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ABSTRACT
The conventional database buffer managers have two inherent

sources of I/O serialization: read stall and mutex conflict. The serial-

ized I/Omakes storage and CPU under-utilized, limiting transaction

throughput and latency. Such harm stands out on flash SSDs with

asymmetric read-write speed and abundant I/O parallelism. To

make database I/Os parallel and thus leverage the parallelism in

flash SSDs, we propose a novel approach to database buffering, the

LRU-C method. It introduces the LRU-C pointer that points to the

least-recently-used-clean page in the LRU list. Upon a page miss,

LRU-C selects the current LRU-clean page as a victim and adjusts

the pointer to the next LRU-clean one in the LRU list. This way,

LRU-C can avoid the I/O serialization of read stalls. The LRU-C

pointer enables two further optimizations for higher I/O through-

put: dynamic-batch-write and parallel LRU-list manipulation. The
former allows the background flusher to write more dirty pages

at a time, while the latter mitigates mutex-induced I/O serializ-

ations. Experiment results from running OLTP workloads using

MySQL-based LRU-C prototype on flash SSDs show that it improves

transaction throughput compared to the Vanilla MySQL and the

state-of-the-artWAR solution by 3x and 1.52x, respectively, and also

cuts the tail latency drastically. Though LRU-C might compromise

the hit ratio slightly, its increased I/O throughput far offsets the

reduced hit ratio.
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1 INTRODUCTION
The database buffer manager interacts with the underlying storage

with read and write operations. In conventional relational database

systems, numerous concurrent processes are involved in making

such I/O requests. For instance, foreground processes issue read

operations to fetch missing pages, and background flushers make

write requests to flush dirty pages for durability and checkpoint.

Unfortunately, conventional database buffer managers have two

inherent sources of I/O serialization when concurrent processes
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Figure 1: TPC-C Throughput: Vanilla, WAR [2], and LRU-C

issue their I/Os: read stall and mutex conflict. The I/O serialization

barely harms on hard disk with slow and symmetric read-write

speed and low parallelism. On flash SSDs with asymmetric read-

write speed and abundant I/O parallelism, however, the peril of

serialized I/Os stands out, making storage and CPU under-utilized

and thus limiting transaction throughput and latency [1, 2]. For

this reason, modern database systems still experience the problem

of I/O serializations when running on flash SSDs.

It is well known that upon buffer misses foreground processes

suffer from the read stall problem on flash storage with read-write

asymmetry [2]. That is, the read operation by a foreground process

is stalled until the slow write operation completes to secure a clean

frame [40]. Though those two I/O operations of read and write can

proceed in parallel, they have to be serialized just because they

happen to share the same buffer frame. The read stall problem is a

type of RW-serialization.
Another source of I/O serializations is the mutex conflict at the

buffer manager layer. The buffer manager taking the LRU (Least

Recently Used) replacement policy or its variant employs a single

mutex to protect the consistency of the LRU list from the concur-

rent accesses by multiple threads [12]. Each foreground process and

background flusher must obtain the LRU mutex first and hold the

mutex until the I/O operation ends. This protocol for acquiring and

releasing the LRU mutex will serialize the read I/Os among fore-

ground processes. As a foreground process scans the LRU tail while

holding the mutex, other processes have to wait for the mutex. We

call the mutex-induced ordering of read requests as RR-serialization
in the paper. In addition, as discussed later, the LRU mutex also

forces to serialize read and writes between foreground processes

and background writers (i.e., another type of RW-serialization).
I/O serialization elicits adverse effects on system utilization and

transaction performance on flash storage. First, foreground pro-

cesses waste CPU time while simply waiting for the preceding

operation to complete. Second, I/O serialization at the buffer layer

blocks the opportunity for parallel processing in storage, even when

their read or write operations are likely to target the different flash

channels/ways and thus proceed in parallel. Lastly, I/O serialization

worsens the transaction latency. Because synchronous reads are in

the critical path of an in-progress transaction [13], the time taken

2364

https://doi.org/10.14778/3598581.3598605
https://github.com/LeeBohyun/LRU-C
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598605
https://www.acm.org/publications/policies/artifact-review-and-badging-current


to finish the preceding I/O(s) is added to the critical path of the

I/O-serialized transaction, which prolongs its latency.

To make database I/Os parallel and thus to better leverage the

parallelism in flash SSDs, we propose a novel approach to database

buffering, called the LRU-Cmethod. It introduces the LRU-C pointer,

which is used to point to the least-recently-used-clean page in the

LRU list. With the list implementation of the LRU policy, the LRU-

clean page will refer to the first clean page from the LRU tail. Upon

page miss, LRU-C selects the LRU-clean page as the victim and

adjusts the LRU-C pointer to the next LRU-clean page. This way, a

page miss can be instantly served using the LRU-C page. As a result,

LRU-C avoids the read stall and minimizes the scanning overhead

in the LRU tail. All the dirty pages between the pointer and the LRU

tail are periodically flushed as victims by the background flusher.

The idea of LRU-C is not about a new victim selection policy but

a new I/O architecture between buffer manager and flash storage.

The main contributions of this paper are summarized as follows:

• We identify two sources of I/O serializations in the conven-

tional database buffer manager, read stall andmutex conflict,
which severely limit transaction throughput and latency, es-

pecially on flash storage with asymmetric read-write speed

and parallelism.

• As a principled approach to mitigate these I/O serializa-

tions, we propose LRU-C. It introduces the LRU-C pointer

to quickly select the least-recently-used-clean page from the

LRU list for replacement. Another critical role of the LRU-

C pointer is that it logically divides the LRU list into two

distinct regions, mixed and dirty. The idea of the LRU-C
pointer is simple, straightforward, yet novel and effective.

• The introduction of the LRU-C pointer enables two further

optimizations for higher I/O throughput: dynamic-batch-
flush and parallel LRU-list manipulation. With dynamic-

batch-flush, all dirty pages accumulated so far between

the LRU-C pointer and the LRU tail are flushed altogether,

which makes the write batch size dynamic and larger than

before. Moreover, as the LRU-C pointer divides the LRU

list into two regions, we introduce another mutex, LRU-D
to protect the dirty region. The original LRU mutex is now

used to synchronize the mixed region. This way, LRU-C

allows the foreground and the background threads to ma-

nipulate LRU concurrently and thus issue their read and

write requests in parallel to the storage.

• We prototype LRU-C by modifying the MySQL codebase

minimally. As shown in Figure 1 obtained from running

the TPC-C benchmark on flash SSD, LRU-C can outperform

the Vanilla MySQL (i.e., an I/O-tuned MySQL, as detailed in

Section 5.2.1) and the state-of-the-art WAR solution [2] by

3x and 1.52x, respectively. This indicates that LRU-C can

effectively resolve mutex collisions as well as read stalls,

making database I/Os truly parallel.

2 BACKGROUND
In this section, we explain two characteristics of flash memory

SSDs and describe the I/O architecture taken by the conventional

database buffer managers in detail. Then, we discuss three types of

I/O serializations inherent to the database I/O architecture.

Table 1: I/O Speed Asymmetry in Storage Devices

Storage Random IOPS (16KB) Asym. Ratio

Device Read Write (𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑒)

SSD-A† 190,622 33,866 5.6

SSD-B¶ 169,681 33,811 5.0

SSD-C⋄ 39,860 3,830 10.4

SSD-D∗ 80,433 12,536 6.4

HDD♯ 280 216 1.3

†
Intel P4101 NVMe SSD 1TB,

¶
Samsung 970Pro NVMe SSD 512GB,

⋄
Micron Crucial MX500 250GB,

∗
WD Blue SN570 500GB,

♯
Western

Digital WD10EZEX 1TB

2.1 I/O Asymmetry and Parallelism in SSDs

Asymmetric Read-Write Speed The read and write speeds of

NAND flash memory are asymmetric because it takes longer to

write a page than to read a page from flash memory chips. In

addition, the costly but inevitable garbage collection operations

further widen the gap between the two [45]. To assess the read/write

asymmetry in flash memory SSDs, we measure the random IOPS

(I/Os per Second) of four commercial SSDs and one hard disk by

running the FIO benchmark [4] with the queue depth of 32 for 30

minutes against each device with half-full of data. Table 1 presents

the result. The asymmetric ratio is given in the last column of the

table, calculated by dividing the read IOPS by the write IOPS. The

read IOPS in SSDs is typically at least five times larger than the write

IOPS. In contrast, the speed of read and write is almost the same

in HDD. To summarize, asymmetry ratios can vary for individual

devices, but it is a unique characteristic of every flash SSDs.

Parallelism Flash storage processes I/O requests by using in-

ternal parallelism at various levels [7, 25]. NAND flash package

consists of multiple chips, and a single chip is formed by multiple

planes. The flash controller communicates with the flash packages

through multiple channels. Channels are shared by multiple pack-

ages and can be accessed at the same time [26]. This way, blocks

can be accessed simultaneously across different chips. As a result,

flash storage can perform multiple I/O requests once in parallel. As

such, it is always desirable for the host system to allow different

threads to make their I/O requests in parallel, thus leveraging the

abundant parallelism in flash storage.

2.2 Database I/O Architecture
One prominent role of the buffer manager is to quickly age out the

rarely used pages from the buffer cache while keeping frequently

accessed pages cached. To leverage the locality in data accesses

and thus maximize the efficiency of limited cache size, the buffer

cache is usually implemented as a linked list of buffer frames and

managed according to its buffer replacement policy (e.g., LRU) [38].

When a foreground thread encounters a page miss, it first has to

obtain a free buffer frame to which the missing page will be read.

Below we detail the steps the foreground process follows at this

point as the background for our work. Throughout this paper, LRU

is assumed as the buffer replacement algorithm for the simplicity

of discussion. However, the problem of I/O serialization is equally
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applicable to other buffer replacement policies without loss of gen-

erality. Let us explain the overall process of buffer replacement

using Figure 2, focusing on the process of evicting dirty pages.

Page Read by Foreground Processes If a user thread requests

a free buffer frame to read a page from the disk, the buffer manager

goes through three stages to secure a free buffer frame. First, it

searches for a free buffer frame in the free list (Step 1). If there

is an available free buffer frame, it is used for read immediately.

Otherwise, if no free buffer is available from the free list, a victim

buffer frame has to be secured. To do so, the foreground thread

first scans the LRU list from the tail until a predefined scan depth

to find a clean buffer frame (Step 2). If a clean frame is not found

in the tail, a dirty page at the LRU tail is chosen for eviction, and

the foreground thread waits until the page is written to the disk

(Step 3-1). Once a free frame is added to the free list (Step 3-2),

the read request can finally be issued (Step 4). In this architecture,

evicting a dirty page costs disk write, so it is better to choose a

clean page within a predefined scan depth whenever possible when

considering transaction response time.

Page Write by Background Flushers Writes to the database

are asynchronous in nature. This is because database durability is

guaranteed by forcing redo logs at commit and many database en-

gines take a no-force policy for buffer management [19]. Therefore,

many database engines are equipped with background flushers to

take advantage of asynchronous writes [5, 9, 22, 42]. They use Linux

AIO to pre-flush dirty pages from the LRU tail. By pre-flushing dirty

pages, they aim to free frames in advance so that each foreground

process can immediately get a free frame from the free list upon a

buffer miss. As a result, foreground threads consume free pages in

the free list to execute read requests, whereas background flushers

periodically produce free frames.

LRUMutex and Contention Buffer frames in the LRU list are

frequently repositioned. For example, the foreground process moves

the hit page to its head on a page hit. In addition, the background

flushersmove dirty pages at the LRU tail to the free list after flushing

them. Therefore, multiple threads share and manipulate the LRU

list concurrently, including foreground processes and background

flushers. To protect the consistency of the LRU list, multi-threaded

DBMSs employ a global mutex, LRU mutex [21]. This mutex is a

synchronization mechanism to enforce that only one thread at a

given time can have access to the shared resource [12]. Therefore,

every thread must obtain the LRU mutex before accessing the LRU

list. Meanwhile, when a thread attempts to obtain an already locked

mutex, mutex contention occurs, and the thread must wait for the

other thread to release the mutex. This mutex contention can lead

to the degradation of transaction throughput.

2.3 I/O Serializations
Based on the description above, this section discusses two types

of I/O serialization: RW (Read-Write) and RR (Read-Read) serial-

izations and two reasons behind them. Recall that serialized I/O

requests cannot fully utilize the parallelism of flash storage.

RW-Serialization due to Read Stalls In Section 2.2 and Fig-

ure 2, it is explained that if a free buffer frame cannot be secured

during Step 1 or Step 2, the foreground process is required to ob-

tain a free buffer frame by the RAW (Read After Write) protocol [2]

(i.e., Step 3-1). This protocol involves reading a missing page after

writing a dirty page at the LRU tail, and therefore results in a read

stall [2], where the read operation is stalled until the write op-

eration completes. This paper defines a read stall as one of the

RW-serializations. When a read stall occurs, the foreground process

issues a page write, and then a page read in a serialized order.

To quantitatively verify the cost of read stalls, we modified the

MySQL source code to measure the time duration that each fore-

ground process has to wait upon a read stall. Then, while running

the TPC-C benchmark with the same configuration as in Table 2

for 30 minutes, we collected the wait times of all read stalls of more

than five million and then computed their average wait time. The

average wait time of all read stalls was 4.86 ms, and the worst wait

time was more than 500 ms. Note that the read latency in flash

devices is usually several hundred microseconds. Provided that

the time taken to flush dirty pages upon read stalls will be in the

critical path of the transaction execution, the cost of read stalls will

exacerbate transaction latency and throughput [2].

Mutex-Induced RW- and RR-Serializations Splitting a con-

tended mutex is a standard practice for improving the parallel

performance of multi-threaded programs. Therefore, there have

been many efforts to improve the scalability of the DBMS buf-

fer cache. For instance, MySQL/InnoDB [9] has recently divided

the global buffer_pool_mutex mutex protecting the whole buf-

fer pool into three mutexes, lru_list_mutex, flush_list_mutex,
and free_list_mutex. Despite the mutex separation, the LRU mu-

tex still remains as the main source of mutex contention, hindering

the I/O parallelism among processes. In a separate experiment, we

measured the degree of LRU mutex contention and confirmed that

a thread waits for about 1.3% of benchmark runtime to acquire

the LRU mutex. Considering the speed of DRAM operations, 1.3%

is never a negligible figure. Furthermore, among all other mutex

types, mutex contention occurs the most in the LRU list.

Such mutex contention frequently occurs when the foreground

and background threads compete for the same LRU mutex, espe-

cially in OLTP workloads with intensive writes. As depicted in

Figure 3, although the background flusher attempts to write dirty

pages in the LRU tail asynchronously in time, the LRU list is often
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occupied by foreground threads handling user transactions. Con-

sequently, the background flusher has to, although it works in the

background, wait for a foreground process to release the mutex.

That is, RW-serialization occurs when read and write requests is-

sued by the foreground and background processes are serialized

due to the shared mutex. Additionally, RR-serialization occurs when
foreground processes contend for acquiring the LRU mutex, as il-

lustrated in Figure 3. As a foreground process searches for a clean

victim page to replace with a page it is about to read, other fore-

ground processes wait for the LRU mutex to be released to serve

subsequent page read operations. Likewise, numerous processes

compete for the LRU mutex acquisition to access pages, especially

in the LRU tail. Such serialization worsens as the number of simul-

taneous users increases.

3 MOTIVATION: I/O SERIALIZATIONS ON SSDS
Although the existing database systems have such sources of I/O

serializations, they will rarely experience I/O serializations on top

of hard disks due to the slow and symmetric read-write speed and

the low parallelism.

First, foreground processes do not encounter the read stall situ-

ation. Because of the symmetric read-write speed in hard disks,

the background flusher can produce the free buffers with a similar

pace to which the foreground consumes the free page [2]. Thus,

foreground processes can obtain a frame to read the missing page

from the free page list or the LRU tail scan. In addition, the hard

disk has no or low internal parallelism [6]. Due to its slow mech-

anical read/write speed, the penalty of mutex contention barely

impacts transaction throughput. Hence, the performance gain from

parallelizing mutex-induced I/O serialization is limited. As will be

investigated in Section 5.2.7, the performance gain of LRU-C over

the Vanilla is very marginal when hard disks are used as a storage

device (refer to Figure 13). This result implies that threads hardly

experience serializations on the hard disk. We guess that for this

reason, the potential risk of I/O serializations remains unaddressed

with the existing database systems.

In contrast, on flash SSDs with fast but asymmetric read-write

speed and abundant I/O parallelism [6], the potential risks of I/O

serializations stand out, making storage and CPU under-utilized and

thus limiting transaction throughput and latency. First, foreground

Table 2: TPC-C Evaluation on MySQL/InnoDB

Buffer Size / DB Size (%) 5 10 15 20 25

Read Stall (%) 29 33 31 17 5

TPS 175 247 359 542 756

95% Latency (ms) 450 332 257 194 152

CPU Util. (%) 26 25 28 35 41

processes frequently encounter read stalls on flash SSDs [1, 2, 40]

due to the asymmetric read-write speed. This is because the read

operation is processed much faster than the write operation, lead-

ing foreground processes to quickly consume clean and free pages

in the event of page misses, while the background flusher lags

behind in producing free buffer frames. The read stall problem is

not MySQL-specific but common across most relational DBMSs,

including Oracle, PostgreSQL, XtraDB, and Zero DBMS [1, 2, 40].

Although the database writes are basically asynchronous with the

help of background flusher, database systems will inevitably exper-

ience read stalls on flash storage.

Second, the mutex-induced RR- and RW-serializations severely

under-utilize the abundant parallelism inside flash SSDs. For in-

stance, while the background flusher writes dirty pages at the LRU

tail, SSD can handle the random reads from foreground processes

in parallel. However, with the global LRU-mutex, the foreground
process has to wait until the mutex is released [40]. Thus, the read

and write are serialized due to the mutex, which decreases the SSD

utilization accordingly. A similar argument can be made for fore-

ground processes that compete for the mutex before scanning the

LRU tail in search of a clean victim page.

To investigate the impact of excessive serialized I/O requests

on various buffer pool sizes, we measure the ratio of read stall

along with three other performance metrics shown in Table 2 while

running the TPC-C benchmark with 1,000 warehouses and 64 con-

current clients using MySQL/InnoDB on SSD-A. According to the

second row of Table 2, 15-33% of page reads experience read stall

when the buffer ratio (i.e., the buffer cache size divided by the data-

base size) is below 20%. When the buffer ratio is larger than 20%, on

the other hand, the relative number of read stalls reduces inversely

due to an increased hit ratio [2]. As the number of read stalls de-

creases, TPS (Transactions Per Second) and tail latency improve,

as indicated in the third and fourth row of Table 2. The last row

of Table 2 shows how CPU utilization changes as buffer pool size

increases. Contrasting with the read stall ratio in the second row,

it is clear that the CPU usage is inversely proportional to the read

stall ratio. This is because the CPU idly waits for the write opera-

tion to end upon read stall. Additionally, the CPU’s time is wasted

when foreground processes repetitively scan dirty pages from the

LRU tail, exacerbating RR-serialization due to increased LRU mutex

wait time. In summary, I/O serializations degrade performance and

resource utilization.

4 DESIGN OF LRU-C
This section proposes a novel buffering architecture, LRU-C. Its goal

is to remove three I/O serializations among concurrent database

threads, which are discussed in Section 2.3, and thus to allow those

2367



Database
on Flash SSD

Buffer Cache

C D DDDDHead

LRU List

Tail

Step 3-1. Flush dirty region asynchronously 
(by Background Writer)

DC

Free Page List

Step 1-2. Choose the clean frame 
while scanning from LRU-C pointer

Step 3-2. Return freed buffersStep 1-1. Search 
for a free frame

LRU-C

LRU-C Pointer

Step 2. Read missing page

Figure 4: LRU-C: Design Overview

threads to issue their I/O requests in parallel. We explain its key idea,

basic architecture, and optimizations. We also discuss its drawback

in terms of hit ratio and describe the prototype implementation.

4.1 Key Idea
LRU-C stands for ‘Least-Recently-Used-Clean’, and the whole sys-

tem of LRU-C operates around the concept of the LRU-C pointer.
The pointer holds the clean page, least recently used among all

clean pages (i.e., not dirtified). In the case of the list-based LRU

implementation, it points to the first clean page from the LRU tail.

The pointer provides two immediate benefits with regard to

victim selection on page miss. First of all, the LRU-C pointer re-

moves the read stall problem. Unlike the RAW protocol described

in Section 2.2, the foreground reader process can immediately ob-

tain clean victim even when numerous dirty pages are left behind

the LRU-C pointer. Thus, it prevents foreground processes from

encountering the RW-serializations due to the read stall. Second,

the LRU-C pointer allows the foreground processes to find the

clean page more quickly (that is, just traversing only a few frames

from the pointer) during Step 2 in Figure 2. The shortened scanning

process enables the foreground process to release the LRU mutex

earlier with less CPU consumption. Accordingly, other foreground

threads can obtain the mutex earlier due to mitigated mutex conten-

tion. Consequently, LRU-C minimizes the RR-serialization among

foreground processes with long in-between intervals due to the

overhead of scanning the long LRU tail.

Some readers might think that LRU-C is similar to the CF-LRU

replacement policy [36] in a way that both schemes prefer clean

pages as victims. However, we would like to stress that LRU-C is not

just a victim selection but an architecture for parallelizing DB I/Os.

See Section 6 for detailed comparison between them. To summarize,

despite the simplicity of LRU-C design, the introduction of the LRU-

C pointer enables disentangling various I/O serializations inherent

in the existing buffer management schemes. Moreover, we also

extend LRU-C with further optimizations to truly parallelize read

and writes for flash storage, which is detailed in Section 4.3.

4.2 Architecture
Now, let us explain how foreground threads handle page misses and

the background flusher writes dirty pages. Upon page miss, each

Algorithm 1 The LRU-C Buffering Algorithm

1: LRU-C: the oldest clean page in LRU

2: LRU-C Pointer: the pointer to LRU-C

3: Output: 𝑃𝑣 : a victim page

4: function 𝑠𝑒𝑙𝑒𝑐𝑡_𝑣𝑖𝑐𝑡𝑖𝑚

5: Get LRU mutex

6: if LRU-C is dirty then
7: Update LRU-C pointer to point to next LRU-C

8: end if
9: 𝑃𝑣 = LRU-C

10: Update LRU-C pointer to point to next LRU-C

11: Release LRU mutex

12: return 𝑃𝑣
13: end function

foreground process follows the procedures explained in Figure 4

and Algorithm 1 to secure a free buffer frame for page read. First,

if any free buffer frame is available in the free page list, it simply

returns one of the free buffer frames (Step 1-1). However, if the

free page list is empty, it must select a victim page to replace the

requested page. LRU-C always chooses a clean page as a victim

by directly using the LRU-C page pointed by the LRU-C pointer

(Step 1-2). After using the victim, the LRU-C pointer needs to be

adjusted to secure another clean page for the next replacement. To

do so, we scan the LRU from the LRU-C pointer until it meets the

next clean page. The LRU-C pointer is also readjusted if the LRU-C

is dirty. As such, the mixed region shrinks while the dirty region

grows as the pointer moves toward the LRU head.

Meanwhile, the background flusher is responsible for flushing

the dirty pages in the dirty region after the LRU-C point. As il-

lustrated in Step 3-1, the background flusher process periodically

(e.g., once every second) flushes the dirty pages at the LRU tail

using the asynchronous I/O primitives. The background write is

assumed to flush the fixed number of pages (e.g, the value of the

LRU-scan-depth parameter in MySQL which is 1,024 by default).

In this respect, we call this type of flushing as basic LRU-C. Once all
dirty victims are flushed, background flusher returns free buffers

to the free page list (Step 3-2).

4.3 Two Optimizations
The introduction of the LRU-C pointer brings two further optimiza-

tion opportunities for higher I/O throughput: dynamic-batch-write
and parallel LRU-list manipulation.

Dynamic-Batch-Write In basic LRU-C, more dirty pages tend

to be stacked in the LRU tail than before. This is because the fore-

ground processes consume clean pages more quickly without en-

countering read stalls. However, as the background flusher only

writes a static number of dirty pages in the dirty region, it under-

utilizes the parallelism in flash storage. Moreover, the background

flusher cannot produce enough free buffer frames for the foreground

read process, as the limited free frames are returned to the free list.

Likewise, since the background flusher cannot keep up with the

pace of foreground read processes, LRU-C pointer approaches the

LRU head faster while dirty pages left behind the pointer remain
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unused. In the worst scenario, the LRU-C pointer reaches the LRU

head. In such cases, read stalls must occur.

Meanwhile, considering that the dirty pages in the dirty region

have to be flushed sooner or later, there is no reason to flush only

the fixed number of pages. Thus, whenever a background flusher is

triggered, we decided to flush all dirty pages left behind the LRU-C

pointer, instead of a fixed number of dirty pages. As a result, the

number of flushed pages will dynamically vary depending on the

location of the LRU-C pointer. That is, the background flusher takes

the dynamic-batch-write approach to keep pace with the read speed.

With the dynamic-batch-write optimization enabled, all dirty pages

accumulated so far in the dirty region are flushed altogether, which

makes the write pattern in LRU-C dynamic and larger.

This technique has two benefits. First, this will increase the

write bandwidth and make the SSD utilization higher [15]. Second

and more importantly, it will make the cold and dirty pages at

the LRU tail at the earliest time free and available to foreground

processes. As such, on page misses, more foreground processes

can immediately obtain a free frame from the free list, instead of

scanning the mixed region in search of a clean victim page. Recall

that discarding such clean pages in the middle of the LRU list can

reduce the hit ratio [36].

Parallel LRU-List Manipulation In the existing database buf-

fers, one global mutex, called LRU-list, is usually used to protect

the consistency of the LRU list from concurrent accesses of mul-

tiple threads. This mutex is a well-known point of contention for

I/O-intensive OLTP workloads [21], mainly because background

flusher and foreground threads compete for the mutex. In a separate

experiment, we observed that even when the background flusher is

triggered more aggressively, the transaction throughput does not

improve due to the mutex-induced RW-serializations between the

background flusher and foreground processes. Unfortunately, the

mutex contention will also limit the impact of dynamic-batch-write
optimization, as flushing more dirty pages will force foreground

processes to wait longer for the global LRU mutex.

Figure 5 shows that the LRU-C pointer logically divides the LRU

list into two regions: mixed and dirty regions. The dirty region

refers to the portion of the LRU list from the LRU-C pointer to

the LRU tail. The region consists of only dirty pages which are

not recently accessed and thus are soon to be evicted. The mixed

region refers to the rest of the LRU list, which consists of clean and

dirty pages. The foreground read thread selects a clean victim from

the mixed region, while the background flusher writes all the dirty

pages in the dirty region. In other words, the foreground processes

and the background flusher will access only mixed and dirty regions

of the LRU list, respectively. Therefore, even when two different

threads manipulate mixed and dirty regions concurrently, the LRU

list still remains consistent since the foreground process and the

background flusher do not invade the other’s region. Nevertheless,

they compete for the same mutex in order to start the operation.

Based on this observation, we decide to split the global LRU-list

mutex into two mutexes, LRU-M and LRU-D, which cover two dis-

joint regions of the LRU list chain. The LRU-D mutex is used to

protect the dirty region, while the LRU-M mutex is to protect the

mixed region. With the help of two mutexes, two regions of the LRU

list can be manipulated in parallel. Thus, we call this optimization

technique as parallel LRU-list manipulation. The main objective

of the optimization is to alleviate mutex contention between fore-

ground processes and the background flusher. As will be illustrated

in Section 5, it can considerably increase the transaction through-

put. To sum up, LRU-C is, to our best knowledge, the first work

which allows to split the LRU mutex for better I/O parallelism.

Let us explain how two mutexes work at their regions in the

LRU list. The LRU-M mutex protects the mixed region ahead of the

LRU-C pointer, while the new LRU-D mutex manages only the dirty

region behind the pointer. In rare occasions, the foreground thread

needs to acquire the LRU-D mutex when a page hit occurs against

a dirty page in the dirty region. Except for such rare cases, read

and write requests can be issued simultaneously by the foreground

processes and the background flusher, as depicted in Figure 5. Thus,

LRU-C can resolve the RW-serialization between them. Each thread

can concurrently manipulate the mixed and dirty region using the

LRU-M mutex and the LRU-D mutex, respectively. As a result, the

foreground reader and the background flusher can issue their read

and write I/Os independently in parallel. Also, note that the benefit

of short-scanning in LRU-C will be more outstanding as foreground

processes are no longer interfered with by the background flusher.

Despite the optimization of parallel LRU-list manipulation,

LRU-C is not free from RW-serialization: it incurs another RW-

serialization due to the checkpointing. Once the background flusher

completes flushing dirty pages behind the LRU-C pointer, it then

performs checkpointing afterward. To keep track of dirty pages

to be checkpointed, most DBMSs, including MySQL, Oracle, and

PostgreSQL, employ a dirty page list sorted by LSN (Log Sequence

Number), and the background flusher writes dirty pages from the

head of the dirty page list in small batches [10, 24, 39]. While dirty

pages are mostly located in the dirty region of the LRU list, they

can also be found in the mixed region. Therefore, to checkpoint

those dirty pages in the mixed region, the background flusher in

LRU-C also has to acquire the LRU-M mutex, and thus it has to

compete for the mutex with the foreground processes. In this way,

LRU-C also causes RW-serializations. However, note that the peril

of checkpoint-induced I/O serialization is insignificant. In many

cases, the background flusher will release the LRU-M mutex quickly

because most dirty pages to be checkpointed have already been

flushed while flushing the LRU tail and only a small number of

dirty pages to be checkpointed remains in the mixed region.
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4.4 Reduced Hit Ratio in LRU-C
On a page miss, LRU-C selects the LRU-C page instead of the dirty

page at the tail. This could reduce the hit ratio since the LRU-C page

is more likely to be accessed soon again than the tail page [36], ac-

cording to the principle of temporal locality. However, the hit ratio

gap between LRU-C and pure LRU is, as shown in Section 5, small

in practice. Moreover, the loss in hit ratio will be far outweighed

by the I/O performance benefit of LRU-C. Also, recall that the most

least-recently-used dirty pages at tail will be flushed as victim every

second by the background flusher.

4.5 Prototype Implementation
In order to demonstrate its effect, we prototype LRU-C bymodifying

the MySQL/InnoDB engine. The code modification are made only

at the buffer manager module (buf), and less than 300 lines of new

code are added. Three key changes made to the buffer module are as

follows. First, we add the LRU-C pointer and the dirty region mutex,

LRU-D, as new data structures to the buf_pool instance. Second, the
victim selection algorithm is altered to search the LRU-clean page

along the LRU list starting from the LRU-C pointer to the LRU head.

Third, we make two modifications for the page_cleaner_thread
to embody two additional optimizations of LRU-C. Prior to flushing

dirty pages, it acquires the LRU-D mutex (for the optimization of

parallel LRU-list manipulation). Then, it flushes all pages in the

dirty region (for the optimization of dynamic-batch-write). When

the page cleaner finishes its job, it releases the LRU-D mutex.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup and Workloads
All the experiments are conducted on a Linux system. We use a

computing platform with 64GB of main memory and Intel Xeon

Silver 4216 CPU with 32 cores. As the database storage, four com-

mercial SSDs from Table 1 are used. We also use a Samsung 850 PRO

256GB SSD as the database log device in all experiments. All NVMe

SSDs including SSD-A, SSD-B, and SSD-D are connected to the host

via PCIe interface and SSD-C is connected via SATA interface. For

MySQL server, we use the ext4 file system. The benchmark clients

are run with database processes on the same computing platform.

In all experiments, the database size is 100GB, the database page

size is 16KB, and the number of concurrently running client threads

is set to 64. For each experiment, we initialize the database storage

device using the dd command and then run the benchmark for 30

minutes after a 5-minute warm-up time. Each performance result

is the average result of three runs. We use two OLTP benchmarks,

TPC-C and LinkBench.

• TPC-C: To benchmark TPC-C workload, we use tpcc-

mysql [37] by Percona. The TPC-C variant enables per-

forming database workload replay and industry-standard

benchmark testing on MySQL. We use a 100GB database

(i.e., 1,000 warehouses).

• LinkBench: LinkBench [3, 17] is an open-source database

benchmark that simulates the social graph database work-

load on MySQL. The generated database consists of 100

million nodes, which is approximately about 100GB.
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Figure 6: TPC-C Throughput: Vanilla vs. LRU-C Versions

Table 3: Read Stalls and Mutex Waits in LRU-C (TPC-C)

Read Stall (%) LRU Mutex Wait (ms)

Basic LRU-C 1.56 0.18

+ Dyn.-Batch-Write 0.83 0.10

+ LRU-D Mutex 0 0.07

5.2 Evaluation Result
5.2.1 Baseline Performance. Let us first clarify the baseline per-

formance of MySQL. DBMSs have many configurable knobs which

can control their run-time behavior, and the knob-tuning can yield

higher performance when properly tweaked [14, 41, 43, 44]. To

investigate the effect of knob tuning on I/O serializations, we ad-

just key knobs critical to I/O performance and concurrency in

InnoDB [31–33], and measure transaction throughput. For example,

we tune the maximum IOPS used by the background flusher to

exploit high IOPS of SSDs by adjusting knobs relevant to the I/O

capacity such as innodb_io_capacity, innodb_io_cpacity_max,
and innodb_flush_neighbors. A separate experiment indicates

that the tuned MySQL outperforms default MySQL by 40% in terms

of transaction throughput. Throughout this paper, we use the tuned

MySQL as Vanilla for a fair comparison.

5.2.2 Performance Drill Down. In order to drill down the perform-

ance gains of the individual optimization technique and thus un-

derstand their contribution, we measure transaction throughput,

read stall ratio, and buffer pool mutex contention while running

the TPC-C benchmark with three different versions of LRU-C on

SSD-A, and present the throughput results in Figure 6 and the re-

maining two metrics in Table 3. We calculate the read stall ratio

by counting the number of single page flushes upon page miss and

dividing it with the number of total page miss, while performing the

benchmark. Also, we collect the total mutex wait time of threads

provided by the performance schema of MySQL [11]. In each ex-

periment, the buffer size is set as 10% of the initial database size.

Three LRU-C versions include the basic LRU-C version, LRU-C with

dynamic batch write, and LRU-C with dynamic batch write and

parallel mutex manipulation. They are denoted as Basic LRU-C,
+Dynamic-Batch-Write, and +LRU-D Mutex, respectively, in Fig-

ure 6 and Table 3. We analyze how the two optimization methods

affect the evaluation metrics by adding two optimizations in order.

The basic LRU-C improves the throughput over the Vanilla

MySQL by 1.63x mainly because it can eliminate most read stalls.

To be specific, the ratio of read stalls has reduced drastically from

33% (as given in Figure 2) to 1.56% (as presented in Table 3). Though

infrequent, however, the basic LRU-C still incurs read stalls, which
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can limit the throughput considerably [2]. When the number of

page misses momentarily spikes (e.g., as the working set changes),

the clean pages in the mixed region can be quickly consumed and

thus the LRU-C pointer can eventually meet the LRU head. In such

cases, even the LRU-C method has to choose the dirty page at the

tail of the LRU list as the victim, causing read stalls.

When the dynamic-batch-write optimization is applied, LRU-C

can further reduce the read stall ratio to less than 1%. This in turn

improves the transaction throughput by 33%. By flushing more dirty

pages in the dirty region in batch, the LRU-C with dynamic batch

write enabled can generate more free buffer frames faster than the

basic LRU-C. Thus, the optimization technique enables to close the

gap between the free buffer consumption rate by foreground pro-

cesses and the free buffer production rate by the background flusher.

Because of the contention for the LRU-mutex, however, these two
threads still have to wait for each other’s work to complete.

By introducing the LRU-D mutex, the parallel LRU-list manipu-

lation optimization allows foreground processes and background

flusher to access the mixed and dirty region of the LRU-list inde-

pendently and thus to issue their I/O requests in parallel. As a result,

the optimization can further improve the throughput by 40%.As

shown in the third column of Table 3, the average mutex wait time

is reduced by 27%. Moreover, read stalls are completely eliminated.

5.2.3 Run-time Performance. This section compares the perform-

ance of LRU-C with Vanilla, WAR [2], and CF-LRU [36] in terms of

throughput, system utilization, latency, and hit ratio.

Throughput LRU-C can improve the performance mainly by

parallelizing read and write requests that were once serialized due

to read stalls and mutex conflicts. As shown in Figure 7a, LRU-C out-

performs Vanilla by three folds across different buffer sizes ranging

from 5% to 25%. While WAR outperforms Vanilla by two folds by

avoiding read stalls, it still underperforms LRU-C considerably. This

is because WAR still serializes I/Os due to the LRU mutex, whereas

LRU-C is free from such mutex-induced serializations. First, as in

the vanilla MySQL, a foreground process in WAR can experience

RR-serialization upon page miss. That is, the process must wait

for the LRU mutex while another process is scanning the LRU tail.

Second and to be worse, once a foreground process does not find a

clean victim from the LRU tail, it has to, in some cases, wait for the

background flusher to empty TWB (Temporary Write Buffer) [2].

That is, it encounters another type of RW-serialization. These two

factors can explain the throughput gap between WAR and LRU-C

in Figure 7a.

Table 4: CF-LRU Performance: Varying the Scan Depth

lru_scan_depth 512 1,024 2,048 4,096 8,192 16,384

TPS 243 247 255 346 329 316

Read Stall Ratio (%) 34 33 31 5 2 1

Also, we compare LRU-C with CF-LRU (Clean-First LRU), a

flash-aware buffer replacement policy [36]. To emulate CF-LRU

in InnoDB, we modify the value of the innodb_lru_scan_depth
parameter according to the equation that defines the window size of

CF-LRU [36]. The parameter determines the number of pages to be

scanned from the LRU tail when searching for a clean frame upon a

page miss. We run the TPC-C in the CF-LRU mode by varying the

buffer pool size from 5% to 25% and represent the corresponding

TPS values in Figure 7a. The performance gains of CF-LRU over the

default scan depth (i.e., 1,024) in all cases range between approx-

imately 10% and 40%, a limited gain compared to WAR and LRU-C.

To better understand the impact of the window size in CF-LRU on

performance, we measured the transaction throughput while run-

ning the TPC-C benchmark on SSD-A with a 10% buffer pool size.

We varied the scan depth for the 10% buffer size from the default

value of 1,024 to 512, 2,048, 4,096, 8,192, and 16,384, respectively,

and presented the results in Table 4. The transaction throughput

peaks at a scan depth of 4,096 due to reduced read stalls but then

declines with larger scan depths. This is because CF-LRU reduces

read stalls, but at the expense of a longer scanning time for larger

scan depths, which exacerbates the mutex-induced RR-serialization

among foreground processes in need of free buffer frames. These

results confirm that I/O serializations cannot be addressed solely

by favoring clean pages as the victim over dirty ones.

To evaluate the effect of LRU-C on other workloads than TPC-C,

we run the LinkBench workload on SSD-A with the same configur-

ation as in the experiments in Figure 7a and present the result in

Figure 7b. LRU-C processes twice more operations per second than

the Vanilla, 78% more than CF-LRU, and 42% more than WAR, re-

spectively. Given that the read-to-write ratios in the two workloads

are almost the same [2], we expected that the gain in LinkBench

would be similar to that in TPC-C. However, the performance gain

in LinkBench is smaller than our expectation. This is partly because

the LinkBench workload is more CPU-intensive than TPC-C; thus,

the CPU power of the system used in the experiment limits the
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Table 5: IOPS, Bandwidth, and CPU Utilization (SSD-A)

IOPS (16KB) Bandwidth (MB/s) CPU Util.

Read Write Read Write Total (%)

Vanilla 6,860 3,968 109 62 171 24

WAR 13,887 6,336 222 99 321 79

LRU-C 25,510 7,424 408 116 524 84

FIO (R:W=2:1) 28,685 14,779 459 236 695 10

FIO (R:W=4:1) 39,755 11,222 636 179 815 9

effect of LRU-C. Given the large performance disadvantage of CF-

LRU compared to LRU-C and WAR on both TPC-C and LinkBench,

we do not include CF-LRU in our remaining experiments.

CPU and I/O Utilization Table 5 summarizes the average

value of read-write IOPS, I/O bandwidth, and CPU utilization meas-

ured while running the TPC-C benchmark on SSD-Awith the buffer
size of 10% in each of three MySQL modes. We obtain those met-

rics using the iostat utility provided in the Linux. As is shown in

Table 5, all measured values of three MySQL modes are consistent

with transaction throughput in Figure 7. Table 5 also presents the

metrics obtained from running two synthetic I/O workloads.

Let us first discuss the benefits of LRU-C in terms of I/O metrics.

First of all, LRU-C has higher write IOPS than Vanilla and WAR.

This is because the dynamic-batch-write optimization flushes all

the dirty victims left behind the LRU-C pointer, LRU-C can obvi-

ously achieve higher write throughput than WAR as well as Vanilla.

Second, the read-write ratio for LRU-C (roughly 4:1) is notably

higher than that of Vanilla and WAR (approximately 2:1). This is

mainly due to the decreased hit ratio in LRU-C. As discussed in

Section 5.2.3, the design of LRU-C trades hit ratio for higher I/O

throughput, as with CF-LRU [36]. For instance, in the experimental

setting for Table 5, the miss ratio in LRU-C is 25% higher than that

in Vanilla (see the third column in Table 7), yielding more reads.

Table 5 indicates that LRU-C uses about three times more I/O

bandwidth than Vanilla. It would also be meaningful to compare

their bandwidths with the peak bandwidth of the device. To obtain

the peak I/O performance of the device under the same read-write

ratio of Vanilla and LRU-C, we measure the random read and write

IOPS of 16KB pages on SSD-A using the FIO tool [4] with two

read-write ratios of 2:1 and 4:1 and calculate the I/O bandwidths

from the measured IOPSs. The results are presented as the last

two rows in Table 5. Compared to the measured full bandwidths of

SSD-A, LRU-C utilizes about 64% of the limit (i.e., 5th row), whereas

Vanilla utilizes only about 25% of the limit (i.e., 4th row). This result

confirms that LRU-C can leverage the I/O potential of the SSD

device much better than WAR and Vanilla, although there is still

some room for further optimization.

In terms of CPU utilization, as such, LRU-C is superior to Vanilla

and WAR. Because I/O serializations no longer block foreground

processes, CPU cores will be more active in LRU-C. In the case

of Vanilla, once most foreground processes are read-stalled, CPU

cores become idle. In addition, RR serialization remains unresolved

even in the case of WAR without read stalls. As the foreground

thread unnecessarily scans dirty pages repeatedly in the LRU tail

Table 6: Transaction Latency (TPC-C, Buffer=10% SSD-A)

(unit: ms) Avg Latency 95th Latency 99th Latency

Vanilla 4.04 332.16 583.05

WAR 1.95 380.83 754.27

LRU-C 1.32 53.01 391.26

Table 7: Miss Ratio Comparison

Buffer Size / DB Size (%) 5 10 15 20 25

Miss Ratio (%)

Vanilla 5.8 3.5 2.3 1.6 1.1

LRU-C 7.0 4.4 3.1 1.9 1.2

LRU-C/ Vanilla 1.21 1.25 1.36 1.21 1.04

for a clean page, it wastes the CPU cycle during the process while

exacerbating mutex contention.

Transaction Latency The transaction tail latency holds sig-

nificant importance as much as the transaction throughput be-

cause it can negatively impact user experience and client confid-

ence [13, 18]. Hence, online service providers must proactively

address tail latency to support service reliability and avoid monet-

ary losses accordingly. LRU-C can reduce the transaction latency by

eliminating the write latency from read stalls and mutex-induced

serializations from the critical path of transactions.

To verify this effect, we measure average, 95th, and 99th transac-

tion latencies while running the TPC-C benchmark in Vanilla, WAR,

and LRU-C and present the results in Table 6. LRU-C considerably

reduces the overall transaction latency and narrows the latency

distribution: the average, 95th, and 99th percentile latency of LRU-C

is 66%, 84%, and 33% lower than the Vanilla, respectively. LRU-C

also outperforms WAR by far all in three latencies. In the case of

WAR, its 95th and 99th latencies are even longer than Vanilla. This

is because foreground read processes must wait for the background

flusher to complete flushing all the dirty pages in TWB.

Trading Hit Ratio for Higher I/O Throughput LRU-C sac-

rifices a small proportion of hit ratio by selecting warmer clean

pages as a victim upon page miss. Because of such victim selection

method, LRU-C has a higher possibility to evict pages that are soon

accessed in the near future, thus increasing the miss ratio [36]. To

verify the effect of LRU-C on miss ratio, we measure the hit ra-

tios while running the same TPC-C benchmark using Vanilla and

LRU-C, and present their miss ratio (i.e., 1 - hit ratio) in Table 7.

On average, the miss ratio of LRU-C is 20-30% larger than that of

Vanilla. This partially accounts for why the read ratio of LRU-C is

higher than Vanilla in Table 5. Although LRU-C compromises the

hit ratio, its I/O performance gain from parallelized I/Os can far

outweigh the reduction in the hit ratio.

5.2.4 Effects of Varying Read-Write Ratio. Recalling that the main

goal of LRU-C is to make foreground read processes free from being

stalled by I/O serializations, its effect is highly dependent on the

relative ratio of reads and writes in the workloads. In particular,

its impact is expected to reduce as the workload becomes read-

intensive. To evaluate the effect of LRU-C under the varying read
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and write (R:W) ratios at the block I/O layer, we run the TPC-C

benchmark on SSD-A for four different R:W ratios, including 1:1,

2:1, 3:1, and 4:1, and the results are presented in Figure 8. In each

experiment, the buffer size is set as 10% of the database size. The

R:W ratio under the default transaction mix in the TPC-C workload

is about 2:1. For other read/write ratios, we empirically adjusted the

percents of five transaction types to achieve the desired read/write

ratio. For example, for the R:W ratio of 4:1, the ratio of the read-

only stock transactions is increased from 5% to 29% while that of

the update-heavy new-order and payment transaction is decreased

from 43% to 30%, respectively.

As expected, Figure 8 shows that the relative performance gain

of LRU-C over Vanilla and WAR shrinks as the R:W ratio increases.

This is mainly because read stalls decrease as the workload becomes

read-intensive [2]. Nevertheless, in the read-intensive case of R:W

= 4:1, LRU-C still outperforms Vanilla by two folds while WAR

does only up to 35%. As the ratio of read stall diminishes in read-

intensive workload, the effect of WAR also does. This is because

the main role of WAR is to reduce read stalls. In contrast, LRU-C

still improves throughput over Vanilla by two folds even in read-

heavy workloads with less read stalls. This indicates that LRU-C is

effective in mitigating mutex contentions as well as read stalls.

5.2.5 Effect of Multiple Concurrent Threads. To investigate the ef-

fect of LRU-C under different numbers of concurrent client threads,

we measure the TPS (transactions per second) from running the

same TPC-C benchmark used for Figure 7a using Vanilla MySQL

and LRU-C, respectively, while varying the number of client threads

from 8, 16, 32, 64, and 128. The experiment results are plotted in

Figure 9, from which we make an intriguing observation. As the

number of concurrent threads increases from eight to sixteen, the

TPS of Vanilla halves while that of LRU-C increases by 50%.

With eight threads, the TPS of vanilla MySQL is relatively high.

As the number of concurrent threads is identical to that of buffer

pool instances, each thread can read and write to cached pages to

a different buffer pool instance. Thus the mutex conflict between

concurrent processes rarely occurs. Therefore, Vanilla does not

 0
 100
 200
 300
 400
 500
 600

1 2 4 8

1.2x

1.5x

1.8x
2.0x

TP
S

The Number of Channels in SSD

Vanilla
LRU-C

Figure 10: Impact of Device Parallelism

suffer from I/O serializations with eight threads. For this reason,

the TPS of LRU-C is almost the same as that of Vanilla. However,

there are excessive concurrent users in real-world workloads [47].

Thus, in realistic cases (e.g., 64, 128 clients), the mutex contention

partly causes the vanilla MySQL to halve its TPS. In addition, as

the number of concurrent threads increases and thus multiple fore-

ground threads consume the free buffer frame faster, foreground

processes start encountering the read stalls.

In contrast, the TPS of LRU-C scales as the number of concurrent

threads increases from eight to 32. LRU-C can be less effective with

smaller number of concurrent threads because Vanilla is also free

from mutex contention and read stall. However, the efficacy of

LRU-C is prominent when the number of threads increases to 128.

By reducing the mutex collision and minimizing I/O serializations,

LRU-C improves the buffer cache’s concurrency and scalability.

5.2.6 Effect of Device Parallelism. The multi-channel architecture

of SSD provides high I/O parallelism. To see how LRU-C behave at

different degrees of parallelism, we run the TPC-C benchmark the

Cosmos+ OpenSSD [27] while reducing the number of channels in

the board from eight to one. Even with the configuration of one

channel, the way-level parallelism of eight still exists. We generate

a 10GB TPC-C database (i.e., 100 warehouses) and use a 1GB buffer

size (i.e., 10% of the database size).

As shown in Figure 10, LRU-C consistently outperforms Vanilla

across all degrees of parallelism. In particular, as expected, as the

degree of parallelism gets higher, the relative performance gap,

as well as the absolute performance gap, are widening between

the two. This result confirms that the parallelized I/Os in LRU-C

will benefit more as more parallelism is available from the storage

device. Thus, as the degree of parallelism in commercial SSDs is

ever increasing, LRU-C becomes more beneficial accordingly.

5.2.7 Effects of Flash Device Type. To verify the impact of LRU-C

on other SSDs with different I/O performances, we run the TPC-C

benchmark on three other SSDs in Table 1. We also evaluate the

effect of buffer size by varying it from 5% to 25% of the database

size. The result in Figure 11 indicates that, regardless of SSD type,

LRU-C outperforms Vanilla by at least 1.7x and up to 5.4x.

The effect of LRU-C varies depending on the I/O performance

and parallelism in SSDs. In the case of SSD-B having similar IOPS

capacity and architecture with SSD-A, the relative gap among the

three schemes shows a similar trend with that in SSD-A. However,
in the case of SSD-C with low IOPS, the relative performance gains

of LRU-C and WAR over Vanilla are much larger than that in SSD-A
and SSD-B. In particular, because of the slow write speed in SSD-C,
Vanilla suffers from read stalls. In comparison, as shown in Fig-

ure 11c, the gain of LRU-C is relatively small because even Vanilla
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Figure 11: TPC-C Throughput: Three Different Flash SSDs
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Figure 12: LRU-C on Cloud Storage

becomes CPU-bound on SSD-D. We conjecture that the performance

gap is widened when tested on a system with more CPU power.

LRU-C on Cloud Storage To verify the effect of LRU-C on

cloud storage, we also run the TPC-C benchmark on two cloud

systems: GCP (Google Cloud Platform) [8] and Azure [30]. The

storage options used in our cloud experiments are cloud block

storage connected to compute instances over the regional data

center network. For GCP, we use an n2-standard-8 compute engine

with eight processors, 64GB memory, and a persistent SSD disk

for database storage. For Azure, we use a standard F8s v3 compute

engine with eight vCPUs, 16GB memory, and a persistent SSD for

database storage. We create a 10GB TPC-C database and run the

benchmark by changing the buffer size from 10% to 25% of the

database size on both cloud platforms.

The experiment results in Figure 12 clearly indicate that LRU-C

outperforms Vanilla andWAR also on both cloud platforms. Accord-

ing to Figure 12a, in GCP, LRU-C achieves 2.57x better throughput

than Vanilla and 1.25x higher throughput than WAR. In Azure,

LRU-C outperforms 1.49x and 1.23x than Vanilla and WAR, respect-

ively, as shown in Figure 12b. The transaction throughput of Vanilla

MySQL in Azure is higher than that in GCP because the cloud I/O

performance of the former is better than that of the latter. In fact, we

observed that the IOPS in Azure was higher than that in GCP while

running Vanilla MySQL. Meanwhile, note that the throughputs of

LRU-C are similar on both platforms. In fact, with LRU-C, both

systems are CPU-bound (i.e., their CPU utilizations are more than

95%.) As such, the relative performance gain of LRU-C over Vanilla

is less in Azure than in GCP. The performance gain of LRU-C is

expected to be higher with more powerful CPU options. Though

the network latency does exist on cloud platforms [28], the I/O wait

time due to I/O serializations still impacts transaction throughput
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Figure 13: TPC-C Throughput on Hard Disk

far more than the network latency [2]. Therefore, LRU-C is effective

also on network-attached flash devices in cloud platforms.

Effects on Hard Disks For a comparison purpose, we measure

the throughput of Vanilla, WAR, and LRU-Cwhile running the same

TPC-C benchmark used for Figure 11 on the hard disk from Table 1,

and present the result in Figure 13. As expected, there is almost

no performance gap between LRU-C and Vanilla. Because the hard

disks have the same symmetric read speed and no parallelism, the

Vanilla MySQL barely experiences the I/O serializations, so there is

no room for performance improvement by the LRU-C method.

6 RELATEDWORK
In that LRU-C is a flash-aware buffer management solution to avoid

the I/O serializations and also to prioritize the read operationswhich

are critical to transaction performance, several types of existing

works are related: flash-aware buffer replacement [35, 36], read stall

avoidance [2], prioritized read in flash devices [27, 34], flash-aware

database systems [20, 29], database buffer management optimiza-

tions [5] and mutex optimization for buffer management [23].
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Flash-aware Buffer Replacement Scheme Taking into ac-

count the imbalance of read and write costs in flash storage, a few

flash-aware buffer replacement schemes including Clean-First LRU

(CF-LRU) [36] have been proposed. Interestingly, the idea of fa-

voring clean pages for eviction has been opted even for the hard

disks [22]. LRU-C is common with CF-LRU because both prefer

clean pages as victims, but they differ in several ways. First of all,

LRU-C is not just a buffer replacement policy but a new buffer

management architecture. Second, CF-LRU does not intend to ad-

dress the I/O serializations. As demonstrated in Section 5.2.3, I/O

serializations cannot be disentangled simply by taking the CF-LRU

replacement policy. To address the problem more properly, LRU-C

introduces the LRU-C pointer, and the LRU-D mutex provides two

optimizations. Third, while any buffer manager taking the CF-LRU

policy has to scan the same dirty pages in the LRU tail repeatedly,

LRU-C need not have to do so with the help of the LRU-C pointer.

Read Stall Avoidance Protocol Recently, the WAR (write-

after-read) protocol has been proposed as a new buffer management

scheme to avoid the read stall problem [2]. It is common with LRU-

C in that both addresses read stall problems. However, as shown in

Section 5, LRU-C outperformsWAR considerably by solving the RR-

and RW-serializations as well. Also, LRU-C has a few advantages

over WAR, such as its simplicity in design and implementation.

Unlike WAR requiring new memory resource, TWB, and several

non-marginal algorithmic changes, LRU-C adds only two new data

structures, the LRU-C pointer and the LRU-D mutex, to the existing

list-based data structure and requires natural and moderate code

extension for the existing buffer management module.

Prioritized Reads in Flash Storage Because the read oper-

ation is critical to the latency as well as the throughput of I/O-

intensive applications, the flash storage controllers have introduced

a few features which prioritize the read operations [1, 16, 27, 34].

One example is to suspend the preceding writes or even erase op-

erations queued at a flash chip so as to serve the following read

operations first, thus reducing the read latency [27]. Though effect-

ive in reducing read latency [46], the read prioritization technique

is orthogonal to the I/O serialization problem originating from the

host buffer cache layer [1]. That is, while the technique intends to

resolve the interference between writes and reads at the channel

level of the SSD, it is barely effective once the reads are stalled at

the host buffer cache layer and therefore are not issued to the stor-

age devices. Recently, as a new storage interface for flash storage,

the fused read and write (RW) command is proposed to address

the read stall problem by requesting both read and write requests

with a single command to the storage [1]. The read request can be

immediately served once the dirty page is copied to the storage

buffer. Though quite novel and effective, it is a hardware-based

solution. In contrast, LRU-C is purely software-based. Moreover,

LRU-C addresses two other I/O serializations.

Flash-aware Database Systems A few proposals about flash-

aware database systems have been made [20, 29]. Their main design

objective is to minimize the I/O stack overhead on flash storage, not

to address the I/O serialization problem. Because LeanStore [29] and

DANA [20] are also based on the background writer, and the read

latency is critical to the performance, the I/O serialization problem

still persists in them. As such, they will benefit from LRU-C.

Buffer Management in Other DBMSs Like MySQL, Oracle

also takes a variation of LRU to keep hot pages in the buffer cache.

Oracle also scans for a clean page until designated scan depth upon

page miss. But the difference between MySQL is that Oracle moves

the dirty pages encountered during the scanning process to the

LRU-W list [5]. Likewise, moving dirty pages in the LRU tail to

a separate list removes the repetitive scanning process, which is

common with LRU-C. However, the mutex overhead still exists

when moving dirty buffer frames from the main LRU list to the

LRU-W list. To be worse, when the LRU-W list becomes full, all the

foreground processes have to wait until all dirty pages in the list

are flushed, which can be considered as another form of read stall.

In contrast, LRU-C is free from mutex contention and read stall.

Mutex Optimization for Scalable Buffer Management To

our best knowledge, Shore-MT [23] is one of the first DBMS engines

aiming at making buffer management scalable by addressing two

types of mutex conflicts in the buffer manager. First, it reduces

mutex contention inside the buffer pool by slicing the global mutex

of a hash table so that a single mutex can protect a single hash

bucket. Second, the buffer manager of Shore-MT using the clock

algorithm reduces RR-serializations among reader processes while

scanning the ring list for a victim page upon page miss.

With regard to mutex-related optimizations, LRU-C differs from

Shore-MT in at least two ways. First, the LRU-C pointer enables

each foreground process to get a clean frame faster and accordingly

minimizes the LRU-M mutex holding time upon page miss. Second,

introducing the LRU-D mutex allows the background flusher and

foreground process to manipulate two regions of the LRU list con-

currently and thus avoid the RW-serializations between them.

7 CONCLUSION
This paper elaborates on why the conventional database buffer

managers cause the I/O serializations on flash storage with asym-

metric read-write speed and high parallelism. To make the database

I/Os parallel and thus leverage the parallelism in flash storage, we

propose a simple but effective solution, LRU-C. By introducing

the LRU-C pointer, which points to the first clean page from the

LRU tail, LRU-C allows a page-missing foreground process to find

a clean victim frame quickly and, more importantly, to avoid the

read stall problem. The LRU-C pointer also enables the background

writer to flush all dirty pages left behind the pointer in a batch,

thus allowing higher write throughput. The introduction of the

LRU-C pointer dissects the LRU list into two regions, mixed and

dirty regions. Hence, by introducing an additional mutex, LRU-D,
LRU-C parallelizes database I/Os. In these ways, LRU-C can fully

leverage the internal parallelism in flash storage, thereby enhancing

CPU and I/O utilization accordingly.
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