
Task: An Efficient Framework for Instant Error-tolerant Spatial
Keyword�eries on Road Networks

Chengyang Luo
Zhejiang University

luocy1017@zju.edu.cn

Qing Liu
Zhejiang University
lqzju2010@gmail.com

Yunjun Gao
Zhejiang University
gaoyj@zju.edu.cn

Lu Chen
Zhejiang University
luchen@zju.edu.cn

Ziheng Wei
Huawei Cloud Computing
Technologies Co., Ltd

ziheng.wei@huawei.com

Congcong Ge
Huawei Cloud Computing
Technologies Co., Ltd

gecongcong1@huawei.com

ABSTRACT

Instant spatial keyword queries return the results as soon as users
type in some characters instead of a complete keyword, which
allow users to query the geo-textual data in a type-as-you-search
manner. However, the existing methods of instant spatial keyword
queries suffer from several limitations. For example, the existing
methods do not consider the typographical errors of input key-
words, and cannot be applied to the road networks. To overcome
these limitations, in this paper, we propose a new query type, i.e.,
instant error-tolerant spatial keyword queries on road networks.
To answer the queries efficiently, we present a framework, termed
as Task, which consists of index component, query component,
and update component. In the index component, we design a novel
index called reverse 2-hop label based trie, which seamlessly inte-
grates spatial and textual information for each vertex of the road
network. Based on our proposed index, we devise efficient algo-
rithms to progressively return and update the query results in the
query component and update component, respectively. Finally, we
conduct extensive experiments on real-world road networks to
evaluate the performance of our presented Task. Empirical results
show that our proposed index and algorithms are up to 1-2 orders
of magnitude faster than the baseline.

PVLDB Reference Format:

Chengyang Luo, Qing Liu, Yunjun Gao, Lu Chen, Ziheng Wei,
and Congcong Ge. Task: An Efficient Framework for Instant Error-tolerant
Spatial Keyword Queries on Road Networks. PVLDB, 16(10): 2418 - 2430,
2023.
doi:10.14778/3603581.3603584

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/ZJU-DAILY/TASK.

1 INTRODUCTION

Geo-textual objects associated with both geographical and textual
information are ubiquitous in daily life, such as restaurants, hotels,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:10.14778/3603581.3603584

Mama Seafood

Center Market

Foam MA

Marmo

Main Kitchen

Marks Park

Marks Shop
Mar Hair SalonMain Kitchen

Mama Seafood

1.2km

Center Market

Foam MA

Marmo

2.2km

2.6km

3.0km

3.7km

ma

11

Center Market

Marmo

2.6km

Marks Shop

Mar Hair Salon

Marks Park

3.7km

4.6km

7.0km

12.7km

marok

22

Figure 1: A motivating example

shopping malls, etc. In the literature, many types of spatial key-
word queries have been studied [7, 11], e.g., top-𝑘 spatial keyword
queries [12, 35], reverse spatial keyword queries [16, 27], why-
not spatial keyword queries [6, 46], continuous spatial keyword
queries [14, 37], to name but a few. In this paper, we focus on instant
spatial keyword queries [19, 33, 48].

Instant queries, a.k.a., search-as-you-type or type-ahead search,
return query results on-the-fly when users type in a query keyword
character-by-character [3, 21–23]. They allow users to browse the
results during typing characters. [19, 33, 48] investigate the instant
queries for spatial databases. Specifically, with every character
of keyword being typed in, the instant spatial keyword queries
return geo-textual objects that are relevant to the query inputs. The
instant spatial keyword queries save users from typing in complete
keywords and thus are helpful for users in real-world applications.
As an example, assume that a user wants to go to a restaurant called
"Mama seafood" for dinner, and uses the location based service
(LBS) to find the location. As shown in Figure 1, as soon as the user
types in "Ma", the queries can return the results containing "Mama
seafood" for her/him.

However, the state-of-the-art methods of instant spatial keyword
queries [19, 33, 48] suffer from several limitations.

• The existing methods are mainly designed for the Euclidean
space. For example, the bound-materialized trie proposed
in [33] employs grid to index the space. Both the filtering-
effective hybrid index [19] and prefix-region tree [48] lever-
age R-tree for the space indexing. All those techniques can-
not be applied to road networks since they use different met-
rics to compute the distance between two objects. In real ap-
plications, it is straightforward and more practical to query
the geo-textual data on road networks [1, 17, 20, 30, 32, 43].
Hence, it is necessary to develop techniques for instant
spatial keyword queries on road networks.

2418

https://doi.org/10.14778/3603581.3603584
https://github.com/ZJU-DAILY/TASK
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603584
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Taxonomy of representative related work and our work

Category Index

Error

tolerant

Multiple

keywords

Search as

you type

Character

deletion

Non-tail

operations

Road

network

Instant spatial
keyword queries

Bound-Materialized Trie [33] ✘ ✘ ✔ ✘ ✘ ✘

Filtering-effective
hybrid index (FEH) [19] ✘ ✘ ✔ ✘ ✘ ✘

Prefix-region tree (PR-Tree) [48] ✘ ✔ ✔ ✘ ✘ ✘

Spatial keywords
queries over
road networks

Map B-tree and inverted file [32] ✘ ✘ ✘ ✘ ✘ ✔

Compact tree [30] ✘ ✘ ✘ ✘ ✘ ✔

LB Index and KT Index [20] ✘ ✔ ✘ ✘ ✘ ✔

Keyword separated
index (K-SPIN) [1] ✘ ✔ ✘ ✘ ✘ ✔

Instant spatial
keywords queries
over road networks

Reverse 2-hop label

based trie (Our work)

✔ ✔ ✔ ✔ ✔ ✔

• The existing methods do not consider the typographical
errors of input keywords. Sometimes, typing accurately
is a tedious task, and the users’ inputs tend to contain ty-
pographical errors, especially for mobile devices. Conse-
quently, it is critical for the instant spatial keyword queries
to tolerate typos [31, 34, 36, 38, 49], which can help users
query in a friendly way. Thus, it motivates us to consider
the error tolerance for the instant spatial keyword queries.

• The traditional instant spatial keyword queries mostly fo-
cus on the cases where users type in queries character-by-
character. Nevertheless, some common yet important cases
are ignored. For instance, users may (i) delete characters
during the query, and (ii) add/delete characters anywhere
in the query. Considering these cases can greatly enrich the
instant spatial keyword queries.

To overcome these limitations, in this paper, we study a new
problem, i.e., instant error-tolerant spatial keyword queries on road
networks. Specifically, given a road network including geo-textual
objects, a query location, and a query string that may have typo-
graphical errors, the instant error-tolerant spatial keyword queries
return top-𝑘 geo-textual objects that are the most relevant to query
location and query string. When the query string updates, e.g.,
the users input new characters to the query string or delete some
characters from the query string, the queries should update the
top-𝑘 geo-textual objects instantly. Our studied problem has wide
applications in LBS. For example, in Figure 1, assume that the user
wants to query "Marks shop", and starts typing in a string "Ma".
Then, five geo-textual objects containing the prefix "Ma" are quickly
returned. However, the desired "Marks shop" is not in the results.
Next, the user proceeds to type in the string "Marok", where a typo
is contained. The queries tolerate the typo, and return new results
containing "Marks shop". It is worth mentioning that the tradi-
tional instant queries only deal with the cases of typing keywords
character-by-character. Our work also considers the deletion of
characters, which is beneficial in real applications.

In the literature, many indexes have been proposed to handle
the instant spatial keyword queries and spatial keyword queries on
road networks, as summarized in Table 1. Since those indexes do not
take all the requirements of our problem into consideration, they
cannot be applied to tackle our problem. To this end, we present a

novel index called reverse 2-hop label based trie (R2T) to answer the
instant error-tolerant spatial keyword queries on road networks.
R2T consists of two parts, i.e., reverse 2-hop label and trie. Specifically,
the reverse 2-hop label is based on 2-hop labeling techniques [10],
which enables efficient calculation of the distance between two
vertices. With the help of the reverse 2-hop label, R2T is capable
of efficient distance computation during the query processing. For
the textual information, we employ trie that can efficiently support
characters matching. The complete trie is complex and large, which
is not efficient for queries since we need to traverse it multiple
times. Thus, we design a novel structure called node array to store
partial trie for each vertex with respect to the reverse 2-hop label.
Moreover, we have discussed the index maintenance for dynamic
road networks.

Based on R2T, we devise efficient algorithms to support instant
error-tolerant spatial keyword queries on road networks, including
instant query algorithm and instant update algorithm. The instant
query algorithm aims to return the results when users type in char-
acters for the first time. It first traverses the complete trie to get
the active nodes, which contains the candidate results, and then,
it visits the R2T to progressively find the geo-textual objects that
are the most relevant to the query location and query string. The
instant update algorithm is to update the query results according
to the updated query string. To avoid querying from the scratch,
we design query information inheritance mechanism to make full
use of previous query processing information, which can dramati-
cally improve the query performance. Furthermore, we extend our
algorithms to support multiple query strings.

Our key contributions are summarized as follows:

• We identify and formalize the problem of instant error-
tolerant spatial keyword queries on road networks, which is
rooted in real-world applications. To the best of our knowl-
edge, it is the first attempt to investigate this problem.

• We design a novel index called R2T, which seamlessly inte-
grates the spatial and textual information for each vertex of
the road network to facilitate queries. Efficient algorithms
are also proposed to construct and maintain R2T.

• We present efficient algorithms to answer queries using
R2T, which can return the results in a progressive way. In
particular, the first type of algorithms focus on how to

2419

retrieve results when users type in a query string for the
first time. The second type of algorithms handle how to
efficiently update results for the updated query string.

• We conduct extensive experiments on real-world road net-
works to demonstrate the efficiency of our proposed index
and algorithms.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 formally defines the problem. Section 4
introduces the framework Task. Section 5 presents the structure,
construction, and maintenance of R2T index. Section 6 proposes al-
gorithms for queries. Experimental results are reported in Section 7.
Finally, Section 8 concludes the paper.

2 RELATEDWORK

Instant spatial keyword queries. Existing studies proposed differ-
ent indexes to support instant spatial keyword queries [19, 33, 48].
Basu Roy and Chakrabarti [33] first introduced the instant queries
to spatial database, and developed the index called materialized trie
(MT). MT uses trie as the main index structure, and incorporates
spatial information into the node of trie. Ji et al. [19] proposed
an R-tree based method called Filtering-Effective Hybrid Indexing
(FEH) for instant spatial keyword queries. FEH utilizes R-tree as
the key index structure. In each R-tree node, FEH incorporates
textual filters according to the geo-textual objects contained in this
node. Zhong et al. [48] proposed the Prefix-region tree (PR-Tree),
which considers spatial information and textual information in a
balanced manner. In addition, as surveyed in [5], many indexes,
such as IR-tree [26], have been proposed for spatial keyword queries.
Nonetheless, all these indexes are designed for the Euclidean space,
and cannot be directly used in our work.

The mentioned spatial keyword queries are related to location-
aware autocompletion [18, 34]. Specifically, as users type in queries,
the location-aware autocompletion returns the possible completion
of the queries. However, location-aware autocompletion is not
applicable to our problem for three reasons. Firstly, it uses Euclidean
space, which is not suitable for road networks. Secondly, it considers
spatial similarity and textual similarity separately, whereas our
problem requires a comprehensive approach. Lastly, location-aware
autocompletion requires querying from scratch whenever users
input characters, resulting in time consumption.
Spatial keyword queries on road networks. Rocha-Junior and
Nørvåg [32] first explored the spatial keyword queries on road
networks. An index consisting of map tree and inverted file is pro-
posed to answer the queries. Then, Qiao et al. [30] devised an index
structure based on distance oracles and compact trees of keywords.
Jiang et al. [20] presented 2-hop label backward index (LB) and
keyword-lookup tree index (KT). Abeywickrama et al. [1] designed
the keyword separated index (K-SPIN), which includes a set of
on-demand inverted heap of a keyword. Besides traditional spatial
keyword queries on road networks, many variants have also been
studied, such as aggregate queries [9], time-aware queries [43], con-
tinuous queries [47], why-not queries [44], diversified queries [39],
and reverse queries [45]. All these studies need users to type in
complete queries and hence cannot be applied in our work.

6

3

5

1
1

2
2

1

23
2

5

4

v8v8

v9v9

v6v6

v5v5

v4v4

v7v7

v1v1

v3v3

v2v2

(a) Road network

Vertex
v1

v2

v3

v4

v5

v6

v7

v8

v9

Keywords
baber shop
starbucks
stadium

book store
starline club
cloud school
bus station

cinema
baby center

Vertex
v1

v2

v3

v4

v5

v6

v7

v8

v9

Keywords
baber shop
starbucks
stadium

book store
starline club
cloud school
bus station

cinema
baby center

(b) Textual information

Figure 2: A running example

3 PROBLEM FORMULATION

In this section, we formalize the problem of instant error-tolerant
spatial keyword queries on road networks.

The road network is denoted as a connected undirected weighted
graph 𝐺 = (𝑉 , 𝐸). 𝑉 and 𝐸 are the sets of vertices and edges of 𝐺 .
The weight of an edge 𝑒 = (𝑢, 𝑣), denoted by w(𝑒) or w(𝑢, 𝑣), is
a positive integer, which denotes a metric, such as distance or
travel time, between 𝑢 and 𝑣 . A path 𝑝 is a sequence of vertices
𝑝 = (𝑣1, 𝑣2, ..., 𝑣 𝑗), where ∀1 ≤ 𝑖 ≤ 𝑗 , (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. The length
of a path is the sum of weights of edges along the path. Given
two vertices 𝑢 and 𝑣 of a road network 𝐺 , the distance between 𝑢
and 𝑣 , denoted by dis(𝑢, 𝑣), is the shortest path between 𝑢 and 𝑣
in 𝐺 . For example, in Figure 2, the length of path 𝑝 = (𝑣5, 𝑣6, 𝑣7) is
w(𝑣5, 𝑣6) + w(𝑣6, 𝑣7) = 5 + 2 = 7; and the distance between 𝑣5 and
𝑣7 is dis(𝑣5, 𝑣7) = w(𝑣5, 𝑣4) + w(𝑣4, 𝑣7) = 2.

The geo-textual objects and query location may appear on any
point of the road network 𝐺 . Given a geo-textual object and a
query location on 𝐺 , we can compute the distance between them
by mapping each of them to an adjacent vertex with an offset. To
make exposition simpler, we assume that the geo-textual objects
and query location all appear on vertices, which follows previous
studies such as [1, 20]. Under this assumption, in the road network
𝐺 , a vertex 𝑣 contains a set of keywords, which is denoted by
doc(𝑣). We use the notation 𝑘𝑤 ∈ doc(𝑣) to denote that the vertex
𝑣 includes the keyword 𝑘𝑤 . If a string 𝑠𝑡𝑟 is the prefix of a keyword
𝑘𝑤 , we denote it by 𝑠𝑡𝑟 � 𝑘𝑤 . For instance, in Figure 2, "bus"
∈ doc(𝑣7) and "bu" � "bus". Next, we introduce the concepts of edit
distance and prefix edit distance to measure the textual similarity.

Definition 3.1. (Edit Distance, Prefix Edit Distance) Given
a keyword 𝑘𝑤 , two strings 𝑠𝑡𝑟1 and 𝑠𝑡𝑟2.

(1) The edit distance between 𝑠𝑡𝑟1 and 𝑠𝑡𝑟2, denoted by ED(𝑠𝑡𝑟1, 𝑠𝑡𝑟2),
is the minimum number of single-character edit operations, including
insertion, deletion, and substitution, needed to transform 𝑠𝑡𝑟1 to 𝑠𝑡𝑟2.

(2) The prefix edit distance between 𝑘𝑤 and 𝑠𝑡𝑟1, denoted by
PED(𝑘𝑤, 𝑠𝑡𝑟1), is the minimum edit distance between 𝑘𝑤 ’s prefix
and 𝑠𝑡𝑟1, i.e., PED(𝑘𝑤, 𝑠𝑡𝑟1) = min∀𝑠𝑡𝑟 ′�𝑘𝑤 ED(𝑠𝑡𝑟 ′, 𝑠𝑡𝑟1).

For example, ED("school", "scholar") = 3, PED("school", "sco") =
ED("sch", "sco") = ED("sc", "sco") = ED("scho", "sco") = 1. Based on
the metric of textual similarity presented above, we formally define
the error-tolerant spatial keyword queries on road networks.

2420

Query
String

Query
Location

User
sta

Query
String

Query
Location

User
sta

 Query Component

Result

Insert/Delete
Letters

 Update Component

Add Letters

Roll Back
Query State

Keep
Query State

Active nodes

Match New
Active Nodes
Match New

Active Nodes

Inherit Query
Information

Updated
Result

R2T

M
aintain Index

M
aintain Index

Road
Network

Trie

R2T

Index
Component

TASK

2-hop Label

Rverse2-hop
Label

stea/st

star

Access 2-hop LabelAccess 2-hop Label

Match Active NodesMatch Active Nodes

Figure 3: The workflow of Task

Definition 3.2. (Error-tolerant Spatial Keyword Queries

on Road Networks) Given a road network𝐺 = (𝑉 , 𝐸), a parameter
𝑘 , an error threshold 𝜏 , a query 𝑞 = (𝑞.𝑙𝑜𝑐, 𝑞.𝑠𝑡𝑟), where 𝑞.𝑙𝑜𝑐 ∈ 𝑉
and 𝑞.𝑠𝑡𝑟 are the query location and query string, respectively. The
error-tolerant spatial keyword queries on road networks return a set
R ⊆ 𝑉 such that:

(1) |R | = 𝑘 ;
(2) ∀𝑣 ∈ R, ∃𝑘𝑤 ∈ doc(𝑣), PED(𝑘𝑤,𝑞.𝑠𝑡𝑟) ≤ 𝜏 ;
(3) ∀𝑣 ∈ R and ∀𝑣 ′ ∈ 𝑉 −R, score(𝑞, 𝑣) ≤ score(𝑞, 𝑣 ′), in which

score(𝑞, 𝑣) computes the spatial and textual similarity between 𝑞
and 𝑣 . Specifically,

score(𝑞, 𝑣) =𝛼 · dis(𝑞.𝑙𝑜𝑐, 𝑣)
max∀𝑢,𝑢′∈𝑉 dis(𝑢,𝑢 ′)

+ (1 − 𝛼) ·
min∀𝑘𝑤∈doc(𝑣) PED(𝑘𝑤,𝑞.𝑠𝑡𝑟)

𝜏

(1)

In Definition 3.2, (1) the first condition ensures that the returned
results have at most 𝑘 geo-textual objects; (2) the second condition
gives the upper bound of the typographical error for the query
string such that the keywords of each returned geo-textual object
can match the query string; and (3) the third condition employs
the normalized aggregated score of spatial similarity and textual
similarity to rank the geo-textual objects such that the returned
𝑘 geo-textual objects are optimal. Specifically, Equation 1 consists
of two parts. The first part, i.e., dis(𝑞.𝑙𝑜𝑐,𝑣)

max∀𝑢,𝑢′∈𝑉 dis(𝑢,𝑢′) , employs the
shortest distance to measure the spatial similarity between the
query location 𝑞.𝑙𝑜𝑐 and the geo-textual object 𝑣 . The closer 𝑣 is
to 𝑞.𝑙𝑜𝑐 , the more preferable 𝑣 is to 𝑞.𝑙𝑜𝑐 . The second part, i.e.,
min∀𝑘𝑤∈doc(𝑣) PED(𝑘𝑤,𝑞.𝑠𝑡𝑟)

𝜏 , uses the prefix edit distance to measure
the textual similarity between the query string 𝑞.𝑠𝑡𝑟 and the key-
words of 𝑣 . The smaller prefix edit distance between 𝑞.𝑠𝑡𝑟 and the
keywords of 𝑣 , the more similar they are. For equality, we em-
ploy the maximum shortest distance of the road network and the
threshold 𝜏 to normalize these two parts, respectively. Moreover,
the parameter 𝛼 ∈ [0, 1] in Equation 1 is introduced to adjust the
importance of spatial and textual similarities. In brief, the error-
tolerant spatial keyword queries on road networks tolerate the
input error, and return the most relevant geo-textual objects for
users. Based on this, we formalize our studied problem below.

Problem 1. Given a road network 𝐺 = (𝑉 , 𝐸), a parameter 𝑘 ,
an error threshold 𝜏 , and a query 𝑞 = (𝑞.𝑙𝑜𝑐, 𝑞.𝑠𝑡𝑟), the problem of
instant error-tolerant spatial keyword queries on road networks should
(1) return the set R satisfying the three conditions in Definition 3.2;
and (2) update R whenever the query string 𝑞.𝑠𝑡𝑟 changes.

In a word, the goal of Problem 1 is two-folded. First, when a user
types in a string, we should return the top-𝑘 geo-textual objects
that best match user’s location and the typed string. Second, when
the typed string changes, e.g., a new character is inserted into the
string or a character is deleted from the string, we should update the
results instantly. For instance, in Figure 2, assume that 𝑞.𝑙𝑜𝑐 = 𝑣1,
𝑘 = 3, 𝜏 = 1, and 𝛼 = 0.5. When a user types in a query string "st",
the results {𝑣3, 𝑣4, 𝑣2} are returned. When the user proceeds to type
in "a" after "st", i.e., the current query string is "sta", the results are
updated to {𝑣3, 𝑣2, 𝑣5} immediately.

4 FRAMEWORK OVERVIEW

Problem 1 returns 𝑘 geo-textual objects with the minimum score,
and the typo should be not larger than 𝜏 . A naive method is to
traverse the road network from 𝑞.𝑙𝑜𝑐 in a breadth first manner. For
the visited vertex, we check whether the prefix edit distance of
the vertex’s keywords is no larger than 𝜏 . If yes, we compute its
score using Equation 1, and add it to the candidate set. Finally, 𝑘
vertices with the minimum score are returned. When the query
string changes, we can use the above naive method to compute the
results from the scratch. Obviously, the simple combination of road
network traversal and text examination leads to poor performance
of the naive method.

Motivated by this, we propose an efficient framework, termed as
Task, to tackle the instant error-tolerant spatial keyword queries on
road networks. As illustrated in Figure 3, Task consists of an index
component, a query component, and an update component. The
index component is responsible for (1) constructing the R2T index
for the road network and (2) maintaining R2T when the road net-
work changes. The index component provides support for queries,
and is the cornerstone of the framework. When a user types in a
query string at the first time (i.e., when the current query string
is empty), Task uses the query component to return results to the
user. Whenever the user makes change for the query string, Task
calls the update component, which employs the information of
previous query processing to quickly update the results for user.

2421

Table 2: 2-hop label and reverse 2-hop label of the road net-

work in Figure 2

Vertex 2-hop label Reverse 2-hop label

𝑣1 (𝑣1, 0)
(𝑣1, 0) , (𝑣3, 1) , (𝑣8, 2) , (𝑣4, 3) ,
(𝑣2, 4) , (𝑣5, 4) , (𝑣7, 4) , (𝑣6, 6) , (𝑣9, 8)

𝑣2 (𝑣2, 0) , (𝑣1, 4) (𝑣2, 0)
𝑣3 (𝑣3, 0) , (𝑣1, 1) , (𝑣4, 2) (𝑣3, 0)

𝑣4 (𝑣4, 0) , (𝑣1, 3)
(𝑣4, 0) , (𝑣5, 1) , (𝑣7, 1) , (𝑣3, 2) ,
(𝑣6, 3) , (𝑣8, 3) , (𝑣9, 6)

𝑣5 (𝑣5, 0) , (𝑣4, 1) , (𝑣1, 4) (𝑣5, 0)
𝑣6 (𝑣6, 0) , (𝑣4, 3) , (𝑣1, 6) (𝑣6, 0) , (𝑣7, 2) , (𝑣9, 3) , (𝑣8, 4)

𝑣7
(𝑣7, 0) , (𝑣4, 1) , (𝑣6, 2) ,
(𝑣1, 4)

(𝑣7, 0) , (𝑣8, 2)

𝑣8
(𝑣8, 0) , (𝑣1, 2) , (𝑣7, 2) ,
(𝑣4, 3) , (𝑣6, 4)

(𝑣8, 0) , (𝑣9, 1)

𝑣9
(𝑣9, 0) , (𝑣6, 3) , (𝑣4, 6) ,
(𝑣8, 6) , (𝑣1, 8)

(𝑣9, 0)

The user proceeds to type in the query string until the desirable
results are found. In the following two sections, we will detail these
three components. Note that, due to space limitation, some pseu-
docodes, examples, and proofs of Section 5 ans Section 6 are moved
to technical report [28].

5 R2T INDEX
In this section, we propose a novel index called reverse 2-hop label
based trie (R2T for short) for Problem 1. We first introduce the struc-
ture of R2T, and then present the construction and maintenance
algorithms of R2T.

5.1 R2T Structure

R2T integrates both road network information and textual infor-
mation. Specifically, we employ the reverse 2-hop label and trie
techniques to store spatial and textual information, respectively.
First, we introduce the concept of 2-hop label [2, 8, 10, 15, 29].

Given a road network 𝐺 , the 2-hop labeling technique assigns
each vertex 𝑣 ∈ 𝑉 a label L(𝑣) containing a set of pairs (𝑢, dis(𝑢, 𝑣)),
i.e., L(𝑣) = {(𝑢, dis(𝑢, 𝑣)) |𝑢 ∈ 𝑉 }. The 2-hop labels of all vertices
have the following property. Given any two vertices 𝑣 and 𝑣 ′ of
the road network 𝐺 , the distance between 𝑣 and 𝑣 ′ is dis(𝑣, 𝑣 ′) =
min𝑢∈L(𝑣)∩L(𝑣′) dis(𝑣,𝑢) + dis(𝑣 ′, 𝑢). In other words, the distance
between any two vertices can be computed via an intermediate
hop. For example, Table 2 shows the 2-hop labels for all vertices
of the road network 𝐺 in Figure 2. We can observe that L(𝑣2) =
{(𝑣2, 0), (𝑣1, 4)} and L(𝑣7) = {(𝑣7, 0), (𝑣4, 1), (𝑣6, 2), (𝑣1, 4)}. The
vertex 𝑣1 is the only common label vertex in L(𝑣2) and L(𝑣7). Thus,
dis(𝑣2, 𝑣7) = dis(𝑣2, 𝑣1) +dis(𝑣1, 𝑣7) = 4+ 4 = 8. Based on the 2-hop
label, the reverse 2-hop label is defined as follows.

Definition 5.1. (Reverse 2-hop Label) Given a road network𝐺
and 2-hop labels of all vertices in𝐺 , the reverse 2-hop label of a vertex
𝑣 , denoted by L̃(𝑣), consists of pairs (𝑢, dis(𝑢, 𝑣)) with (𝑣, dis(𝑢, 𝑣)) ∈
L(𝑢), i.e., L̃(𝑣) = {(𝑢, dis(𝑢, 𝑣)) |∀𝑢, (𝑣, dis(𝑢, 𝑣)) ∈ L(𝑢)}.

If a vertex 𝑣 is included in the 2-hop label of 𝑢, the reverse 2-
hop label of 𝑣 contains 𝑢. For instance, in Table 2, (𝑣1, 4) ∈ L(𝑣2)
and (𝑣2, 4) ∈ L̃(𝑣1). The reverse 2-hop label is mainly used for the

distance computation, which can benefit Problem 1 a lot. The 2-hop
label only supports distance computation between two vertices.
Given 2-hop labels of a road network, if we want to find the 𝑘
nearest neighbors of a vertex 𝑣 , we should compute the common
2-hop label vertices of 𝑣 and every other vertex, which is time
consuming. With the help of reverse 2-hop label, we only need to
compute the common 2-hop label vertices of 𝑣 and 𝑣 ’s 𝑘 nearest
neighbors, and thus improving the query efficiency. Note that, we
assume that the pairs (𝑣, dis(𝑢, 𝑣)) in both 2-hop label and reverse
2-hop label are in ascending order w.r.t., dis(𝑢, 𝑣). Besides, when
the context is clear, we use the notations 𝑣 ∈ L(𝑢) and 𝑣 ∈ L̃(𝑢) to
denote (𝑣, dis(𝑢, 𝑣)) ∈ L(𝑢) and (𝑣, dis(𝑢, 𝑣)) ∈ L̃(𝑢) for simplicity.

Next, we introduce another technique used in R2T, i.e., trie. The
trie is an ordered tree to represent a set of keywords. Its root node
is an empty node. Each non-leaf node is labeled with one character,
and each leaf node contains the last character of a keyword. The
path from the root node to a leaf/intermediate node represents a
keyword/prefix in the trie. As an example, Figure 4 depicts a trie
representing the keywords set in Figure 2(b). The nodes 𝑛4 and 𝑛7
denote the prefix "bab" and keyword "baby", respectively.

Based on the reverse 2-hop label and trie, we formally define our
proposed index as follows.

Definition 5.2. (Reverse 2-hop Label Based Trie) Given a
road network 𝐺 and a vertex 𝑣 ∈ 𝑉 , a reverse 2-hop label based trie
of 𝑣 , denoted by R2T(𝑣), consists of the reverse 2-hop label of 𝑣 and
the trie of 𝑣 w.r.t. L̃(𝑣), i.e., R2T(𝑣) = (L̃(𝑣), T(𝑣)). In particular, T(𝑣)
is a trie of 𝑣 to represent all the keywords contained in the vertices in
L̃(𝑣), i.e., ∀𝑣 ′ ∈ L̃(𝑣), ∀𝑘𝑤 ∈ doc(𝑣 ′).

For example, in Table 2, L̃(𝑣6) = {(𝑣6, 0), (𝑣7, 2), (𝑣9, 3), (𝑣8, 4)}
and the keywords set w.r.t. L̃(𝑣6) is {"cloud", "school", "bus", "station",
"cinema", "baby", "center"}. Correspondingly, Figure 5 depicts T(𝑣6).

Combining Figures 4 and 5, we can find that each T(𝑣) is a part
of the complete trie. However, storing the entire T(𝑣) directly in
R2T(𝑣) has two drawbacks: (1) redundant storage and (2) repeated
trie traversal. To address these issues, we use a node array to store
T(𝑣). The node array consists of a set of (ID(𝑛), B(𝑛)) for every leaf
node 𝑛 of T(𝑣), where ID(𝑛) is the ID of 𝑛 in the complete trie of
the road network and B(𝑛) consists of bitmaps of trie nodes along
the path from root node to 𝑛. Note that, the bitmaps of root node,
leaf nodes, and the nodes whose bitmaps are the same as leaf nodes
are not stored. In T(𝑣), a node 𝑛’s bitmap is defined below: (1) Each
bitmap has |̃L(𝑣) | bits, and each bit represents a vertex in L̃(𝑣). (2) A
bit is set to "1" if the represented vertex has a keyword containing
the prefix denoted by 𝑛, and it is set to "0" otherwise; the bits of
the root node are all "1". We take the node 𝑛′2 of T(𝑣6) in Figure 5
as an example. Since |̃L(𝑣6) | = 4, each bitmap of T(𝑣6)’s node has
4 bits, representing 𝑣6, 𝑣7, 𝑣9, and 𝑣8, respectively. 𝑛′2 denotes the
prefix "b". According to Figure 2(b), "b" � "bus" ∈ doc(𝑣7) and "b"
� "baby" ∈ doc(𝑣9). Thus, the bitmap of 𝑛′2 is "0110".

In Figure 5, we can observe that there are a lot of "0" bits in
bitmaps, which can be further compressed. Let 𝑏1 and 𝑏2 be the
bitmaps of nodes 𝑛1 and 𝑛2, respectively, and 𝑛2 be the child node
of 𝑛1. For the same bit of 𝑏1 and 𝑏2, if both bits are "0", we delete
the corresponding "0" bit from 𝑏2. Back to Figure 5, the bitmaps
of 𝑛′2 and 𝑛

′
3 are "0110" and "0010", respectively. Since the first and

last bits of 𝑛′2 and 𝑛
′
3 are all "0", we can delete the first and last bits

2422

bb

aa

bb
yy

uu

ss

cc

ee

nn

tt

ee

rr

ll

oo

uu

dd

ii

nn

ee
mm

aa

ss

cc

hh
oo

oo

ll

tt

aa

tt

ii

oo

nn

v9

v7

v9

v6

v8 v6

v7

ee
rr
v1

oo

oo

kk
v4

uu

bb
v6

dd

ii

uu

mm
v3

rr

bb

uu

cc

kk

ss
v2

ll

ii

nn

ee
v5

oo
rr
ee

hh
oo
pp

v4

v1

Root n1
n2

n3

n4

n5
n6

n7

n8
n9
n10

n11
n12

n13

n14
n15
n16
n17
n18

n19
n20
n21

n22

n23
n24

n25
n26
n27
n28
n29

n30

n31
n32
n33
n34
n35

n36

n37
n38
n39
n40
n41

n42
n43
n44
n45

n46
n47
n48
n49
n50
n51

n52
n53
n54
n55

n56

n57
n58

n59
n60
n61

Figure 4: Trie of keywords set in Figure 2(b)

bb

aa

bb

yy

uu

ss

cc

ee

nn

tt

ee

rr

ll

oo

uu

dd

ii

nn

ee

mm

aa

ss

cc

hh

oo

oo

ll

tt

aa

tt

ii

oo

nn

0110

01 10

v9

v7

v9

v6

v8 v6

v7

Root

0110

1111
1111

1011 1100

010010000001

0001

0001

0001

0001

1000

1000

1000

1000

0100

0100

0100

0100

0100

n1'n1'

n2'n2'

n3'n3'

n4'n4'

n6'n6'

n7'n7'

n8'n8'

n9'n9'

n10'n10'

n11'n11'

n12'n12'

n13'n13'

n14'n14'

n15'n15'

n16'n16'

n17'n17'

n18'n18'

n19'n19'

n20'n20'

n21'n21'

n22'n22'

n23'n23'

n24'n24'

n5'n5'

n25'n25'

n26'n26'

n27'n27'

n28'n28'

n29'n29'

n30'n30'

n31'n31'

n32'n32'

n33'n33'

n34'n34'

1000

1000

1000

1000

0010

1000

1000

1000

0100

0100

0010

0010

0010

UncompressedUncompressed
CompressedCompressed

1 1

1

1000

1011

010

1

1

1

1

100

1

1

1

001

1

1

1

1

1100

10 01

1 1

1 1

1 1

1 1

1

Figure 5: Trie of 𝑣6

R2T(v6)

T(v6)

 L(v6) = {(v6, 0), (v7, 2), (v9, 3), (v8, 4)}

n12

n18

n24

n29

n35

n45

～

n7

ID(n)Node(n) B(n)
n5'n5' {0110, 01}

{0110, 10}

{1011, 010}

{1011, 100}

{1011, 001}

{1100, 10}

{1100, 01}

n7'n7'
n13'n13'
n17'n17'

n22'n22'
n28'n28'
n34'n34'

Figure 6: R2T(𝑣6)

of 𝑛′3, and the compressed bitmap of 𝑛′3 is "01". The compressed
bitmap for every node of T(𝑣6) is listed below the original bitmap
in Figure 5. After getting the compressed bitmaps, we can construct
the B(𝑛) for each leaf node of T(𝑣). Take the leaf node 𝑛′5 of T(𝑣6)
in Figure 5 as an example. ID(𝑛′5) = 𝑛7, and the B(𝑛′5) consists of
the compressed bitmaps from 𝑛′2 to 𝑛

′
3, i.e., B(𝑛

′
5) = {0110, 01}. In

the same way, we can construct (ID(𝑛), B(𝑛)) for every leaf node
of T(𝑣6). Figure 6 illustrates the R2T(𝑣6) for vertex 𝑣6.

Theorem 5.1. The space complexity of R2T is 𝑂 (𝑤 · |𝑉 | · log |𝑉 |),
where𝑤 is the shortest path tree width of the road network.

5.2 R2T Construction

Given a road network𝐺 , the construction of R2T(𝑣) for every vertex
𝑣 ∈ 𝑉 includes two parts, i.e., the constructions of L̃(𝑣) and T(𝑣).
The construction of ˜L(𝒗). First, we use existing 2-hop labeling
algorithms [24] to compute the 2-hop label for every vertex. Then,
we traverse the 2-hop label to get the reverse 2-hop label. Specif-
ically, if (𝑣, dis(𝑢, 𝑣)) ∈ L(𝑢), we add the pair (𝑢, dis(𝑢, 𝑣)) to L̃(𝑣).
Finally, we sort the pairs in L̃(𝑣) in ascending order of the distances
dis(𝑢, 𝑣). Note that we do not store vertices without keywords since
it cannot contribute to the final results.
The construction of T(𝒗). T(𝑣) is stored in the form of node array.
Hence, this step focuses on how to construct the node array. First,
we construct (1) a complete trie for all the keywords contained in
the given road network, and (2) a trie for all the keywords contained
in the vertices of L̃(𝑣) (we call it the trie of 𝑣 for short). Then, we
compute the bitmaps for each node of the trie of 𝑣 . Specifically, we
traverse the trie in a depth-first manner. For each visited trie node
𝑛, a bitmap with |̃L(𝑣) | bits is created for 𝑛. To be more specific, for
each (𝑢, dis(𝑢, 𝑣)) ∈ L̃(𝑣), if the keywords of 𝑢 contain the prefix
represented by 𝑛, the bit representing 𝑢 in the bitmap is set to "1".
Otherwise, the bit is set to "0". In addition, if the visited node 𝑛 is a
leaf node, we need to perform the following operations: (1) add 𝑛
to the node array; (2) find the corresponding ID(𝑛) in the complete
trie; (3) backtrack to the root node and compress the bitmap in a
bottom-up manner; and (4) add the compressed bitmap to B(𝑛).

Theorem 5.2. The time and space complexities of R2T construction
are𝑂 (𝑤 · |𝐸 | · log |𝑉 | +𝑤2 · |𝑉 | · log3 |𝑉 |) and𝑂 (𝑤2 · |𝑉 | · log2 |𝑉 |),
respectively.

5.3 R2TMaintenance

In this section, we present the maintenance of R2T. In the following,
we describe in detail the index maintenance process for two cate-
gories: (1) the keywords update and (2) the road network structure
update.
Keywords Update. The first category is keywords update, which
involves inserting/deleting a keyword into/from doc(𝑣) of 𝑣 . Recall
that R2T(𝑣) includes L̃(𝑣) and T(𝑣), and only T(𝑣) stores the key-
word information. Hence, inserting or deleting keywords only af-
fects T(𝑣). To be specific, whenwe insert/delete a keyword into/from
doc(𝑣) of vertex 𝑣 , all T(𝑣 ′) with 𝑣 ∈ L̃(𝑣 ′) need to be updated.

Assuming 𝑣 ∈ L̃(𝑣 ′), we discuss insertion and deletion of key-
words separately. (1) Inserting a keyword 𝑘𝑤 into doc(𝑣). First,
Find leaf node 𝑛 representing 𝑘𝑤 in trie of 𝑣 ′. If node doesn’t exist,
insert new leaf node 𝑛 to represent 𝑘𝑤 . Second, Update bitmaps of
nodes along the path from root to 𝑛. Specifically, for existing nodes
that denote the prefix of 𝑘𝑤 , we should set the bit representing 𝑣 to
"1". The bitmaps of their children nodes have to be checked if they
need to add a "0" bit. For new added nodes, create new bitmaps and
compressed bitmaps for newly added nodes. Finally, Add newly
inserted leaf node 𝑛 to T(𝑣 ′) in T(𝑣 ′). Thereafter, we only need to
update B(𝑛′) for leaf nodes 𝑛′ with representing keywords having
the same prefix as 𝑘𝑤” (2) Deleting a keyword 𝑘𝑤 from doc(𝑣). In
the trie of 𝑣 ′, for nodes denoting the prefix of 𝑘𝑤 , we set the bit
representing 𝑣 to "0" or delete it if no other keywords in doc(𝑣)
share the same prefix. Next, in T(𝑣 ′), we delete the leaf node and
its (ID(𝑛), B(𝑛)) if other vertices in L̃(𝑣) do not contain 𝑘𝑤 . Also,
for the leaf nodes 𝑛′ whose representing keywords have the same
prefix as 𝑘𝑤 , we update the B(𝑛′) as the first step.
Road network structure update. Another category of update
is the update of road network structure, including the change of
edge’s weight and inserting/deleting edges/vertices. When the road
network structure updates, first, we can use the existing 2-hop la-
bel maintenance algorithms [4, 40–42] to compute the updated
2-hop label. Second, based on the updated 2-hop label, we up-
date the reverse 2-hop label. Specifically, if a pair (𝑣, dis(𝑢, 𝑣))
is added/deleted to/from L(𝑢), we should update L̃(𝑣) by insert-
ing/deleting (𝑢, dis(𝑢, 𝑣)). Based on the change of the reverse 2-hop
label, we should maintain R2T index. We discuss the maintenance
in two cases. (1) A new pair (𝑢, dis(𝑢, 𝑣)) is added to L̃(𝑣). For the

2423

Algorithm 1: Instant Query Algorithm (IQA)

Input: a query 𝑞 = (𝑞.𝑙𝑜𝑐, 𝑞.𝑠𝑡𝑟), parameters 𝑘 and 𝜏 , a trie
𝑇 of 𝐺

Output: a set R of 𝑘 geo-textual objects
1 R ← ∅; 𝐶 ← ∅;
2 𝐴𝑁 ← find active nodes of 𝑇 for 𝑞.𝑠𝑡𝑟 [13];
3 if 𝐴𝑁 = ∅ then

4 return R;
5 for ∀𝑣 ∈ L(𝑞) do
6 if T(𝑣) contains the leaf nods of 𝐴𝑁 then

7 𝑣 ′ ←MiñL(𝑣); // Computing the vertex with
the minimal score using Algorithm 2

8 𝐶 ← 𝐶 ∪ (𝑣 ′, 𝑣, score(𝑞, 𝑣 ′));

9 while |R | < 𝑘 ∧𝐶 ≠ ∅ do

10 (𝑣 ′, 𝑣, score(𝑞, 𝑣 ′)) ←
argmin(𝑣′,𝑣,score(𝑞,𝑣′)) ∈𝐶 score(𝑞, 𝑣 ′);

11 𝐶 ← 𝐶 − (𝑣 ′, 𝑣, score(𝑞, 𝑣 ′));
12 if 𝑣 ′ ∉ R then

13 R ← R ∪ 𝑣 ′;
14 𝑣 ′′ ←MiñL(𝑣); // Computing the next vertex

with the minimal score using Algorithm 2
15 𝐶 ← 𝐶 ∪ (𝑣 ′′, 𝑣, score(𝑞, 𝑣 ′′));
16 return R;

first case, we first insert the keywords of 𝑢 into the trie of 𝑣 one
by one. Correspondingly, we should insert the nodes representing
the inserted keyword into T(𝑣). Then, we update the bitmaps of
T(𝑣) by traversing the trie of 𝑣 in a depth-first manner. If the visited
trie node is newly inserted, we compute its bitmap and insert it
into T(𝑣). Otherwise, we only need to update the existing bitmap
as follows. (i) If 𝑢’s keywords contain the prefix represented by
the visited trie node 𝑛, we add a "1" bit into 𝑛’s bitmap to repre-
sent 𝑢, and then visit 𝑛’s child node. (ii) If 𝑢’s keywords do not
contain the prefix represented by the visited trie node 𝑛, we insert
a "0" bit into 𝑛’s bitmap to represent 𝑢, and stop visiting 𝑛’s child
node. After traversing the trie, all the bitmaps can be updated. (2)
A pair (𝑢, dis(𝑢, 𝑣)) is deleted from L̃(𝑣). For the second case, we
first delete all the nodes, which denote the unique keywords of 𝑢,
and its bitmaps from T(𝑣). Similarly, by traversing the trie of 𝑣 in a
depth-first manner, we update the bitmaps of T(𝑣). (i) If the prefix
represented by the visited trie node 𝑛 is contained in 𝑢’s keywords,
we should delete the "1" bit of 𝑢 from 𝑛’s bitmap, and then visit 𝑛’s
child node. (ii) If the prefix represented by the visited trie node 𝑛
is not contained in 𝑢’s keywords, we should delete the "0" bit of 𝑢
from 𝑛’s bitmap, and stop visiting 𝑛’s child node.

6 QUERY PROCESSING ALGORITHMS

Using R2T index, we propose the query processing algorithms.

6.1 Instant Query Algorithm

First, in this section, we present an algorithm, called Instant Query
Algorithm (IQA), to handle the first case of Problem 1, i.e., when
a user types in a query string for the first time, the query returns
the top-𝑘 geo-textual objects with the minimal scores. With the
help of the R2T index introduced in the previous section, the query

can be efficiently handled. First, we propose some lemmas, which
establish the solid base to design IQA.

Lemma 6.1. Given a vertex 𝑣 ∈ 𝐺 ,⋃
𝑣′∈L(𝑣)

L̃(𝑣 ′) = 𝑉 (2)

Lemma 6.1 shows that, for a vertex 𝑣 , all the reverse 2-hop labels
L̃(𝑣 ′) of 𝑣 ′ ∈ L(𝑣) constitute the vertex set of the road network. For
example, in Table 2, L(𝑣2) = {(𝑣2, 0), (𝑣1, 4)} and L̃(𝑣2) ∪ L̃(𝑣1) = 𝑉 .
Based on Lemma 6.1, we can compute the distance from a vertex to
all the other vertices by using the reverse 2-hop labels. Moreover,
the reverse 2-hop label also enable the computation of the nearest
neighbors in a progressive way as shown in the following lemma.

Lemma 6.2. Given a vertex 𝑣 ∈ 𝐺 , for a vertex 𝑣 ′ ∈ L(𝑣), let
𝑣 ′′ = argmin

𝑣′′∈L̃(𝑣′)dis(𝑣
′, 𝑣 ′′). Note that 𝑣 ′′ ≠ 𝑣 . Then, the nearest

neighbor of 𝑣 is

𝑣 ′′ = argmin
𝑣′′∈L̃(𝑣′),𝑣′∈L(𝑣)

dis(𝑣, 𝑣 ′) + dis(𝑣 ′, 𝑣 ′′) (3)

According to Lemma 6.2, in each reverse 2-hop label of 𝑣 ′ ∈ L(𝑣),
we can find the nearest neighbor of 𝑣 ′. Then, among all reverse
2-hop labels, the vertex with the minimal distance to 𝑣 is the nearest
neighbor of 𝑣 . For instance, in Table 2, L(𝑣4) = {𝑣4, 𝑣1}. In L̃(𝑣4), the
closest vertex to 𝑣4 is 𝑣5 with dis(𝑣4, 𝑣5) = 1. In L̃(𝑣1), the nearest
vertex to 𝑣1 is 𝑣1 with dis(𝑣1, 𝑣1) = 0. Since dis(𝑣4, 𝑣5) = 1 and
dis(𝑣4, 𝑣1) = 3, 𝑣5 is the nearest neighbor of 𝑣4. Lemma 6.2 can also
be extended to our problem as follows.

Corollary 6.1. Given a query 𝑞 = (𝑞.𝑙𝑜𝑐, 𝑞.𝑠𝑡𝑟), for a vertex
𝑣 ∈ L(𝑞), let 𝑣 ′ = argmin

𝑣′∈L̃(𝑣)score(𝑞, 𝑣
′). Then, the vertex with

the minimal score w.r.t. 𝑞 is

𝑣 ′ = argmin
𝑣′∈L̃(𝑣),𝑣∈L(𝑞)

score(𝑞, 𝑣 ′) (4)

In other words, the minimal score vertex is among the vertices,
which have the minimal score in the reverse 2-hop label of 𝑣 ′ ∈ L(𝑣).
Motivated by Corollary 6.1, we develop IQA to find the 𝑘 vertices
with the minimal score. The basic idea of IQA is to progressively
return the vertices with the minimal score among all reverse 2-hop
labels of 𝑣 ∈ L(𝑞). To this end, we should find the vertex with the
minimal score for each reverse 2-hop label of 𝑣 ∈ L(𝑞). Then, in
each round, we select the vertex with the minimal score among all
reverse 2-hop labels of 𝑣 ∈ L(𝑞), and add it to the results. Assume
the vertex with the minimal score is in L̃(𝑣). After this, we should
compute the next vertex with the minimal score in L̃(𝑣) for the next
round processing. IQA repeats the selection of vertices having the
minimal scores until all results are found.

Algorithm 1 shows the pseudo-code of IQA. First, IQA computes
the active nodes in the complete trie of the road network (line 2).
Here, the active node is the nodewhose represented string/keyword’s
edit distance to 𝑞.𝑠𝑡𝑟 is not larger than 𝜏 . It is worth mentioning
that, the active nodes are mainly used to compute the score of the
vertex, which will be illustrated later. If there is no such active node,
it means that all vertices do not match the 𝑞.𝑠𝑡𝑟 . IQA returns an
empty result (lines 3-4). Otherwise, IQA finds the vertex with the

2424

Algorithm 2: MinL̃(𝑣)
Input: a set 𝐴𝑁 of active nodes, R2T(𝑣) index of a vertex 𝑣
Output: a vertex 𝑣 ′ with the minimal score in L̃(𝑣)

1 𝑣 ′ ← ∅;𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 ← +∞;
2 if BTag[𝑣] = ∅ then

3 initialize BTag[𝑣];
4 for each active node 𝑎𝑛 ∈ 𝐴𝑁 do

5 find a leaf node 𝑛 of 𝑎𝑛 using binary search;
6 for 𝑖 ← 𝑎𝑛.𝑑𝑒𝑝𝑡ℎ to 1 do
7 if 𝑖 = 𝑎𝑛.𝑑𝑒𝑝𝑡ℎ then

8 BTag[𝑣] [𝑛] [𝑖] .𝑦 = BTag[𝑣] [𝑛] [𝑖] .𝑦 + 1;
9 else

10 BTag[𝑣] [𝑛] [𝑖] .𝑦 = BTag[𝑣] [𝑛] [𝑖 + 1] .𝑥 ;
11 BTag[𝑣] [𝑛] [𝑖] .𝑥 ← the position of

BTag[𝑣] [𝑛] [𝑖] .𝑦-th "1" bit in bitmap B[𝑣] [𝑛] [𝑖];
12 if BTag[𝑣] [𝑛] [𝑖] .𝑥 = null then
13 break;
14 𝑖 − −;
15 𝑣 ′′ ← (BTag[𝑣] [𝑛] [𝑖] .𝑥)-th vertex in L̃(𝑣);
16 if score(𝑞, 𝑣 ′′) < 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 then
17 𝑣 ′ ← 𝑣 ′′;
18 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 ← score(𝑞, 𝑣 ′′);
19 return 𝑣 ′;

minimal score for each reverse 2-hop label of 𝑣 ∈ L(𝑞) (lines 5-8).
Then, IQA repeatedly selects the vertex with the minimal score
among all reverse 2-hop labels until all results are found (lines 9-15).
Finally, IQA returns the top-𝑘 geo-textual objects (line 16).

Next, we introduce how to find the vertex with the minimal score
in a reverse 2-hop label using R2T index. Note that, we have to keep
in mind that the vertex with the minimal score should satisfy the
prefix edit distance constraint in Definition 3.2. Recall that, at the
beginning of Algorithm 1, we have computed the active nodes in the
complete trie. The edit distances between the prefixes represented
by those active nodes and 𝑞.𝑠𝑡𝑟 are no larger than 𝜏 . Hence, if a
vertex’s keyword contains the prefix denoted by an active node,
the vertex is a candidate of the minimal score vertex. Thus, a naive
method is to compute the score for all candidates in the reverse
2-hop label. However, this naive method is not progressive. In the
sequel, we devise a method to progressively return the minimal
score vertex in a reverse 2-hop label.

In the bitmap stored in T(𝑣) of R2T(𝑣), each bit representswhether
the keyword of a corresponding vertex contains the prefix repre-
sented by a node in the trie. (1) All vertices with the same prefix
in the trie node have the same textual similarity. (2) In the reverse
2-hop label, the vertices are in ascending order of the distances.
Based on the above two facts, for an active node, the vertex with
the minimal score is just the vertex represented by the first "1" bit
in the corresponding bitmap of the active node. In the same way,
the vertex denoted by the second "1" bit in the bitmap of the active
node is the second minimal score vertex. Using this property of the
active node, for a reverse 2-hop label, we can compute the minimal
score vertex for each active node. The vertex having the smallest
score among all active nodes is the minimal score vertex in the
reverse 2-hop label.

Next, we introduce how to find the minimal score vertex for an
active node. Finding the minimal score vertex for an active node
is only to find the first "1" bit in the bitmap of the active node.
A straightforward way is to convert the compressed bitmap to
the full bitmap, and we can quickly find the vertex of the first "1"
bit. However, this method is inefficient since it has to convert the
compressed bitmaps from the active to the root node. In view of this,
we devise a novel method via traversing the compressed bitmaps
from the active node to the root node with the help of an auxiliary
structure BTag, which is defined as follows.

Definition 6.1. A BTag of a bitmap is a pair of 〈𝑥,𝑦〉, which
denotes that the position of 𝑦-th "1" bit is 𝑥 .

〈𝑥,𝑦〉 of a bitmap means that from the first bit to the 𝑥-th bit,
there are 𝑦 "1" bits. For example, let a bitmap be "110011", the BTag
〈5, 3〉 indicates that the fifth bit is the 3-th "1" bit in "110011". The
BTag has the following property.

Lemma 6.3. Given two trie nodes 𝑛1 and 𝑛2, two pairs 〈𝑥1, 𝑦1〉 and
〈𝑥2, 𝑦2〉, which are the BTags of the bitmaps of 𝑛1 and 𝑛2, respectively.
Assume that 𝑛1 is a child node of 𝑛2. If 𝑦2 = 𝑥1, the vertex represented
by the 𝑥1-th bit in the bitmap of 𝑛1 and the vertex denoted by the
𝑥2-th bit in the bitmap of 𝑛2 are the same.

For instance, in Figure 5, the compressed bitmaps of 𝑛′2 and 𝑛
′
6

are "0110" and "10", respectively. Both 〈1, 1〉 of "10" and 〈2, 1〉 of
"0110" represent the second vertex in L̃(𝑣6), i.e., 𝑣7. Lemma 6.3 not
only enables us to traverse the compressed bitmaps in a bottom-up
manner to get the minimal score vertex for an active node, but also
allows us to get the next minimal score vertex in the same way.

Based on the above discussion, we propose an algorithm to find
the vertex with the minimal score in a reverse 2-hop label, whose
pseudo-code is depicted in Algorithm 2. Initially, when Algorithm 2
computes the minimal score vertex for the first time, it initializes
BTag (lines 2-3), i.e., to set BTag as 〈0, 0〉. Then, Algorithm 2 com-
putes the minimal score vertex for each active node (lines 4-18). For
each active node, it first gets a leaf node containing the bitmap of
the active node using binary search (line 5). Note that, there may
be multiple such leaf nodes. We only select any one of them. Next,
Algorithm 2 traverses the bitmaps from the active node to the child
of the root node for getting the position of the minimal score vertex
of the active node (lines 6-14). Finally, the minimal score vertices
of all active nodes are found, and the one having the smallest score
among all active nodes is returned (lines 15-19).

Optimizations.We present two optimizations to speed up Al-
gorithms 1 and 2.

Optimizations 1. Algorithm 1 computes the minimal score vertex
for each reverse 2-hop label (lines 5-8) for initialization. To improve
the efficiency, we can first compute the lower bound of the score for
a reverse 2-hop label. If the lower bound is larger than the current
minimal score, the reverse 2-hop label definitely does not exist the
minimum score vertex among all reverse 2-hop labels. Hence, we
can skip the minimal score vertex computation for this reverse 2-
hop label. Specifically, we can use Equation 1 to compute the lower
bound of the score for the reverse 2-hop label L̃(𝑣). The spatial
similarity is the minimal distance between 𝑞 and the vertex in L̃(𝑣),
and the textual similarity is the minimal edit distance between 𝑞.𝑠𝑡𝑟
and the strings represented by active nodes.

2425

Optimizations 2. Algorithm 2 needs to compute the minimal
score vertex for every active node (lines 4-18). If the number of
active nodes is large, it is costly. Actually, many active nodes have
a parent-child relationship, and the vertices denoted by the bitmap
of a child active node is a subset of that of its father active node.
Thus, we need to only compute the minimal score vertex for father
active nodes.

The time and space complexities of IQA are showed below.

Theorem 6.4. The time and space complexities of IQA are𝑂 ((𝑘 +
𝑤 · log |𝑉 |) · |𝐴𝑁 | ·

√︁
𝑤 · log |𝑉 |) and 𝑂 (𝑤 · log |𝑉 | · |𝐴𝑁 | · |𝑞.𝑠𝑡𝑟 |),

respectively. |𝐴𝑁 | denotes the number of active nodes.

6.2 Instant Update Algorithms

In this section, we present how to update the query results when
the query string changes. A straightforward method is to query
from the scratch. However, this method is not efficient, especially
when updates are frequent. To this end, we extend Algorithms 1 and
2 to update the query results. We only need to modify three places
in Algorithms 1 and 2. First, at the initialization step, Algorithm 1
should compute the first minimal score vertex for each reverse
2-hop label (lines 5-8). For the update algorithm, we can reuse
the minimal score vertex found in the previous query, and the
initialization can be omitted. Second, Algorithm 2 computes the
minimal score vertex by traversing the bitmaps of active nodes
and their ancestor nodes from the first bit, during which BTags are
used. For the update algorithm, we can reuse the visited vertices,
and traverse the bitmap from the current bit. Third, we have to
recompute the score of previous query results based on the new
query string to prune the unqualified vertices. Next, we detail the
second modification for three cases as follows.

Case I: Inserting character(s) at the end of the query string. If the
query string changes, the active nodes change accordingly. Let 𝐴𝑁
and 𝐴𝑁 ′ be the active nodes before and after inserting character(s)
at the end of the query string. Then, it satisfies that ∀𝑎𝑛′ ∈ 𝐴𝑁 ′,
we can find an active 𝑎𝑛 ∈ 𝐴𝑁 such that 𝑎𝑛 = 𝑎𝑛′ or 𝑎𝑛′ is a
descender node of 𝑎𝑛. If 𝑎𝑛 = 𝑎𝑛′, we can still use the bitmap and
corresponding BTag of 𝑎𝑛 for 𝑎𝑛′ to find the minimal score vertex.
If 𝑎𝑛′ is a child node of 𝑎𝑛, we should initialize the BTag of 𝑎𝑛′
through 𝑎𝑛. Specifically, let 〈𝑥 ′, 𝑦〉 and 〈𝑥,𝑦〉 be the BTag of 𝑎𝑛′ and
𝑎𝑛, respectively. Then, 𝑥 ′ can be set to 𝑦. In the same way, we can
iteratively derive the BTag for the bitmap of a descender node.

Case II: Deleting character(s) at the end of the query string. In
order to achieve a fast update of deleting character(s) at the end,
BTags for each insertion (Case I) need to be saved. BTags will be
rolled back to the state corresponding to the string after the letter
is deleted, and 𝐴𝑁 will also be rolled back. Note that if the BTags
needed are not saved, then roll back to further back. The letters
that pass at the end can be treated as Case I.

Case III: Inserting/deleting character(s) at random position of the
query string. Let 𝐴𝑁 and 𝐴𝑁 ′ be the active nodes before and after
deleting character(s) at random position of the query string. We
rolled back BTags and 𝐴𝑁 like Case II to the position. Then, for
each active nodes in 𝐴𝑁 ′, it satisfies that ∀𝑎𝑛′ ∈ 𝐴𝑁 ′, we can find
an active 𝑎𝑛 ∈ 𝐴𝑁 such that 𝑎𝑛 = 𝑎𝑛′ or 𝑎𝑛′ is a descender node
of 𝑎𝑛. This relationship is consistent with that in Case I, so we can
update BTags with the method in Case I.

Table 3: Statistics of road networks

Dataset Region |𝑽 | |𝑬 | |doc(𝑽)| |𝑾 |

𝑁𝑌 New York City 264,346 733,846 157,100 6,556
𝐹𝐿𝐴 Florida 1,070,376 2,712,798 343,452 16,656
𝐶𝐴𝐿 California 1,890,815 4,657,742 401,258 20,319
𝐿𝐾𝑆 Great Lakes 2,758,119 6,885,658 615,168 25,807
𝐸𝑈 Eastern USA 3,598,623 8,778,114 780,749 33,522
𝑊𝑈 Western USA 6,262,104 15,248,146 1,580,430 52,316
𝐶𝑇𝑅 Central USA 14,081,816 34,292,496 2,782,249 78,658
𝑈𝑆𝐴 Full USA 23,947,347 58,333,344 4,118,452 112,353

6.3 Multiple Query Strings

Sections 6.1 and 6.2 mainly aim at a single query string. In this
section, we discuss how to handle multiple query strings. After
the user types in a query string, if the result does not meet his/her
expectation, he/she may proceed to type in more query strings. The
methods proposed in Sections 6.1 and 6.2 can also be extended to
tackle multiple query strings. In particular, we discuss the extension
of Algorithms 1 and 2 for the case of multiple query strings.

When a new query string𝑞.𝑠𝑡𝑟 ′ is added, Algorithm 1 should find
new active nodes for 𝑞.𝑠𝑡𝑟 ′ (line 2). Then, it iteratively computes
the vertex with the minimal score to find the top-𝑘 results by using
Algorithm 2 (lines 5-15), which is the same as the case of a single
query string. Specifically, Algorithm 2 computes the vertex with
the minimal score for each active node (lines 4-18). For a single
query string, the first "1" bit in the bitmap of active node is the
minimal score vertex. But, for multiple query strings, we should
compute the scores of vertices denoted by "1" bits in the bitmap of
active node until the lower bound of vertex’s score is larger than
the current minimum score. The lower bound of vertex’s score can
be computed using Equation 1, where the textual similarity is the
sum of the minimal prefix edit distance for all query strings. In
addition, if a vertex’s prefix edit distance w.r.t. previously entered
query strings is larger than 𝜏 , it cannot become the final result and
thus can be skipped the score computation.

7 PERFORMANCE STUDY

This section evaluates the performance of our proposed index and
algorithms. All algorithms were implemented in C++, and compiled
by GCC 7.5.0 with -O3 optimization. The experiments were con-
ducted on a machine running on Ubuntu server 18.04.5 LTS version
with two Intel Xeon 2.40GHZ processors and 512G main memory.
Datasets: We employ eight real-world road networks in experi-
ments. The road networks are obtained from DIMACS1, which do
not contain POIs. For each road network, we get POIs in the corre-
sponding area from OpenStreeMap (OSM)2 and map keywords of
each POI to the closest vertex. Table 3 lists the statistics of the road
networks, where |doc(𝑉) | = ∑

𝑣∈𝑉 |doc(𝑣) |, and |𝑊 | represents
the number of distinct keywords in the road network.
Compared Methods: In experiments, the competitors include the
naive method, the keyword query method, the instant query algo-
rithm (IQA), and the instant update algorithm (IUA). Recall that,
the first step of the naive method is to traverse the road network

1http://www.diag.uniroma1.it//~challenge9/download.shtml
2https://www.openstreetmap.org/

2426

from 𝑞.𝑙𝑜𝑐 . We implemented three versions of the naive method by
using different techniques to traverse the road network, including
Dijkstra, G*-tree, and 2-hop label. Note that, for G*-tree, we em-
ploy the default parameter settings as reported in [25]. Also, we
extend two state-of-the-art spatial keywords query methods, i.e.,
K-SPIN [1] and KT [20], to handle our problem. Specifically, first,
we find all the complete keywords, whose prefix edit distance is
not larger than 𝜏 . These keywords are used as candidate keywords.
Then, we use K-SPIN and KT to find the 𝑘 geo-textual objects with
the minimum score.
Metrics:We report the query time, index construction/update time,
and index size in our experiments. For the evaluation of query effi-
ciency, we randomly generate 5000 queries and report the average
query time. Due to space limitations and similar trends across differ-
ent datasets, we present empirical results of partial datasets in this
paper. The complete empirical results can be found in Appendix O
of technical report [28].

7.1 Evaluation of Instant Query Algorithm

In this section, we study the efficiency of instant query algorithm.
Exp-1: Effect of |𝑞.𝑠𝑡𝑟 |. We first verify the effect of the query
string length |𝑞.𝑠𝑡𝑟 |. We varied |𝑞.𝑠𝑡𝑟 | from 1 to 7 while keeping
other parameters at their default values. Figure 7(a) shows the
experimental results. We can observe that, with the growth of
|𝑞.𝑠𝑡𝑟 |, the query time of K-SPIN and KT drops; the query time of
G*-tree, 2-hop, and Dijkstra increases; and the query time of IQA
ascends as |𝑞.𝑠𝑡𝑟 | ≤ 3. When |𝑞.𝑠𝑡𝑟 | > 3, the query time of IQA
almost does not change. For K-SPIN and KT, the longer 𝑞.𝑠𝑡𝑟 is, the
less the candidate keywords, resulting less query time. For G*-tree,
2-hop, and Dijkstra, if 𝑞.𝑠𝑡𝑟 becomes longer, there are less vertices
satisfying the textual constraints. Thus, the search spaces of G*-tree,
2-hop, and Dijkstra become larger, incurring more query time. For
IQA, the number of active nodes increases with the growth of |𝑞.𝑠𝑡𝑟 |
when |𝑞.𝑠𝑡𝑟 | ≤ 3. Since we set the default value of error threshold to
2, the number of active nodes goes down gradually when |𝑞.𝑠𝑡𝑟 | > 3.
Hence, the impact of the increased search space is offset, the running
time of IQA almost keep the same as |𝑞.𝑠𝑡𝑟 | > 3. Moreover, IQA
outperforms other algorithms by 1-2 orders of magnitude.
Exp-2: Effect of 𝑞.𝑠𝑡𝑟 ’s frequency. Next, we evaluate the effect of
𝑞.𝑠𝑡𝑟 ’s frequency. Here, the 𝑞.𝑠𝑡𝑟 ’s frequency is |𝑉 (𝑞.𝑠𝑡𝑟) ||doc(𝑉) | , where
𝑉 (𝑞.𝑠𝑡𝑟) = {𝑣 |∀𝑣 ∈ 𝑉 , ∃𝑘𝑤 ∈ doc(𝑣), 𝑞.𝑠𝑡𝑟 � 𝑘𝑤}. The query time
are shown in Figure 7(b). The query time of all algorithms decrease
with the increase of 𝑞.𝑠𝑡𝑟 ’s frequency. The reason behind is that
if 𝑞.𝑠𝑡𝑟 is frequent in the road network, there are more vertices
containing 𝑞.𝑠𝑡𝑟 . Thus, the results are easier to be found, resulting
in less query time.
Exp-3: Effect of # of𝑞.𝑠𝑡𝑟 . In this experiment, we explore the effect
of the number of query strings, whose value is varied from 1 to 5.
The results in Figure 7(c) show that the query time of IQA remained
stable, while the query time of other algorithms increased as the
number of query strings grew. IQA efficiently finds minimal score
vertices by traversing active node bitmaps. Despite the increase in
active nodes with more query strings, IQA can still find results by
accessing only a few active nodes, resulting in consistent query
times. Conversely, the other algorithms require traversing more

vertices to find results as the number of query strings increases,
leading to longer query times.
Exp-4: Effect of 𝑞.𝑠𝑡𝑟 ’s edit distance. Recall that our proposed
algorithms can tolerate the typos in 𝑞.𝑠𝑡𝑟 . Thus, we study the effect
of 𝑞.𝑠𝑡𝑟 ’s edit distance. To this end, we assume that 𝑞.𝑠𝑡𝑟 includes
several typos. The 𝑞.𝑠𝑡𝑟 ’s edit distance is the edit distance between
𝑞.𝑠𝑡𝑟 and the correct string. Note that, to ensure non-empty query
result, we set 𝜏 = 4 in this experiment. Figure 7(d) shows the
empirical results. We can observe that when the 𝑞.𝑠𝑡𝑟 ’s edit distance
increases, the query time of IQA, K-SPIN, and KT gradually drops
while the query time of other algorithms gradually grows. This is
because the larger the 𝑞.𝑠𝑡𝑟 ’s edit distance, the less vertices in the
road network satisfy the prefix edit distance constraint, meaning
that G*-tree, 2-hop, and Dijkstra need to search more vertices. For
K-SPIN and KT, the larger the editing distance, the fewer candidate
keywords, and therefore the shorter the query time. IQA can quickly
skip invalid vertices since the larger 𝑞.𝑠𝑡𝑟 ’s edit distance leads to
less active nodes.
Exp-5: Effect of 𝑘 . We investigate the effect of 𝑘 by varying 𝑘
from 1 to 64. Figure 7(e) plots the query time of four algorithms.
As 𝑘 becomes larger, the query time of all algorithms increase. The
reason behind is that the larger 𝑘 indicates more results. Hence, all
algorithms take more time to query. However, the performance of
IQA is still much better than that of other algorithms.
Exp-6: Effect of 𝜏 . Then, we evaluate the effect of error threshold
𝜏 on algorithms. The empirical results are reported in Figure 7(f).
We can observe that the query time of G*-tree, 2-hop, and Dijkstra
decrease while the query time of IQA, K-SPIN, and KT increase
with the growth of 𝜏 . If 𝜏 becomes larger, (1) more vertices satisfy
the textual constraint, and (2) more active nodes and candidate
keywords will be found. Thus, the G*-tree, 2-hop, and Dijkstra
spend less time while IQA, K-SPIN, and KT take more time.
Exp-7: Effect of 𝛼 . 𝛼 represents the user preference for score
computation in Equation 1. This set of experiment test the effect of
𝛼 on algorithms and the results are shown in Figure 7(g). We can
observe that when 𝛼 = 0, other algorithms take more time. This
is because the text pruning abilities of other algorithms are weak.
For other values of 𝛼 , the performance of all algorithms are stable,
meaning that 𝛼 has little effect on algorithms.

Exp-8: Scalability. In this set of experiments, we verify the scalabil-
ity of the algorithms. In view of this, we vary the vertex cardinality
|𝑉 |, the number of distinct keywords |𝑊 |, and the occurrences of
keywords |doc(𝑉) |. Figures 7(h), 7(i), and 7(j) plot the query time by
changing |𝑉 |, |𝑊 |, and |doc(𝑉) |, respectively. In Figure 7(h), with
the growth of vertex cardinality, the performance of all algorithms
degrade since the larger road network needs more time to find the
results. In Figure 7(i), as the number of distinct keywords increases,
the performance of four algorithms degrade as well. This is because
when the number of distinct keywords grows, the keywords will
become less frequent. Hence, all algorithms take more time with
the growth of |𝑊 |, which is consistent with the empirical results of
𝑞.𝑠𝑡𝑟 ’s frequency depicted in Figure 7(b). In Figure 7(j), as the occur-
rences of keywords increase, the performance of IQA keeps stable
while that of other algorithms all degrade. If the occurrences of key-
words grow, the vertices contain more keywords. Thus, the search

2427

IQA G*-tree 2-hop Dijkstra K-SPIN KT

1 2 3 4 5 6 7
100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(a) Effect of |𝑞.𝑠𝑡𝑟 |

10 10 10 10 10
's frequency

100

101

102

103

104

105

Q
ue

ry
 ti

m
e

(m
s)

(b) Effect of 𝑞.𝑠𝑡𝑟 ’s frequency

1 2 3 4 5
of

101

102

103

104

105

Q
ue

ry
 ti

m
e

(m
s)

(c) Effect of # of 𝑞.𝑠𝑡𝑟

0 1 2 3 4
 's edit distance

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(d) Effect of 𝑞.𝑠𝑡𝑟 ’s edit distance

1 2 4 8 16 32 64
100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(e) Effect of 𝑘

0 1 2 3 4
100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(f) Effect of 𝜏

0 0.25 0.5 0.75 1
100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(g) Effect of 𝛼

1M 5M 10M 15M 20M 24M
100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(h) Varying |𝑉 |

10k 50k 100k 200k 500k 1000k
101

102

103

104

105

Q
ue

ry
 ti

m
e

(m
s)

(i) Varying |𝑊 |

1M 5M 10M 20M 30M 50M
|doc()|

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(j) Varying |doc(𝑉) |

Figure 7: Evaluation of instant query algorithm on USA

spaces of other algorithms become larger, incurring more query
time. On the other hand, the growth of the occurrences of keywords
does not affect the complete trie of the road network. Hence, the
active nodes found by IQA do not change as well. Therefore, the
query time of IQA keeps stable.

7.2 Evaluation of Instant Update Algorithm

This section evaluates the performance of instant update algorithm.
IQA, G*-tree, Dijkstra, 2-hop label, K-SPIN, and KT are instant query
algorithms used for results update, i.e., to query from the scratch.
IUA is the instant update algorithm presented in Section 6.2.
Exp-9: Effect of the position to insert characters. First, we
explore the effect of inserting characters into different positions of
𝑞.𝑠𝑡𝑟 . Here, if we insert the characters into the position 𝑖 of 𝑞.𝑠𝑡𝑟 ,
it means that we insert the characters after the 𝑖-th character of
𝑞.𝑠𝑡𝑟 . Note that, the |𝑞.𝑠𝑡𝑟 | ≥ 7, and we vary the position from 1 to
7. We insert one character in this experiment. Figure 8(a) depicts
the empirical results. Specifically, the query time of all algorithms
almost remain the same, except for IUA. Moreover, we can observe
that if the insertion position is closer to the end of 𝑞.𝑠𝑡𝑟 , IUA has
better performance. This is because the closer to the end of the
query string, the less BTags will be updated. Thus, IUA needs less
time to update. In addition, IUA has better performance compared
with other algorithms. Specifically, IUA returns results in an average
time of 2.1ms while IQA takes 10ms.

Exp-10: Effect of # of inserted characters. Next, we investigate
the effect of inserting different number of characters into 𝑞.𝑠𝑡𝑟 . To
this end, we extract characters from a complete keyword, and take
the remaining string as 𝑞.𝑠𝑡𝑟 . Then, in experiments, we insert the
extracted characters into 𝑞.𝑠𝑡𝑟 . In this way, we ensure the query
result is non-empty. The query time of all algorithms are shown
in Figure 8(b). When the number of inserted characters increases,
IQA, G*-tree, Dijkstra, and 2-hop label take more query time. This
is because when we insert more characters, 𝑞.𝑠𝑡𝑟 becomes more
accurate. They should traverse more vertices to find the results, and
thus need more time to query. For IUA, if we insert more characters,

the difference between the original query string and new query
string is greater. Hence, IUA has to need more time to update BTags.
Although IUA becomes less efficient when more characters are
inserted, it is still better than IQA, and is 2 orders of magnitude
faster than other algorithms.
Exp-11: Effect of the position to delete characters. In this
experiment, we study the instant update algorithm by deleting
characters from different positions of the query string. We vary the
deletion position from 1 to 7. Here, the deletion position 𝑖 means
that the 𝑖-th character of 𝑞.𝑠𝑡𝑟 is deleted. Figure 8(c) depicts the
empirical results. As observed, the closer the deletion position is to
the end of 𝑞.𝑠𝑡𝑟 , the better performance of IUA. The reason behind
is similar with that of Exp-9, i.e., when deleting characters near the
end of 𝑞.𝑠𝑡𝑟 , less BTags need to be updated.

Exp-12: Effect of # of deleted characters. Then, we verify the
effect of deleting different number of characters from 𝑞.𝑠𝑡𝑟 . In view
of this, we randomly choose a deletion position in 𝑞.𝑠𝑡𝑟 , and delete
a certain number of characters, which varies from 1 to 7. Empirical
results are plotted in Figure 8(d). We have the following observa-
tions. With the growth of the number of deleted characters, (1) the
query time of G*-tree, Dijkstra, and 2-hop label drops while that
of K-SPIN and KT increases, (2) the query time of IQA remains un-
changed, and (3) the query time of IUA increases slowly. However,
IUA is still able to handle the deletion of characters efficiently, and
outperforms other algorithms by 1-2 orders of magnitude.

Exp-13: Instant query simulation. This experiment simulates
the users’ instant queries, i.e., to simulate users type in the query
string character-by-character. As soon as a character is typed in,
we perform the query/update algorithms for the new query string,
and return the results. Finally, after the users type in the complete
query string, we report the total query/update time, as depicted
in Figure 8(e). Note that, the length of query string for this ex-
periment changes from 1 to 7. As expected, the total query time
of all algorithms increase if the length of query string becomes
larger. Nevertheless, the total query time of other algorithms as-
cends much faster than that of both IUA and IQA. This is because

2428

IQAIUA

1 2 3 4 5 6 7
Position to insert characters

10 1

100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(a) Position to insert characters

1 2 3 4 5 6 7
of to inserted characters

100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(b) # of inserted characters

1 2 3 4 5 6 7
Position to delete characters

10 1

100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(c) Position to delete characters

1 2 3 4 5 6 7
of to deleted characters

100

101

102

103

104

Q
ue

ry
 ti

m
e

(m
s)

(d) # of deleted characters

1 2 3 4 5 6 7
| |

100

101

102

103

104

105

Q
ue

ry
 ti

m
e

(m
s)

(e) Instant query simulation

Figure 8: Evaluation of instant update algorithm on USA

R2T-I R2T-IIR2T-Total

(a) Construction time (b) Index Size

Figure 9: Index construction

Insert keywords Delete keywords
Rebuild

Decrease weightIncrease weight
Rebuild

(a) Keywords update

10% 30% 50% 70% 90%
% of original weight

(b) Network structure update

Figure 10: Index maintenance (WU)

the query information inheritance mechanism of IUA makes it be
able to perform update incrementally. In addition, the performance
of IUA is much better than other algorithms. This is because IUA
leverages a query information inheritance mechanism that enables
the efficient utilization of information from previous queries. As a
result, IUA can incrementally update the results, and significantly
reduce query time compared with other algorithms.

7.3 Index Evaluation

In this section, we evaluate the performance of R2T index, including
the index construction and maintenance.
Exp-14: Index Construction. First, we investigate the perfor-
mance of index construction. In this experiment, we take G*-tree,
2-hop label, K-SPIN, and KT, which are the indexes of baselines,
as competitors. Figures 9(a) and 9(b) show the index construction
time and index size, respectively. Note that, in Figure 9(a), we split
the construction time of R2T into two parts, i.e., R2T-I and R2T-II.
Specifically, R2T-I represents the time of computing 2-hop label for
every vertex, and R2T-II denotes the time of constructing L̃(𝑣) and
T(𝑣) for every vertex after getting 2-hop labels. In Figure 9(a), we
can observe that R2T-I takes up most of the construction time. For
example, on the road network CTR, the time of R2T-I and R2T-II
are 1289s and 9626.5s, respectively. R2T-I is 11.8% of the total con-
struction time. Overall, the construction time of R2T is less than or
comparable with other indexes except the 2-hop label. It is obvious
since the construction time of R2T including the 2-hop label compu-
tation time and the L̃(𝑣) and T(𝑣) construction time. In Figure 9(b),
G*-tree has the smallest size and KT has the largest size. The size
of R2T is smaller than that of the 2-hop label in most cases. The
reason is tow-fold. (1) In the road network, the vertices without
keywords cannot contribute to the final results. We do not store
these vertices in R2T. (2) The compression technique significantly
reduces the bitmap size.

Exp-15: Index maintenance. Next, we explore the performance
of index maintenance. We mainly consider two categories of the
road network update, including keywords update and road network
structure update. The keywords update is to insert/delete a certain
number of keywords into/from doc(𝑣) of a vertex 𝑣 . Figure 10(a)
plots the indexmaintenance time for the keywords update. The road
network structure update contains the update of edges’ weight and
the insertion/deletion of edges/vertices. Since the insertion/deletion
of edges/vertices can be reduced to the update of edges’ weight [42],
we mainly consider the update of edges’ weight in this experiment,
which include the cases of increasing and decreasing the weight of
an edge. For each road network, we select 1000 edges at random
and change their weights. The maintenance time of road network
structure update is shown in Figure 10(b). Overall, the maintenance
time is much smaller than the time of rebuilding the index.

8 CONCLUSIONS

In this paper, we study the problem of instant error-tolerant spa-
tial keyword queries on road networks. To efficiently answer the
queries, we propose a new index called R2T. R2T employs reverse
2-hop label and trie to seamlessly integrate the spatial and textual
information for each vertex of the road network. Based on R2T, we
present a suite of algorithms to answer the queries. Both theoretical
analysis and empirical evaluation demonstrate the efficiency of our
proposed index and algorithms. This work is our first step towards
the studied problem. In the future, we would like to investigate the
instant error-tolerant spatial keyword queries for moving query
object or in a distributed environment.

ACKNOWLEDGMENTS

This work was supported by the NSFC under Grants No. (61972338,
62025206, and 62102351). Qing Liu is the corresponding author of
the work.

2429

REFERENCES

[1] Tenindra Abeywickrama, Muhammad Aamir Cheema, and Arijit Khan. 2020.
K-SPIN: Efficiently Processing Spatial Keyword Queries on Road Networks. IEEE
Trans. Knowl. Data Eng. 32, 5 (2020), 983–997.

[2] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast Exact Shortest-path
Distance Queries on Large Networks by Pruned Landmark Labeling. In SIGMOD.
349–360.

[3] Hannah Bast and IngmarWeber. 2006. Type Less, FindMore: Fast Autocompletion
Search with A Succinct Index. In SIGIR. 364–371.

[4] Ramadhana Bramandia, Byron Choi, and Wee Keong Ng. 2010. Incremental
Maintenance of 2-Hop Labeling of Large Graphs. IEEE Trans. Knowl. Data Eng.
22, 5 (2010), 682–698.

[5] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial
Keyword Query Processing: An Experimental Evaluation. Proc. VLDB Endow. 6,
3 (2013), 217–228.

[6] Lei Chen, Jianliang Xu, Xin Lin, Christian S. Jensen, and Haibo Hu. 2016. An-
swering Why-not Spatial Keyword Top-𝑘 Queries via Keyword Adaption. In
ICDE. 697–708.

[7] Zhida Chen, Lisi Chen, Gao Cong, and Christian S. Jensen. 2021. Location- and
Keyword-based Querying of Geo-textual Data: A Survey. VLDB J. 30, 4 (2021),
603–640.

[8] Zitong Chen, Ada Wai-Chee Fu, Minhao Jiang, Eric Lo, and Pengfei Zhang.
2021. P2H: Efficient Distance Querying on Road Networks by Projected Vertex
Separators. In SIGMOD. 313–325.

[9] Zhongpu Chen, Bin Yao, Zhi-Jie Wang, Xiaofeng Gao, Shuo Shang, Shuai Ma,
and Minyi Guo. 2021. Flexible Aggregate Nearest Neighbor Queries and its
Keyword-aware Variant on Road Networks. IEEE Trans. Knowl. Data Eng. 33, 12
(2021), 3701–3715.

[10] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability
and Distance Queries via 2-Hop Labels. In SODA. 937–946.

[11] Gao Cong and Christian S. Jensen. 2016. Querying Geo-textual Data: Spatial
Keyword Queries and Beyond. In SIGMOD. 2207–2212.

[12] Gao Cong, Christian S. Jensen, and Dingming Wu. 2009. Efficient Retrieval of
the Top-𝑘 Most Relevant Spatial Web Objects. Proc. VLDB Endow. 2, 1 (2009),
337–348.

[13] Dong Deng, Guoliang Li, He Wen, H. V. Jagadish, and Jianhua Feng. 2016. META:
An Efficient Matching-based Method for Error-tolerant Autocompletion. Proc.
VLDB Endow. 9, 10 (2016), 828–839.

[14] Yuyang Dong, Chuan Xiao, Hanxiong Chen, Jeffrey Xu Yu, Kunihiro Takeoka,
Masafumi Oyamada, and Hiroyuki Kitagawa. 2021. Continuous Top-𝑘 Spatial-
keyword Search on Dynamic Objects. VLDB J. 30, 2 (2021), 141–161.

[15] Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-Wing Wong.
2013. IS-LABEL: An Independent-set Based Labeling Scheme for Point-to-point
Distance Querying. Proc. VLDB Endow. 6, 6 (2013), 457–468.

[16] Yunjun Gao, Xu Qin, Baihua Zheng, and Gang Chen. 2015. Efficient Reverse
Top-𝑘 Boolean Spatial Keyword Queries on Road Networks. IEEE Trans. Knowl.
Data Eng. 27, 5 (2015), 1205–1218.

[17] Yunjun Gao, Jingwen Zhao, Baihua Zheng, and Gang Chen. 2016. Efficient
Collective Spatial Keyword Query Processing on Road Networks. IEEE Trans.
Intell. Transp. Syst. 17, 2 (2016), 469–480.

[18] Sheng Hu, Chuan Xiao, and Yoshiharu Ishikawa. 2018. An Efficient Algorithm
for Location-aware Query Autocompletion. IEICE Trans. Inf. Syst. 101-D, 1 (2018),
181–192.

[19] Shengyue Ji and Chen Li. 2011. Location-based Instant Search. In SSDBM,
Vol. 6809. 17–36.

[20] Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong. 2015. Exact
Top-𝑘 Nearest Keyword Search in Large Networks. In SIGMOD. 393–404.

[21] Guoliang Li, Jianhua Feng, and Chen Li. 2013. Supporting Search-As-You-Type
Using SQL in Databases. IEEE Trans. Knowl. Data Eng. 25, 2 (2013), 461–475.

[22] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng. 2009. Efficient Type-ahead
Search on Relational Data: A TASTIER approach. In SIGMOD. 695–706.

[23] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng. 2011. Efficient Fuzzy
Full-text Type-ahead Search. VLDB J. 20, 4 (2011), 617–640.

[24] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An Experimental
Study on Hub Labeling based Shortest Path Algorithms. Proc. VLDB Endow. 11, 4
(2017), 445–457.

[25] Zijian Li, Lei Chen, and Yue Wang. 2019. G*-Tree: An Efficient Spatial Index on
Road Networks. In ICDE. 268–279.

[26] Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lun Lee, and
Xufa Wang. 2011. IR-Tree: An Efficient Index for Geographic Document Search.
IEEE Trans. Knowl. Data Eng. 23, 4 (2011), 585–599.

[27] Ying Lu, Jiaheng Lu, Gao Cong, Wei Wu, and Cyrus Shahabi. 2014. Efficient
Algorithms and Cost Models for Reverse Spatial-keyword 𝑘-nearest Neighbor
Search. ACM Trans. Database Syst. 39, 2 (2014), 13:1–13:46.

[28] Chengyang Luo, Qing Liu, Yunjun Gao, Lu Chen, Ziheng Wei, and Congcong Ge.
2023. Task: An Efficient Framework for Instant Error-tolerant Spatial Keyword
Queries on Road Networks. https://github.com/ZJU-DAILY/TASK/blob/main/
paper/PVLDB2023.pdf

[29] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu.
2018. When Hierarchy Meets 2-Hop-labeling: Efficient Shortest Distance Queries
on Road Networks. In SIGMOD. 709–724.

[30] Miao Qiao, Lu Qin, Hong Cheng, Jeffrey Xu Yu, and Wentao Tian. 2013. Top-
𝑘 Nearest Keyword Search on Large Graphs. Proc. VLDB Endow. 6, 10 (2013),
901–912.

[31] Jianbin Qin, Chuan Xiao, Sheng Hu, Jie Zhang, Wei Wang, Yoshiharu Ishikawa,
Koji Tsuda, and Kunihiko Sadakane. 2020. Efficient Query Autocompletion with
Edit Distance-based Error Tolerance. VLDB J. 29, 4 (2020), 919–943.

[32] João B. Rocha-Junior and Kjetil Nørvåg. 2012. Top-𝑘 Spatial Keyword Queries
on Road Networks. In EDBT. 168–179.

[33] Senjuti Basu Roy and Kaushik Chakrabarti. 2011. Location-aware Type Ahead
Search on Spatial Databases: Semantics and Efficiency. In SIGMOD. 361–372.

[34] Jin Wang and Chunbin Lin. 2020. Fast Error-tolerant Location-aware Query
Autocompletion. In ICDE. 1998–2001.

[35] Xiang Wang, Wenjie Zhang, Ying Zhang, Xuemin Lin, and Zengfeng Huang.
2017. Top-𝑘 Spatial-keyword Publish/Subscribe over Sliding Window. VLDB J.
26, 3 (2017), 301–326.

[36] Chuan Xiao, Jianbin Qin, Wei Wang, Yoshiharu Ishikawa, Koji Tsuda, and Ku-
nihiko Sadakane. 2013. Efficient Error-tolerant Query Autocompletion. Proc.
VLDB Endow. 6, 6 (2013), 373–384.

[37] Hongfei Xu, Yu Gu, Yu Sun, Jianzhong Qi, Ge Yu, and Rui Zhang. 2020. Efficient
Processing of Moving Collective Spatial Keyword Queries. VLDB J. 29, 4 (2020),
841–865.

[38] Junye Yang, Yong Zhang, Xiaofang Zhou, Jin Wang, Huiqi Hu, and Chunxiao
Xing. 2019. A Hierarchical Framework for Top-𝑘 Location-aware Error-tolerant
Keyword Search. In ICDE. 986–997.

[39] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, Xuemin Lin, Muhammad Aamir
Cheema, and Xiaoyang Wang. 2014. Diversified Spatial Keyword Search on Road
Networks. In EDBT. 367–378.

[40] Mengxuan Zhang, Lei Li, Wen Hua, Rui Mao, Pingfu Chao, and Xiaofang Zhou.
2021. Dynamic Hub Labeling for Road Networks. In ICDE. 336–347.

[41] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2021. Efficient 2-Hop
Labeling Maintenance in Dynamic Small-world Networks. In ICDE. 133–144.

[42] Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2021. An Experimental Evaluation
and Guideline for Path Finding in Weighted Dynamic Network. Proc. VLDB
Endow. 14, 11 (2021), 2127–2140.

[43] Jingwen Zhao, Yunjun Gao, Gang Chen, and Rui Chen. 2018. Towards Efficient
Framework for Time-aware Spatial Keyword Queries on Road Networks. ACM
Trans. Inf. Syst. 36, 3 (2018), 24:1–24:48.

[44] Jingwen Zhao, Yunjun Gao, Gang Chen, and Rui Chen. 2018. Why-not Questions
on Top-𝑘 Geo-social Keyword Queries in Road Networks. In ICDE. 965–976.

[45] Jingwen Zhao, Yunjun Gao, Gang Chen, Christian S. Jensen, Rui Chen, and Deng
Cai. 2017. Reverse Top-𝑘 Geo-social Keyword Queries in Road Networks. In
ICDE. 387–398.

[46] Bolong Zheng, Kai Zheng, Christian S. Jensen, Nguyen Quoc Viet Hung, Han
Su, Guohui Li, and Xiaofang Zhou. 2020. Answering Why-not Group Spatial
Keyword Queries. IEEE Trans. Knowl. Data Eng. 32, 1 (2020), 26–39.

[47] Bolong Zheng, Kai Zheng, Xiaokui Xiao, Han Su, Hongzhi Yin, Xiaofang Zhou,
and GuoHui Li. 2016. Keyword-aware Continuous𝑘NNQuery on Road Networks.
In ICDE. 871–882.

[48] Ruicheng Zhong, Ju Fan, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. 2012.
Location-aware Instant Search. In CIKM. 385–394.

[49] Xiaoling Zhou, Jianbin Qin, Chuan Xiao, Wei Wang, Xuemin Lin, and Yoshiharu
Ishikawa. 2016. BEVA: An Efficient Query Processing Algorithm for Error-
tolerant Autocompletion. ACM Trans. Database Syst. 41, 1 (2016), 5:1–5:44.

2430

https://github.com/ZJU-DAILY/TASK/blob/main/paper/PVLDB2023.pdf
https://github.com/ZJU-DAILY/TASK/blob/main/paper/PVLDB2023.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Framework Overview
	5 R2T Index
	5.1 R2T Structure
	5.2 R2T Construction
	5.3 R2T Maintenance

	6 Query Processing Algorithms
	6.1 Instant Query Algorithm
	6.2 Instant Update Algorithms
	6.3 Multiple Query Strings

	7 Performance Study
	7.1 Evaluation of Instant Query Algorithm
	7.2 Evaluation of Instant Update Algorithm
	7.3 Index Evaluation

	8 Conclusions
	Acknowledgments
	References

