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ABSTRACT
Information-theoretic or unconditional security provides the high-
est level of security — independent of the computational capability
of an adversary. Secret-sharing techniques achieve information-
theoretic security by splitting a secret into multiple parts (called
shares) and storing the shares across non-colluding servers. How-
ever, secret-sharing-based solutions su!er from high overheads
due to multiple communication rounds among servers and/or in-
formation leakage due to access-patterns (i.e., the identity of rows
satisfying a query) and volume (i.e., the number of rows satisfying
a query).

We propose !2, an information-theoretically secure approach
that uses both additive and multiplicative secret-sharing, to e"-
ciently support a large class of selection queries involving conjunc-
tive, disjunctive, and range conditions. Two major contributions
of !2 are: (i) a new search algorithm using additive shares based
on #ngerprints, which were developed for string-matching over
cleartext; and (ii) two row retrieval algorithms: one is based on mul-
tiplicative shares and another is based on additive shares. !2 does
not require communication among servers storing shares and does
not reveal any information to an adversary based on access-patterns
and volume.
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1 INTRODUCTION
This paper studies information-theoretically secure ways to support
selection queries that may contain conjunctions, disjunctions, and
range predicates. In contrast to encryption-based techniques that
are only computationally secure (i.e., secure against the adversary
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of limited computational capabilities), information-theoretically
secure techniques o!er a higher level of security. Such techniques
remain secure regardless of the computational capabilities of an
adversary (even with a quantum computer, at the present or the
future) and are, thus, referred to as unconditionally secure. Secret-
sharing (SS) is a popular information-theoretically secure technique.
In a SS-based system, multiple pieces (called secret-shares) of a
secret are created and placed into non-colluding (cloud) servers. To
be able to reconstruct the secret, secret-shares from a number of
servers (equal to or greater than a prede#ned threshold) need to
be obtained. §1.1 will provide an overview of SS techniques. The
advantages of information-theoretic security and the need of secure
data outsourcing based on secret-sharing have been featured in
several recent popular media articles [1–4].

While SS-based solutions require multiple non-colluding servers,
with the emergence of several independent cloud vendors, such a
requirement has become relatively easy to satisfy. Organizations
already adopt multi-cloud solutions so as not to be locked into a sin-
gle vendor for purposes such as fault-tolerance or vendor-speci#c
dependency [5–9]. Organizations can further leverage multi-cloud
settings to outsource secret-shares without concerns about cloud
vendors colluding with each other to reconstruct user data.

Secret-sharing-based systems target single-table databases and
support selection, aggregation, and group-by queries.1 The demand
for highly secure systems, even with limited operations, has driven
multiple commercial solutions based on secret-sharing, e.g., Galois
Inc.’ Jana [10, 19], Stealth Software Technologies’ Pulsar [11], and
Cybernetica’s Sharemind [12, 20]. Multiple systems to support sin-
gle table queries using secret-sharing have also been developed by
academia, e.g., Conclave [72], PDAS [71], Obscure [44], and [34, 74].
Existing systems (by both academia and industry), however, su!er
from the following two major drawbacks:
Information leakage. Existing systems do not prevent leakage due
to access-patterns and/or volume, simultaneously. Access-pattern
leakage refers to adversaries gaining knowledge of the identities
of rows that satisfy a query, while volume or output-size leakage
refers to the adversary getting to know the (output) size of query
results. SS-based PDAS [71] and [34, 74] reveal both access-patterns
and volume. Pulsar [11], Conclave [72], and Obscure [44] reveal
volume. However, e!cient SS-based systems do not prevent both
1While there are some works on multi-table join queries, such solutions are not practical. For instance,
state-of-the-art solution for joins using secret-sharing described in [58] takes 2.6 seconds to join
two tables with only 256 rows each!
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Table 1: Comparison of existing secure systems against !2. Notes. (i) SSS: Shamir’s secret-shares. (ii) SPJ: selection, projection, join. (iii) s: seconds. m: minutes M: Millions.
(iv) The scalability numbers are taken from the respective papers. (v) ∗: Numbers are taken from [74] experimental comparison. (vi) ‡‡: Does not mention the number of rows. (vii) ♦: Numbers are taken from
Conclave [72] experimental comparison. (viii) !: Numbers from [56]. (ix) †: Conclave [72] uses a trusted party to support SPJ over multi-party settings, and thus, we do not include experimental numbers.

Papers [34] S3ORAM [45] Obscure [44] Sepia [23] Sharemind [20] SPDZ [30] Jana [19] Conclave [72] !2

Technique SSS SSS SSS SSS Additive Additive Additive Additive Additive + SSS
Communication between servers No Yes No Yes Yes Yes Yes Yes No
Distribution/frequency leakage from ciphertext No No No No No No No No No
Access-pattern leakage from query execution Yes No No No No No No Yes No
Volume leakage from query execution Yes No No No No No No Yes No
Supported operators SPJ 1 keyword

fetch
Aggregation
& fetch

Compare/
equality

SPJ SPJ Selection † Complex
search & fetch

Computational Complexity of selection O(log!) O (log!) O (log!) O (!) N/A O(!) O (!) O (!) O(")
Index support Yes Yes No No No No No No No
Support for dynamic data Yes No Yes N/A Yes Yes Yes Yes Yes
Experimental results: Time using one thread
(data)

0.07s∗
(150K rows)

7.3s (on
40GB)‡‡

600s (on
6M rows)

N/A >10m (on
3M rows)♦

10s (on 1000
rows) !

450s (on
1M rows)

† 1.502s on 1M
rows

the leakages, simultaneously. Prior work has shown the importance
of preventing both leakages [21, 24, 43, 47, 51, 53, 54, 60, 64, 66].
Query ine!ciency. Systems that prevent both access-pattern and
volume leakages simultaneously, are not e"cient. For example,
Jana [19] prevents both access-patterns and volume leakages, by
returning entire table with non-desired rows (i.e., the rows that do
not satisfy the selection query) being converted into zero of addi-
tive share form. However, Jana takes ≈450 s(econds) for selection
queries on 1M rows. Another example is Sharemind [20], which
also prevents both leakages, but it takes more than 600s for a simple
projection query on 3M rows, as reported in [72]. The two main
reasons for query ine"ciency are: (i) returning the entire data in
the share form to prevent both access-pattern and volume leakages,
while answering a selection query, and (ii) multiple rounds of com-
munication among servers storing the shares to execute a selection
query. For example, in Secrecy [52] for searching keywords over
" columns and # rows can require O("ℓ) communication rounds
where ℓ is the maximum length of a word, and the total amount of
information $ow among servers/client will be at most (24"ℓ + 1)#
bits, (depending on the data type of" columns). To have e"cient
query execution, optimizations can come in two ways: reducing
the number of rounds among servers and the amount of informa-
tion $ow among servers. (As will become clear soon, our approach
requires #% bits to be sent from each of the two servers to the client
for a simple keyword or conjunctive search or at most #"%/3 bits
for a disjunctive search, where % refers to bits requires by a data
type that could be integer or double in our proposed approach.)

This paper describes e!cient, scalable, and information-
theoretically secure techniques for selection queries, entitled
!2, that prevents information leakages from both access-patterns
and volume. !2 does not require servers (storing secret-shares) to
communicate among themselves before/during/after computations.
!2 o!ers: (i) query privacy: indistinguishability of queries by an
adversarial server, (ii) data privacy: not revealing to an adver-
sarial server anything (e.g., data distribution and ordering) about
input/intermediate/output data, and (iii) server privacy: not re-
vealing to queriers/clients anything other than answers to queries.

Before describing, how !2 achieves the goal of e"cient, scalable,
and secure search, we #rst brie$y discuss secret-sharing techniques.

1.1 Background
!2 uses additive shares, multiplicative shares, and #ngerprints.

Additive Secret-Sharing: is the simplest type of secret-sharing
method. Additive shares are de#ned over an Abelian group, G" ,
under addition operation modulo & , where & is a prime number.
A secret owner creates ' > 1 shares of a secret, say ! , such that
! =

∑#=$
#=1 (# ((# denotes an )th share) over G" , and sends (# to the )th

server (belonging to a set of ' non-colluding servers). These servers
cannot know ! unless they collect all ' shares. To reconstruct ! , the
secret owner collects all the shares and adds them.
Example. Let G5 = {0, 1, 2, 3, 4} be an Abelian group under addition
modulo 5. Let 4 be a secret. A secret owner may create two shares:
3 and 1 (since 4 = (3 + 1) mod 5) and send them to two servers.
Property. Additive shares of a number are random (e.g., 5 = 1 + 4
and 5 = 2 + 3); thus, the adversary by observing an additive share
cannot deduce a secret. Additive sharing allows additive homo-
morphism (i.e., adding two or more shares at a server locally, i.e.,
without communicating with other servers) and scalar multiplica-
tion (i.e., multiplying a number to all additive shares, and the result
is equivalent to multiplying two numbers in cleartext).
Multiplicative Secret-Sharing. The classical multiplicative secret-
sharing scheme was introduced by Adi Shamir [69], say Shamir’s
secret-sharing (SSS). It requires a secret owner to randomly select a
polynomial of degree '′ with '′ random coe"cients, i.e., * (+) = ,0+
,1+ +,2+2 + · · · +,$′+$

′ , where * (+) ∈ F" [+], & is a prime number,
F" is a #nite #eld of order & , ,0 = ! (the secret), and ,# ∈ N (1≤)≤'′).
The secret owner distributes ! into ' > '′ shares, by computing
* (+) for + = 1, 2, . . . , ' and sends an )th share to the )th server. The
secret, ! , is reconstructed using Lagrange interpolation [28] over
any '′ + 1 shares. An adversary can construct ! , i! they collude
with '′+1 servers. Thus, the degree of a polynomial is set to be '′, if
an adversary can collude with at most '′ servers. In this paper, the
terms ‘multiplicative secret-sharing’ and ‘Shamir’s secret-sharing
(SSS)’ are used interchangeably.
Property. SSS allows additive homomorphism. SSS also o!ers mul-
tiplicative homomorphism, i.e., servers can locally multiply shares,
and the result can be constructed at the owner if we have enough
shares, as each multiplication increases the polynomials’ degree.
Fingerprint. The #ngerprint (function) was proposed for string
matching over cleartext [49]. A #ngerprint is de#ned as:
-% ," (() =

∑&
#=1 (#.

# mod & , where a string ( = (1(2 . . . (& coded over
a #nite #eld F" , & is a prime number, and .∈F" is a random number.
Property. Fingerprint functions are additive homomorphic, i.e.,
-% ," ((1+(2) =

∑&
#=1 ((1,#+(2,# ). #mod& = -% ," (!1)+-% ," (!2). Two
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Table 2: !2 performance (sec) on 1M rows using 1 & 4 threads.
Threads String

search
Number
search

Conjunctive
search

Disjunctive
search

Row Fetch —
Multiplicative

Row Fetch
— Additive

1 thread 0.783 0.582 0.696 0.743 0.759 0.950
4 threads 0.453 0.396 0.451 0.475 0.395 0.452

identical strings always generate the same #ngerprint. As #nger-
prints execute a modular operation, the probability of false positives
exists. !2 executes "ngerprints over additive shares for string
search and conjunctive search (see §5.1.1). Particularly, !2 com-
putes #ngerprints over the shares of the database and the shares of
a query keyword. A false positive will be produced if the #ngerprint
computed over a value in the share form of the database is equal
to the #ngerprint computed over the share of the query under the
modulus operation, while the cleartext value in the database is not
identical to the cleartext query keyword. The probability of this
is 1/& . Since there are # rows in the database, the probability of
a single collision is #/& . For a suitably large & (e.g., & ' #), the
probability of collision is negligible. In our experiments with . = 43
and & = 100,000,007, we get zero false positives for queries.

1.2 Summary of !2
S2, primarily, supports selection queries containing conjunctive,
disjunctive, and range predicates. Also, !2 can o#er sum and
group-by sum queries, which are provided in the full version.

To execute such queries, !2 executes two rounds of communica-
tion between servers and a client. In the #rst round, !2 #nds the row
ids that satisfy the query predicate, and then in the second round,
fetches all the quali#ed rows (or executes addition operation for
answering sum queries). !2 uses additive shares for single/multiple
keyword search, conjunctive search, and search involving range
conditions, while uses multiplicative shares for disjunctive search.
Importantly, !2 does not require servers (which store secret-shares)
to communicate among themselves before/during/after computations.
All supported operations by !2 prevent both access-patterns and
volume leakage, simultaneously.

Each round of !2 comes with a challenge (discussed below). Also,
we provide an overview of the solution to address the challenge.
1. E!cient and Oblivious Search. The challenge in round one of
!2 is to search query keywords e!ciently over one or multiple
columns (i.e., conjunctive and disjunctive search) obliviously
(i.e., being data-independent and not revealing access-patterns, as
well as volume). In simple words, the search operation supported by
!2 at the cloud must be private. A trivial and impractical approach
to address this challenge is to download a complete copy of the
entire secret-shared data and then execute the query locally. An-
other straightforward solution is to use a keyword search protocol
such as [37] or private information retrieval (PIR) by keywords [26].
However, in keyword search protocol [37], the query size and com-
putation cost at a server will be equal to all possible combinations of
unique keywords across all columns of a database (see §2.3 of [57]).
In contrast, PIR by keyword reveals additional data to a client, i.e.,
the client will not only learn the desired data, but also learn other
data without executing queries for them, (see §1.1 and §4.2 of [37]).
Our approach. To address the problem of e"cient and oblivious
search, we develop novel search techniques using #ngerprint-based
search [49], which was developed for string matching over cleartext.

Table 3: Comparing di"erent systems against !2 on 1M rows.
Method Total query time SpeedupOperation support
DL additive shares 4.9s (1.2s to DL, 1.5s to add, 2s to L, 0.2s to Q) ≈3' Any
DL one-time pad 4.6s (1.2s to DL 1.2s to XOR 2.0s to load 0.2s to Q) ≈3' Any
Jana ≈450s ≈300' Selection query
Waldo ≈12s ≈7' Absence/presence

of a keyword
Obscure ≈150s ≈99' Selection query
!2 ≈1.5s (0.743s for search, 0.759 for row fetch) ' Selection query

Notations: DL: Download. L: Load data into MySQL, Q: query execution without index.

Our search algorithm uses the concept of #ngerprints and enables
them to work over additive shares. The novelty of the algorithm
is that it does not require communication among servers to
perform a search operation over one or more columns, due to
utilizing additive homomorphism of both "ngerprints and
additive shares. The search algorithm takes as inputs keyword(s)
in secret-share form and outputs the row-ids, where the keyword
appears in the secret-share table. The search algorithms need only
one round of communication between the server and the client.
In terms of security, the search algorithms do not reveal access-
patterns and volume to servers.
2. E!cient and Oblivious Row Retrieval. Once we know the
row ids that have the query keyword in round one of !2, the next
challenge is to fetch the row without revealing to servers access-
pa$erns and volume. To address this, one possible solution is to
use oblivious random access memory (ORAM) [40, 70]. However,
ORAM schemes have multiple drawbacks: revealing additional data
other than the answers to the query to the client, no support for
queries with conjunctive/disjunctive conditions, and range queries,
no e"cient support for dynamic data, and harder to support mul-
tiple clients, as also argued in [32]. Another solution is to use PIR
or optimized versions of PIR, known as Distributed Point Function
(DPF) [38] and Function Secret Sharing (FSS) [22]. !2 provides two
methods to fetch rows, and one of them is built on DPF.
Our approach.We develop two methods: the #rst method (§6.1)
uses multiplicative shares and incurs the communication cost of
O(√#) from a client to a server, where # is the number of rows in a
table. The second method (§6.2) uses additive shares and incurs the
communication cost of O(log#) from a client to a server. The sec-
ond method is inspired by DPF and leverages DPF to fetch additive
shares obliviously. Both methods hide access-patterns when fetch-
ing rows, only utilize four servers, and do not need servers to com-
municate among themselves during the protocol. Moreover, both
methods are designed to fetch O(√#) rows in the same round with
the same communication and computational cost. Importantly, our
methods are signi#cantly better than existing work [19, 20, 44, 52]
that requires each server to send the entire table containing the
desired rows (i.e., the rows satisfying the query predicates) and non-
desired rows being converted into zero in the share form. Table 1
compares current secret-sharing-based schemes and !2.
3. !2 performance.We implemented !2 in Java, and the code con-
tains more than 9,000 lines. We set up !2 at AWS and tested on 1M
and 10M rows of Lineitem Table of TPCH benchmark [13]. In round
one for a search query (i.e., knowing the row ids), !2 took at most
0.475s on 1M rows and 2.964s on 10M rows using four-threaded
implementation. In round two to fetch row, !2 took 0.395s using
multiplicative shares and 0.452s using additive shares on 1M rows
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Figure 1: The model.

using four-threads. On 10M rows, in round two, !2 took 6.765s us-
ing multiplicative shares and 3.357s using additive shares using four
threads. Table 2 provides computation time over 1M rows using
one/four threads, and other experiments are given in §7.
4. !2 vs other approaches, and the reason for using #nger-
prints. The following two simpler approaches could support the
same class of operators as !2: (i) Downloading all the additive shares:
the client downloads additive shares of the data, performs additions
over the shares to obtain the cleartext data, and then loads it into a
DBMS to execute the query. (ii)Using one-time pad: one server stores
the one-time pad [50] and another server stores the XOR of the
pad with the database, and for query processing, the client fetches
the data from both servers to recompute the original database and
executes a query after loading the data into a DBMS.

These two approaches are information-theoretically secure, o!er
the same security as !2 o!ers, do not require dependence on #n-
gerprints, and do not require any communication among the cloud
servers. These approaches, however, incur a huge communication
cost in downloading the secret-share data and the computational
cost at the client to execute a query. Compared to these approaches,
!2 #rst #nds the desired row ids, and then, fetches those rows.2 It
is important to note, a #ngerprint function, in !2, compresses the
output of string comparison, as well as, compresses the output of a
conjunctive search over + > 1 columns and returns only a single
value/number per row regardless of + columns. Table 3 compares
!2 against the above three approaches and also to other approaches.

Another simple approach can store encrypted data at the cloud,
and the client downloads the entire encrypted data, decrypts it, and
loads the cleartext data into a DBMS to execute a query. However,
this approach is not information-theoretically secure.
Code, data, and full version of the paper: is given in [14].

2 PRELIMINARY
This section provides an overview entities involved in !2, the threat
model, and the security properties.

2.1 Entities and Assumptions
We assume three entities (database owner, servers, and clients/
queriers); see Figure 1. Table 4 provides frequently used notations
in the paper. Table 5 shows parameters known to di!erent entities.

(1) Database owner (DBO) owns a database and creates both additive
and multiplicative secret-shares of the database (§4 provides the
algorithm for creating secret-shares). DBO transfers the )th share
of the database to the )th server.
2(2 could use a single round of communication between a server and the client by downloading all
projection columns of a selection query and downloading the results of the selection predicate. This
strategy could be better if queries are not selective and many rows satisfy the query. In contrast,
the two-round strategy as used in (2 works well when queries are highly selective.

Table 4: Frequently used notations in this paper.
Notations Meaning
) and* A relation/table in cleartext and the attribute/column* of the table )
R A relation/table in share form
A A column* of ) in additive share form
A.+! A value in additive share in A in an #th row
!.+! A value in multiplicative share in A in an #th row
! and, The number of rows and the number of columns in the table )
S! and S" A server # and the combiner
- (' ) and % A #ngerprint of ' using the #ngerprint parameter (a prime number) %
" A prime number used as modulo in secret-sharing
PRG and seed A pseudo-random generator and the seed used in PRG

(2) Servers store secret-shared data outsourced by DBO and execute
queries for clients. The servers are untrusted. The security model
requires that the secret-shared data stored at the server must not
reveal anything about the data, e.g., data distribution and ordering
of values, to the server. Likewise, query answering protocols must not
reveal anything about the client’s query, e.g., the query, answers to
queries, access-patterns, and volume, to the server. As will be clear
soon, we use four servers S.∈{1,4} to store secret-shares, where
S1,S3 store the same shares and S2,S4 also store the same shares.

For developing our technique, we make a simplifying assump-
tion that servers do not collude with each other. Since our technique
is based on secret-sharing, this assumption can be relaxed by in-
creasing the number of shares. Note that secret-sharing is robust
against collusion amongst servers and byzantine behavior as long
a the majority of the servers are not malicious, i.e., do not collude
and follow the protocol correctly [29, 36, 62, 67]. Servers establish
a secure communication link with the DBO and the clients, and
authenticate them before executing the protocols.

(3) Queriers/Clients ask queries over secret-shared data, stored at
the servers. Clients, in general, can be di!erent from DBO. While
DBO can be a client, a client might not be the owner of the data-
base. If a client is di!erent from DBO, the client’s access to data is
restricted based on policies speci#ed by DBO. Restricting client’s
access requires an additional access control mechanism to ensure
that client’s queries are restricted to data for which the client has ac-
cess permission. Standard access control mechanisms (e.g., as [59])
can be used for such a purpose. We will, henceforth, assume the
presence of such a mechanism and, thus, restrict our protocols to
the case when clients’ queries access data they have permission to.
Our security model requires the protocol to guarantee that the client
only learns answers to the query and nothing else, i.e., clients do not
learn any information (e.g., distribution/ordering) about data which
it does not query. Since the client’s queries do not access data the
client does not have access permission for, and, furthermore, since
our protocol guarantees that the client learns nothing about data
other than the data it queries, our protocols guarantee that the
client does not gain any information about data they do not have
access to. We develop our protocol under the assumption that the
server does not collude with DBO (if indeed DBO is di!erent from
a querier) to identify the query being asked by the querier.

2.2 Security Requirements and Properties
We follow the standard security de#nition given in [18, 37]. Partic-
ularly, we need to satisfy the following three speci#c properties:
Query privacy requires that the queries or query predicates must
be hidden from servers, and they cannot distinguish between arbi-
trary queries or query predicates. For example, queries searching
over a column for keywords must be indistinguishable by servers.
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Table 5: Parameters known to di"erent entities.
Entities Parameters
DBO All parameters except seed" (i.e., the seed for PRG selected by the client)
Server S! " , % , - , PRG, seed# (the seed only known to the servers), seed"
Client " , % , - , PRG, seed"
Combiner S" "

Data privacy requires that the stored input data, intermediate data
during computation, and output data are not revealed in cleartext
to servers, and the secret value can only be reconstructed by the
client. We must ensure that the servers will not learn (i) frequency
distribution, i.e., the number of ciphertext rows containing an iden-
tical value, (ii) ordering of values, i.e., a relationship of <, >,= be-
tween two shares, (iii) access-patterns, i.e., the identity of ciphertext
satis#es a query, and (iv) output-size/volume, i.e., the number of
ciphertext satis#es a query. Based on such things, an adversary may
learn the full/partial data, as discussed in [24, 47, 51].
Server privacy restricts a client from learning additional informa-
tion other than the answers to the queries [57]. Server privacy is
important when the queriers are di!erent from DBO.

Now, to formally de#ne the security properties, we de#ne the
notion of adversarial view, below.
Adversarial view and notations for security de#nition. An ad-
versarial server knows secret-shared data (# rows and" columns),
secret-shared query predicates, and the protocol they execute. This
is known as adversarial view. The adversarial view does not captures
the cleartext data, cleartext query predicates, and cleartext answers
to the queries. Based on the adversarial view, the adversarial server
wishes to learn the cleartext data, query, and/or results. (Recall
that a majority of the servers cannot collude with each other; thus,
servers cannot reconstruct the cleartext.)

Let Aview (/, qp,R,L) be the adversarial view of an adversary
A in the real execution of a protocol / (for a query predicate qp) on
input secret-share table R of #>1 rows and">0 columns. Here, L
refers to the rows accessed by the protocol / , i.e., access-patterns,
and the size of outputs, i.e., volume. The protocol / is executed on
more than one server that stores secret-share table R. Note that in
!2, a protocol / could be either any type of search or row fetch, and
qp could be any keyword for search protocols or row-ids for row
fetch protocols. The security of a protocol is de#ned as follows:
De#nition 1. For an adversary A executing a server protocol /
over any input secret-share relation R of #>1 rows and">0 columns
and for any query predicates qp, qp′, the protocol / is secure, i" the
following condition holds (where L is as de#ned above):

Aview (/, qp,R,L) = Aview (/, qp′,R,L) "
De#nition 1 indicates that the adversary cannot distinguish two

(or more) adversarial views obtained by executing the same protocol
for two (or more) query predicates. Thus, the adversary cannot
learn anything based on secret-shared tables and/or query execu-
tion, such as frequency distribution, ordering, access-patterns, and
volume. Particularly, the adversary cannot distinguish (i) which
query predicates they are working on, and (ii) which rows and how
many rows of the table satisfy the query. Thus, the protocol satis#es
the properties of query privacy and data privacy.
De#nition 2. For any given secret-shared relation at the servers, for
any query predicate qp, and for any real client, say 0 , there exists a
probabilistic polynomial time (PPT) client 0′ in the ideal execution,

Table 6: Techniques and servers used for di"erent operations.
Operations Technique used Server used
Search (including single- ormulti-
keyword, conjunctive, range)

Additive shares S1, S2

Disjunctive search Multiplicative shares S1, . . . , S4 (if >3 disjuncts)
Fetching a row Multiplicative or additive S1, . . . , S4

such that the outputs to 0 and 0′ for the query predicate qp on the
secret-shared relation are identical. "

De#nition 2 indicates that no client will learn more data other
than the answer to a query predicate 1& . The security proof of the
de#nitions is provided in the full version [14].

Later sections will discuss in detail the security of di!erent op-
erators o!ered by !2. Informally, !2 uses secret-sharing techniques
over cleartext to produce di!erent shares for the same value and
non-orderable shares for values holding an order (>, <,=) in clear-
text. This prevents frequency distribution and ordering leakages
from secret-shared data. !2 sends query predicates in share form
to prevent adversaries from learning the query predicates. Queries
are executed obliviously to prevent leakages from access-patterns.
Further, !2 returns the same amount of output for any search (either
over one/multiple columns or conjunctive/disjunctive search) and
for row retrieval to hide volume. Also, servers return data in a way
that only reveals answers to the queries, nothing else, to the client.

2.3 Evaluation Parameters
!2 can be evaluated on the following theoretical parameters: (i)Com-
putation cost: is measured at a client and a server, and #nds the
number of values on which each entity performs computation for
answering a query. (ii) Scan cost: #nds the number of rounds, when
a server and a client read # values. (iii) Communication rounds and
cost: are measured between a client and a server. The communica-
tion round is the number of times data $ows between a client and
a server to execute a query. Communication cost #nds the amount
of data $owing between a client and a server. The communica-
tion cost among servers is always zero, since !2 does not require
communication among servers.

Brie$y, in !2, each individual operator takes only one round of
communication between the desired two entities. The maximum
communication cost from a server to a client is O(#) bytes (depend-
ing on the size of integers used in programming languages), where
# is the number of rows, while from a client to a server is O(√#).
The scan cost at servers and a client is one. The computation cost
varies for di!erent operations and is discussed with each operator.

3 !2 AT THE HIGH LEVEL
!2 consists of three entities: a trusted DBO, four untrusted servers,
and clients; see Figure 1. !2 provides oblivious algorithms for search
and row retrieval. At the abstract level, data processing in !2 con-
sists of the following four phases:
First phase: Data outsourcing 1 2 . DBO creates additive and
multiplicative shares of the data (using a method given in §4). For
strings, DBO #rst converts them into a sequence of numbers by
translating each letter to a number (e.g., according to the position in
a language), and then, additive and multiplicative shares are created
for such numeric strings. For numbers, DBO simply creates both
types of shares. All shares are outsourced to servers.
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Table 7: An input cleartext Patient table.
rid Name Cost

1 Jo 4
2 Mo 6
3 Lo 8
4 Mo 4

Second phase: Secret-sharing creation of queries 3 4 . Queries
are initiated by a client by creating secret-shares of query predicates,
which are sent to servers.
Third phase: Search query execution. Servers execute the algo-
rithm locally, depending on the requested search operation. Particu-
larly, servers execute computations over additive shares for a single
keyword, multi-keyword, conjunctive, and range search, while mul-
tiplicative shares are utilized for disjunctive search. On completing
the algorithm, each server sends a vector 5 in share form to the
client. The algorithm’s execution does not reveal access-patterns
and volume, as well as query predicates/answers/input to servers.
Final phase: Fetch operation. Clients determine the #nal answer
to search queries, i.e., which row-ids contain the query predicate,
by interpolating the received vectors 6 . If the client wishes to fetch
the rows also, the client communicates one more time with the
four servers. Then, servers, locally, execute either multiplicative- or
additive sharing-based method that obliviously returns rows to the
client, which interpolates the received shares and obtains the rows.

4 DATA OUTSOURCING IN !2

This section explains how !2 uses di!erent secret-sharing tech-
niques on a table/relation and outsources them. To state it brie$y,
!2 creates both additive and multiplicative shares of each value. A
summary of such techniques and servers used for di!erent opera-
tions is given in Table 6. Detailed reasons of using di!erent types of
shares will be clear soon. The method for share creation is explained
using a Patient table; see Table 7.
C1: Shares for strings. We maintain a mapping for each letter to
a number. This mapping could be either the position of the letter
in the language or the ASCII code. First, each letter in a string is
converted into a number according to the mapping of the letter.
Second, since strings can be of di!erent lengths, which may reveal
information to the adversary, an identical random number is padded
to strings equalize lengths. Finally, two additive shares (A.21 and
A.22) of each number 2 are created. When the meaning is clear,
A.2 instead of A.21 or A.22 will be used. Also, two multiplicative
shares of 2 are created. Recall that in §2.1, for the purpose of sim-
plicity, we assume that servers do not collude with others; thus, for
multiplicative shares, polynomials of degree are enough.
C2: Shares for numbers. We create additive and multiplicative
shares of each number.
Data outsourcing. On each column of a table 3, DBO implements
the above method, based on the column containing strings or num-
bers. This produces two tables R1, R2, where R# contains the )th
shares. DBO outsources R1 to servers S1,S3 and R2 to S2,S4.

Aside. The detailed reasons of using four servers will be clear
in §5.3,§6. In short, the two additional servers are used only in
disjunctive search or fetching a row. Recall that one of our row fetch
methods is based onmultiplicative shares, and thismethod performs
two times multiplications over shares with another multiplicative
share, which were created from polynomials of degree one. Thus,

Table 8: Patient1.
rid A.NAME A.COST M.COST

1 6,10 3 6
2 10,5 2 8
3 10,6 4 10
4 3,5 2 6

Table 9: Patient2.
rid A.NAME A.COST M.COST

1 4,5 1 8
2 3,10 4 10
3 2,9 4 12
4 10,10 2 8

four servers allow the client to interpolate polynomials of degree
three. Another row fetch method is based on additive shares and is
based on DPF. DPF works over two servers, and both servers keep
identical data in cleartext. To make DPF work for additive shares,
we use four servers and replicate a share over two servers.
Example. Table 7 shows a cleartext table, whose secret-share tables
using the above method are shown in Tables 8, 9. To illustrate, we
use rid column to refer to row-ids, but this column is not needed to
outsource. Consider a prime number & = 17. DBO wants to create
shares of “Jo” and “4” (name and cost values in the #rst row of
Table 7). To do so, DBO represents Jo by letters’ positions: 〈10, 15〉,
and then, creates two additive shares of 〈10, 15〉, as: 〈6, 10〉 and
〈4, 5〉. We do not show multiplicative shares of the name column.
The #rst share table Patient1 contains 〈6, 10〉 in the name column,
while 〈4, 5〉 is kept in the name column of the second share table
Patient2. DBO creates 〈3, 1〉 as the additive shares of 4. For creating
multiplicative shares of 4, DBO uses a polynomial of degree one
(e.g., * (+) = (2+ + () mod & , where ( = 4 is the secret value) and
obtains shares as: * (1) = 6 and * (2) = 8. For simplicity, only one
polynomial for the entire Table 7 is selected. "
Discussion on leakages from the secret-shared data. The com-
mon leakages from ciphertext may reveal the frequency distribution
and ordering of the values. Our share creation method prevents
both of these leakages. Particularly, additive and multiplicative
shares of a value are randomly created (resulting in non-identical
shares). Thus, by observing shares, an adversary cannot deduce
whether two or more shares correspond to an identical value or
hold any relation (<, >,=), preventing an adversary from learning
frequency distribution and ordering information. Also, note that
while DBO adds an identical random number to make strings of the
same length, the adversary cannot deduce which share corresponds
to a real or fake number, due to randomness in creating shares.

5 KEYWORD SEARCH ALGORITHMS
This section develops operators to search keywords over a single
or multiple columns: single keyword search in a column (§5.1),
conjunctive search (§5.2), and disjunctive search (§5.3). These oper-
ators involve servers and a client and facilitate the client to know
row-ids, satis#ng a query. §5.4 provides methods to optimize the
communication cost between servers and clients for practical usage.

5.1 Single Keyword Search
A single/simple search operator #nds whether a keyword/query
predicate exists in secret-shared data or not.

5.1.1 High-level Idea and Step-wise Details. The idea of our
search operator is that if we subtract two identical strings that
are represented as numbers according to their letters’ positions
(in the language), then the result will be zero; otherwise, a non-
zero number. !2 implements exactly the same idea over additive
secret-shares and query predicate at two servers.
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Fingerprints are used to compress the string-matching outputs
and a pseudo-random generator (PRG) is used to provide security.
Below, we explain how the search algorithm works over strings:

(1) Client: represents the query keyword according to their positions
in English alphabets, creates two additive shares of the keyword (as
explained in C1 in §4), and computes #ngerprints over secret-shares.
Fingerprints for a query keyword 1 are denoted as 4 (11) and 4 (12),
and 4 (1.).∈{1,2} is sent to server S. .
Also, the client negotiates PRG(seed$ ) with S1. Note that in this
protocol between the client and servers, such a PRG is not necessary.
The reason for using PRG(seed$ ) is to only reduce the total
communication between servers and client at the cost of an
additional new untrusted server, and will be clear in §5.4.

(2) Server: S.∈{1,2} executes three operations: (i) computes #nger-
prints over the data, (ii) subtracts the #ngerprint received from the
client, and (iii) multiplies and adds random numbers.
Particularly, S. computes #ngerprints over additive shares of the
desired column, A, and subtracts the received #ngerprints 4 (1.)
from each #ngerprint in A. Then, S. multiplies a random number,
i.e., PRG(seed/ ) and also adds a random number, i.e., PRG(seed$ ),
where seed/ is unknown to clients and seed$ is known to S1 and
clients. PRG(seed/ ) is added to achieve server privacy, will be
discussed in §5.1.3. Particularly, for each 5 th row,

S1 : answer1 [ 0 ]←{ (- (A.+$ )1−- (11 ) )×PRG(seed% [ 0 ] )+PRG(seed" [ 0 ] ) }mod"
S2 : answer2 [ 0 ]←( (- (A.+$ )2−- (12 ) )×PRG(seed% [ 0 ] ) )mod"

where 4 (A.20 ). is the #ngerprint of a value 2 (in additive share
form) in the 5 th row at S. . S. sends answer. [] to the client. Note
that answer. [] contains # integers regardless of the string length.

(3) Client: obtains the #nal answer of the search operator and executes:
vec[)] ← (answer1 [)]+answer2 [)])mod& . Also, the client executes
PRG((667) [)]#∈{1,!} . If vec[)] matches (PRG((667) [)])mod& ,
then query keyword exists at servers. Also, the client learns row-ids
(containing the query keyword), which will help to fetch the rows.3

5.1.2 Example. A client wants to know whether Tables 8, 9 con-
tain “Jo” or not in theA(Name) column. Client selects &=17 and .=2.
Assume PRG(seed$ )=[4, 6, 1, 2] atS1, and PRG(seed/ )=[2, 9, 4, 5]
at S1, S2. The single keyword search works as follows:

(1) Client: creates shares and #ngerprints of the query keyword Jo that
is represented according to alphabet positions: 〈10, 15〉. Additive
shares of 〈10, 15〉 are created: 〈5, 5〉, 〈5, 10〉. Finally, #ngerprints are
computed: (5×2+5×22) mod 17 = 13 and (5×2+10×22) mod 17 =
16. Fingerprint 13 is sent to S1 and #ngerprint 16 is sent to S2.

(2) Server: The #rst column of Table 10 (or Table 11) shows additive
shares of the Name column at S1 (or at S2). The second column
shows #ngerprint computation over the Name column at S1 (or
at S2). The third column shows the computation for searching Jo
over #ngerprints at S1 (or at S2). The fourth column shows the
#nal result after using PRG. To client, S1 sends 〈14, 11, 6, 16〉, and
S2 sends 〈7, 15, 11, 16〉.

(3) Client: performs the following computation: (14 + 7) mod 17 = 4
(11 + 15) mod 17 = 9 (6 + 11) mod 17 = 0 (16 + 16) mod 17 = 15
3 While the client performs some computation on the received values, a majority of the computation
is carried out on servers. Experiment 2 will show that the maximum processing time at the client is
signi#cantly less than 1s for 10M rows to know the quali#ed row-ids. Systems, e.g., Secrecy [52],
which uses binary shares, also require the client to obtain ! bits to know the row-ids. Systems,
such as Jana and Conclave, transfer the job of the client to a trusted proxy for #nding row-ids.

The vector 〈4, 9, 0, 15〉 is compared against PRG(seed$ )=[4, 6, 1, 2],
and only the #rst position matches. This shows that the #rst row
of the data contains the query keyword Jo. "

Table 10: Search computation at S1.

NAME Fingerprints of NAME Search Computation Final result
6,10 6× 2+10× 22 mod 17 = 1 (1 − 13) mod 17 = 5 (5×2+4) mod 17 = 14
10,5 10× 2+5× 22 mod 17 = 6 (6 − 13) mod 17 = 10 (10×9 + 6)mod17=11
10,6 10×2+6×22 mod 17 = 10 (10−13) mod 17 = 14 (14×4+1) mod 17 = 6
3,5 3 × 2 + 5 × 22 mod 17 = 9 (9 − 13) mod 17 = 13 (13×5+2)mod17=16

Table 11: Search computation at S2.
NAME Fingerprints of NAME Search Computation Final result
4,5 4 × 2 + 5 × 22 mod 17 = 11 (11−16) mod 17 = 12 (12 × 2) mod 17 = 7
3,10 4× 2+10× 22 mod 17 = 12 (12−16) mod 17 = 13 (13 × 9) mod 17 = 15
2,9 2 × 2 + 9 × 22 mod 17 = 6 (6 − 16) mod 17 = 7 (7 × 4) mod 17 = 11
10,10 10× 2+10× 22 mod 17 = 9 (9 − 16) mod 17 = 10 (10 × 5) mod 17 = 16

5.1.3 Discussion. Now, we discuss correctness, information leak-
age, and cost related to the above algorithm.
Correctness. Recall that from the de#nition of #ngerprint given
in §1.1, the #ngerprint function is additive homomorphic. Thus,
Σ!=2!=1answer! [ 0 ] = ({- (*.+$ )−- (11 )−- (12 ) }×PRG(seed% ) [ 0 ] ) + PRG(seed" ) [ 0 ] )mod"

= ({- (*.+$ )−- (1) }×PRG(seed% ) )+(PRG(seed" ) [ 0 ] )mod"
Obviously, if the query keyword matches a value8.20 , then the two
#ngerprints (i.e., 4 (8.20 ) and 4 (1)) will be identical, and the client
receives only (PRG(seed$ ) [ 5]) mod & .
Information leakage discussion.Wehave already discussed in §4
that shares at-rest do not reveal frequency distribution and order-
ing of values. Now, let us discuss the security of query execution
protocol. (i) Shares (or #ngerprints) of the data at the servers and
of query keywords are created randomly. Thus, a server by looking
at the data and query keyword cannot learn which rows satisfy the
query. (ii) Servers perform an identical operation on each row; this
hides access-patterns. (iii) Each server sends # integers to the client,
and this prevents volume leakage. (iv) Also, note that the client
does not know seed/ . If values in two rows ) and 5 do not match a
query keyword, the client obtains two di!erent random numbers
(generated via PRG(seed/ )), regardless of the values ) and 5 are
identical or not. In contrast, if the values match the keyword, the
client always obtains zero. Therefore, the client learns only which
rows match the query keyword and does not learn anything (e.g.,
data distribution or ordering) about the secret-shared data.

Therefore, the single keyword search algorithm satis#es all se-
curity requirements, which are mentioned in §2.2.
Cost analysis. The computation cost at the server is O(#), while
the client also adds # numbers received from each server. The
communication cost between a server and a client depends on the
size of # integers. §5.4 will provide a method to reduce the total
communication cost from both servers to a client from 2# = 2 × #
(# from each server) integers to only # integers.

5.1.4 Searching a Number. When searching a number, e.g., age
= 40, there is no need to create #ngerprints. The client creates
two additive shares of the number and sends them to servers. The
servers execute the same computation as in Step 2 of the string
matching operation, except for the #ngerprint computation. In
other words, servers directly subtract the received additive shares
of a query from each additive share in the desired column of the
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data, without computing #ngerprints. The client also performs the
same computation on receiving # numbers from each server.

5.2 Conjunctive Search
In practical applications, queries involve multiple predicates over
di!erent columns. This section develops an approach for queries
containing conjunctive predicates over multiple columns.

Consider a conjunctive search: select * from Patient
where name = ‘Mo’ and cost = 6. A straightforward method
to answer such queries is: to execute the single keyword search
operator (§5.1) over each column at servers and sending multiple
vectors (equal to the number of query predicates) containing #
numbers in each, to the client, and then, the client locally #nds the
answer of the conjunctive search by #nding one in each row over
all the received vectors. While this trivial approach works, it incurs
computational overhead and communication overhead of O(9#),
where 9 is the number of conjunctive query predicates. To reduce
such overhead to only # integers, we extend the single keyword
search operator (§5.1) for 9 > 1 conjunctive predicates, as follows:

(1) Client: generates only one "ngerprint regardless of the number
of conjunctive conditions. First, the client creates additive shares
of each of the 9 predicates, depending on strings or numbers. Then,
the client organizes 9 additive shares as a concatenated string and
computes a single #ngerprint over the string, as in Step 1 of single
keyword search §5.1.1. Fingerprints 4 (1.).∈{1,2} are sent to the
server S. . PRG and seed$ are also provided to S1.

(2) Servers: work on additive shares and execute the same operations as
in §5.1.1 over each of the desired9 columns of each row. Particularly,
servers consider the9 values of each 5 th row as a string and compute
a single #ngerprint. Then, servers subtract the #ngerprint received
from the client and multiply PRG(seed/ ) [ 5] to the output. Finally,
S1 adds PRG(seed$ ) [ 5] to 5 th output.S1,S2 send outputs to client.

(3) Client: executes the same operation as in §5.1.1, i.e., adds the ele-
ments of the received vector position-wise and compares against
(PRG(seed$ ) [)]) mod & . If )th values match, that means the 9
query predicates of the conjunctive search exist in the row ) .

Table 12: Search computation at S1.
NAME COST Fingerprint computation Search Computation Final result
6,10 3 6×2+10×22+3×23mod17=8 (8−12)mod17=13 (13×2+4)mod17=13
10,5 2 10×2+5×22+2×23mod17=5 (5−12)mod17=10 (10×9+6)mod17=11
10,6 4 10×2+6×22+4×23mod17=8 (8−12)mod17=13 (13×4+1)mod17=2
3,5 2 3×2+ 5×22 + 2×23mod17=8 (8−12)mod17=13 (13×5+2)mod17=16

Table 13: Search computation at S2.
NAME COST Fingerprint computation Search Computation Final result
4,5 1 4×2+5×22+1×23mod17=2 (2−15)mod17=4 (4×2)mod17=8
3,10 4 3×2+10×22+4×23mod17=10 (10−15)mod17=12 (12×9)mod17=6
2,9 4 2× 2+9× 22+4×23mod17=4 (4−15)mod17=6 (6×4)mod17=7
10,10 2 10×2+10×22+2×23mod17=8 (8−15)mod17=10 (10×5)mod17=16

5.2.1 Example. A client wants to know whether Tables 8, 9 con-
tain “name = Jo AND cost = 4” or not. Client selects & = 17, . = 2,
and PRG(seed$ ) = [4, 6, 1, 2]. Assume PRG(seed/ ) = [2, 9, 4, 5] at
S1, S2. The conjunctive search operator works as follows:

(1) Client: creates shares and #ngerprints. 〈Jo, 4〉 is represented as:
〈10, 15, 4〉. Additive shares are created: 〈5, 5, 2〉 〈5, 10, 2〉. Finally,
#ngerprints are created: (5×2+ 5×22 + 2×23)mod17=12 and (5×2+
10×22 + 2×23)mod17=15. Fingerprint 12 (15) is sent to S1 (S2).

(2) Server: computation is shown in Table 12 and Table 13.
(3) Client: performs the following computation on the received vectors

〈13, 11, 2, 16〉 from S1 and 〈8, 6, 7, 16〉 from S2: (13+8)mod17=4
(11+6)mod17=0, (2+7)mod17=9, (16+16)mod17=15

Comparing the vector 〈4, 0, 9, 15〉 against PRG(seed$ ) = [4, 6, 1, 2]
will show that the #rst row satis#es the conjunctive search. "

5.2.2 Discussion. Information leakage discussion. Let us dis-
cuss information leakage from query executions. First, servers do
not learn query predicates by just observing #ngerprints received
from the client, due to additive shares. Second, on each of the 9
columns of each row, a server performs an identical operation that
hides access-patterns. Also, the output at each server will be dif-
ferent for each row, regardless 9 query predicate matches or not
in multiple rows; thus, the output at each server does not reveal
anything about the #nal result. Third, each server sends # num-
bers to the client, and it prevents volume leakage. Finally, since the
client does not know seed/ , the client only learns rows satisfying
the query, nothing else.
Cost analysis. The computation cost at the server is O(#). Re-
gardless of the number of columns involved in a conjunctive query,
the client works on # numbers received from each server, and the
communication cost depends on the size of # integers, (as in the
case of the single keyword search algorithm).

5.3 Disjunctive Search
A disjunctive search (select * from table where name = ‘Jo’
or cost = 4) #nds all those rows that satisfy multiple query
predicates connected using ‘or’ over di!erent columns.
High-level idea. This approach works over multiplicative shares.
Let ,,:, ' be three values in three di!erent columns of a table. If
query predicates are either ,, :, or ' , then subtraction of the query
predicate will result in , = 0, : = 0, or ' = 0, and then, , ×: × ' = 0.
We do exactly the same overmultiplicative shares — servers subtract
the query keyword and multiply the answer.
Step-wise details. We provide detailed steps of disjunctive search:

(1) Client: creates multiplicative shares of 9 query predicates using
polynomials of degree one and sends them to servers. For 9 = 2
(and 9 ≥ 3) predicates, three (and four) multiplicative shares are
created and sent to S1,S2,S3 (and all four servers).

(2) Servers: subtract the 9 query predicates from each value of the
desired column, which is also in multiplicative share forms, and
then, multiply the output of any three columns (i.e., /9/30). Note
that 9 = 2 is a special case, and here, the output of two columns
are multiplied at S1,S2,S3. In other words, if there are 39 columns,
then servers, after subtraction, execute multiplication over groups
of three columns in each. Suchmultiplication will result in a polyno-
mial of degree three. Finally, the server multiplies PRG(seed/ ) [)],
adds PRG(seed$ ) [)], and sends /9/30 vectors to the client.

(3) Client: performs Lagrange interpolation on each /9/30 vector and
matches the )th position of each vector against PRG(seed$ ) [)]. If
it matches, then the )th row satis#es the disjunctive query. (Note
that since !2 uses at most four servers, the client can interpolate
the shares of four servers to recover the answer.)
Information leakage discussion and cost analysis: are pre-
sented in the full version [14].
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Figure 2: The model with combiner.

5.4 Optimizing Communication Cost
In the search algorithms developed in the previous subsections,
a client receives a vector of # numbers from both servers S1,S2
in the case of single keyword and conjunctive search, while may
receive /9/30 vectors (each with # numbers) from S1, . . . ,S4, (9 is
the number of query predicates in a disjunctive search). In practical
situations, a client may be geographically far away from servers,
with a limited network connection speed, and/or hold a weaker
machine. Here, the following can happen: (i) the processing time at
the client will increase, and/or (ii) transferring the data from the
servers to the client may increase the overall query processing time.
To reduce the computation time at the client and communication
between a server and a client, we provide a method that requires
an additional untrusted server, called combiner server, denoted
by S# ; see Figure 2. Before presenting the method, let us discuss
assumptions behind S$ .

Firstly, S$ is not trusted likewise servers S1, . . . ,S4. S$ only
knows the modulus used in the #ngerprint. S$ receives shares from
servers and computes modular addition or Lagrange interpolation.
While S$ knows both servers, we assume that !$ never sends the
data received from one server to another. Also, servers will not
send the additive shares to S$ . Such requirements are necessary to
preventS$ or servers to reconstruct the secret, i.e., the cleartext data.
Likewise, other servers S1, . . . ,S4, S$ also wishes to learn about
the original data, based on the received shares and the computation
it does. Thus, we need to prevent access-patterns and volume at S$
also andmust need to satisfy our Security De#nition 1. The role
of the combiner has been also considered in [16, 25, 46, 73, 75].
Method. This method is straightforward. Now, servers send the
output of the computation to S$ instead of sending it to clients. Im-
portantly, serversmust use PRG(seed# ) in Step 2 of the respec-
tive algorithms. In single keyword search or conjunctive search,
S$ performs modular addition under & and sends a single vector
to the client that matches the )th received vector’s value against
PRG(seed$ ) [)], 1 ≤ ) ≤ #. The matching )th index shows that the
)th row at servers satis#es the query. Note that now S$ sends only
# numbers to the client that does not need to perform modular ad-
dition. In disjunctive search, S$ performs Lagrange interpolation
over /9/30 vectors and sends interpolated vectors to client that
compares the )th value of the vector against PRG(seed) [)]1≤#≤! ,
and the matching )th index shows the )th row satis#es the query.
Security discussion. S$ must never learn the #nal answer after
performing modular addition or Lagrange interpolation. Since S$
does not know PRG(seed$ ) added by servers, S$ #nds all # num-
bers to be random. Thus, S$ cannot learn which rows satisfy the
query. Also, S$ performs an identical operation on each share re-
ceived from servers and always sends a vector of # numbers to the
client. Thus, access-patterns and volume are hidden from S$ .

Reason for adding PRG. Until now, one can check the necessity
of PRG(seed$ ): if server does not add such random numbers, then
S$ will learn which rows and how many rows satisfy the query.

6 FETCH OPERATOR
A fetch operator retrieves the desired rows containing a keyword.
To do so, #rst, the client needs to know the row id using the search
operators. Afterward, the client needs to fetch the row(s) obliviously.
A straightforward way for oblivious fetch is private information re-
trieval (PIR). It is worth noting that, in our setting, all servers store
data in shares form, not cleartext. Thus, any PIR schemes should be
modi#ed accordingly, in order to fetch shares obliviously. On top
of that, for practical implementations, we also need to use a limited
number of servers (unlike existing work [39, 44]). To achieve these
goals, we develop twomethods:multiplicative sharing-based method
(§6.1) and PRG-based method (§6.2) that uses additive shares. The
multiplicative sharing-based method simpli#es the model of [39]
and provides a practical scheme. The additive sharing method ex-
tends DPF [38], which was designed for cleartext processing. Both
these methods utilize four servers and are compared in §6.3.

6.1 Multiplicative Sharing-based Method
Row id

0 0 · · · 0 · · · 0 1
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 · · · 1 · · · 0 !

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 · · · 0 · · · 0

√
&

1 2 · · · " · · · √
& Column ids

6.1.1 High-level Idea.
Given a cleartext vector,
vec, of size #, containing all
zeros, except a single one at
the position that the client
wishes to fetch, we organize
vec into a matrix of . rows
and ' columns. For the purpose of simplicity, here, we assume
that . = ' =

√
#.4 Thus, only one of the cells (), 5) (i.e., row ) and

column 5 ) of the matrix contains one; otherwise, zero, as shown in
the matrix. Now, we create two vectors: .1=〈0, . . . , 0, 1# , 0, . . . ,

√
#〉

and .2=〈0, . . . , 0, 10 , 0, . . . ,
√
#〉. If we position-wise multiply each

row of the matrix by .1, then we will obtain the )th row of the
matrix after adding values of each column of the matrix. Now, we
can multiply the resultant row by .2 to get the desired value/row.

!2 implements exactly the same. Particularly, client sends .1 and
.2 vectors in multiplicative share form, and each of the four servers
implements exactly the same idea over multiplicative shares.

6.1.2 Details of the methods: are given below:
(1) Client: creates two row vectors .1 and .2, each of size √# and #lled

with zeros. Suppose, the client wants to fetch a row that is mapped
to the (), 5)th cell of the matrix of size √#×√

#, then the )th value of
.1 and the 5 th value of .2 contain 1. The client creates multiplicative
shares (or SSS) of .1 and .2 and sends them to four servers.

(2) Servers: organizes the data in a form of√#×√#matrix andmultiply
the 9 th values of .1 with each tuples in the 9 th row of the matrix.
After that, servers adds all attribute across all rows of each column
of the matrix, resulting in a single row containing√# tuples. Finally,
to the single row, servers position-wise multiply .2 vectors and add
4The reason for selecting a grid/matrix of

√
!×√! will be clear in the communication cost analysis.

In case, when
√
! results in a non-integer number, we #nd two numbers, say ' and 2, such that

' × 2 = ! and ' and 2 are equal or close to each other such that the di!erence between ' and 2
is less than the di!erence between any two factors, say ' ′ and 2′ of ! so that ! = ' ′ × 2′ .
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the output of each attribute across √# tuples, if the client wants to
fetch only (), 5)th row.5 Servers send the #nal output to the client.

(3) Client: receives shares of the desired row from the servers and
performs Lagrange interpolation to get the real values.
Information leakage. Based on the row vectors, this method can
never reveal to servers which row they return, since the row vectors
are in share form. Since servers perform identical computations on
each row, this also prevents access-patterns. Furthermore, servers
return either one row (in case of the client wants only one row) or√
# rows (otherwise), which prevents volume leakage.

Cost analysis. The computation cost at the server is O(#), while
at the client is O(+), where + ∈ {1,√#}. Each row vector contains√
# numbers, which enable the client to fetch + ∈ {1,√#} rows.

Note that if all the rows containing a query keyword exist in either
the same row or the same column of the matrix, we can fetch
all of them in a single communication round. Thus, to fetch + ∈
{1,√#} rows, the communication cost is O(√#). Since the minimal
communication cost can be achieved by organizing # tuples in
a matrix of the minimum size that can be achieved by a √

#×√#
matrix. Thus, we create a matrix of √#×√#.

6.2 Additive Share-based Method
[27] provides a trivial PIR scheme to obliviously obtain one bit

from two servers. This method can be extended to fetch )th
#∈{1,!}

additive share using four servers: Assume that there are two num-
bers ,,:∈{0, 1} such that ,−:=1 or 0 (depending on the value ,−:).
When we multiply (,−:) by a value ;=+1++2, the product, say z,
will remain ; or zero. Meanwhile, the expansion (+1++2) (,−:) =
,+1+,+2−:+1−:+2 can be split into four parts, and each part can
be executed over one of the four servers locally. A server having
partial information cannot learn the #nal result z, while a client
with ,+1,,+2,:+1,:+2 can know z. This method can be used to fetch
a 9 th row by creating two row vectors .1 and .2 of size #, such that
.1 [)]−.2 [)]=0,∀)∈{1,#}\{9} and .1 [9]−.2 [9]=1. This method in-
curs high communication cost of #-bits to fetch a single row. Below,
we propose a new method to reduce the communication cost.

6.2.1 High-level Idea. Our objective is to compress the row vec-
tors from #-bits to log#-bits at the client; while, at the server, to
decompress such vectors to size #, each. To do so, we identify Dis-
tributed Point Function (DPF) [38] as a natural #t for our oblivious
fetch scheme. DPF was designed to fetch a single value from cleart-
ext data, without revealing the value. We extend DPF to work over
additive shares. To do so, row vectors .1 and .2 can be recognized as
the additive shares of a point function * (+), to fetch 9 th row, where
* (+) = 1 if + = 9 ; otherwise, * (+) = 0. Due to space limitations,
we provide details of the method to extend DPF for additive shares
and its correctness in the full version [14].

6.3 Comparing Two Row Retrieval Methods
Both methods o!er di!erent security guarantees and e"ciency.
The multiplicative-sharing-based row fetch method is information-
theoretically secure, while the additive-sharing-based row fetch
method is computationally secure due to using a PRG, which is
5Note that if the client wishes to fetch ' ∈ {1,√!} rows that belong to a single row or column of
the matrix, the servers do not need to perform the second multiplication operation.

computationally secure. Simply put, in the additive-sharing method,
an adversary with in#nite capabilities may learn which row the
client wishes to fetch; however, the adversary can never learn the
data. Further, due to using PRG, the additive sharing-based method
is slower than another row fetch method (see Table 15 and Table 16).

7 EXPERIMENTAL RESULTS
This section discusses the scalability of !2, investigates the impact
of di!erent parameters on !2, and compares !2 against other sys-
tems. We used four mac2.metal AWS servers having 6 cores and
16GB RAM. We selected the same AWS machine as a combiner
S$ . Also, a similar machine is selected as a DBO/client. All such
machines were located in di!erent zones (which are connected over
wide-area networks), of AWS Virginia region. Dataset. LineItem
table of TPCH benchmark [13] with four columns 〈SupplyKey (SK),
PartKey (PK), LineNumber (LN), OrderKey (OK)〉 is used in experi-
ments. We created two tables with 1M and 10M cleartext rows and
treated SK values as strings and others as numeric data. Code: is
written in Java and contains more than 9K lines. Time: is calculated
by taking an average of 10 runs of programs, shown in seconds (s).

7.1 !2 Evaluation
This section investigates the following questions:

(1) howmuch time our algorithms take to produce secret-shared tables
and what will be the size of secret-shared data — Exp 1.

(2) how do !2 algorithms behave on di!erent sizes of data with a
single-threaded implementation — Exp 2.

(3) what is the impact of parallelism over query execution — Exp 3.
(4) what happens on increasing the number of columns in the conjunc-

tive and disjunctive search — Exp 4.
(5) what happens on increasing the number of rows to be fetched from

servers — Exp 4.
(6) how much data a client sends to a server, how much data a client

fetches from a server, and how such data impacts the overall query
execution time — Exp 5.

(7) how much better is the idea of using a combiner — Exp 6.
Exp 1: Share generation time and share data size.We create
four shares tables using the algorithm given in §4. Each share table
contains 9 columns: one for row-id and other columns for additive
andmultiplicative shares of SK, PK, LN, OK. Table 14 shows the time
to create shares and the average size of the share tables. Note that
the size of a share table increases due to keeping more columns and
storing each letter of a string as per the position in the dictionary.
Exp 2: Query execution performance. To evaluate the query
performance, we run !2 on both 1M and 10M rows using a single-
threaded implementation of each entity (we discuss the impact
of multiple threads later). Here, we execute conjunctive (CS) and
disjunctive search (DS) over OK and PK columns. Table 15 and
Table 16 show time for each operation at di!erent entities.
Maximum computation time at servers. Recall that !2 partitions
a selection query into a search and fetch query. In round one for
searching the quali#ed row-ids, !2 took at most 0.783s on 1M rows
and at most 6.523s on 10M rows using one thread. In round two
to fetch rows, the multiplicative-sharing-based (MSR) row fetch
method took 0.759s on 1M rows and 6.723s on 10M rows, while addi-
tive sharing-based row fetch method (ASR) took 0.950s on 1M rows
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Table 14: Exp1: Share generation time& average size of tables.
Rows Time for share creation & importing in MySQL Size of a share table Cleartext size
1M 7.2s (= 4.1 (share creation time) + 3.1 (import time)) 62MB 22MB
10M 77.3s (= 35.4 + 41.9) 638MB 221MB

and 8.548s on 10M rows. We study the impact of fetching di!erent
numbers of rows later. The reason for e"cient query processing
is twofold: (i) the computation at servers is simple (just addition,
multiplication, and modulo over integers), and (ii) servers do not
need to communicate among themselves, compared to existing
systems [19, 20, 30, 31, 44, 45, 72].
Maximum computation time at a client. Computation time for
the client for any operation is signi#cantly less than 1s (0.067s for
1M rows and 0.210s for 10M rows). Search queries took more time at
the client compared to row fetch methods. The reason is: in search
queries, the client works on either 1M or 10M numbers compared
to row fetch methods that interpolate only the desired rows.

Table 15: Exp 2: Time (s) breakdown on 1M rows via 1 thread.
Entity String

search
Number
search

Conjunctive
search

Disjunctive
search

Row Fetch
— MSR

Row Fetch
— ASR

Client 0.065 0.066 0.065 0.067 0.020 0.039
Server 0.718 0.516 0.631 0.641 0.723 0.911
Total 0.783 0.582 0.696 0.743 0.759 0.950

Table 16: Exp 2: Time (s) breakdown on 10M rows via 1 thread.
Entity String

search
Number
search

Conjunctive
search

Disjunctive
search

Row Fetch
— MSR

Row Fetch
— ASR

Client 0.208 0.205 0.210 0.201 0.029 0.070
Server 6.315 4.030 5.201 5.163 6.694 8.478
Total 6.523 4.235 5.411 5.364 6.723 8.548

Interesting observations. The #rst is related to search operation:
a search operation over strings takes more time than searching
a number, due to computing #ngerprints over additive shares of
strings. (Obviously, #ngerprint computation takes more time than
a simple subtraction in the case of numeric data.) The second ob-
servation is related to the row fetch method: A client takes more
time in ASR than MSR, since the client generates in total 4 vectors
for each server in ASR compared to generating two vectors to each
server in MSR. Also, a server took more time in ASR due to decom-
pressing the vectors (via running a PRG function), compared to
MSR in which servers only perform multiplication and addition.
Exp 3: Impact of parallelism. !2 executes identical operations on
the entire data; hence, multiple threads reduce the processing time.
To inspect this, we implemented multi-threaded server programs
for all algorithms. Programs create multiple blocks containing an
equal number of rows, and each thread processes di!erent parts of
data and executes the algorithm. The output of the program is kept
in the memory. Figure 3 shows that as increasing the number of
threads from 1 to 4, the processing time decreases. At 4 threads, !2
takes less than 1/2s for over 1M and less than 4s over 10M rows
for executing any operation. Since we used only 6-core machines,
increasing more than 4 threads does not help due to thrashing.
Exp 4: Impact of di"erent parameters. We study the impact of
di!erent parameters on !2 using 4-threaded implementation of !2,
as 4-threads took the minimum time to execute a computation.
(a) The number of columns in conjunctive and disjunctive
search. Figure 4a shows that as the number of columns increases
from 2 to 4 in a CS search, the computation time increases slightly,
as computing #ngerprints over more values. The computation time

(a) 1M Rows. (b) 10M Rows.
Figure 3: Exp 3: !2 performance on multi-threaded imple-
mentation at AWS. Time in seconds.

also increases a bit when executing 2DS vs 3DS. However, the
execution time of 4DS is signi#cantly more than 3DS. The reason is:
servers send two vectors corresponding to DS queries over 〈OK,SK〉
and 〈PK,LN〉; thus, S$ and client also work on more data to obtain
the #nal answer. Note that in 4DS, servers cannot multiply all four
column values; otherwise, client.
(b) Impact of the number of retrieving rows. Figures 4b, 4c show
that as the number of rows to be fetched increases, the computation
time also increases. Two interesting observations: (i) the time does
not increase linearly, as we scan/process the entire data only once for
fetching multiple rows, instead of scanning/processing the entire
data multiple times for each row. (ii) since our methods are designed
to fetch√# consecutive rows at a time, the time increases only when
we fetch additional √# rows. ASR method always took more time
than MSRmethod, due to the decompression function at the servers.
Exp 5: Data size and the impact of communication. In our
approach, servers/combiner send data to a client to answer a query.
Search algorithms: send more data from servers/combiner to the
client (# integers, where # is the number of rows in the table)
compared to fetch algorithms. In this case of search over 1M rows,
S$ sends at most 7.7MB data, while 77MB data in case of 10M rows.
A client sends only some numbers in any search operation.
Row fetch algorithms. In the MSR fetch method, the client sends
data of size at most 12KB in the case of 1M rows and 34KB for 10M
rows. The ASR fetch method requires the client to send data of size
at most 14KB in the case of 1M rows and 44KB for 10M rows. In
both methods, a server sends at most √# rows of size 24KB from
1M rows and 75KB from 10M rows.
Communication cost: may impact the overall performance of !2.
We considered three di!erent speeds of data transfer: slow (50MB/s),
medium (100MB/s), and fast (1GB/s). Data transfer time is negligible
over medium and fast speeds for both 1M and 10M datasets. In the
case of slow speed, the data transfer time is also negligible for
1M data, while takes only 1s for 10M data (to transfer 77MB #le).
Compared to processing time, all the approaches take negligible
time to transmit data, even in the case of 10M rows. Note that in all
algorithms over 10M, the computation time was at least 2.7s (see
Figure 3b), while the communication time is just only 1s. Thus, the
communication time does not a!ect the overall performance of !2.
Exp 6: Impact of the combiner S$ .While all the above experi-
ments include S$ , this experiment investigates the usefulness of
S$ by considering four cases for string search over 1M rows: (i)
servers and the client are geographically close to each other (di!er-
ent zones in AWS Virginia region) and connected at 10Gbps speed,
(ii) all servers, S$ , and the client are in AWS Virginia region and
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(a) Exp 4a: CS/DS. (b) Exp 4b: 1M Rows. (c) Exp 4b: 10M Rows.
Figure 4: Exp 4: Impact of di"erent parameters.

connected at 10Gbps speed, (iii) all servers and S$ are in di!erent
zones of AWS Virginia region, while the client is at our university
(NJIT) and connected at the speed of 200Mbps with S$ , and (iv)
servers are directly connected with the client at NJIT. The overall
query processing time was 0.739s, 0.783s, 0.989s, 1.4s for the four
cases respectively, while the client took 0.069s, 0.065s, 0.180s, 0.587s
for the four cases respectively. This validates the purpose of using
S$ to reduce burden on the client when a client is far from servers.

7.2 !2 vs Other Systems
!2 is information-theoretically secure; thus, we compare !2 against
systems o!ering the same level of security. While multiple
information-theoretically secure systems are developed by indus-
tries (e.g., Sharemind [20], SPDZ [30]-based systems), they are not
freely available. To give a perspective on query execution time and
compare !2 against those systems, Table 1 provides experimental
results given in the respected papers. Below, we compare !2 against
the following additive sharing-based systems: Jana [19], Waldo [33],
and Ciphercore [15]. Table 3 shows such results. Important to note
that the existing secret-sharing systems do not support the
large data and take more time compared to !2.
Download methods.We compare !2 against two download strate-
gies, as mentioned in §1. Overall, !2 outperforms such methods.
Jana [19]: supports only selection queries over additive shares in a
single round of communication between a client and a server, while
requiring servers to communicate among themselves for query
execution. Jana converts all non-desired rows into zero in additive
share form and returns the entire database to the client that #lters
the desired rows. Jana took more than 10 minutes to create shares
of 1M rows. For executing a selection query, Jana took ≈450s.
Waldo [33]: allows a client to know the presence/absence of a key-
word over additive shares. Waldo does not allow knowing row-ids
where the keyword exists and took ≈12s for searching a keyword.
Ciphercore [15]: supports only search operation using equality
operator in a single round of communication between a client and
a server, and requires servers to communicate among themselves to
execute queries. Ciphercore returns a vector containing 1 or 0 to the
client, where 1 means rows containing the query keyword. Current
version of Ciphercore does not support operations to fetch the
desired row. Since Ciphercore is proprietary software, the current
code does not allow us to #nd separate times to create shares and
time to execute a query. In other words, the current code requires
creating the share of the entire data before executing each query.
Using one thread, Ciphercore took more than 1 min for creating
shares and executing a search query over 1M rows, while !2 took
at most 8s (7.2s to create shares and 0.788s for a search query).
S3ORAM [45]: is a multiplicative sharing-based method to exe-
cute a search over only a single column via an ORAM-type index.

S3ORAM inherits all the weaknesses of ORAM, as discussed in §1.2.
Current code allows searching only unique random numbers and
incurs high space overhead by storing twice the amount of input
numbers. Current code does not allow importing any dataset. We
provide experimental results (taken from the paper) of S3ORAM
in Table 1. Note that, such numbers are not on our data.

8 RELATEDWORK
Secret-Sharing-based solutions. Additive [20] and multiplica-
tive [69] are the two famous secret-sharing techniques. Such
techniques perform addition over shares e"ciently locally at
servers, while the multiplication of shares requires communica-
tion among servers [18]. Sharemind [20], SPDZ [30, 31], Jana [19],
Conclave [72], and Waldo [33] use additive shares. PDAS [71], Ob-
scure [44], and [34, 74] use multiplicative shares. Such techniques
su!er from either query ine"ciency and/or information leakage
via access-patterns and/or volume and/or use a trusted party as in
Conclave, as discussed in §1. Table 1 compares such techniques.
In contrast, !2 o!ers highly e"cient query execution using both
additive and multiplicative shares, and also, prevents leakages from
both access-patterns and volume. !2 does not use a trusted party.
Information leakage via access-patterns. [24, 35, 42, 47, 51,
53, 55, 60, 61] discuss the impacts of revealing access-patterns
on encrypted data. To overcome leakages from access-patterns,
ORAM [40, 41, 63] and their improved version called PathO-
RAM [70] were developed. Such solutions have asymptotic complex-
ity of polylogarithmic in the index size. However, all such solutions
have multiple problems, as mentioned in §1. S3ORAM [45] provides
ORAM-type index for secret-shares, but su!ers from several prob-
lems. PIR, DPF, and FSS also hide access-patterns. !2 provides two
access-pattern hiding methods for row fetch: one is information-
theoretically secure and another is based on DPF for additive shares.
Information leakage via volume. [66] showed that even when
hiding access-patterns, an adversary can learn based only on vol-
ume. [17, 48, 65, 68] are recent volume-hiding techniques for
only encrypted data. These techniques incur signi#cant storage
overhead (by storing ciphertext that is at least twice the actual
data [17, 48, 65]) and show ine"cient query execution.

9 CONCLUSION
We develop !2 — e"cient and scalable techniques for selection
queries, based on both additive and multiplicative secret-sharing.
!2 does not reveal information from ciphertext and query execution
via both access-patterns and volume/output-size, simultaneously.
!2 uses #ngerprints to perform search operations over the shares.
The #ngerprints avoid communication among servers during query
execution, and this brings in e"ciency, as justi#ed by experiments.
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