
SDP���: A Semi-Decentralized Framework for
Heterogeneity-aware Pipeline-parallel Training

Xupeng Miao∗

Carnegie Mellon University
xupeng@cmu.edu

Yining Shi∗

Zhi Yang∗

Peking University
shiyining@pku.edu.cn
yangzhi@pku.edu.cn

Bin Cui∗†

Peking University
bin.cui@pku.edu.cn

Zhihao Jia
Carnegie Mellon University

zhihao@cmu.edu

ABSTRACT

The increasing size of both deep learning models and training

data necessitates the ability to scale out model training through

pipeline-parallel training, which combines pipelined model par-

allelism and data parallelism. However, most of them assume an

ideal homogeneous dedicated cluster. As for real cloud clusters,

these approaches su�er from the intensive model synchronization

overheads due to the dynamic environment heterogeneity. Such a

huge challenge leaves the design in a dilemma: either the perfor-

mance bottleneck of the central parameter server (PS) or severe

performance degradation caused by stragglers for decentralized

synchronization (like All-Reduce). This approach presents SDP���,

a new semi-decentralized framework to get the best of both worlds,

achieving both high heterogeneity tolerance and convergence e�-

ciency in pipeline-parallel training. To provide high performance,

we decentralize the communication model synchronization, which

accounts for the largest proportion of synchronization overhead.

In contrast, we centralize the process of group scheduling, which

is lightweight but needs a global view for better performance and

convergence speed against heterogeneity. We show via a prototype

implementation the signi�cant advantage of SDP��� on perfor-

mance and scalability, facing di�erent environments.

PVLDB Reference Format:

Xupeng Miao, Yining Shi, Zhi Yang, Bin Cui, Zhihao Jia. SDP���: A

Semi-Decentralized Framework for Heterogeneity-aware Pipeline-parallel

Training. PVLDB, 16(9): 2354 - 2363, 2023.

doi:10.14778/3598581.3598604

PVLDB Artifact Availability:

The source code of this research paper has been made publicly available at

https://github.com/Hsword/VLDB2023_SDPipe/.

1 INTRODUCTION

Recently, DeepNeural Network (DNN)models gain a lot of attention

due to its superior performance in various tasks like image recogni-

tion [55], natural language process [18] and graph mining [21, 59].

∗School of CS & Key Lab of High Con�dence Software Technologies (MOE), PKU
†Institute of Computational Social Science, PKU (Qingdao), China
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.
doi:10.14778/3598581.3598604

With the increasing size of DNN models and the proliferation of

training data, data parallelism [31, 33] has been widely used to

accelerate the training, where the DNN model is replicated on mul-

tiple worker machines, with each worker processing a subset of

the training data. However, if a DNN model cannot be �t into the

memory of a single GPU, data parallelism cannot be used.

Pipeline-parallel training [26, 43, 68] has the potential to pro-

vide high training performance for large DNN models when data

parallelism struggles. Pipeline-parallel is a combination of data

parallelism and pipeline model parallelism, which partitions the

layers of the model being trained into multiple stages – each stage

contains a consecutive set of layers in the model. Each GPU exe-

cutes both the forward and backward passes for the assigned stage

and mini-batches can be processed in a pipelined manner across

stages. It also uses data parallelism by assigning multiple workers

to the same stage, processing di�erent mini-batches in parallel. The

workers of each stage maintain replicas of the corresponding model

layers and periodically synchronize to guarantee convergence.

Recently, some large tech �rms (e.g., Google [70], Microsoft,

NVIDIA [30], and Tencent [47, 48]) have utilized pipeline-parallel

to accelerate large foundation models [11] training on dedicated

clusters equipped with hundreds of homogeneous AI chips and

high-speed inter-connects. However, such homogeneous environ-

ments are fairly expensive and unrealistic for most researchers. In

commodity clouds, heterogeneity is quite common. Besides deter-

ministic heterogeneity (e.g., hardware devices [49] and network con-

nections [25]), dynamic heterogeneity can introduce uncontrollable

performance variations caused by dynamic virtual machine (VM)

consolidation [64] or resource sharing and competition [42, 63, 69].

There is also a trend that users without strict latency requirements

prefer cheap but unstable (or low-priority) cloud services (e.g.,

serverless computing [20, 28] and spot-instance [9, 58]) to save

costs. Given such dynamic heterogeneous environments, the model

synchronizations among data-parallel workers are sensitive to the

slowest worker, resulting in low training e�ciency. As illustrated

in Figure 1, in pipeline-parallel training, the problem is more severe

since the temporary stragglers will lead to idle waiting overheads

for all the other stages and pipelines. Therefore, pipeline-parallel

training cannot tolerate heterogeneity well.

In order to e�ciently scale pipeline-parallel training, it’s im-

portant to minimize the model synchronization overheads while

preserving the convergence e�ciency. The parallel synchronization

schemes are crucial for communication-e�cient training, which

describes when and how the parameters of the di�erent work-

ers are synchronized. The default solution is to utilize existing

1

2354

https://doi.org/10.14778/3598581.3598604
https://github.com/Hsword/VLDB2023_SDPipe/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598604
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Stage
1

Stage
2

0 1 0 1 2 3 2 3 4 5 4 5

0 0 1 1 2 2 3 3 4 4 5 5

Time

Pipeline 1

0 1 0 1 2 3 2 3 4 5 4 5

0 0 1 1 2 2 3 3 4 4 5 5

Pipeline
1

Pipeline
2

Pipeline
#

0 1 0 1 2 3 2 3 4 5 4 5

0 0 1 1 2 2 3 3 4 4 5 5

…

Forward Backward

…

…
4x

2x

Model Synchronization

…

S1

S2

Pipeline 2
S1

S2

Pipeline N
S1

S2

Model

k k Waiting for Synchronization Barrier Temporary Straggler

flush flush flush

The k-th mini-batch

Figure 1: Pipeline-parallel training under a dynamic heterogeneous environment. The pipelines are synchronized periodically,

while the �ush points represent model synchronizations, e.g., �ushed every two mini-batches of training. The worker of Stage

2 in Pipeline # is temporarily 4⇥ slowing down during the forward computation of the 3-rd mini-batch. The worker of Stage 2

in Pipeline 2 is temporarily 2⇥ slowing down during the backward computation of the 4-th mini-batch.

data parallelism synchronization schemes. At the system level, ex-

isting schemes can be classi�ed into centralized or decentralized

paradigms. The centralized scheme synchronizes the parameters

among the workers across di�erent pipelines via a parameter server

(PS) [32]. Bene�ting from the global view of the centralized PS, it

provides a �exible way to tolerate heterogeneity, such as involving

asynchronous training with bounded staleness [24], dropping the

model updates from stragglers [14]. However, as all workers must

communicate with the PS, it often leads to the central communica-

tion bottleneck [34], especially for largemodels. In the decentralized

design, the communication is more evenly distributed by allowing

point-to-point communication between workers. Unfortunately,

the decentralized scheme relies on a �xed topology for communi-

cation without a global view, making it in�exible and vulnerable to

system heterogeneity. For example, the typical distributed solution

All-Reduce [51, 60, 62] requires global synchronization in every

step, its performance is bounded by the slowest worker [37].

In this paper, we propose SDP���, a new semi-decentralized

scheme for pipeline parallel training which combines centralized

and decentralized schemes to achieve the best of both worlds. Our

key insight is to divide the functionality of a synchronization op-

eration into two parts: one for generating a speci�c topology for

communication, and the other for P2P communication between

workers using the speci�c topology for communication. In SDP���,

we leverage the lightweight nature of the �rst step and employ a

central scheduler to determine the size and membership of a worker

group to perform model synchronization for a speci�c stage. This

global view enables to always generate groups appropriately, which

eliminates the penalty introduced by heterogeneity and contention.

On the other hand, the heavy model synchronization is completely

decentralized across worker groups, which distributes the commu-

nication load among nodes.

We further exploit the scheduling capabilities of SDP��� to en-

force training performance and convergence. First, for group gener-

ation, we leverage the ready signals the scheduler collects from the

workers to globally identify those who have �nished the local model

update iterations almost simultaneously. In this way, we could max-

imize the fast propagation of model parameter updates without

the stragglers from a global view. Unlike PS and All-Reduce, which

use speci�c topology for communication, our training scheme can

appropriately adopt an arbitrary communication group to dynamic

heterogeneity. Second, since we can globally track model update

propagation progress, we provide a stronger convergence guarantee

by controlling the speed of model update propagation. Speci�cally,

we require that the update on any worker can be passed through

group synchronization to all the workers within a speci�c iteration

number, rather than eventually assumed by decentralized ones. We

theoretically prove the convergence rate under such requirements.

To achieve this requirement, the central scheduler converts the

model propagation progress into a synchronization graph and ex-

plicitly enforces the group generation to maintain the connectivity

of the synchronization graph. We also note that this enforcement

might incur deadlock, and present a deadlock prevention method.

We evaluate the performance of SDP��� for both CNN and Trans-

former models using a large GPU cluster of up to 64 GPUs. Our

experimental results demonstrate that the performance of SDP��� is

faster than that of centralized pipeline-parallel via PS and decentral-

ized pipeline-parallel via All-Reduce or AD-PSGD [35], respectively.

In more heterogeneous settings or larger clusters, SDP��� achieves

higher speedup than both centralized and decentralized baselines.

2 BACKGROUND & RELATED WORK

2.1 Data Parallelism

Existing data-parallelism distributed training approaches could be

classi�ed into the following two categories:

Centralized Training Frameworks. Centralized parallel SGD

(C-PSGD) has been widely applied to many parameter server (PS)

based DL frameworks (e.g., TensorFlow [7], MXNet [15]). The cen-

tral server is responsible for handling model updates and connects

to the other workers, which compute the stochastic gradients in par-

allel. Note that, the server does not have to be a physical dedicated

machine. It is just a logical abstraction providing a global view of

the model parameters/gradients, and it can be implemented in a dis-

tributed way and even co-located with workers (e.g., BytePS [29]).

It applies a synchronization protocol to determine the synchroniza-

tion patterns among the workers during the parallel optimization

iterations. In bulk synchronous parallel (BSP) [19] protocol, each

worker cannot step into the next iteration until all workers �nish

the current iteration and perform the global synchronization.

2355

Decentralized Training Frameworks. Centralized frameworks

utilize a central parameter server for model synchronization, while

decentralized frameworks rely on the network topology and follow

a �xed communication manner where the models are exchanged be-

tween neighbor workers. The decentralized parallel SGD (D-PSGD)

was proposed by [45, 52, 53] and [34] �rst claimed that D-PSGD

can achieve linear speedup with respect to the number of work-

ers and obtains the similar convergence rate as C-PSGD. Recently,

due to the development of high-speed inter-GPU connections (e.g.,

NVLink), many popular DL frameworks adapt to decentralized com-

munication architecture, such as PyTorch [50] and Horovod [54].

2.2 Pipelined Model Parallelism

Modern DL models require a signi�cant amount of memory to

store model parameters and intermediate results during training.

Model parallelism approaches [10, 40] have been widely studied

to support large DL models that cannot �t into one GPU device.

Pipeline parallelism [26] is one of the most popular categories of

model parallelism techniques, which assigns subsets of successive

DNN layers to di�erent processors. Among them, PipeDream [43]

and PipeDream-Flush [44] are the most popular pipeline training

methods that use a 1F1B (one forward one backward) schedul-

ing algorithm. Due to the complex dependencies across stages,

e�cient pipeline parallel training is more challenging than pure

data parallelism, especially under dynamic heterogeneous clusters.

Other model parallelism mechanisms (e.g., tensor model parallelism

(TP) [30]) are dividing a single layer’s computation into small pieces

over di�erent devices. These pieces are naturally synchronous and

could be treated as a single stage’s workload. Then our proposed

SDP��� can easily handle the heterogeneity among stages from

di�erent pipelines. We also notice that the heterogeneity among

devices within the same TP group is a completely di�erent research

problem beyond our research target in this approach.

2.3 Trend of Heterogeneous Training

The trend of distributed training over heterogeneous resources is

not only promising but also inevitable. As the number of model pa-

rameters growing rapidly, large-scale DNN training requires more

GPU resources as well as monetary costs. But for most researchers

and organizations, maintaining a large homogeneous GPU cluster is

economically infeasible. Recently, there are more practical examples

of using heterogeneous resources to make large models more eco-

nomically viable. For example, DT-FM [65] and Petails [12] propose

to run large language models collaboratively by joining people’s

various geo-distributed GPUs spread over the world. The mixture

of di�erent accelerators and complex networking is a naturally

dynamic heterogeneous environment.

The public GPU cloud is another cost-e�ective choice but het-

erogeneity also exists. GPU sharing is one of the main sources of

dynamic heterogeneity in commodity clouds. With the rising of

single GPU’s performance, several public GPU cloud providers start

to support virtual GPU containers, such as Vultr [6] and Alibaba [3].

They allow users to apply for containers equipped with only a par-

tial GPU device (e.g., 1/2 or even 1/20 of a single GPU), sharing the

same physical GPU with others. These virtualized GPUs could be a

better choice compared with the exclusive on-demand GPUs due

to lower price-FLOPS ratios. However, we observed that its perfor-

mance (i.e., peak GPU FLOPS) might be changed due to unforeseen

resource sharing in Figure 7a. Considering these, we believe that

how to perform e�cient distributed training on dynamic heteroge-

neous resources is an in-time and important research problem.

2.4 Heterogeneous Training Schemes

Heterogeneous training attracts lots of attention in recent years.

Most of them belong to pure data parallelism approaches, tak-

ing a centralized approach with relaxed synchronization proto-

col [7, 14, 27], or a decentralized approach [35] relying on commu-

nication between neighboring workers. However, heterogeneity-

aware pipeline-parallel training has been rarely studied. Figure 1

describes a running example of pipeline-parallel training where the

model is partitioned into two stages and replicated by # pipelines

among 2# workers. The workers for the same stage synchronize

(i.e., �ush) their model replicas among di�erent pipelines every

two mini-batches of training. Unlike stragglers in pure data paral-

lelism (i.e., only blocks the synchronized workers), the stragglers

in pipeline-parallel not only bring idle waiting overheads to the

workers in the same stage, but also a�ect workers from the other

stages due to the pipeline execution dependencies. For example, we

suppose the worker of Stage 2 in Pipeline # is temporarily 4⇥ slow-
ing down during the forward computation of the 3-rd mini-batch.

We found that the workers of Stage 1 are also blocked due to the

dependency, i.e., the worker of Stage 1 in Pipeline # cannot start

the backward computation of the 3-rd mini-batch. Considering a

dynamic heterogeneous environment, pipeline-parallel training has

shown very poor tolerance for sudden and unpredictable stragglers.

A recent approach HetPipe [49] moves a step from PipeDream-

Flush by involving the traditional SSP [27] protocol with a central-

ized PS to handle the static heterogeneity from di�erent versions

of GPUs. But it only treats the entire pipeline as a virtual worker

in pure data parallelism, su�ering from the central PS bottleneck.

What’s more, it neglects the �ne-grained per-stage synchroniza-

tion nature in pipeline-parallel and still struggles with the dynamic

heterogeneous environments. To the best of our knowledge, no

previous approaches can solve the model synchronization problem

in dynamic heterogeneity environments under the combination of

both pipeline parallelism and data parallelism.

3 SDPIPE DESIGN

In this section, we describe SDP���, a semi-decentralized training

system specialized for pipeline-parallel training of a large DNN

model in a heterogeneous GPU cluster. SDP��� performs pipeline

parallel training by partitioning the layers of the model being

trained into multiple stages – each stage contains a consecutive

set of DNN layers. Meanwhile, SDP��� performs data parallelism

for individual stages—multiple workers can be assigned to a given

stage, processing di�erent mini-batches in parallel. Figure 2a illus-

trates the SDP��� training framework, the workers are organized

as a" ⇥ # mesh structure to perform # -way data parallelism and

"-way pipeline parallelism training. Each worker is denoted as

(9, 8), who is responsible for the 9-th stage of the 8-th pipeline.

The separation of the central scheduling and decentralized syn-

chronization makes our semi-decentralized training framework

(Section 3.1) fundamentally di�erent from existing centralized and

2356

（1, 1） （1, 2） （1, 3） （1, 4） （1, N）

（2, 1） （2, 2） （2, 3） （2, 4） （2, '）

（(, 1） （(, 2） （(, 3） （(, 4） （(,'） 1

2

3

4

%

…

worker sync-graph

Workers

…

…

…

……………

…

…

Scheduler

Stage
1

Stage
2

Stage
#

Pipeline
1

Pipeline
2

Pipeline
3

Pipeline
4

Pipeline
&

worker sync-table

k − 1

k

I
t
e
r
a
t
i
o
n
s

group sync adaptive group
generation

sync-graph
enforcement

state

Forward Backward

state

state

1 2 3 4 … &

✔ ✔ ✔

✔ ✔

…

(a) Illustration of the SDP��� training framework.

!! −# + %

stage ! − 1

!!

!!

!!!! −# + %

!! −# + %

sync with workers (!, ·)
from other pipelines

stage !

stage ! + 1

pipeline
)

worker (!,))

recv from (! − 1,))

send to (! + 1,))

recv from (! + 1,))

send to (! − 1,))

(b) Illustration of the proposed algorithm

Figure 2: Illustration of the SDP��� training framework and the algorithm

decentralized systems. Speci�cally, the traditional centralized ap-

proach [49] treats the workers within the same pipeline as a virtual

worker and relies on a central PS to aggregate model updates from

all virtual workers and then broadcast back. The decentralized ar-

chitecture fully utilizes inter-GPU connection to synchronize model

parameters among the workers within the same pipeline stage. Our

SDP��� involves a central scheduler to determine the centralized

synchronization scheduling during the training process. But the

scheduler never stores the model parameters or directly engages

in the model synchronization like PS. SDP��� provides a dynamic

�ne-grained worker group scheduling for each stage and the work-

ers within the same temporary group synchronize parameters in

a decentralized manner. Unlike prior work, the global view of the

central scheduler provides the following key scheduling capabilities:

Adaptive Group Generation. The key idea of �ne-grained group

scheduling is to allow partial fast workers within the same stage

to synchronize without waiting the others. To achieve this goal,

the scheduler monitors the current training state (such as compute,

ready, or sync) of each worker at each iteration : . By exploiting the

arrivals of ready signals at the scheduler, we do not need to explic-

itly restrict a �xed communication topology required by previous

decentralized work, thus providing high scheduling �exibility and

adaptivity to heterogeneous settings (Section 3.2).

Convergence Enforcement. The �exible best-e�ort group sched-

uling are bene�cial to the hardware utilization but wild worker

groups might hurt training semantics. To address this issue, the

schedulermaintains this history of temporaryworker groups, which

is organized in a collection of rows in SyncTable. Each row records

the group membership at each iteration. By converting the recent

synchronization history into a synchronization graph (Section 3.3),

we can explicitly enforce the convergence of asynchronous decen-

tralized group synchronizations by enforcing the connectivity of

the synchronization group at the central scheduler (Section 3.4).

3.1 Semi-decentralized Framework

We then introduce the detailed work�ow of SDP��� as follows. Each

worker (9, 8) maintains a replica of model partition x9,8 for stage 9 ,

and performs the following two steps within each training iteration,

as illustrated in Figure 2b and Algorithm 1.

Step A: Local Computation. We suppose :8 is the mini-batch

index of input data feeds into pipeline (·, 8). The local computation

step follows the 1F1B schedule like PipeDream, consisting of both

forward (step A1) and backward (step A2) computation. At the

Algorithm 1 Semi-Decentralized Parallel with 1F1B

Ensure: Worker (9, 8), stage 9 ( ") of pipeline 8 ( #):

1: for :8 = 1, 2, . . . , do

2: Step A1: Forward computation

3: Receive o�9�1,8 from worker (9 � 1, 8).
4: Forward compute o�9,8 = 5 (x

9,8 ; o�9�1,8).

5: Send o�9,8 to worker (9 + 1, 8).

6: Step A2: Backward computation

7: Receive o⌫9+1,8 from worker (9 + 1, 8).

8: Backward compute o⌫8, 9 , g
9,8

:8
= 51 (x

9,8 ; o⌫9+1,8).

9: Send o⌫9,8 to worker (9 � 1, 8).
10: Update the local model x9,8 x9,8 � Wg9,8

:8
.

11: Step B: Model synchronization

12: Send ready signal (9, 8) to the scheduler.

13: Receive a group S 9 from the scheduler.

14: Aggregate local models by x9,8 1/|S 9 |
Õ

(9,D)2S 9 x
9,D .

15: end for

beginning of each iteration, each worker (9, 8) �rst receives the

forward output o�9�1,8 from worker (9 � 1, 8) (line 3) and performs

the forward computation with its local model partition x9,8 (line

4). Specially, the �rst stage’s workers skip the receiving step and

takes a mini-batch of input data as o�
0,8 . Then it sends the forward

output to the worker of the next stage (line 5) unless it is in the

last stage. During the forward step of worker (9, 8), as shown in

Figure 2b, worker (9 + 1, 8) is sending o⌫9+1,8 (the backward output

of the next stage corresponding to the :8 �" + 9-th mini-batch of

data) concurrently to worker (9, 8) (line 7). Especially, the workers

in the last stage skip such receiving process naturally. Then worker

(9, 8) could perform the backward computation and send the output

to the worker of the previous stage (lines 8-9). In the meanwhile, it

updates the local model cell using the generated gradients (line 10).

Step B: Model Synchronization. After �nishing the above local

computation steps, workers within the same pipeline stage have to

perform a model synchronization before moving to the next itera-

tion. SDP��� adopts a �ne-grained model synchronization within

the temporary worker group generated by the central scheduler.

There might be multiple concurrent groups each time and their

synchronizations can be performed in an asynchronous-parallel

manner. In this way, SDP��� decentralizes the workload of heavy

2357

Algorithm 2 Group Generation Algorithm

Ensure: SDP��� scheduler for stage 9 :

1: S 9 = ;
2: while True do

3: while within a time period) do

4: Receive a ready signal from worker (9, 8).

5: S 9 = S 9 [{(9, 8)}.

6: end while

7: if S 9 is valid (see Sec. 3.4) then

8: Send the group information to the workers in S 9 .

9: S 9 ;.
10: end if

11: end while

model synchronization across workers while providing high het-

erogeneity tolerance by eliminating the impact of stragglers on the

other worker groups. To achieve this, the worker sends a ready-

to-sync signal to the scheduler (line 12) once gradient updates are

completed. When the worker receives a group S 9 from the central

scheduler, they exchange their models within the given group and

update by model averaging (lines 13-14).

3.2 Adaptive Group Generation

The central scheduler provides a global view to schedule the work-

ers from di�erent pipelines at each stage. It maintains a global clock

: which represents the number of group-sync operations in the

past. From the central scheduler’s view, each group-sync operation

for a speci�c stage 9 can be formulated as:

X
9

:+1
= (X

9

:
� WG9

:
)W

9

:
, (1)

where W is the learning rate, matrices X
9

:
and G

9

:
contain the local

model vector x
9,8

:
and gradient vector g(x

9,8

:
) of each worker (9, 8)

at the :th iteration.W
9

:
is the synchronization matrix representing

multiple groups’ model averaging, which can be de�ned as:

W
9

:
(D, E) =

8>>>><
>>>>:

1

|S
9

:
|
, if workers D, E 2 S 9

:

1, if worker D 8 S
9

:
and D = E,

0, otherwise,

(2)

where S
9

:
represents the corresponding worker group at the :-th

iteration in the stage 9 .

Previous decentralized training algorithms fall in the paradigm

of �xed group size for all iterations. For example, All-Reduce re-

quires all # workers to participate in the model synchronization.

Local-SGD [56] and AD-PSGD [35] imposes group size of 1 and

2, respectively. P-reduce [38] and Prague [37] allow a larger but

�xed group size. Since group size greatly in�uences both the hetero-

geneity tolerance and the propagation of model parameter updates

among workers, the lack of �exibility and adaptivity in the �xed

group size paradigm can leave the synchronization design in a

dilemma: large group size is sensitive to the straggler, thereby can-

not tolerate heterogeneity well. However, a small group size leads

to slow update propagation and thus the convergence speed.

With the central scheduler, as shown in Algorithm 2, we could

leverage the ready signals from the workers to identify those who

have �nished the local model update iterations almost simultane-

ously (within a time period of)). By exploiting the arrivals of ready

signals at the scheduler, we do not need to explicitly restrict a �xed

size or pattern of group formation required by previous work, thus

providing high �exibility and adaptivity to dynamic heterogeneous

settings. In particular, if the heterogeneity is more apparent in the

current iteration, our method tends to reduce group size to avoid

straggler slowdown (adapt to local-SGD in an extreme heteroge-

neous case). Otherwise, our method tends to increase group size

to enlarge the unit of synchronization (adapt to All-Reduce in the

homogeneous case). Using a too large budget (i.e.,) = 1) would de-
grade it to All-Reduce, while disabling the waiting time (i.e.,) = 0)

would lead to many single-worker groups and might slowdown the

model propagation e�ciency. Finally, the group validation is used

to enforce convergence, which will be described in Section 3.4.

3.3 Convergence Guarantee

Given asynchronous group synchronization and �exible group gen-

eration, a key challenge for the central scheduler is to prompt model

replicas at di�erent workers to converge to the same point.

Sync-graph Principle. In our semi-decentralized framework, the

central scheduler provides a way to globally control the model

update propagation across the workers. Based on the SyncTable,

we construct the synchronization graph to represent the historical

groups. There exists # nodes in total to denote the workers. We can

transform each group S
9

:
into an edge set ⇢ 9 (:) = {(D, E) : D, E 2

S
9

:
} (i.e., W

9

:
(D, E) > 0) representing the nodes within the group

are fully connected. By convention, we take each node to be an

in-neighbor of itself (each node in the graph has a self-loop). In

SDP���, based on the sync-graph, we provide a stronger guarantee

on the speed of update propagation with a constant threshold % .

A��������� 1. Sync-graph connectivity: for a given % � 1,

the graph with edge set [;+%�1
:=;

⇢ 9 (:) is strongly connected for any

; � 1 and any stage 9 .

We suppose two nodes from the same stage are connected only

if they have been in the same worker group in a short past duration

(i.e., % � 1 iterations). If two nodes from the same stage have not

been “connected” for a long time, it means that their recent model

updates are not shared, leading to model divergence. Given the

above assumption, we can derive the following theorem to guaran-

tee the convergence of SDP���. We suppose 1  =1  S
9

:
 =2  # ,

where =1 and =2 are the maximum and the minimum worker group

sizes during the entire training process, respectively. Note that,

they are only used to help analysis and do not need to be tuned as

hyper-parameters. Then we have (detailed proofs are in [5]):

T������ 1 (C���������� �� SDP���). We assume the bound

of gradient variance f2 is in inverse proportion to the mini-batch size.
For SDP���, under Assumption 1 and some commonly used assump-
tions [5], if the learning rate satis�es

[! +
2"# 3[2!2C1

=2
2

(
1

1 � C2
+

2

(1 �
p
C2)2

 1, (3)

where [=

=2W
, C1 = 4# (

1+=#%
1

1�=�#%
1

)2 and C2 = (1�=�#%
1

)2/(#%) , and

all local models are initialized at u1, given u: =

Õ#
8=1 x

8
:
/# , then the

2358

0 1 0 2 1 3 2 4

0 0 1 1 2 2 3 3Pipeline A

Pipeline B

0 1 0 2 1 3 2 4

0 0 1 1 2 2 3 3

（1, #）

（2, #）

（1, %）

（2, %）

（1, #） （1, %）

（2, #） （2, %）

Workers

…

…

…

…

sync-graph dependency

previous group-sync

Dead-locking Timestamp

Figure 3: Illustration of dead-lock

average-squared gradient norm after iterations is bounded as

E

h
1

 ’

:=1

kr� (u:) k2
i


2[� (u1) � �inf]
[

| {z }
SGD error

+ (4)

[!f2

=2
+
2"[2!2f2# 3=1C1

=3
2

(
1

1 � C2
+

2

(1 �
p
C2)2

)

| {z }
network error

. (5)

Theorem 1 shows that the convergence bound is mainly determined

by the last two network error items. They describe the model dif-

ference among the workers during pipeline training, and the latter

is positive correlated the sync-graph connectivity budget % .

3.4 Sync-graph Enforcement

Enabled by the global view, SDP��� explicitly enforces connectivity

through the proposed sync-graph principle by the central scheduler.

Group Validation. Given the sync-graph connectivity require-

ment for each pipeline stage, the generated worker group would

be veri�ed by our framework before informing the workers. Specif-

ically, in each iteration : , the scheduler converts the sync-graph

⌧ (+ , ⇢%�1) based on the synchronization history of the latest % � 1
iterations. The scheduler check whether the graph with the edge

set ⇢%�1 [⇢ (:) is strongly connected. If the validation fails, the

scheduler should wait for more ready workers and re-generate the

group to pass the validation. It guarantees that at any time, the last

% worker groups always make the workers form a connected graph.

This constraint prevents the model degradation and provides a sig-

ni�cant convergence guarantee. Once the candidate group passes

the validation, these corresponding workers formalize a temporary

group and the scheduler informs them to execute a group-sync

operation to exchange their models by group synchronization.

Deadlock Prevention. Note that the scheduler should wait for

more ready workers if the validation fails. It also means that the

worker could be blocked until it passes the validation together with

the incoming ready workers. This enforcement scheme might incur

deadlock if waiting occurs across the multiple stages in pipelines.

Figure 3 describes an running example of deadlock across two

pipelines �,⌫ containing two stages. Suppose that worker (1,⌫),

worker (2,�) just �nished the backward computation and required

to wait and synchronize with worker (1,�) and worker (2,⌫), re-

spectively, due to the sync-graph enforcement. However, worker

(2,⌫) would not be able to produce synchronization opportunity

because of the pipeline dependency from blocked worker (1,⌫).

Similarly, worker (2,�) and (1,�) are also blocked. Therefore, these

four workers forms a waiting graph which leads to a deadlock. In

general, such deadlock can include a various number of workers and

form frequently under the dynamic heterogeneous environments.

In SDP���, we design a simple but e�ective deadlock prevention

mechanism. Speci�cally, the scheduler ensures that no sync-graph

enforcement operation on one stage is allowed to be performed until

the previous sync-graph enforcement operation has been completed

on other stages. If the system has not �nished one enforcement

operation, the scheduler would temporarily ignore later group vali-

dation operation in the current iteration, which prevents mutual

waiting across stages (like using an exclusive synchronization vari-

able for enforcement). It may occasionally violate the sync-graph

connectivity requirement for a few iterations, but would not hurt

the �nal model convergence guarantee as most are performed with-

out con�ict. The deadlock problem further suggests introducing a

global view of all workers, rather than making fully independent

group synchronizations for di�erent stages.

4 IMPLEMENTATION

SDPipe’s implementation is open sourced [4], built on top of Hetu [39,

41], a distributed deep learning runtime (implemented with more

than 30k LOC in Python/C++/CUDA)1. Note that it is also possible

to apply our methods to any DL framework which supports pipeline

and data parallel training (e.g. PyTorch).

Scheduler. We implemented the scheduler in C++ with ZeroMQ.

During training, a scheduler server is launched to serve the synchro-

nization requests sent from each worker. For each pipeline stage,

the scheduler server maintains a disjoint set to track whether the

sync-graph connectivity condition is met. In our implementation,

we allow the timeout duration used in the scheduler to be adap-

tively changed accordingly to the workers’ pattern, which means

that we will slightly enlarge the duration when there are too few

ready workers within the maximum timeout duration) .

Worker Communication. Our pipeline workers utilize NCCL [2]

for both model averaging communication and peer-to-peer pipeline

operations. Upon each backward stage, the pipeline worker would

query the sync-group from the scheduler server. The query is per-

formed in the host asynchronously and would not block CUDA ker-

nel execution. After the worker received the sync-group returned

by the scheduler, a new NCCL communicator object is created for

the sync-group. The communicator will be freed after the model

averaging is completed. We persist a few communicators to handle

some frequently appearing sync-groups.

Optimizer Variance Reduction. The group-sync operation aver-

ages the model weights (i.e., parameters) among the workers. But

for some Adam-based optimizers with states (e.g., the �rst and sec-

ond moments of the gradients), model averaging may enlarge the

variance of the second moments estimations. Speci�cally, Adam up-

dates exponential moving averages of the squared gradients locally.

Based on the common assumptions, the variance of local gradients

from a single worker is #⇥ larger than those from all # workers.

Ignoring such di�erences may result in poor convergence proper-

ties. In our approach, we maintain an additional version of the �rst

moments and compute the variance by using the expectation of

square (i.e., second moments) to minus square of expectation (i.e.,

square of �rst moments). Then we scale the variance with 1/# and

rebuild the second moments with lower variance.

1https://github.com/PKU-DAIR/Hetu/

2359

0
1000
2000

3000
4000

4×4 2×8 1×16

Im
a
g
e
s/
se
c

All-Reduce+Pipe AD-PSGD+Pipe HetPipe SDPipe

(a) ResNet-50 Homo

0
1000
2000

3000
4000

4×4 2×8 1×16

Im
a
g
e
s/
se
c

All-Reduce+Pipe AD-PSGD+Pipe HetPipe SDPipe

(b) ResNet-50 Hete-A

0

1000
2000

3000

4000

4×4 2×8 1×16

Im
a
g
e
s/
se
c

All-Reduce+Pipe AD-PSGD+Pipe HetPipe SDPipe

(c) ResNet-50 Hete-B

0
300
600

900
1200

4×4 2×8 1×16

S
e
q
u
e
n
ce
s/
se
c

All-Reduce+Pipe AD-PSGD+Pipe HetPipe SDPipe

(d) BERT-base Homo

0
300
600

900
1200

4×4 2×8 1×16

S
e
q
u
e
n
ce
s/
se
c

All-Reduce+Pipe AD-PSGD+Pipe HetPipe SDPipe

(e) BERT-base Hete-A

0

300
600

900
1200

4×4 2×8 1×16

S
e
q
u
e
n
ce
s/
se
c

All-Reduce+Pipe AD-PSGD+Pipe HetPipe SDPipe

(f) BERT-base Hete-B

Figure 4: Throughput with di�erent pipeline con�gurations (" ⇥ #) under homogeneous and heterogeneous settings.

Fault Tolerance. To extend our prototype system to environments

with dynamic availability (e.g., spot instance), we need automatic

recovery mechanisms [8, 57] to store the training status when node

preemption is going to happen and recover it back. Then our pro-

posed SDPipe could be applied by treating unavailable nodes as

heterogeneous stragglers with zero training throughput. Currently,

our implementation does not include these fault tolerance function-

alities and we leave them as our future work.

5 EXPERIMENTS

5.1 Experimental Setup

Baselines. We select three related baselines for comparisons:

All-Reduce+Pipe and AD-PSGD+Pipe [35] perform the decentral-

ized schemes for each stage among di�erent pipelines. Unlike All-

Reduce+Pipe, AD-PSGD+Pipe synchronizes after each mini-batch

but with only a neighboring worker in the same stage. HetPipe [49]

is one of most closely related works. It integrates PipeDream-Flush

of a virtual worker and performs the traditional SSP protocol with

the centralized PS. It has a staleness threshold B and we use the

same number of stages as suggested.

To make a fair comparison, we implement all these three base-

lines by using the most popular PipeDream-Flush 1F1B scheduling

for better hardware utilization and e�ciency. We assume that we do

not have the dynamic heterogeneity pattern in advance so we adopt

a default homogeneous model partitioning as suggested by [26].

Experimental Setting. We evaluate SDP��� on two kinds of rep-

resentative workloads, including both ResNet-50 [23] on ImageNet-

1K [17] and BERT-base [18] on English Wikipedia datasets. We

evaluate them on a GPU cluster, and each node is equipped with

8 Nvidia Tesla A100 cards and 10 Gb Ethernet. For the ImageNet

dataset, to obtain the standard terminated test accuracy of 74% as re-

ported in [23]. For the BERT-base, we only perform the pre-training

process and determine to terminate when the training loss is around

3. The training hyper-parameters are listed in the artifacts [5]. We

set % to be 10 and) to be 1/# of the iteration time. All experiments

are executed �ve times, and the average results are reported.

Heterogeneity Simulation. Motivated by existing heterogeneous

training approaches [22, 37, 38], we follow them to simulate the real

straggler patterns by injecting sleep commands into workers. We

simulate the dynamic heterogeneous settings in our experiments by

adding certain costs to each worker independently with a certain

possibility (i.e., 10%) at every iteration. Speci�cally, we provide two

(a) ResNet-50 Convergence (b) BERT-base Convergence

Figure 5: Convergence performance comparison with 4 ⇥ 4
workers under heterogeneous-B setting.

simulated heterogeneous conditions: A) 0.1s on ResNet and 0.2s on

BERT; B) 0.3s on ResNet and 0.6s on BERT. These latency data are

collected from a real cloud provided by our industrial partner.

5.2 Throughput

We �rst investigate the training throughput (i.e., the number of

images/sequences processed per second for ResNet-50/BERT-based

respectively) with various pipeline-data parallelism con�gurations

" ⇥ # under di�erent heterogeneous settings. In a homogeneous

environment, Figure 4a and 4d illustrate both SDP��� and decen-

tralized schemes provide superior performance than HetPipe, as

the communication is more evenly distributed than centralized PS.

We also see that SDP��� tends to outperform decentralized ones

as the data parallelism increases. This is because the higher data-

parallelism degree implies the more arrival time variation, which

could bene�t from our adaptive group scheduling. While HetPipe

tends to perform worse since the increasing workers bring central

communication overheads. As increasing the heterogeneity, All-

Reduce+Pipe is heavily a�ected and gradually outperformed by the

others. All-Reduce+Pipe and AD-PSGD+Pipe could even become

slower than HetPipe, which is also su�ering from the heterogeneity.

Here AD-PSGD fails to beat All-Reduce in some homo-settings be-

cause of the random communication topology and group scheduling

overheads. By contrast, SDP��� signi�cantly outperforms all these

baselines. It only incurs a 1.4⇥ slowdown in hete-B setting, still

considerably better than pipeline-parallel training via All-Reduce

or AD-PSGD with up to 4.3⇥ and 2.8⇥ speedup, respectively.

5.3 Convergence Speed

We next examine the convergence performance for all baselines

with 4⇥4workers (i.e., 4 pipelines and each consists of 4 stages). Fig-
ure 5 illustrate the convergence curves under the heterogeneous-B

setting. With the high throughput and the convergence enforce-

ment, SDP��� almost always achieves the best performance com-

pared to the other baselines under di�erent settings. For ResNet-50,

2360

×2.4

×1.0

×2.1
×1.4

×1
×1

×2.9

×1.6

0
1
2
3
4
5

4×16	Homo 4×16	Hete-B

T
h

ro
u

g
h

p
u

t

S
p

e
e
d

u
p

All-Reduce+Pipe AD-PSGD+Pipe

(a) ResNet-50

×2.5

×1.6

×4.3

×3.0

×1 ×1

×4.4
×4.0

0
1
2
3
4
5

4×16	Homo 4×16	Hete-B

HetPipe SDPipe

(b) BERT-base

Figure 6: The throughput speedups compared with HetPipe

when extending to 64 workers (16 pipelines).

SDP��� is close to HetPipe as the model synchronization overhead

has not become a bottleneck for 4 ⇥ 4 worker con�guration. How-
ever, for the larger BERT-base model, we see that SDP��� outper-

forms HetPipe by around 1.6⇥ due to central PS’s communication.

The evaluation also veri�es that those two decentralized base-

lines are vulnerable to system heterogeneity [67]. Since All-Reduce

+Pipe is bounded by the slowest worker while AD-PSGD+Pipe is

limited by small group size (e.g., 2), we adapt a synchronization unit

that allows for groups of any size while excluding dynamic strag-

glers. As a result, we have achieved fast propagation of model pa-

rameter updates amongworkers. AlthoughAD-PSGD+Pipe achieves

higher throughput than All-Reduce+Pipe on heterogeneous set-

tings, it still cannot bring signi�cant overall speedups due to its

poor convergence e�ciency. Overall, SDP��� achieves about 1.5⇥
end-to-end convergence speedup compared to decentralized ones.

We also have another interesting �nding from the evaluation

results in Figure 5b. HetPipe and AD-PSGD+Pipe take more time

than All-Reduce+Pipe to the target loss, even though they have

higher throughput as shown in Figure 4f. In other words, these

two heterogeneity-aware baselines can not accelerate the training

process for BERT-base model under a severe dynamic heteroge-

neous environment. This is because the asynchrony involved by

AD-PSGD+Pipe and HetPipe signi�cantly a�ects the convergence

quality and requires more training iterations. Compared to these

methods, SDP��� utilizes the semi-decentralized design, showing

advantages in both hardware and statistical e�ciency [67] and re-

sulting in a more signi�cant overall speedup. Note that, given long

enough time budgets, all approaches would reach similar �nal con-

vergent results. To make a meaningful comparison, we eliminate

the extreme convergence results after the target accuracy/loss.

5.4 Speedup on Large Cluster Scale

The aforementioned experiments were all conducted over 16 work-

ers. Next, we investigate how our throughput speedup over other

baselines is improved using a large-scale cluster including 64 work-

ers. Given more workers, the communication bottleneck of the

parameter server becomes more apparent for HetPipe. Figure 6

shows the speedup of SDP��� and decentralized baselines over

HetPipe with 64 (16⇥4) workers under both homogeneous and

heterogeneous-B settings. Compared to those in 16 (4⇥4) workers,
we see that the speedups of both SDP��� and decentralized base-

lines are higher than HetPipe due to its central bottleneck facing

more workers. However, we see that other decentralized baselines

su�er from signi�cant performance degradation in heterogeneous

settings. Compared with those decentralized baselines, SDP��� pro-

vides a stable high speedup through adaptive scheduling.

(a) Real cloud GPU performance (selected 4 from 16)

(b) BERT-base (c) ResNet-50

Figure 7: Convergence performance comparison with 4 × 4

workers under real cloud heterogeneous setting.

5.5 Performance on Real Cloud GPUs

To evaluated our approach on a real heterogeneous environment,

we provide a further comparison over commodity clouds facing

dynamic GPU sharing. As the rising of single GPU’s performance,

several public GPU cloud providers start to support virtual GPU

containers, such as Vultr [6] and Alibaba Cloud [3]. They allow

users to apply for a container with only a partial sharing GPU de-

vice (e.g., 1/2 or even 1/20 of a single GPU). Such a �ne-grained

GPU service not only helps to improve the resource utilization but

also saves users’ costs. Speci�cally, we launch 16 GPU instances

on a popular GPU cloud provider [6]. Each instance is a virtual-

ized GPU container that contains a 1/20 NVIDIA A100 GPU. Since

the performance of sharing GPUs could be a�ected by the cluster

scheduling behaviors, we observe signi�cant dynamic heterogene-

ity among these instances as shown in Figure 7a (full 16 workers’

results are in [5]). To make a comparable evaluation, we record

the observed real GPU performance changes (i.e., running FLOPS

normalized by the peak value) and replay them on dedicated GPUs

to run our experiments (i.e., adding extra overheads to each GPU

worker during training to reproduce its performance slowdown).

Figure 7b and Figure 7c show that our proposed SDP��� still outper-

forms these baselines. Compared with our simulated experiments

(i.e., heterogeneous-B setting), the overall speedups are more re-

markable (⇥2.3 and ⇥1.6 on BERT-base and ResNet-50 respectively)

because the real heterogeneous conditions are much severer.

6 CONCLUSIONS

This paper presented the design and implementation of SDP���,

an e�cient pipeline-parallel framework for training large DNN

models in heterogeneous settings. At its core, SDP��� proposed

the semi-decentralized framework, to provide high performance

and heterogeneity tolerance. SDP��� used adaptive group schedul-

ing and sync-graph connectivity enforcement to achieve the full

performance potential of such framework. Comprehensive evalua-

tion demonstrated SDP���’s high throughput and fast convergence

compared to both existing centralized and decentralized schemes,

especially in more heterogeneous and larger-scale GPU clusters.

ACKNOWLEDGMENTS

This work is supported by National Key R&D Program of China

(2022ZD0116315), National Natural Science Foundation of China

(61832001,U22B2037), and PKU-Tencent joint research Lab. Bin Cui

is the corresponding author.

2361

REFERENCES
[1] 2017. PyTorch. https://github.com/pytorch/examples/tree/master/imagenet.
[2] 2021. NCCL. https://developer.nvidia.com/nccl.
[3] 2023. Alibaba Cloud Virtual GPU Instance. https://www.alibabacloud.com/help/

en/elastic-gpu-service/latest/vgpu-accelerated-instance-families.
[4] 2023. SDPipe. https://github.com/Hsword/VLDB2023_SDPipe.
[5] 2023. SDPipe Artifacts and Proofs. https://github.com/Hsword/VLDB2023_

SDPipe/blob/main/VLDB2023_SDPipe_Artifacts_and_Proofs.pdf.
[6] 2023. Vultr. https://www.vultr.com.
[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In OSDI. 265–283.

[8] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee, and
Nipun Kwatra. 2021. Varuna: scalable, low-cost training of massive deep learning
models. Proceedings of the Seventeenth European Conference on Computer Systems
(2021).

[9] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee, and
Nipun Kwatra. 2022. Varuna: scalable, low-cost training of massive deep learning
models. In EuroSys. ACM, 472–487.

[10] Tal Ben-Nun and Torsten Hoe�er. 2019. Demystifying Parallel and Distributed
Deep Learning: An In-depth Concurrency Analysis. ACM Comput. Surv. 52, 4
(2019), 65:1–65:43.

[11] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri S. Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya
Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon,
John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale,
Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong,
Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri,
Siddharth Karamcheti, Geo� Keeling, Fereshte Khani, Omar Khattab, Pang Wei
Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. 2021. On the
Opportunities and Risks of Foundation Models. (2021). arXiv:2108.07258

[12] Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes
Belkada, Artem Chumachenko, Pavel K. Samygin, and Colin Ra�el. 2022. Petals:
Collaborative Inference and Fine-tuning of Large Models. ArXiv abs/2209.01188
(2022).

[13] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. 2018. Optimization Methods
for Large-Scale Machine Learning. SIAM Rev. 60, 2 (2018), 223–311.

[14] J. Chen, Rajat Monga, S. Bengio, and R. Józefowicz. 2016. Revisiting Distributed
Synchronous SGD. ArXiv abs/1702.05800 (2016).

[15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and E�cient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015). arXiv:1512.01274

[16] Jichan Chung, Kangwook Lee, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. 2017. Ubershu�e: Communication-e�cient data shu�ing
for sgd via coding theory. NeurIPS.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-
geNet: A large-scale hierarchical image database. In CVPR. 248–255.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT. 4171–4186.

[19] Saeed Ghadimi, Guanghui Lan, andHongchao Zhang. 2016. Mini-batch stochastic
approximation methods for nonconvex stochastic composite optimization. Math.
Program. 155, 1-2 (2016), 267–305.

[20] Runsheng Guo, Victor Guo, Antonio Kim, Josh Hildred, and Khuzaima Daud-
jee. 2022. Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless
Containers. In MLSys.

[21] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NeurIPS. 1024–1034.

[22] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R Ganger, Phillip B
Gibbons, Garth A Gibson, and Eric P Xing. 2016. Addressing the straggler
problem for iterative convergent parallel ML. In SoCC. 98–111.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770–778.

[24] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.
Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. 2013. More
E�ective Distributed ML via a Stale Synchronous Parallel Parameter Server. In
NeurIPS. 1223–1231.

[25] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.
Ganger, Phillip B. Gibbons, andOnurMutlu. 2017. Gaia: Geo-DistributedMachine
Learning Approaching LAN Speeds. In NSDI. 629–647.

[26] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. GPipe: E�cient Training of Giant Neural Networks using Pipeline
Parallelism. In NeurIPS. 103–112.

[27] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware Dis-
tributed Parameter Servers. In SIGMOD. 463–478.

[28] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In SIGMOD. ACM, 857–871.

[29] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A Uni�ed Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In USENIX Symposium on Operating Systems
Design and Implementation.

[30] Paresh Kharya and Ali Alvi. 2021. Using DeepSpeed and Megatron to Train
Megatron-Turing NLG 530B, the World’s Largest and Most Powerful Generative
Language Model. NVIDIA Developer Blog (2021).

[31] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin
Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun. 2019. Parallax: Sparsity-
aware Data Parallel Training of Deep Neural Networks. In EuroSys. 43:1–43:15.

[32] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In OSDI. 583–598.

[33] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Je� Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
PVLDB 13, 12 (2020), 3005–3018.

[34] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
2017. Can Decentralized Algorithms Outperform Centralized Algorithms? A
Case Study for Decentralized Parallel Stochastic Gradient Descent. In NeruIPS.
5330–5340.

[35] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous Decentral-
ized Parallel Stochastic Gradient Descent. In ICML, Vol. 80. 3049–3058.

[36] Yucheng Lu, Jack Nash, and Christopher De Sa. 2020. MixML: A Uni�ed
Analysis of Weakly Consistent Parallel Learning. CoRR abs/2005.06706 (2020).
arXiv:2005.06706

[37] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. 2020. Prague: High-
Performance Heterogeneity-Aware Asynchronous Decentralized Training. In
ASPLOS. 401–416.

[38] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma,
and Bin Cui. 2021. Heterogeneity-Aware Distributed Machine Learning Training
via Partial Reduce. In SIGMOD. ACM, 2262–2270.

[39] Xupeng Miao, Xiaonan Nie, Hailin Zhang, Tong Zhao, and Bin Cui. 2022. Hetu:
A highly e�cient automatic parallel distributed deep learning system. Sci. China
Inf. Sci. (2022). https://doi.org/10.1007/s11432-022-3581-9

[40] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang,
and Bin Cui. 2023. Galvatron: E�cient Transformer Training over Multiple
GPUs Using Automatic Parallelism. Proc. VLDB Endow. 16, 3 (2023), 470–479.
https://doi.org/10.14778/3570690.3570697

[41] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao,
and Bin Cui. 2022. HET: Scaling out Huge Embedding Model Training via
Cache-enabled Distributed Framework. Proc. VLDB Endow. 15, 2 (2022), 312–320.

[42] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chi-
dambaram. 2022. Synergy: Resource Sensitive DNN Scheduling in Multi-Tenant
Clusters. OSDI (2022).

[43] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In SOSP. 1–15.

[44] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
2021. Memory-E�cient Pipeline-Parallel DNN Training. In ICML. 7937–7947.

[45] Angelia Nedic, Alexander Olshevsky, Asuman E. Ozdaglar, and John N. Tsitsiklis.
2009. On Distributed Averaging Algorithms and Quantization E�ects. IEEE
Trans. Autom. Control. 54, 11 (2009), 2506–2517.

[46] Angelia Nedic and Asuman E. Ozdaglar. 2009. Distributed Subgradient Methods
for Multi-Agent Optimization. IEEE Trans. Autom. Control. 54, 1 (2009), 48–61.

[47] Xiaonan Nie, Yi Liu, Fangcheng Fu, Jinbao Xue, Dian Jiao, Xupeng Miao, Yangyu
Tao, and Bin Cui. 2023. Angel-PTM: A Scalable and Economical Large-scale
Pre-training System in Tencent. Proceedings of the VLDB Endowment (2023).

[48] Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue, Lingxiao Ma,
Gang Cao, and Bin Cui. 2023. FlexMoE: Scaling Large-scale Sparse Pre-trained
Model Training via Dynamic Device Placement. In SIGMOD. ACM. https:
//doi.org/10.1145/3588964

[49] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Seungmin Lee,
Jaesik Choi, Sam H Noh, and Young-ri Choi. 2020. {HetPipe}: Enabling Large
{DNN} Training on (Whimpy) Heterogeneous {GPU} Clusters through Inte-
gration of Pipelined Model Parallelism and Data Parallelism. In ATC. 307–321.

[50] Adam Paszke and Sam Gross. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NeurIPS. 8024–8035.

[51] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel Distributed Comput. 69, 2 (2009), 117–124.

2362

https://github.com/pytorch/examples/tree/master/imagenet
https://developer.nvidia.%20com/nccl
https://www.alibabacloud.com/help/en/elastic-gpu-service/latest/vgpu-accelerated-instance-families
https://www.alibabacloud.com/help/en/elastic-gpu-service/latest/vgpu-accelerated-instance-families
https://github.com/Hsword/VLDB2023_SDPipe
https://github.com/Hsword/VLDB2023_SDPipe/blob/main/VLDB2023_SDPipe_Artifacts_and_Proofs.pdf
https://github.com/Hsword/VLDB2023_SDPipe/blob/main/VLDB2023_SDPipe_Artifacts_and_Proofs.pdf
https://www.vultr.com
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/2005.06706
https://doi.org/10.1007/s11432-022-3581-9
https://doi.org/10.14778/3570690.3570697
https://doi.org/10.1145/3588964
https://doi.org/10.1145/3588964

[52] Sundhar Srinivasan Ram, Angelia Nedic, and Venugopal V. Veeravalli. 2009.
Asynchronous gossip algorithms for stochastic optimization. In CDC. IEEE,
3581–3586.

[53] S. Sundhar Ram, Angelia Nedic, and Venugopal V. Veeravalli. 2010. Distributed
Stochastic Subgradient Projection Algorithms for Convex Optimization. J. Optim.
Theory Appl. 147, 3 (2010), 516–545.

[54] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018).

[55] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In ICLR.

[56] Sebastian U. Stich. 2019. Local SGD Converges Fast and Communicates Little. In
ICLR. OpenReview.net.

[57] John Thorpe, Pengzhan Zhao, Jon Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang,
Ravi Netravali, and Guoqing Harry Xu. 2022. Bamboo: Making Preemptible
Instances Resilient for A�ordable Training of Large DNNs. ArXiv abs/2204.12013
(2022).

[58] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia
Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bamboo: Making Pre-
emptible Instances Resilient for A�ordable Training of Large DNNs. NSDI
(2023).

[59] Sonal Tuteja and Rajeev Kumar. 2022. A Uni�cation of Heterogeneous Data
Sources into a Graph Model in E-commerce. Data Sci. Eng. 7, 1 (2022), 57–70.
https://doi.org/10.1007/s41019-021-00174-0

[60] Guozheng Wang, Yongmei Lei, Zeyu Zhang, and Cunlu Peng. 2023. A Commu-
nication E�cient ADMM-based Distributed Algorithm Using Two-Dimensional
Torus Grouping AllReduce. Data Sci. Eng. 8, 1 (2023), 61–72. https://doi.org/10.
1007/s41019-022-00202-7

[61] Jianyu Wang and Gauri Joshi. 2019. Cooperative SGD: A Uni�ed Framework for
the Design and Analysis of Communication-E�cient SGD Algorithms. In ICML
Workshop.

[62] Adam Weingram, Yuke Li, Hao Qi, Darren Ng, Liuyao Dai, and Xiaoyi Lu. 2023.
xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep

Learning. J. Comput. Sci. Technol. 38, 1 (2023), 166–195. https://doi.org/10.1007/
s11390-023-2894-6

[63] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,
Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In NSDI.
USENIX Association, 945–960.

[64] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In OSDI. 595–610.

[65] Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi Zhang, Tri Dao, Beidi
Chen, Percy Liang, Christopher Re, and Ce Zhang. 2022. Decentralized Training
of Foundation Models in Heterogeneous Environments. In Advances in Neural
Information Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=UHoGOaGjEq

[66] Kun Yuan, Qing Ling, andWotao Yin. 2016. On the Convergence of Decentralized
Gradient Descent. SIAM J. Optim. 26, 3 (2016), 1835–1854.

[67] Ce Zhang and Christopher Ré. 2014. DimmWitted: A Study of Main-Memory
Statistical Analytics. PVLDB 7, 12 (2014), 1283–1294.

[68] Shixiong Zhao, Fanxin Li, Xusheng Chen, Tianxiang Shen, Li Chen, Sen Wang,
Nicholas Zhang, Cheng Li, and Heming Cui. 2022. NASPipe: high performance
and reproducible pipeline parallel supernet training via causal synchronous
parallelism. In ASPLOS. ACM, 374–387. https://doi.org/10.1145/3503222.3507735

[69] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu, and Xin Jin.
2022. Multi-resource interleaving for deep learning training. In SIGCOMM. ACM,
428–440.

[70] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez, et al.
2022. Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed
Deep Learning. OSDI (2022).

[71] Martin Zinkevich, M. Weimer, Alex Smola, and L. Li. 2010. Parallelized Stochastic
Gradient Descent. In NeurIPS.

2363

https://doi.org/10.1007/s41019-021-00174-0
https://doi.org/10.1007/s41019-022-00202-7
https://doi.org/10.1007/s41019-022-00202-7
https://doi.org/10.1007/s11390-023-2894-6
https://doi.org/10.1007/s11390-023-2894-6
https://openreview.net/forum?id=UHoGOaGjEq
https://doi.org/10.1145/3503222.3507735

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Data Parallelism
	2.2 Pipelined Model Parallelism
	2.3 Trend of Heterogeneous Training
	2.4 Heterogeneous Training Schemes

	3 SDPipe Design
	3.1 Semi-decentralized Framework
	3.2 Adaptive Group Generation
	3.3 Convergence Guarantee
	3.4 Sync-graph Enforcement

	4 Implementation
	5 Experiments
	5.1 Experimental Setup
	5.2 Throughput
	5.3 Convergence Speed
	5.4 Speedup on Large Cluster Scale
	5.5 Performance on Real Cloud GPUs

	6 Conclusions
	References
	A Experimental Settings
	B Additional Experiments
	B.1 Synchronization Group Adaptivity

	C Proof
	C.1 Proof Preliminaries
	C.2 Proof of Theorem 1
	C.3 Proof of Lemma 5

