

by Morciano [26]. By preserving three properties of eVset-automata

2433

(namely, well-behaved, pruned, and operation-closed), Morciano is

able to construct eVset-automata in polynomial time for simulating

the application of projection, union, and join over spanners. His

thesis also shows that converting a regex with capture variables to

an automaton and checking for emptiness can be done in polyno-

mial time. It is trivial to show that renaming variables can also be

accomplished in polynomial time with eVset-automata.

2.5 Model Architecture
In this work, we hypothesize systems that include a document

database D and a set of core spanners {E1, · · · ,E𝑒 } specifying ex-
tractors that run over D. The union of span relations produced by

E𝑘 against the document database is stored in a relation T𝑘 that in-

cludes an additional column to associate a document identifier with

the spans for the corresponding extracted relation. These tables

serve as materialized views of the document database.

3 DOCUMENT UPDATE MODEL
Updates can add documents to or delete documents from the data-

base D, or they can change documents already in D. In this paper,

we concentrate on the latter form of update, where substring re-
placement, deletion, and insertion are basic update operations that

we wish to support. A change to the text is typically preceded by

some browsing activities or search operations to locate update po-

sitions in a target document. We use an extractor as our search

mechanism and to specify which strings to replace.

Definition 3.1. An update expression is denoted as Repl(𝑔,𝑈),
where 𝑔 is an update formula with one exposed capture variable

that determines which spans contain strings to be replaced and 𝑈

is a string that specifies the replacement value.

Given an update expression Repl(𝑔,𝑈), the string𝑈 may include

named back-references to 𝑔, similar to the mechanisms defined in

several programming languages:𝑈 ∈ ((Σ−$) ∪ ($(SVars(𝑔))))∗.

Example 3.2. Consider Repl(𝛾𝐷𝑂𝐼 , "DOI: $(𝐶) "), where
𝛾𝐷𝑂𝐼 = Σ∗ <ee> (𝐹 { https://doi.org/𝐶{(Σ − <)∗}}∨

𝐹 { doi:𝐶{(Σ − <)∗}}) </ee> Σ∗

𝐹 is the exposed variable, indicating that strings enclosed by <ee>

... </ee> and starting with a DOI specifier should be replaced. The

second argument for the update expression indicates that each re-

placement should consist of the string "DOI: followed by whatever

matches the capture variable𝐶 followed by another quotation mark.

3.1 Update Formulas
An update formula is a functional extraction formula with one

exposed variable (𝑣) and conforms to 𝛾 in the grammar𝐺𝑈 (Σ,𝑉 , 𝑣):
𝛾 := (𝛾 ∨ 𝛾) | (𝛾 ′ • 𝛾) | (𝛾 • 𝛾 ′) | 𝑣{𝛾 ′′} (2)

where 𝛾 ′ is a variable-free regular expression, 𝛾 ′′ is a regex with
capture variables 𝑉 , and the exposed variable 𝑣 is an additional

capture variable (the update variable) within which all other cap-

ture variables are nested. Given an update formula 𝑔, the update

variable is denoted as UVar (𝑔). The extraction formulas presented

in Examples 2.1 and 2.3 conform to 𝛾 where 𝐹 is the update variable.

Definition 3.3. An update formula is in normalized form if it is

written as

⋁︁𝑘
𝑖=1

𝑔𝑖 where each 𝑔𝑖 is a formula conforming to 𝛾 :

𝛾 := 𝛾 ′ • 𝑣{𝛾 ′′} • 𝛾 ′

where each 𝛾 ′ is again a variable-free (possibly empty) regular

expression and 𝛾 ′′ is again a regex with capture variables 𝑉 .

To normalize an update formula, all disjunctions that have the

update variable 𝑣 in their disjuncts
4
can be “pulled up” over con-

catenations in the corresponding extended regex tree to create

separate disjuncts at the outermost level of the formula.

Example 3.4. The expression 𝛾𝐷𝑂𝐼 in Example 3.2 conforms to

grammar (2), and its corresponding normalized form is:

𝛾𝐷𝑂𝐼 = Σ∗ <ee> 𝐹 { https://doi.org/𝐶{(Σ − <)∗}} </ee> Σ∗
∨ Σ∗ <ee> 𝐹 { doi:𝐶{(Σ − <)∗}} </ee> Σ∗

Lemma 3.5. Given any update formula 𝑔, Algorithm 1 normalizes
it by producing the list of disjuncts Δ(𝑔,UVar (𝑔)) in time that is
polynomial in |𝑔|, where |𝑥 | denotes the length of 𝑥 .

Proof. The proof of correctness is by induction on the height

of the expression tree, which can be constructed and traversed

(using recursive descent) in linear time in the input length. For each

occurrence of UVar (𝑔), a new expression is added to the list, which

makes the output size 𝑂 (𝑚 ∗ 𝑛), where 𝑛 = |𝑔| and𝑚 < 𝑛 is the

number of occurrences of UVar (𝑔) in 𝑔.
□

3.2 Update Semantics
The functional document spanner that is represented by an update

formula 𝑔 maps every document 𝐷 to a span relation, which we

call the update relation and denote as J𝑔K(𝐷). When the spanner is

used for updating a document 𝐷 , substrings of 𝐷 associated with

the spans in the update relation are simultaneously replaced by

new values specified by𝑈 .

More precisely, given a document 𝐷 and applying Repl(𝑔,𝑈) to
𝐷 produces a new document Repl(𝑔,𝑈) (𝐷) that is identical to 𝐷

except that each substring 𝑠𝑖 ∈ 𝐷 corresponding to a span marked

by UVar (𝑔) is replaced by the string𝑈𝑖 where, for any 𝑣 ∈ SVars(𝑔),
𝑈𝑖 is the same as 𝑈 except that every occurrence of a substring

$(𝑣) in𝑈 is replaced by the string in 𝑠𝑖 corresponding to the span

marked by 𝑣 .

Note that if 𝑈 is the empty string, then the update results in

the deletion of the substrings corresponding to spans marked by

UVar (𝑔); otherwise, wherever an empty span [𝑖, 𝑖⟩ is marked by

UVar (𝑔), the replacement, in effect, inserts a string before the 𝑖𝑡ℎ

character (or at the end of the string if 𝑖 = |𝐷 | + 1).

An update yields a specific functional mapping between the

original and updated documents: ReplSpan(𝑔,𝑈) ([𝑖, 𝑗⟩) → [𝑖′, 𝑗 ′⟩
which is a mapping from spans to spans. This is properly defined

when [𝑖, 𝑗⟩ is disjoint from all spans marked by UVar (𝑔) or when
[𝑖, 𝑗⟩ is the complete span marked by UVar (𝑔) (Figure 3). If [𝑖, 𝑗⟩ is
disjoint from all spans marked by UVar (𝑔) when updating 𝐷 , then

𝐷′[𝑖′, 𝑗 ′ ⟩ = 𝐷 [𝑖, 𝑗 ⟩ .

4
Because the formulas are functional, if a capture variable appears in one disjunct, it

must appear in all alternative disjuncts.

2434

Algorithm 1: Normalize 𝑔 with respect to 𝑣 .

Input: extraction formula 𝑔 with exposed variable 𝑣

Output: list of disjuncts Δ(𝑔, 𝑣)
Precondition: 𝑔 is functional

1 T ← ExpressionTree(𝑔);
2 return 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (T , 𝑣)

3 Function normalize (T : expression tree, 𝑣 : variable) : list
Precondition: 𝑣 is in T

4 Δ(𝑔, 𝑣) ← 𝑙𝑖𝑠𝑡 ();
5 if T .𝑟𝑜𝑜𝑡 == 𝑣 then
6 Δ(𝑔, 𝑣) .𝑎𝑑𝑑 (𝑡𝑜𝑅𝑒𝑔𝐸𝑥𝑝 (T))
7 end
8 if T .𝑟𝑜𝑜𝑡 == ∨ then

/* normalize subtrees */

9 Δ(𝑔, 𝑣).𝑎𝑑𝑑 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (T .𝑙𝑒 𝑓 𝑡, 𝑣));
10 Δ(𝑔, 𝑣).𝑎𝑑𝑑 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (T .𝑟𝑖𝑔ℎ𝑡, 𝑣))
11 end
12 if T .root == • then

/* if 𝑣 occurs in right (left) subtree, normalize right (left)

subtree and then concatenate every expression in Δ(𝑔, 𝑣) with

left (right) expression */

13 if 𝑣 𝑖𝑛 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 (T .𝑟𝑖𝑔ℎ𝑡) then
14 Δ(𝑔, 𝑣) .𝑎𝑑𝑑 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (T .𝑟𝑖𝑔ℎ𝑡, 𝑣));
15 𝑡𝑜𝑅𝑒𝑔𝐸𝑥𝑝 (T .𝑙𝑒 𝑓 𝑡) • Δ(𝑔, 𝑣)
16 else
17 Δ(𝑔, 𝑣) .𝑎𝑑𝑑 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (T .𝑙𝑒 𝑓 𝑡, 𝑣));
18 Δ(𝑔, 𝑣) • 𝑡𝑜𝑅𝑒𝑔𝐸𝑥𝑝 (T .𝑟𝑖𝑔ℎ𝑡)
19 end
20 end
21 return Δ(𝑔, 𝑣)
22 end

Figure 3: A sample document𝐷 and its updated peer𝐷′. Filled
areas in 𝐷 are marked by the update variable. 𝑅𝑒𝑝𝑙𝑆𝑝𝑎𝑛 maps
[𝑑𝑖 , 𝑑𝑖+1⟩ to [𝑑′𝑖 , 𝑑

′
𝑖+1⟩.

Definition 3.6. An update spanner specified by𝑔 is said to bewell-
defined if the following two properties hold for every document

and each pair of accepting runs: (1) if the pair of spans for UVar (𝑔)
are not equal, they must not overlap, and (2) if the pair of spans for

UVar (𝑔) are equal, then for each variable appearing in𝑈 , the pair

of spans marked for that variable must be equal.

Proposition 3.7. Whether or not an update spanner specified by
𝑔 is well-defined can be verified in polynomial time.

Proof. The proof has two similar parts, one for each property.

First we show that detecting whether there can be overlaps in spans

that will be changed can be done by constructing a specific spanner

and testing for emptiness. Then we show that detecting whether

a single updated span might have ambiguously marked subspans

can also be done by constructing a specific spanner and testing for

emptiness. All operations take polynomial time.

Given an update formula 𝑔 and symbols 𝑋 ∉ SVars(𝑔) and 𝑌 ∉

SVars(𝑔), we create the spanner

conflicts(𝑔) =𝜋𝑋 (𝜌UVar (𝑔)→𝑋 (J𝑔K)) ⊲⊳ JΓ(𝑋⋒𝑌)K ⊲⊳

𝜋𝑌 (𝜌UVar (𝑔)→𝑌 (J𝑔K))

Recall that Γ(𝑋⋒𝑌) is the disjunction of the fifth through the twelfth

basic relationships in Table 1; that is, we are testing whether spans

in 𝜋UVar (𝑔) (J𝑔K(𝐷)) could include two unequal spans that cover

identical sub-spans. If conflicts(𝑔) = ∅, then 𝑔 satisfies the first

condition. The operators utilized to construct conflicts(𝑔) use time

that is at most quadratic in the size of inputs (Section 2.4).

Similarly, given an update formula 𝑔, symbols 𝑋 ∉ SVars(𝑔) and
𝑌 ∉ SVars(𝑔), and 𝑍 ∈ SVars(𝑔) \ {UVar (𝑔)}, we create the spanner

ambig(𝑔, 𝑍) =𝜋{UVar (𝑔),𝑋 } (𝜌𝑍→𝑋 (J𝑔K)) ⊲⊳ JΓ(𝑋≠𝑌)K ⊲⊳

𝜋{UVar (𝑔),𝑌 } (𝜌𝑍→𝑌 (J𝑔K))

where Γ(𝑋≠𝑌) is the disjunction of the first 12 basic relationships in

Table 1; that is, spans in J𝑔K(𝐷) could include two rows that match

on UVar (𝑔) but do not match on 𝑍 . If ambig(𝑔, 𝑍) = ∅ for all 𝑍 ∈
SVars(𝑔) \ {UVar (𝑔)}, then 𝑔 satisfies the second condition. Clearly

the time complexity to check this property is also polynomial in

the size of the input. □

Example 3.8. The spanner presented in Example 2.3 is not well-

defined, since conflicts(𝛾𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑒) ≠ ∅ (𝑀 in one match for 𝐹

can overlap 𝐷 in another match).

Example 3.9. The spanner represented by the following extrac-

tion formula is easily verified to be not well-defined: the context

ensures that it is free of conflicts, but it is ambiguous:

𝛾 ′
𝑑𝑎𝑡𝑒

= Σ∗ <now> 𝐹 {𝑌 {𝛾∗
𝑑
}𝑀{𝛾∗

𝑑
}𝐷{𝛾∗

𝑑
}} </now> Σ∗

4 AUTONOMOUSLY COMPUTABLE UPDATES
Given an update expression Repl(𝑔,𝑈) and an extractor J𝐸K, we
wish to determine, for all potential input documents, whether the

extracted materialized view can be kept consistent with the updated

source documents without running the extractor after updating the

documents in the database. This problem is similar to filtering out

irrelevant updates or applying updates autonomously to relational

materialized views [4, 16, 21].

Definition 4.1. An update expression Repl(𝑔,𝑈) is irrelevant with
respect to an extractor J𝐸K if for every input document, applying

J𝐸K to Repl(𝑔,𝑈) (𝐷) produces an extracted relation that is identical

to applying J𝐸K to 𝐷 . That is, if 𝐷′=Repl(𝑔,𝐴) (𝐷), then J𝐸K(𝐷′) =
J𝐸K(𝐷).

If an update expression is not irrelevant with respect to an extractor,

it may still be that the modification to the extracted relation can be

computed without re-running the extractor.

2435

Definition 4.2. An update expression Repl(𝑔,𝑈) is autonomously
computable with respect to an extractor J𝐸K if for every document

in the database D, applying J𝐸K to Repl(𝑔,𝑈) (𝐷) can be computed

from the update expression, the update relation, the extraction

formula that defines the extractor, and the extracted relation.
5

There is an important distinction between the problems of updat-

ing traditional relational views and updating materialized extrac-

tions. Extracted relations contain pairs of offsets from input docu-

ments, not document content. Thus, as happens for spans within

regions 𝑆3 and 𝑆5 in Figure 3, replacing a string of one length by a

string of another length somewhere in the document will cause a

span further down in the document to shift, even if the content of

that span is unaffected.

More generally, given a document 𝐷 and the corresponding

updated document 𝐷′, if span 𝑆 in 𝐷 is disjoint from all spans pro-

duced by the well-defined update spanner J𝑔K, ReplSpan(𝑔,𝑈) (𝑆)
is shifted from 𝑆 by an amount that is dependent on the lengths of

all spans in the update relation that precede 𝑆 in 𝐷 and the lengths

of the strings specified by𝑈 , as captured by Algorithm 2.

Algorithm 2: Shift a span.
Input: span 𝑆 = [𝑖, 𝑗⟩, update relation 𝑅, update variable 𝑋 ,

replacement specification𝑈

Output: span 𝑆 ′ = [𝑖′, 𝑗 ′⟩ = ReplSpan(𝑔,𝑈) (𝑆)
Precondition: 𝑅 contains no span that overlaps 𝑆 or

another span in 𝑅

shift, l ← 0;

for 𝑡 ∈ 𝑅 do
[𝑚,𝑛⟩ ← 𝑡 [𝑋]; /* span for the update variable */

if m < i then
l ← computeLength(𝑈 , 𝑡); /* using each |$(𝑣𝑖) | from 𝑡 */

shift ← shift + (𝑛 −𝑚) − l
end

end
return [𝑖 − shift, 𝑗 − shift⟩

Definition 4.3. Update expression Repl(𝑔,𝑈) is pseudo-irrelevant
with respect to an extractor J𝐸K if for every document 𝐷 and up-

dated document𝐷′ = Repl(𝑔,𝑈) (𝐷), J𝐸K(𝐷′) = {𝑆 ′ | ∃ 𝑆 ∈ J𝐸K(𝐷),
𝑆 ′ = ReplSpan(𝑔,𝑈) (𝑆)} (i.e., extracted spans merely shift).

Thus, a pseudo-irrelevant update is a special case of an au-

tonomously computable update. By definition, if an update ex-

pression is irrelevant with respect to an extractor, then it is also

pseudo-irrelevant with respect to that spanner (all shifts are of

length 0).

5 CATEGORIZING DOCUMENT UPDATES
We wish to identify whether an update is pseudo-irrelevant with

respect to a given extractor, independently of input documents. The

5
We note in passing that updating the span relation when adding documents to or

deleting documents from D can be performed autonomously. For new documents,

we run the extractors on those documents only (the text of which forms part of the

update) and then add the extracted tuples to the materialized view without any need

to reference documents in D. When deleting documents, we simply delete all tuples

with corresponding document identifiers from the extracted relation.

essence of our approach is to inspect various kinds of overlap be-

tween an update expression and an extractor. The proposed process

verifies some sufficient conditions for pseudo-irrelevant updates.
By examining Definition 4.3, we can deduce three possibilities

that could cause an update (changing document 𝐷 to become 𝐷′)
to fail to be pseudo-irrelevant with respect to an extractor: (1) a

span 𝑠 extracted from 𝐷 fails to be extracted from 𝐷′; (2) a span 𝑠′

extracted from 𝐷′ does not correspond to any extracted span from

𝐷 prior to the update; and (3) a span 𝑠 extracted from 𝐷 changes to

become 𝑠′ extracted from 𝐷′, but it is not a simple shift.

Example 5.1. Consider the wh-word extractor specified by

Σ∗ 𝑄{ Wh 𝛾+
𝑙𝑐
} (Σ − . − ! − ?)∗ ? Σ∗

If an update replaces semicolons by periods, a wh-question that

matched before the update might no longer match the specification,

and therefore a tuple might be deleted from the extracted relation.

If it instead replaces periods by semicolons, a newly formed wh-

question might be created, and thus a tuple might be inserted into

the extracted relation. If it replaces “ere” by “y”, “Where” could be

replaced by “Why” and thus the extracted relation might change

by more than a simple shift.

We leave it to future work to determine under what conditions

an update that overlaps extracted spans (e.g., changing “Who” to

“Why” in the example) or their contexts (e.g., changing periods

to exclamation points for this extractor) happens to be pseudo-

irrelevant. Instead, we determine when there can be no overlap, and

then under which further conditions an update is pseudo-irrelevant.

Section 5.1 describes how to identify the contexts of extracted spans.

Section 5.2 describes how to identify spans in an updated document

𝐷′ that have had their contents changed by an update to 𝐷 . Finally

Section 5.3 describes a sound, but not complete, mechanism to

determine whether an update expression, specified by the update

formula and replacement specifier, is pseudo-irrelevant with respect

to a document spanner specified by an extraction formula.

5.1 Contextualization of Extraction Formulas
For an extraction formula to match a document, certain strings

must appear either inside or outside the regions marked by capture

variables. If a document is updated, we wish to know whether

the extracted content or any of the strings that specify required

contextual information is disrupted in any way. The tests we have

implemented compare updated regions to regions marked by a

capture variable, so, given the specification of a document spanner 𝐸

with exposed variable 𝑣 , we define a corresponding regular formula

C𝑣 (𝐸) in which all contextual expressions are also marked with

capture variables. For any document 𝐷 , JC𝑣 (𝐸)K produces the same

spans for the capture variable 𝑣 as does J𝐸K, but it also captures

spans of characters that must remain unchanged. Each uncovered

subexpression in C𝑣 (𝐸) is of the form 𝑋 ∗
𝑖
where 𝐿(𝑋𝑖) includes

unigrams (i.e., strings of length 1) only, essentially restricting the

uncovered subexpression to strings over a restricted alphabet Σ̂𝑖 ⊆
Σ. For example, in Example 5.1, Wh 𝛾∗

𝑙𝑐
is already covered by the

capture variable 𝑄 , but the blanks before and after that pattern are

a part of the context than cannot change, as is the question mark at

the end; they should be covered. On the other hand, the expressions

2436

Algorithm 3: Capture contexts for 𝑣 ∈ SVars(𝐸).
Input: extraction formula 𝐸, 𝑣 ∈ SVars(𝐸)
Output: modified extraction formula C𝑣 (𝐸)
Precondition: 𝑣 is exposed, 𝑣𝑖 ∉ SVars(𝐸) for all 𝑖

1 D ← Δ(𝐸, 𝑣); /* get the disjunctive form using Algorithm 1 */

2 Dc ← 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡 (); /* prepare for list of covered expressions */

3 forall 𝑑 ∈ D do
4 T𝑐 ← 𝑐𝑜𝑣𝑒𝑟 (ExpressionTree(𝑑), 1); /* start cover with 𝑣1 */

5 T𝑚 ←𝑚𝑒𝑟𝑔𝑒𝐶𝑜𝑛𝑠𝑒𝑐𝑉𝑎𝑟𝑠 (T𝑐); /* 𝑣𝑖 {𝑒𝑖 }𝑣𝑗 {𝑒 𝑗 } → 𝑣𝑘 {𝑒𝑖𝑒 𝑗 } */

6 Dc .𝑎𝑑𝑑 (T𝑚) /* keep covered expr for disjunct */

7 end
/* ensure each disjunct includes all 𝑣𝑖 so 𝐶𝑣 (𝐸) is functional */

8 result ← 𝜖 ;

9 forall 𝑑 ∈ Dc do
10 T𝑣 ← findSubtree(𝑑, 𝑣); /* find node with 𝑣 */

11 forall 𝑦 ∈ getAllVars(Dc) \ getAllVars(𝑑) do
/* change 𝑣{ ...} to 𝑣{𝑦{ ...}} in this disjunct */

12 setParent (setParent (T𝑣 .𝑐ℎ𝑖𝑙𝑑, newNode(y)),T𝑣)
13 end
14 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ∨ toRegExp(𝑑) /* add disjunct to 𝐶𝑣 (𝐸) */

15 end
16 return result

17 Function cover (T : expression tree, i:int) : expression tree
Output: cover contexts in a subtree, starting with 𝑣𝑖

18 Tc ← 𝑒𝑚𝑝𝑡𝑦𝑇𝑟𝑒𝑒 () ;
19 if T .𝑟𝑜𝑜𝑡 == ∗ then
20 if matchesUnigrams(T .𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡) then
21 Tc = T /* Σ̂

∗
does not get covered */

22 else
23 Tc ← setParent (T .𝑟𝑜𝑜𝑡, newNode(vi))
24 end
25 end
26 if T .𝑟𝑜𝑜𝑡 == ∨ then
27 Tc ← setParent (T .𝑟𝑜𝑜𝑡, newNode(vi))
28 end
29 if varNode(T .𝑟𝑜𝑜𝑡) then
30 Tc = T /* already covered */

31 end
32 if T .𝑟𝑜𝑜𝑡 == • /* traverse both sides */

33 then
34 T .𝑙𝑒 𝑓 𝑡 ← 𝑐𝑜𝑣𝑒𝑟 (T .𝑙𝑒 𝑓 𝑡, 𝑖) ;
35 𝑖′ = maxIndex (T .𝑙𝑒 𝑓 𝑡);
36 if 𝑖 ≤ 𝑖′ then
37 𝑖 = 𝑖′ + 1 /* set i to the largest index so far */

38 end
39 T .𝑟𝑖𝑔ℎ𝑡 ← 𝑐𝑜𝑣𝑒𝑟 (T .𝑟𝑖𝑔ℎ𝑡, 𝑖);
40 Tc ← T
41 else
42 Tc ← setParent (T .𝑟𝑜𝑜𝑡, newNode(vi))/* unigram */

43 end
44 return Tc
45 end

(Σ − . − ! − ?)∗ and Σ∗ are examples of Σ̂
∗
that can be freely

updated by any string in their languages.

Lemma 5.2. Given an extraction formula 𝐸 and exposed variable
𝑣 ∈ SVars(𝐸), Algorithm 3 returns C𝑣 (𝐸) in quadratic time.

Proof. Using induction on the height of the expression tree for

𝐸, it is straightforward to show that Algorithm 3 covers all subex-

pressions except for the closure of those that satisfy the predicate

matchesUnigrams. Testing this predicate requires merely checking

that no node in the subtree is labelled • or ∗.
Complexity Analysis: Given an input expression 𝐸, the correspond-

ing expression tree can be constructed in linear time in the input

size, and projection via a top-down traversal of the expression tree

can also be performed in linear time. Normalization has time com-

plexity that is linear in the input length (Lemma 3.5), and 𝑐𝑜𝑣𝑒𝑟 ()
and𝑚𝑒𝑟𝑔𝑒𝐶𝑜𝑛𝑠𝑒𝑐𝑉𝑎𝑟𝑠 () require a top-down traversal over the ex-

pression tree, again in linear time. For an input expression 𝐸 with

𝑚 < |𝐸 | occurrences of 𝑣 , the time complexity of the algorithm is

thus 𝑂 (𝑚 ∗ |𝐸 |). □

To be most effective in identifying contexts, we wish to identify

as many instances of 𝑋 ∗
𝑖
as we can, since they indicate portions

of the document that can be (almost) freely updated. To this end,

standard rewrite rules for regular expressions can be applied, even

in the presence of capture variables. For example, if 𝑅𝑖 are any

regular expressions with capture variables and Σ̂ is any expression

matching a unigram, distributive laws can be used to pull𝑋 ∗
𝑖
outside

disjunctions:

(Σ̂∗𝑅1) ∨ (Σ̂
∗
𝑅2) → Σ̂

∗ (𝑅1 ∨ 𝑅2)
(𝑅1Σ̂

∗) ∨ (𝑅2Σ̂
∗) → (𝑅1 ∨ 𝑅2)Σ̂

∗

Example 5.3. Consider the following expression:

𝛾 𝑗𝑏 = (Σ∗ <journal> ∨ Σ∗ <booktitle>)𝑇 {𝛾𝑡 }
(</journal> Σ∗ ∨ </booktitle> Σ∗)

Applying Algorithm 3 to 𝛾 𝑗𝑏 with variable 𝑇 produces

C𝑇 (𝛾 𝑗𝑏) = 𝑣1{(Σ∗ <journal> ∨ Σ∗ <booktitle>)}𝑇 {𝛾𝑡 }
𝑣2{(</journal> Σ∗ ∨ </booktitle> Σ∗)}

After rewriting with the distributive laws, the algorithm produces

C𝑇 (𝛾 𝑗𝑏′) = Σ∗𝑣1{(<journal> ∨ <booktitle>)}𝑇 {𝛾𝑡 }
𝑣2{(</journal> ∨ </booktitle>)}Σ∗

marking the portions that are required to be in any matching docu-

ment, while leaving matches to arbitrary text (i.e., Σ∗) unmarked.

Other simple rewrite rules, such as removing superfluous closures

((𝑅∗)∗ → 𝑅∗, where 𝑅 is any regular expression) and removing

superfluous disjunctions (𝐿(𝑅) ⊆ 𝐿(Σ̂∗) =⇒ Σ̂
∗ ∨ 𝑅 → Σ̂

∗
), also

provide means to expose more instances of Σ̂
∗
.

5.2 Post-Update Spanner
We use information provided by the update expression to construct

a post-update spanner that identifies regions in updated documents

corresponding to updated spans. First we need to ensure that an

update does not modify any of the context used to identify which

spans to update.

2437

Definition 5.4. An update spanner J𝑔K is durable if it is well-

defined and spans marked by the update variable are disjoint from

spans marked by context variables after applying JCUVar (g) (𝑔)K to
any document 𝐷 .

Proposition 5.5. Testing whether an update spanner is durable
can be performed in polynomial time.

Proof. Again the proof has two parts, one for each property.

Testing for being well-defined is straightforward. Then we show

that detecting whether an updated span might overlap with a span

marked by a context variable can be done by constructing a specific

spanner and testing for emptiness in polynomial time.

Let 𝑣 represent UVar (𝑔). Testing whether J𝑔K is well-defined

requires polynomial time (Proposition 3.7), and C𝑣 (𝑔) can be con-

structed in polynomial time (Lemma 5.2).

Let 𝑣𝑖 represent the 𝑖
𝑡ℎ

variable marking the context in C𝑣 (𝑔)
and construct a spanner 𝑝𝑖 (𝑔):

𝑝𝑖 (𝑔) = 𝜋𝑋 (𝜌𝑣→𝑋 (JC𝑣 (𝑔)K)) ⊲⊳ JΓ(𝑋 ∩𝑌)K ⊲⊳ 𝜋𝑌 (𝜌𝑣𝑖→𝑌 (JC𝑣 (𝑔)K))

where Γ(𝑋 ∩𝑌) is again the disjunction of the fifth through thir-

teenth basic relationships in Table 1. Therefore, the spanner 𝑝𝑖 (𝑔)
matches all documents that can be updated while spans marked

by the update variable have at least one subspan in common with

the set of spans marked as context. Therefore, if for all 𝑖 , 𝑝𝑖 (𝑔) = ∅,
then J𝑔K is durable. Constructing 𝑝𝑖 (𝑔) and testing for emptiness

requires polynomial time, and the number of cover variables is less

than the size of the input. □

Given a specification of an update spanner, we derive a new span-

ner to match documents that result from an update. Some substrings

in an updated document come from outside the regions matched by

the update variable, and others come from the replacement specifier

𝑈 , either from substrings explicitly contained in𝑈 or from the use

of back-references to substrings in the original document. Thus,𝑈

implicitly describes a language 𝐿(𝑈) comprising the set of possible

replacement values, but it uses back-references to variables in 𝑔. We

define a regular language ◇(𝑈 ,𝑔) that describes a slightly broader

Algorithm 4: Define space of replacement values ◇(𝑈 ,𝑔).
Input: update expression 𝑅𝑒𝑝𝑙 (𝑔,𝑈)
Output: ◇(𝑈 ,𝑔)
T ← ExpressionTree(𝑔);
bkrefs[] ← get_bkrefs(𝑈); /* get all back-references from 𝑈 */

result_strs← {}; /* empty dictionary */

forall bkref in bkrefs do
/* retrieve all substrings associated with bkref */

subexps[] ← get_subexp(T , bkref);
/* concatenate all substrings separated by disjunction symbols */

result_str ← "∨".join(toRegExp(subexp[]));
/* enclose with parentheses and add to the dictionary */

result_strs[bkref] ← "(" + result_str + ")"
end
/* substitute each bkref with corresponding string in dictionary */

◇(𝑈 ,𝑔) ← replace(𝑈 , result_strs);
return ◇(𝑈 ,𝑔)

space of replacement values: ◇(𝑈 ,𝑔) ⊇ 𝐿(𝑈) and ◇(𝑈 ,𝑔) \ 𝐿(𝑈)
is fairly small.

Lemma 5.6. Given a replacement specifier 𝑈 and a well-defined
spanner specified by 𝑔, Algorithm 4 outputs ◇(𝑈 ,𝑔) with time com-
plexity 𝑂 (|𝑔 | + |𝑈 |).

Proof. The proof is by construction. Given 𝑔 and

𝑈 = 𝑢1 · · ·𝑢𝑖$(𝑣𝑖) 𝑢𝑖+1 · · ·𝑢 𝑗$(𝑣 𝑗) 𝑢 𝑗+1 · · ·𝑢𝑛
Algorithm 4 scans 𝑈 and 𝑔 and substitutes each back-reference

$(𝑣𝑖) with the disjunction of all expressions specified with that

variable in 𝑔: (𝑒𝑥𝑝𝑣𝑖
1
∨𝑒𝑥𝑝𝑣𝑖

2
∨· · ·), omitting other capture variables

enclosed by 𝑣𝑖 .
6
The update spanner specified by 𝑔 is functional,

which implies that in every run exactly one of the expressions

marked as variable 𝑣𝑚 in 𝑔 is encountered, and in ◇(𝑈 ,𝑔) the
corresponding run will encounter its associated back-reference in

𝑈 . The resulting regular expression is:

◇(𝑈 ,𝑔) = 𝑢1 • · · · • 𝑢𝑖 • (𝑒𝑥𝑝𝑣𝑖
1
∨ 𝑒𝑥𝑝𝑣𝑖

2
∨ · · ·) • 𝑢𝑖+1 • · · · • 𝑢 𝑗

• (𝑒𝑥𝑝𝑣𝑗
1
∨ 𝑒𝑥𝑝𝑣𝑗

2
∨ · · ·) • 𝑢 𝑗+1 • · · · • 𝑢𝑛

where exp𝑣𝑚
𝑘

is a regular expression marked by 𝑣𝑚 ∈ SVars(𝑔).
Complexity Analysis: To build ◇(𝑈 ,𝑔), Algorithm 4 scans 𝑈 to

retrieve all back-referenced variables and then the expression tree

of 𝑔 is scanned, substituting back-references in𝑈 with associated

regular expressions taken from𝑔. The complexity is𝑂 (|𝑈 |+|𝑔 |). □

Definition 5.7. Given an update spanner specified by 𝑔 and a

replacement specifier𝑈 , a spanner that matches the updated docu-

ments and marks all updated spans is called a post-update spanner
and is specified by ∇(𝑔,𝑈).

Example 5.8. For the update expression in Example 3.2, the cor-

responding post-update spanner is

∇(𝛾𝐷𝑂𝐼 , "DOI: $(𝐶) ") = Σ∗ <ee> 𝐹 { "DOI: (Σ − <)∗ " } </ee> Σ∗
∨ Σ∗ <ee> 𝐹 { "DOI: (Σ − <)∗ " } </ee> Σ∗

6
Eliminating capture variables inside 𝑣𝑖 does not affect the set of strings marked by 𝑣𝑖 .

Algorithm 5: Build post-update spanner ∇(𝑔,𝑈).
Input: update expression 𝑅𝑒𝑝𝑙 (𝑔,𝑈), update variable 𝑥
Output: ∇(𝑔,𝑈)
Precondition: J𝑔K is durable

1 D ← Δ(𝑔, 𝑥); /* get the disjunctive form using Algorithm 1 */

2 ∇(𝑔,𝑈) ← ∅ ;
/* process each disjunct 𝑔𝑖 in Δ(𝑔, 𝑥) */

3 forall 𝑔𝑖 ∈ D do
4 T ← ExpressionTree(𝑔𝑖) ;

/* get subexpressions on left/right of update variable */

5 Tl ← get_left (T , 𝑥);
6 Tr ← get_right (T , 𝑥) ;
7 ∇(𝑔,𝑈) ← ∇(𝑔,𝑈) ∨ (toRegExp(Tl) • 𝑥{◇(𝑈 ,𝑔𝑖)}
8 •toRegExp(Tr))
9 end

10 return ∇(𝑔,𝑈)

2438

Lemma 5.9. For a durable update spanner J𝑔K, Algorithm 5 outputs
∇(𝑔,𝑈) in quadratic time in the input length.

Proof. The proof is by contradiction, using Figure 3 for intu-

ition.

Let 𝐷 be a document that has𝑚 regions marked by 𝑥 = UVar (𝑔)
when processed by J𝑔K and 𝐷′ denote the result of updating 𝐷 by

𝑅𝑒𝑝𝑙 (𝑔,𝑈). Let us assume that there are some problematic regions
of 𝐷 that are marked by 𝑥 but do not have correctly marked corre-

sponding regions when running J∇(𝑔,𝑈)K on 𝐷′. Using Figure 3

as a guide, let 𝑠4 be the leftmost problematic region of 𝐷 . Because

the update spanner is durable, all subexpressions in 𝑔 identified as

contexts, as well as any instances of Σ̂
∗
that match to the left of 𝑠4,

must correctly match the regions preceding 𝑠′
4
(e.g., 𝑠′

1
, 𝑠′

2
, and 𝑠′

3

are correctly identified). Based on Lemma 5.6, the region 𝑠′
4
must

match ◇(𝑈 ,𝑔). Thus the substring from the start of 𝐷 to the end of

𝑠4 (𝐷 [𝑑0,𝑑4 ⟩) corresponds correctly to the substring from the start of

𝐷′ to the end of 𝑠′
4
(𝐷′[𝑑 ′

0
,𝑑 ′

4
⟩). Therefore, 𝑠4 cannot be problematic,

and so there cannot be any problematic region.

Complexity Analysis: The time complexity of creating Δ(𝑔, 𝑥) and
any expression tree and to traverse the expression tree to extract

right and left contexts is𝑂 (|𝑔|), and the complexity of constructing

◇(𝑈 ,𝑔𝑖) is 𝑂 (|𝑔𝑖 | + |𝑈 |). Finally, if 𝑔 has𝑚 disjuncts in Δ(𝑔, 𝑥),𝑚
is 𝑂 (|𝑔|) and thus the time complexity of the algorithm is 𝑂 (|𝑔|2 +
|𝑔| ∗ |𝑈 |)). □

5.3 Detecting Pseudo-Irrelevance for Spanners
An update is pseudo-irrelevant with respect to a core spanner 𝑆

if it is pseudo-irrelevant with respect to each primitive extractor

defining 𝑆 :

Theorem 5.10. Let E𝑅𝑒𝑝𝑙 (𝑔,𝑈) represent the set of extractors for
which Repl(g,U) is pseudo-irrelevant. E𝑅𝑒𝑝𝑙 (𝑔,𝑈) is closed under
union, projection, natural join, and string selection.

Proof. We need to show that if J𝐸1K ∈ E𝑅𝑒𝑝𝑙 (𝑔,𝑈) , J𝐸2K ∈
E𝑅𝑒𝑝𝑙 (𝑔,𝑈) , and 𝑌 ⊆ SVars(𝐸1), then
(1) J𝐸1 ∪ 𝐸2K ∈ E𝑅𝑒𝑝𝑙 (𝑔,𝑈) when J𝐸1K, J𝐸2K are union compatible,

(2) JΠ𝑌𝐸1K ∈ E𝑅𝑒𝑝𝑙 (𝑔,𝑈) ,
(3) J𝐸1 ⊲⊳ 𝐸2K ∈ E𝑅𝑒𝑝𝑙 (𝑔,𝑈) , and
(4) JZ𝑅

𝑌
𝐸1K ∈ E𝑅𝑒𝑝𝑙 (𝑔,𝑈) .

Each of these can be proven by contradiction. □

Definition 5.11. Let JSK be a spanner defined by update formula

𝑔 or a post-update spanner specified by∇(𝑔,𝑈). Given an extraction
formula 𝐸 with exposed variable 𝑣 , J𝐸K is independent of JSK if for
every document 𝐷 , JC𝑣 (𝐸)K(𝐷) includes no span that overlaps a

span in JSK(𝐷). Otherwise, we say that J𝐸K depends on JSK.

Proposition 5.12. Independence can be verified in polynomial
time.

Proof. As before, we show that detecting whether an updated

span might overlap a span marked by a context variable can be

done by constructing a specific spanner and testing for emptiness

in polynomial time.

First rename variables such that UVar (𝑔) ∉ SVars(C𝑣 (𝐸)) and
𝑋,𝑌 ∉ (SVars(C𝑣 (𝐸)) ∪ {UVar (𝑔)}), and let 𝑣𝑖 ∈ SVars(C𝑣 (𝐸)).

Then construct the following spanner:

depends(𝐸,𝑔, 𝑣𝑖 ,UVar (𝑔)) =𝜋𝑋 (𝜌𝑣𝑖→𝑋 (JC𝑣 (𝐸)K)) ⊲⊳ JΓ(𝑋∩𝑌)K

⊲⊳ 𝜋𝑌 (𝜌UVar (𝑔)→𝑌 (J𝑔K))
Again, Γ(𝑋∩𝑌) is the disjunction of the fifth through thirteenth

basic relationships in Table 1, capturing overlapping regions. The

spanner depends (𝐸,𝑔, 𝑣𝑖 ,UVar (𝑔)) ≠ ∅ if there exists at least one

span in 𝜋𝑣𝑖 (JC𝑣 (𝐸)K) that touches at least one span in 𝜋UVar (𝑔) (J𝑔K).
Therefore, if for all such 𝑣𝑖 , depends(𝐸,𝑔, 𝑣𝑖 ,UVar (𝑔)) = ∅, then J𝐸K
is independent of J𝑔K. There are at most |𝐸 | such tests, each of which
takes polynomial time, proving the claim. □

Definition 5.13. Given an extraction formula 𝐸 with exposed

variable 𝑣 , an update expression Repl(𝑔,𝑈) respects the alphabets in
C𝑣 (𝐸) if, for every expression of the form Σ̂

∗
not covered in C𝑣 (𝐸),

the update neither deletes nor inserts a symbol in (Σ − Σ̂).

If Repl(𝑔,𝑈) does not respect the alphabets in C𝑣 (𝐸), tuples might

be inserted into or deleted from an extracted relation J𝐸K(𝐷), as
illustrated by Example 5.1.

Theorem 5.14. A durable update spanner J𝑔K with the replace-
ment specifier 𝑈 is pseudo-irrelevant with respect to an extractor
J𝐸K if J𝐸K is independent of both J𝑔K and J∇(𝑔,𝑈)K and Repl(𝑔,𝑈)
respects the alphabets in C𝑣 (𝐸).

Proof. Consider any document𝐷 with𝑚 regionsmarked by J𝑔K
to be updated, like 𝑠2 and 𝑠4 in Figure 3. Let 𝐷′ denote 𝐷’s updated

peer, which has regions marked by J∇(𝑔,𝑈)K, including those like
𝑠′
2
and 𝑠′

4
in Figure 3. Assume that some spans of 𝐷 are marked by

J𝐸K to be extracted. To prove that an update is pseudo-irrelevant

with respect to an extractor, we must prove three properties (as

explained earlier):

(1) For every extracted region in𝐷 , there should be a corresponding

region in 𝐷′ that will be extracted, i.e., no span disappears from

the extracted relation after the update. Since J𝐸K is independent of
J𝑔K, the only regions that can be updated are those matching Σ̂

∗
,

where Σ̂ ⊆ Σ. However, since Repl(𝑔,𝑈) respects the alphabets in
C𝑣 (𝐸), any update expression matching Σ̂

∗
includes a replacement

specification𝑈 that also matches Σ̂
∗
. Thus every span found before

the update must have a corresponding span found after the update.

(2) For every region extracted from 𝐷′, there should be a corre-

sponding region extracted from 𝐷 , i.e., no new span appears in the

extracted relation because of the update. Since J𝐸K is independent
of J∇(𝑔,𝑈)K, the only regions that could have been updated are

those matching Σ̂
∗
, where Σ̂ ⊆ Σ. As before, since Repl(𝑔,𝑈) re-

spects the alphabets in C𝑣 (𝐸), any update expression matching Σ̂
∗

includes a replacement specification𝑈 that also matches Σ̂
∗
. Thus

every span found after the update must have a corresponding span

found before the update.

(3) For extracted spans, ReplSpan should be realized as a shift func-
tion. Because of independence, the lengths of the extracted regions

remain the same after the update, since no update can occur inside

an extracted region. But other regions preceding an extracted re-

gion and matching Σ̂
∗
can be updated, which makes the starting

offset of an extracted region move back or forth. Since the length

of the extracted region is fixed, the end offset moves by the same

amount, which is indeed a shift of the extracted region. □

2439

Algorithm 6: Verify pseudo-irrelevancy.

Input: extraction program 𝑃 , update expression Repl(𝑔,𝑈),
update variable 𝑣

Output: Boolean

Precondition: J𝑔K durable and each primitive extractor 𝐸 𝑗
in 𝑃 has an exposed variable 𝑣 𝑗

/* verify only primitive extractors (i.e., formulas) 𝐸 𝑗 in 𝑃 */

forall 𝐸 𝑗 in 𝑃 do
forall 𝑣𝑖 ∈ SVars(C�̄� 𝑗 (𝐸 𝑗)) do

if depends(𝐸 𝑗 , 𝑔, 𝑣𝑖 , 𝑣) ≠ ∅
or depends(𝐸 𝑗 ,∇(𝑔,𝑈), 𝑣𝑖 , 𝑣) ≠ ∅ then

return False
end

end
/* test for conflicting symbols (i.e., respecting alphabets) */

forall uncovered Σ̂
∗ in 𝐸𝑖 do

𝐴← {𝜎 | 𝜎 ∈ 𝑣 and 𝜎 outside all capture variables

back-referenced in𝑈 } ∪ {𝜎 | 𝜎 ∈ 𝑈 } ;
if 𝐴 ∩ (Σ \ Σ̂) ≠ ∅ then

return False /* 𝜎 might be removed or added (Ex. 5.1) */

end
end

end
return True

Theorem 5.15. Pseudo-irrelevancy of a durable update spanner
can be verified in polynomial time in the input size.

Proof. It is trivial to see that, given a durable update spanner

J𝑔K, a replacement specification 𝑈 , and an extraction formula 𝐸,

Algorithm 6 verifies pseudo-irrelevancy in polynomial time. □

6 EXPERIMENTS
We wish to demonstrate that practical updates can be verified to

be pseudo-irrelevant. We also wish to show that our optimization

strategy is, in fact, practical in realistic extraction scenarios using

real-world large datasets.

To this end, we have augmented Morciano’s code [26] to build a

system in Scala that verifies whether an update spanner is pseudo-

irrelevant with respect to an extraction program expressed as a

core AQL query. If the program passes the test, the extracted view

content is updated by running a shift algorithm; otherwise, the

extractor needs to be re-executed (from scratch or incrementally).

The verifier, shift algorithm, and extraction system are all single-

threaded programs in Scala 2.11.2 together with Java SE 11. All

experiments are performed on a AMD EPYC 7502P 32-Core Pro-

cessor under Ubuntu 20.04.1 LTS (Focal Fossa). The code and all

performance details regarding the experiments can be found at

https://github.com/Besatkassaie/Differential-Maintenance-Engine.

6.1 Corpora
Our experiments are performed over two corpora. The Blog Au-

thorship Corpus [31] is a collection of unstructured blogs used

by Morciano to test his spanners. This corpus has 19,320 docu-

ments (one per blogger) with 681,288 posts consuming 8.1 MB in

total. DBLP [23], a bibliography of computer science literature, is

an evolving semi-structured dataset with frequent updates to add

new records, edit existing records, and delete records [9]. For this

corpus, we create a distinct file for each author and include all

bibliographic records for that author, one per line (i.e., what users

of DBLP see when looking up an author, but exporting XML for

each record). This corpus has 3,091,270 documents (one per author)

with 20,021,301 bibliographic entries consuming 7.9 GB in total.

6.2 Extractors
We have designed several realistic extractors (Tables 2 and 3) to

show the applicability of our optimization strategy in practice. For

the Blog corpus, we adapted the extractors defined by Morciano.

Each of his primitive extractors uses a specially designed operator

𝑋 ⊲⊳𝑑 𝑌 to match

⋃︁
𝑖≤𝑑 (𝑋Σ𝑖𝑌). Because the use of such operators

will cause our verifier to deem all updates to be relevant (the replace-

ment text may cause the string to exceed the maximum length), we

replace them with 𝑋 (Σ− ? − .)∗𝑌 to require instead that matches

to 𝑋 and 𝑌 appear in the same sentence.

For readability, the primitive extractors are built on top of some

simple grammar building blocks:

character sets:
𝛾𝑢 = [A , Z] 𝛾𝑙 = [a , z] 𝛾𝑑 = [0 , 9] 𝛾𝑤 = (𝛾𝑢 ∨ 𝛾𝑙 ∨ 𝛾𝑑)
𝛾𝑝 = (: ∨ , ∨ ; ∨ ! ∨ . ∨ ?) 𝛾𝑏 = ∨ ,

𝛾𝑡 = (𝛾𝑤 ∨ 𝛾𝑝 ∨ -) 𝛾𝑠 = (Σ − ? − .)
basic patterns:

𝛾𝑛𝑎𝑚𝑒 = 𝛾𝑢𝛾
∗
𝑙

𝛾𝑢𝛾
∗
𝑙
(∨ 𝛾𝑝)

𝛾film = ((" 𝛾𝑤) ∨ (' (𝛾𝑢 ∨ 𝛾𝑑))) (𝛾∗𝑡 ∨ 𝛾∗𝑡 𝛾∗𝑡 ∨ 𝛾∗𝑡 𝛾∗𝑡 𝛾∗𝑡
∨𝛾∗𝑡 𝛾∗𝑡 𝛾∗𝑡 𝛾∗𝑡 ∨ 𝛾∗𝑡 𝛾∗𝑡 𝛾∗𝑡 𝛾∗𝑡 𝛾∗𝑡) (' ∨ ")

Morciano’s extractors use several small word lists (for which

we use names starting with upper case letters), including for ex-

ample 𝛾𝐺𝑒𝑛𝑟𝑒 = action ∨ adventure ∨ children ∨ war · · · and
𝛾𝑀𝑜𝑣𝑖𝑒 = feature ∨ dvd ∨ film ∨ movie ∨ flick . To avoid having

spurious matches to these words (such as matching fractions when

intending to match action , or aware when intending to match war),

our extractors include additional context to require that any match

to a word from a word list must be preceded by a blank () and fol-

lowed by either a blank or a comma (𝛾𝑏). His compound extractors

fall into two classes: Q5 - Q9 are unions of binary joins and Q13

- Q16 are unions of ternary joins. For our experiments, we have

chosen the first extractor from each class.

For the DBLP corpus we designed five primitive extractors and

three compound extractors (also shown in Tables 2 and 3) that

complement those for the other corpus, and are built on basic

patterns for authors’ names and titles:

𝛾𝑎𝑢𝑡ℎ𝑜𝑟 = 𝛾𝑢 (𝛾𝑢 ∨ 𝛾𝑙 ∨ - ∨ ∨ .)∗

𝛾𝑡𝑖𝑡𝑙𝑒 = (𝛾𝑡 ∨)∗

The compound extractors select records on multiple conditions,

using spans in common to enforce conjunctive conditions.

6.3 Updates
We have chosen four representative update scenarios, each using

Repl(𝛾𝑖 ,𝑈𝑖) with update variable 𝐹 .

Classifying Hashtags. A blog might include hashtags such as #pho-

tooftheday and #naturephotography, and there may be interest in

annotating a subset of these as belonging to some class, such as

2440

Table 2: Primitive extractors.

Primitive extractors from Blog corpus

𝑄1 = JΣ∗ 𝐴{𝛾𝐴𝑐𝑡𝑖𝑜𝑛}𝛾𝑏𝛾∗𝑠𝑇 {𝛾film}Σ∗K e.g., Saw ... "ET" in one sentence

𝑄2 = JΣ∗ 𝐴{𝛾𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 }𝛾𝑏𝛾∗𝑠 𝑇 {𝛾𝑀𝑜𝑣𝑖𝑒 }𝛾𝑏Σ∗K e.g., worst ... flick in one sentence

𝑄𝑅𝑁 = JΣ∗ 𝐴{𝛾𝑅𝑜𝑙𝑒 }𝛾𝑏𝛾∗𝑠𝑇 {𝛾𝑛𝑎𝑚𝑒 }Σ∗K e.g., actor ... Brad Pitt in one sentence

𝑄10 = JΣ∗ 𝐴{𝛾𝐴𝑐𝑡𝑖𝑜𝑛}𝛾𝑏𝛾∗𝑠𝑇 {𝛾𝑓 𝑖𝑙𝑚}𝛾∗𝑠 𝐵{𝛾𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 }𝛾𝑏Σ∗K e.g., Saw ... "ET" ... clever in one sentence

𝑄12 = JΣ∗ 𝐴{𝛾𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 }𝛾𝑏𝛾∗𝑠 𝑇 {𝛾𝐺𝑒𝑛𝑟𝑒 }𝛾𝑏𝛾∗𝑠 𝐵{𝛾𝑀𝑜𝑣𝑖𝑒 }𝛾𝑏Σ∗K e.g., like ... crime ... film in one sentence

Primitive extractors from DBLP corpus

𝑆 𝐽 𝑟𝑛 = JΣ∗ <title>𝑇 {𝛾𝑡𝑖𝑡𝑙𝑒 } </title><pages> 𝑃{(𝛾𝑑)∗ - (𝛾𝑑)∗} </pages><year> article title, pages, year, volume, and journal

𝑌 {𝛾𝑑𝛾𝑑𝛾𝑑𝛾𝑑 } </year><volume>𝑉 {𝛾∗𝑑 } </volume><journal> 𝐽 {𝛾𝑡𝑖𝑡𝑙𝑒 } </journal> Σ
∗K from journal articles

𝑆𝑀𝑜𝑑 = JΣ∗ mdate="2015 (Σ − \n)∗ <title>𝑇 {𝛾𝑡𝑖𝑡𝑙𝑒 } </title> Σ∗K titles of publications last modified in 2015

𝑆𝐴𝐴+ = JΣ∗ "><author>𝐴{𝛾𝑎𝑢𝑡ℎ𝑜𝑟 } </author><author> Σ∗K first authors of pubs with 2+ authors

𝑆2010 = JΣ∗ <title>𝑇 {𝛾𝑡𝑖𝑡𝑙𝑒 } </title> (Σ − \n)∗ <year>2010</year> Σ∗K titles of publications from 2010

𝑆𝑉𝐿𝐷𝐵 = JΣ∗ "><author>𝐴{𝛾𝑎𝑢𝑡ℎ𝑜𝑟 } < (Σ − \n)∗ first authors of publications from VLDB

<booktitle> 𝐵{𝛾𝑡𝑖𝑡𝑙𝑒 VLDB 𝛾𝑡𝑖𝑡𝑙𝑒 } </booktitle> Σ∗K

Table 3: Compound extractors.

Compound extractors from Blog corpus

𝑄5 = 𝑄1 ∪𝑄2 ∪𝑄𝑅𝑁 union of binary extractors

𝑄13 = 𝑄10 ∪𝑄12 union of ternary extractors

Compound extractors from DBLP corpus

𝑆𝑉𝐴𝐴+ = 𝑆𝑉𝐿𝐷𝐵 ⊲⊳ 𝑆𝐴𝐴+ multi-author VLDB articles

𝑆 𝐽 2010 = 𝜋 𝐽 (𝑆 𝐽 𝑟𝑛 ⊲⊳ 𝑆2010) journal titles from 2010

𝑆2010Δ = 𝑆2010 ∪ 𝑆𝑀𝑜𝑑 titles from 2010 or updated in 2015

follows, where 𝛾ℎ = 𝛾𝑙 ∨ 𝛾𝑑 (any lower case letter or digit):

𝛾ℎ𝑎𝑠ℎ𝑡𝑎𝑔 = Σ∗𝐹 { # 𝛾∗
ℎ
(photo ∨ selfie)𝛾∗

ℎ
}𝛾𝑏Σ∗

𝑈ℎ𝑎𝑠ℎ𝑡𝑎𝑔 = $(𝐹) (photography)

The verifier confirms that this update is pseudo-irrelevant for

all our extractors for both corpora.

Enabling URLs. URLs appear in both corpora under consideration,

and these can be updated to become clickable links:

𝛾𝑈𝑅𝐿 = Σ∗𝐹 { http://𝑇 {(Σ − < − > − − " − ')∗}}
(< ∨ > ∨ ∨ " ∨ ')Σ∗

𝑈𝑈𝑅𝐿 = $(𝑇) <a/>
This time, the verifier reports that the update is pseudo-irrelevant

with respect to 𝑄1, 𝑄2, 𝑄10, and 𝑄12 (and therefore also 𝑄13) and

also that it is pseudo-irrelevant with respect to all the DBLP extrac-

tors. However, the verifier reports that the update is not pseudo-

irrelevant with respect to 𝑄𝑅𝑁 (and therefore 𝑄5). The problem is

that an updated span 𝐹 can overlap the extraction of a name marked

by𝑇 , thus, for example, changing actor ... http://Brad Pitt ...

to actor ... Brad Pitt After exe-

cuting this update, 𝑄𝑅𝑁 and 𝑄5 would need to be re-extracted to

accommodate such possible instances.

Reversing Month and Day in Dates. The DBLP corpus includes a

modification date on each record, and it might become necessary

to convert from yyyy-mm-dd to yyyy-dd-mm, as follows:

𝛾𝑑𝑎𝑡𝑒 = Σ∗ mdate=" 𝛾𝑑𝛾𝑑𝛾𝑑𝛾𝑑 - 𝐹 {𝑀{𝛾𝑑𝛾𝑑 } - 𝐷{𝛾𝑑𝛾𝑑 }}Σ∗
𝑈𝑑𝑎𝑡𝑒 = $(𝐷) - $(𝑀)
This update is reported to be pseudo-irrelevant with respect to

all the DBLP extractors. When tested against the primitive Blog

extractors, it is found to be pseudo-irrelevant with respect to all

but 𝑄1 and 𝑄10, where the string mdate= could immediately pre-

cede a film title beginning "2015-01-03 ..." . This update, however,

demonstrates an aspect of our verifier that could be improved: al-

though the update could apply inside regions that are extracted

by 𝑄1 and 𝑄10, there would be no change to the lengths of the

extracted regions, and thus no reason to re-extract (nor even to

shift). In fact, this is an unrecognized irrelevant update with respect

to those two extractors.

Changing DOIs. The DBLP corpus also includes references to DOIs

in a field containing a link to an external electronic resource, using

two different formats. An update to convert one format to the other

is as follows:

𝛾𝐷𝑂𝐼 = Σ∗ (<ee> ∨ <ee type=" 𝛾𝑙𝛾𝑙 ">)𝐹 { https://doi.org/ }Σ∗
𝑈𝐷𝑂𝐼 = doi:

Again, the update is found to be pseudo-irrelevant with respect

to all the DBLP extractors. However, because . ∈ 𝐹 , it is not pseudo-
irrelevant with respect to any of the Blog extractors (it does not

respect their alphabets); the removal of the period might cause any

of the extractors to find additional matches. (The same is true were

the update to be reversed: the verifier detects . ∈ 𝑈 , which might

result in fewer matches after the update.)

6.4 Run-time performance

Table 4: Extraction times (×1000 sec) for DBLP corpus.

Spanner Extraction Time Spanner Extraction Time

𝑆 𝐽 𝑟𝑛 122.1±5.7 𝑆𝑉𝐿𝐷𝐵 11.0±0.1
𝑆𝑀𝑜𝑑 8.4±0.7 𝑆𝑉𝐴𝐴+ 10.2±0.2
𝑆2010 26.3±3.6 𝑆 𝐽 2010 22.1±0.8
𝑆𝐴𝐴+ 156.4±26.1 𝑆2010Δ >450

We use the DBLP corpus to show that the run-time overhead im-

posed by our verifier is acceptable in practice and that the run-time

is much less than that of re-executing an extraction program, even

if performed incrementally. Table 4 shows how many thousands

of seconds each extractor requires (based on measurements from

2441

random samples), ranging from 2.3 hours to 43.4 hours and with

the final extractor requiring more than 125 hours. Undoubtedly,

various optimization techniques adopted by mature products such

as SystemT can accelerate the extraction process, and these were

not implemented on our research-based system. We note, however,

that Chen et al. [6] report that the fastest extractor they tested on a

Wikipedia corpus of 35 MB requires 100 seconds (using different

hardware and software), which implies an extraction time of more

than 6 hours when scaled to the size of DBLP.
7
Elsewhere, Shen et

al. [32] report a complex, but optimized extractor taking 61 min-

utes for a corpus smaller than 2% of the size of DBLP! Thus, we

are convinced that our extraction times are indicative of the times

needed for extractors more generally.

Table 5 shows how many seconds are required for verifying

pseudo-irrelevancy for each update, displaying the minimum, aver-

age, and maximum times over all five primitive DBLP extractors.

The table also shows the minimum, average, and maximum times

required for shifting the tables extracted for the first seven extrac-

tors. It is far faster to verify pseudo-irrelevancy than to re-execute

the corresponding extractor: verification times are at most 3.5 min-

utes per primitive extractor independently of the database size, and
simply shifting extracted relations is far faster than re-extracting

them, especially when the extractions are highly selective.

Table 5: Verification and shift times (sec) for all updates.

Update Verification Shift

min’m avg max’m min’m avg max’m

Hashtags 20 64.0 127 0.2±0.4 10.2 39.2±76.8
URLs 36 108.4 212 1.1±0.1 67.1 239.3±1.8
Dates 1 33.6 64 1.5±0.2 78.7 273.5±6.5
DOIs 18 58.2 110 1.2±0.2 72.4 252.4±7.6

Chen et al. [6] have proposed re-using extracted data when it

has clearly not been affected by an update. The approach requires

three steps: (1) determining which pieces of documents have been

updated, (2) re-executing the extractor on portions of the updated

documents where changes to the extracted data or to its context
(specified as a window around each extracted region) might change

the results of extraction, and (3) copying over previous extractions

guaranteed to be unaffected by the update, but shifting their offsets

so as to be able to determine overlaps with the next update.

We note first that incremental re-extraction is orthogonal to de-

termining pseudo-irrelevance. An updatemight be provably pseudo-

irrelevant to J𝐸K even if it changes data very near each extracted

region, such as is true for 𝛾𝑑𝑎𝑡𝑒 with respect to 𝑆𝑀𝑜𝑑 . On the other

hand, if an update is not provably pseudo-irrelevant, such as 𝛾𝑈𝑅𝐿

with respect to 𝑄𝑅𝑁 , incremental extraction can be applied rather

than naively re-executing the extractor on the complete document.

To determine the cost of using the approach proposed by Chen et

al., we measure the time to execute a simple matcher for the DBLP

corpus on the same hardware used in our other experiments. In

particular, by running Unix’s diff against 20% of the DBLP corpus

we find that the program requires between 27 ms and 68 ms (mean

7
In practice, document-at-a-time extraction can easily be parallelized, so a system with

32 processors could reduce overall elapsed time to 12 minutes or so.

= 49 ms) per file. This implies that the first step alone requires over

42 hours to execute. Even if the computation is distributed across

32 processors running in parallel, the execution time is excessive

for updates that can be determined to be pseudo-irrelevant.

7 ADDITIONAL RELATEDWORK
Document Spanners. Researchers have addressed many problems

using the document spanner model, including how to deal with

documents with missing information [25] and how to eliminate

inconsistencies from extracted relations [11]. Others have studied

the complexity of evaluating spanners and computing the results

of various algebraic operations over span relations [2, 13, 28, 29].

Static Analysis of Programs Using Regular Languages. We use an

extended form of finite-state automata to determine whether an

update expression is pseudo-irrelevant with respect to a document

spanner. Similar static analyses of regular expressions have been

used in diverse areas, including access control mechanisms for

XML database systems [27] and conflicting gestures in multi-touch

environments [22]. We have also used finite automata to statically

analyze extractors specified by JAPE [8] in the context of updating

extracted views [19].

Materialized View Maintenance. In the relational setting, a view

definition, expressed in relational algebra, along with tuples to be

inserted or removed from base tables provides information that

is used to maintain the content of a view without recomputing

it from scratch. Blakeley et al. address this problem where the

update involves insertion or deletion of a set of tuples into/from

one base relation at a time [3, 4]. They give sufficient and necessary

conditions on the irrelevancy of an update, which is stronger than

our work proposing only sufficient conditions. For a differential

view update, Blakeley et al. additionally require the content of

associated base relations before the updates.

8 CONCLUSIONS
Given a program defined as a document spanner and an update

specification, we determine sufficient conditions for autonomously

re-computing which spans of an updated document are extracted.

In particular, we propose three sufficient conditions for pseudo-

irrelevancy of updates with respect to an extraction program: dura-
bility, independence, and respect for alphabets. We prove that we

require time and space that are polynomial in the size of the ex-

traction program and the update specification to perform the five

required tests to determine that the revised extracted relation can

be computed autonomously. We also designed some practical ex-

tractors and conducted experiments on two real-world datasets to

conclude that the runtime overhead imposed by our verification is

small in practice when compared to re-evaluating extractors, even if

the re-evaluation is performed incrementally. Furthermore, because

it uses static analysis, verification is independent of database size.

ACKNOWLEDGMENTS
We gratefully acknowledge financial assistance received from the

University of Waterloo and NSERC, the Natural Sciences and Engi-

neering Research Council of Canada.

2442

REFERENCES
[1] James F. Allen. 1983. Maintaining Knowledge about Temporal Intervals. Commun.

ACM 26, 11 (1983), 832–843.

[2] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2019.

Constant-Delay Enumeration for Nondeterministic Document Spanners. In Proc.
22nd International Conference on Database Theory, ICDT (LIPIcs), Pablo Barceló

and Marco Calautti (Eds.), Vol. 127. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, Lisbon, 22:1–22:19.

[3] José A. Blakeley, Neil Coburn, and Per-Åke Larson. 1989. Updating Derived

Relations: Detecting Irrelevant and Autonomously Computable Updates. ACM
Trans. Database Syst. 14, 3 (1989), 369–400.

[4] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. 1986. Efficiently

UpdatingMaterialized Views. In Proc. 1986 ACMSIGMOD International Conference
on Management of Data, Carlo Zaniolo (Ed.). ACM Press, Washington, DC, 61–71.

[5] Amit Chandel, P. C. Nagesh, and Sunita Sarawagi. 2006. Efficient Batch Top-

k Search for Dictionary-based Entity Recognition. In Proc. 22nd International
Conference on Data Engineering, ICDE, Ling Liu, Andreas Reuter, Kyu-Young

Whang, and Jianjun Zhang (Eds.). IEEE Computer Society, Atlanta, 28:1–28:10.

[6] Fei Chen, AnHai Doan, Jun Yang, and Raghu Ramakrishnan. 2008. Efficient Infor-

mation Extraction over Evolving Text Data. In Proc. 24th International Conference
on Data Engineering, ICDE. IEEE Computer Society, Cancún, 943–952.

[7] Rada Chirkova and Jun Yang. 2012. Materialized Views. Found. Trends Databases
4, 4 (2012), 295–405.

[8] Hamish Cunningham, Diana Maynard, and Valentin Tablan. 2000. JAPE: a Java
annotation patterns engine. Technical Report CS-00-10. Dept. Comp. Sci., Univ.

Sheffield. 28 pages.

[9] The dblp team. 2022. Statistics. Retrieved November 7, 2022 from https:

//dblp.org/statistics/index.html

[10] Johannes Doleschal, Benny Kimelfeld, Wim Martens, Yoav Nahshon, and Frank

Neven. 2019. Split-Correctness in Information Extraction. In Proc. 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS, Dan
Suciu, Sebastian Skritek, and Christoph Koch (Eds.). ACM, Amsterdam, 149–163.

[11] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2014.

Cleaning inconsistencies in information extraction via prioritized repairs. In

Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. ACM, Snowbird UT USA, 164–175.

[12] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2015.

Document Spanners: A Formal Approach to Information Extraction. J. ACM 62,

2 (2015), 12:1–12:51.

[13] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and

Domagoj Vrgoc. 2020. Efficient Enumeration Algorithms for Regular Document

Spanners. ACM Trans. Database Syst. 45, 1 (2020), 3:1–3:42.
[14] Dominik D. Freydenberger and Sam M. Thompson. 2020. Dynamic Complexity

of Document Spanners. In Proc. 23rd International Conference on Database Theory,
ICDT (LIPIcs), Carsten Lutz and Jean Christoph Jung (Eds.), Vol. 155. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, Copenhagen, 11:1–11:21.

[15] Robert J. Gaizauskas, Hamish Cunningham, Yorick Wilks, Peter J. Rodgers, and

Kevin Humphreys. 1996. GATE: An Environment to Support Research and

Development in Natural Language Engineering. In Proc. Eighth International
Conference on Tools with Artificial Intelligence, ICTAI. IEEE Computer Society,

Tolouse, 58–66.

[16] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. 1996. Data Integra-

tion using Self-Maintainable Views. In Proc. Advances in Database Technology -
EDBT’96, 5th International Conference on Extending Database Technology (Lec-
ture Notes in Computer Science), Peter M. G. Apers, Mokrane Bouzeghoub, and

Georges Gardarin (Eds.), Vol. 1057. Springer, Avignon, 140–144.

[17] Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gravano. 2007.

Towards a query optimizer for text-centric tasks. ACM Trans. Database Syst. 32,
4 (2007), 21:1–21:46.

[18] Alpa Jain, Panagiotis G. Ipeirotis, and Luis Gravano. 2008. Building query

optimizers for information extraction: the SQoUT project. SIGMOD Rec. 37, 4
(2008), 28–34.

[19] Besat Kassaie and Frank Wm. Tompa. 2019. Predictable and Consistent Informa-

tion Extraction. In Proc. DocEng ’19: ACM Symposium on Document Engineering.
ACM, Berlin, 14:1–14:10.

[20] Besat Kassaie and Frank Wm. Tompa. 2020. Detecting Opportunities for Differ-

ential Maintenance of Extracted Views. (2020), 19 pages. arXiv:2007.01973

[21] Besat Kassaie and Frank Wm. Tompa. 2020. A Framework for Extracted View

Maintenance. In Proc. DocEng ’20: ACM Symposium on Document Engineering.
ACM, Virtual Event, 16:1–16:4.

[22] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. 2012.

Proton: multitouch gestures as regular expressions. In ACM Conf. on Human
Factors in Computing Systems, CHI ’12. ACM, Austin, 2885–2894.

[23] Michael Ley. 2009. DBLP - Some Lessons Learned. Proc. VLDB Endow. 2, 2 (2009),
1493–1500.

[24] Yunyao Li, Frederick Reiss, and Laura Chiticariu. 2011. SystemT: A Declarative

Information Extraction System. In Proc. 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies - System Demon-
strations. ACL, Portland, OR, 109–114.

[25] Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. 2018. Document

Spanners for Extracting Incomplete Information: Expressiveness and Complexity.

In Proc. 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems. ACM, Houston TX USA, 125–136.

[26] Andrea Morciano. 2016. Engineering a runtime system for AQL. Master’s thesis.

École Polytechnique de Bruxelles, Université Libre de Bruxelles.

[27] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada. 2006. XML

access control using static analysis. ACM Trans. Inf. Syst. Secur. 9, 3 (2006),

292–324.

[28] Liat Peterfreund, Dominik D. Freydenberger, Benny Kimelfeld, and Markus Kröll.

2019. Complexity Bounds for Relational Algebra over Document Spanners. In

Proc. 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS, Dan Suciu, Sebastian Skritek, and Christoph Koch (Eds.). ACM,

Amsterdam, 320–334.

[29] Liat Peterfreund, Balder ten Cate, Ronald Fagin, and Benny Kimelfeld. 2019.

Recursive Programs for Document Spanners. In Proc. 22nd International Confer-
ence on Database Theory, ICDT (LIPIcs), Pablo Barceló and Marco Calautti (Eds.),

Vol. 127. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Lisbon, 13:1–13:18.

[30] Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, and

Shivakumar Vaithyanathan. 2008. An Algebraic Approach to Rule-Based Infor-

mation Extraction. In Proc. 24th International Conference on Data Engineering,
ICDE. IEEE Computer Society, Cancún, 933–942.

[31] Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W. Pennebaker.

2006. Effects of Age and Gender on Blogging. In Proc. 2006 AAAI Spring Symp.
on Computational Approaches to Analyzing Weblogs. AAAI, Stanford, 199–205.

[32] Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrishnan. 2007.

Declarative Information Extraction Using Datalog with Embedded Extraction

Predicates. In Proc. 33rd International Conference on Very Large Data Bases, VLDB.
ACM, Vienna, 1033–1044.

[33] Danny Sullivan. 2020. A reintroduction to our Knowledge Graph and knowledge
panels. Google. Retrieved December 7, 2022 from https://blog.google/products/

search/about-knowledge-graph-and-knowledge-panels/

2443

https://dblp.org/statistics/index.html
https://dblp.org/statistics/index.html
https://arxiv.org/abs/2007.01973
https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Regular Expressions with Capture Variables
	2.2 Document Spans
	2.3 Extractors Expressed by Document Spanners
	2.4 Efficient Construction of Extractors
	2.5 Model Architecture

	3 Document Update Model
	3.1 Update Formulas
	3.2 Update Semantics

	4 Autonomously Computable Updates
	5 Categorizing Document Updates
	5.1 Contextualization of Extraction Formulas
	5.2 Post-Update Spanner
	5.3 Detecting Pseudo-Irrelevance for Spanners

	6 Experiments
	6.1 Corpora
	6.2 Extractors
	6.3 Updates
	6.4 Run-time performance

	7 Additional Related Work
	8 Conclusions
	Acknowledgments
	References

