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ABSTRACT
Data processing on non-trusted infrastructures, such as the public

cloud, has become increasingly popular, despite posing risks to data

privacy. However, the existing cloud DBMSs either lack sufficient

privacy guarantees or underperform. In this paper, we address both

challenges (privacy and efficiency) by proposing CrkJoin, a join al-

gorithm that leverages Trusted Execution Environments (TEE). We

adapted CrkJoin to the architecture of TEEs to achieve significant

improvements in latency of up to three orders of magnitude over

baselines in a multi-tenant scenario. Moreover, CrkJoin offers at

least 2.9x higher throughput than the state-of-the-art algorithms.

Our research is unique in that it focuses on both privacy and ef-

ficiency concerns, which has not been adequately addressed in

previous studies. Our findings suggest that CrkJoin makes joining

in TEEs practical, and it lays a foundation towards a truly private

and efficient cloud DBMS.
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1 INTRODUCTION
Many applications, particularly in the medical and financial do-

mains [53], prioritize data confidentiality and are subject to strict

governmental regulations (e. g., GDPR or CCPA) [20, 24, 64]. This

leads to on-premise solutions that do not make use of the cost, man-

agement, and implementation benefits of the public cloud. There-

fore, there is a growing need for data systems that clearly define

privacy boundaries for both datasets and query execution. One

important query processing operation on relational data, which

requires privacy preservation, is the relational join operator [26].

The research community has proposed software- and hardware-

based solutions to the problem of joining data securely. While soft-

ware solutions employ different encryption schemes [2, 27], hard-

ware solutions exploit dedicated hardware modules co-located [31]

or within [18, 35] a CPU. Software-based solutions, e. g., encrypted

databases [7, 59, 71], encrypt the data on trusted machines and
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Figure 1: TEE vs. CPU: a performance problem.

process the ciphertext on untrusted machines. However, they have

not been widely adopted by the industry because of large over-

heads [29, 54]. Due to this hardware manufacturers have introduced

Trusted Execution Environments (TEEs) [18, 35], which are CPU

extension that provides hardware guarantees for the confidentiality

and integrity of code and data. TEEs offload the encryption burden

to an on-chip component (e. g., Memory Encryption Engine [30])

and execute the code using optimized CPU instructions. As a result,

TEEs significantly outperform software-based solutions.

Although TEEs have the potential to bridge security and high

performance, they are far from ideal; If used incorrectly, their as-

sociated costs can quickly get out of hand. This can lead to drastic

performance regressions, easily by orders of magnitude, compared

to sole CPU performance [6, 18, 47, 67]. The key to high perfor-

mance of a TEE algorithm is memory consumption that fits the

secure cache and little (or no) interaction with the OS [47, 66]. How-

ever, state-of-the-art TEE-based join algorithms have not exploited

TEEs’ architecture to reach truly high performance. For example,

while EnclaveDB [60] ignores the increased costs of secure threads,

ObliDB’s [23] join algorithm does not scale to larger datasets [47].

Moreover, general memory-constrained join algorithms [12, 14, 44]

are unsuitable for TEEs, as there are further unconsidered bottle-

necks, such as memory access patterns and thread management.

To illustrate the adequacy and efficiency problem of state-of-

the-art join algorithms on TEEs, we ran an experiment with a

public cloud scenario, where a machine runs multiple, concurrent

queries:
1
We assumed a degree of parallelism of eight, which is a

common default value for industry warehouses [65]. We ran the

experiment for native CPU (insecure) and Intel SGX (a popular

TEE). Figure 1 shows the average throughput of the most important

TEE baselines [47]. Overall, we observe that all existing solutions

underperform on SGX by a few orders of magnitude. RHO [9],

a highly-optimized radix join, performs well in the insecure set-

ting, but its performance drops sharply for TEEs: It is four orders

of magnitude slower due to the architectural differences [15, 18].

TinyDB [44] (i. e., nested-loop join) and BHJ (Section 2.3) consume

little to no memory, a scarce resource in TEEs. Yet, due to their

complexity, they fail to complete the task in the given time on SGX.

1
The experimental setup is described in Sections 7.1 and 7.2
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MCJoin [12] and PaMeCo [11] adapt to memory-constrained hard-

ware. They improve the SGX performance of RHO by one order of

magnitude by avoiding Enclave Page Cache (EPC) paging. However,

excessive thread creation (a major TEE bottleneck) prevents them

from achieving higher performance; Their CPU versions perform

two orders of magnitude better. In summary, we observe that a

hardware-conscious design is the right direction and that none of

the existing joins properly addresses all TEE’s bottlenecks.

It is thus crucial to design an algorithm with the TEEs’ architec-

ture in mind to enable efficient and private data processing systems.

Our algorithm (Cracking-Like Join—CrkJoin for short) shows that,

when deeply considering the underlying hardware, one can achieve

far superior performance. In the above experiment, CrkJoin outper-

forms the TEE baselines by at least two orders of magnitude; It is

in the same order of magnitude as the baselines’ CPU performance.

Yet, designing such a TEE algorithm is challenging for several rea-

sons. First, TEEs introduce limitations to the programming model.

Many widely-used functionalities (e. g., system calls) and libraries

pose a security thread and are disabled in TEEs. Therefore, we

need to adapt building systems to fit the new environment. Second,

based on our study of the TEE bottlenecks [47], achieving superior

performance requires novel designs that obey the strict rules of

secure enclaves, e. g., drastically reduced OS interaction. Third, it

is not obvious which new designs will perform best in TEEs; The

community has not established guidelines for building algorithms.

CrkJoin (our proposal) tackles the above challenges by fully ex-

ploiting the underlying TEE architecture. It achieves a very low

memory footprint by incrementally organizing relations in-place

and comes with a no-synchronization design to take advantage of

multiple cores. CrkJoin draws inspiration from the gradual tuple

reorganization pioneered in database cracking [32] but exploits re-

organizationwithin a single operator rather than across hundreds of

queries. Our experimental evaluation shows that CrkJoin improves

the query latency by up to three orders of magnitude compared to

state-of-the-art join algorithms in a multi-tenant scenario.

In summary, we make the following contributions:

(1) We revisit the bottlenecks of Intel SGX (a popular TEE archi-

tecture) and derive the desiderata for TEE-native data processing

(Section 2). We identify access patterns, memory consumption, and

thread contention as the key elements of efficient TEE algorithms.

(2) We introduce the "cracking-like" philosophy, a set of processing

principles for TEEs (Section 3). Its goal is to set up the base for TEE-

native algorithms. The philosophy follows an iterative process that

gradually reorganizes the relations. It always obeys the desiderata.

(3) We propose a cracking-like join algorithm (CrkJoin), the first

TEE-native join algorithm (Section 4) with a unique threading

model (Section 5). Our algorithm instantiates the new processing

philosophy, therefore, complying with the desiderata.

(4) We implement CrkJoin (Section 6) and extensively evaluate

it on Intel SGX (Section 7). We show that CrkJoin significantly

outperforms the state-of-the-art join algorithms and demonstrates

robustness and good scalability in multi-threaded environments.

2 DATA PROCESSING IN ENCLAVES
We now provide an overview of TEEs (Section 2.1) and further

motivate the need for a TEE-native join algorithm. We revise the

bottlenecks of a popular TEE architecture (Section 2.2) and dis-

cuss why we can use neither existing join algorithms nor a naive

approach for memory-constrained joins (Section 2.3). Finally, we

derive the desiderata for TEE-native data processing (Section 2.4).

2.1 Trusted Execution Environments
A Trusted Execution Environment (TEE) [3, 19, 35, 41, 57] is a set of

instructions inside a CPU, which guarantees code and data confi-

dentiality and integrity. These guarantees protect against malicious

processes with high privilege levels, including the OS or the hyper-

visor. Therefore, TEEs are a suitable safety and privacy measure

for untrusted environments, such as the public cloud. TEEs are

implemented in hardware and allow users’ code to create secure

threads and allocate memory in a secure memory area, i. e., in En-

clave Page Cache (EPC), which can be as low as 90 or 256 MB. TEEs

instantiate as enclaves. They communicate with the OS through

ECALLs (enclave calls) and OCALLs (outside calls). These calls

are defined by the application developer and carefully designed to

expose no sensitive information to the OS. Intel Software Guard

Extensions (SGX) [18, 51] is the most widely adopted TEE in public

cloud setups. Therefore, we focus on the architecture of SGX. We

particularly focus on SGXv1 because it is the dominant enclave in

production as of today. Yet, our findings apply also to SGXv2 [50].

Threat Model. We inherit the security and privacy guarantees

of TEEs. Similarly to [4, 66], we protect against a strong adver-

sary, i. e., an actor with privileged OS and infrastructure access. The

actor can perform memory snapshots, monitor its access patterns,

and network communication. However, they can neither access en-

clave’s state nor analyze enclave’s computation. TEEs are infamous

for side-channel attacks [17, 25, 28]. Yet, the community has pro-

posed mitigations to some vulnerabilities [62, 63]. We exclude these

attacks as we expect them to be fixed. We assume operational data

confidentiality (as in [4, 66]). We allow access patterns leakage as

these attacks are impractical and costly to mitigate [23, 52, 64, 72].

Instead, we focus on practicality and high performance.

2.2 Revisiting the Bottlenecks of Intel SGX
Previous works have studied the performance of SGX [6, 47, 67, 69]

and identified two major bottlenecks: EPC misses and OS interac-

tion. Yet, we further identify bottlenecks relevant to data processing

– Secure Memory Access and Multi-threading – that motivated the

design for the algorithm presented in the following sections.

Secure Memory Access on SGX is expensive. Others showed that

EPC introduces high access costs compared to traditional main

memory [6]; An EPC miss reaches 40K CPU cycles [67] compared

to 170 CPU cycles for main memory access on our machine. To

illustrate this further, we have conducted an experiment to compare

access cost of SGX and plain CPU for data structures commonly

used in databases: (i) sequential table scan, (ii) random table access,

(iii) hash map access, (iv) index (B-tree) scan, and (v) index search.

Figure 2a shows the relative SGX performance compared to the

native CPU, i. e., it shows the performance degradation as a function

of data size. We observe that all operations suffer significantly not

only from out-of-cache accesses but also partly from L3 misses;

They perform up to one order of magnitude worse between L3

and EPC (yellow zone), and over two orders of magnitude worse
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Figure 2: Bottlenecks of Intel SGX.

Table 1: Memory access time for 256MB structures.

Operation CPU Time [ns/elem] SGX Time [ns/elem]
seq read 1.31 39.55

rnd read 79.50 4206.32

index scan 4.25 253.50

index search 317.51 8284.86

hash table 16.24 3967.81

after exceeding the EPC (red zone). This tells us that, while the

data resides in caches, we are allowed to access them randomly

without a performance penalty. Additionally, the absolute values of

the measurements (Table 1) show that we should avoid any random

access (i. e., random access, index search, and hash table access)

even within the EPC. For example, index search, which uses binary

search to find a key, is the slowest operation and reaches the access

time close to 9𝜇𝑠/𝑒𝑙𝑒𝑚. Although SGXv2 comes with a larger EPC,

it does not solve the memory access problem. Instead, it extends the

underperforming yellow zone and only delays further degradation

by entering the red zone to larger datasets [22]. This experiment

shows that we can achieve good memory access performance in

TEEs with two rules: (i) access out-of-cache data sequentially, and

(ii) keep random access data structures only in the CPU caches.

Multi-threading on SGX is nontrivial. Previous studies showed

that TEEs struggle to achieve optimal performance during parallel

execution [6, 47], caused by SGX threading primitives eventually

being served by the OS. For instance, a mutex performs an OCALL

to enter non-busy waiting (i. e., sleep). A naive mitigation would

be to execute only busy waiting. Yet, non-critical services should

avoid busy waiting as it leads to resource contention. SGX thread

creation and mutex access both require a system call. We ran an

experiment to illustrate the cost of these two operations compared

to plain CPU when varying the number of threads. First, we mea-

sured the cycles taken to create empty threads. Second, we created

threads that perform additions on a counter protected by a mutex.

These experiments isolate the investigated operations to the highest

extent. We detail the experimental setup in Section 7.1.

Figure 2b shows the results. We observe that with more threads

the performance of SGX mutexes deteriorates. This is caused by

the growing number of OCALLs that needs to be served by the

OS, which in turn leads to expensive context switches and TLB

flushes [18]. Although with relatively constant performance, thread

creation leads to up to 3×worse performance on SGX. These results

lead us to the following takeaways: Users should (i) limit excessive

thread creation, and (ii) carefully use synchronization primitives.

The takeaways from both experiments indicate why the canoni-

cal joins underperform on SGX. In a previous study [47], we showed

Figure 3: Probe table (S) scans (arrows) and temporal mem-
ory consumption (white boxes) of existing join algorithms.
Card suits represent partitions.

that hash join and radix join perform better than other state-of-

the-art joins on SGX. Nonetheless, while scaling the number of

threads and the dataset size, we exposed their limitations. We can

now conclude that these limitations come from not adhering to

SGX’s architecture; While radix join uses large amount of memory

to store partitioned relations, hash join performs random accesses

to the hash table that, in most cases, lead to EPC trashing. Figure 3a

shows how radix join scans the probe relation and uses the memory

for probing and storing hash tables of the build relation. Although

it scans the tables only a few times, it needs double the dataset

size of memory to store partitioned tables. We leave out the build

relation of the figure to improve the figure’s clarity.

2.3 Limitations of a Naive Approach
We now analyze a naive approach to tackle the two aforementioned

bottlenecks and explain why it does not solve the problem either.

One (naive) approach to cut memory consumption is to mod-

ify the block-nested loop join. We can split the build relation to

multiple blocks and build a hash table on one block at a time. This

technique reduces the size of the hash table to a fraction of its orig-

inal size. However, we introduce a full scan of the probe relation

for each hash table, effectively, repeating the probe operation many

times. Moreover, if we try to fit the hash table into the CPU caches

(i. e., typically up to 20 MB), we reach hundreds of full scans of

the probe relation. We implemented Block-Nested Hash Join (BHJ)

that uses this method. BHJ builds a hash table on a block of the

build relation and probes it against the entire probe relation. It then

repeats the operations for the remaining blocks of the build relation.

MCJoin [12] and PaMeCo [11] work in a similar block-nested fash-

ion. However, they use compression to fit more tuples in a single

block and reduce the size of the data structures. Figure 3b shows

how BHJ and MCJoin scan the probe relation. Although they reduce

the memory consumption, they also introduce multiple full scans

of the relation. In addition, the block-nested approach recreates

threads for each scan, which leads to a threading bottleneck as

identified in the previous section.

On the one hand, the existing solutions mitigate the memory

bottleneck. On the other, they introduce new bottlenecks. We argue

that the mitigations do not have to collide: Algorithms can achieve

high performance with a design that deeply exploits TEEs’ design.

2.4 Desiderata
Based on the previous discussions, we identify the desiderata for

TEE-native data processing that fully exploits TEE’s design.
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Figure 4: Stages in radix partitioning andCLP.Numbers indi-
cate the order of execution and card suits indicate partitions.
While the former does everything in one stage, the latter it-
eratively reorganizes the data in small stages. CLP can be a
foundation for a join algorithm.

D1. Access patterns. In TEEs, the contrast between the perfor-

mance of sequential and random accesses magnifies. The absolute

values of the data used in Figure 2a tell us that while native CPU

random access is up to 65× slower than sequential scan, for TEEs,

random access is more than 260× slower than sequential scan.

Across platforms, sequential scan maintains its performance within

one order of magnitude but the performance of random access

quickly reduces by two orders of magnitude compared to plain

CPU. Therefore, TEE operators should avoid random access even if

the price is to read more data via multiple sequential accesses.

D2. Low memory consumption. Large data structures trigger

expensive EPC paging. This has been identified as a main bottleneck

both in Figure 2a and in related work [45, 66, 67]. It is thus important

to significantly reduce memory consumption to avoid EPC paging.

D3. Wait-free algorithms. Threads are inherently managed by

the OS. However, communication between secure enclaves and the

OS can be both insecure and inefficient. Simple mitigations, such as

using spinlocks instead of mutexes, are impractical: Blocking prim-

itives quickly lead to thread contention. Wait-free thread designs

are thus crucial to minimize the interaction with the OS.

3 CRACKING-LIKE PHILOSOPHY
TEEs are challenging as they drastically change the code execution.

With such limited resources, to some, TEEs can appear as machines

from the past. As discussed earlier, programsmust eliminate random

I/Os, consume little memory, and use barrier-free data structures to

fully benefit from the hardware. Algorithms that do not adhere to

these rules pay a significant performance price [6, 47, 66, 67]. Yet,

the same studies demonstrate techniques, e. g., data partitioning or

compression, that greatly reduce the penalty.

We introduce Cracking-Like Philosophy (CLP), a TEE-native

processing philosophy to tackle all aforementioned SGX bottle-

necks by iteratively organizing relations. We call the philosophy

cracking-like because it self-organizes the data, similar to database

cracking [32]. However, in contrast to database cracking, CLP does

not need hundreds of queries to benefit query processing [33]: It ex-

ploits tuple reorganization within a single query. The core idea is to

create partitions, i. e., groups of tuples, that share the same bit mask

in their keys. Specifically, it gradually partitions (i. e., physically

reorganizes) in-place the input tuples using simple and optimized

operations. In each iteration, it performs one step of partitioning

on a relation slice. We call this process relation cracking.

It is worth noting that CLP aims at using only sequential relation

scans, consequently, addressing two bottlenecks: random I/Os and

memory consumption. Furthermore, in each iteration, it builds

self-contained partitions that can be processed by independent

threads, which tackles the third bottleneck: wait-free execution.

Within cracking iterations, we perform computation pertinent to

the algorithm, e. g., a join algorithm finds matches between tuples.

Other partitioning algorithms, such as radix partitioning (Fig-

ure 4a), process relations at once, allocating a large amount of

memory and performing random writes. In contrast, cracking se-

lects slices of relations with relevant tuples and partitions them into

small, incremental stages. A tuple is relevant if it belongs to the cur-

rently processed partition. Figure 4b illustrates the CLP approach,

where the numbers indicate the order of steps and the card suits

represent partitions. CLP is composed of an iterative core process

(blue box). It iterates over each partition and alternates between

two main phases: (i) it cracks the relation, i. e., it performs one parti-

tioning iteration (crack node), and (ii) it computes the output, i. e., it

executes the relational algorithm of choice on a single partition

(compute node). We discuss the details of cracking in Section 4.

CLP applies easily as the main building block of relational al-

gorithms. For example, a join algorithm implements a matching

function in the compute phase (Figure 4c) and iteratively outputs

pairs of tuples. The algorithm inherently mitigates the SGX bottle-

necks with cracking. It then piggybacks on the partitioning scans to

perform a join operation on a single partition that always fits in CPU

caches. Although we now focus on joins, one can implement all re-

lational algorithms following the CLP.
2
For instance, aggregations

and group-bys are intrinsically partitioned; They, thus, fit this phi-

losophy. Further, selection and projection can execute the compute

phase within the cracking phase. Note that, the database optimizer

should consider that CLP does not provide order-preserving guar-

antees due to its in-place nature. Even though CLP operators scan

some tuples multiple times, they do it to keep the memory footprint

at a minimum. As we will see next, the tradeoff between the number

of scans and the memory access and consumption pays off.

4 CRACKING-LIKE JOIN ALGORITHM
We now instantiate the CLP into a join algorithm – We propose

CrkJoin. The algorithm follows the ideas presented in Section 3: Its

core is an iterative process that gradually cracks the relations with

a TEE-native partitioning algorithm and computes tuple matches

within those partitions. Yet, strictly following the CLP is far from

trivial. SGX’s bottlenecks (Section 2.2) impose severe limitations on

new designs. Algorithmsmust avoid costly operations (e. g., random

access), exploit hardware accelerators (e. g., prefetchers), and dras-

tically cut memory consumption. We, thus, call for new primitives

that achieve superior performance on this novel hardware.

2
We reserve the implementation of these operators for future work.

2333



In the following, we explain how CrkJoin overcomes these chal-

lenges. We first define cracking relations and its primitives (Sec-

tion 4.1). Next, we depict how it performs a join operation (Sec-

tion 4.2). We, then, explain the dynamic selection of partitioning

bits (Section 4.3). We finish with a cost analysis (Section 4.4).

4.1 Cracking Relations
Data partitioning is at the heart of CrkJoin when cracking rela-

tions. In such a memory-constrained setup, partitioning is crucially

important; it is an effective way of avoiding large data structures.

Doing it efficiently inside a secure enclave is particularly challeng-

ing. A TEE-native partitioning must comply with the consequences

of the hardware architecture. In addition to the desiderata (see Sec-

tion 2.4), enclaves do not support vectorization, which is common

in partitioning algorithms [58]. We, thus, have to deeply consider

the hardware characteristics in the design of our join algorithm.

CrkJoin implements an in-place partitioning using sequential

scans only. This allows it to reduce random access and leads to small

memory footprint; the algorithm avoids creating large ancillary

structures. Yet, the partitioning algorithm is lazy. It exploits the

results from previous iterations to crack the smallest relation slice

needed for the current iteration. Therefore, CrkJoin avoids scanning

the entire relation per partition (such as MCJoin [12]). As a result,

CrkJoin achieves the first two desiderata points. For clarity, we now

focus only on single-threaded execution.We release this assumption

in Section 5, where we tackle the third desiderata point.

Algorithm 1 shows the high-level structure of CrkJoin. It first

initializes the data structures to track the progress of partitioning

(lines 2 and 3). It, then, iterates over each partition and, every time,

it executes a single cracking stage on both relations (lines 5 and 6).

Algorithm 1 CrkJoin algorithm.

1: procedure CrkJoin(Relation R, Relation S, int bits):

2: 𝑟𝑜𝑜𝑡𝑅 ← InitCrackingTree(𝑅)
3: 𝑟𝑜𝑜𝑡𝑆 ← InitCrackingTree(𝑆)
4: for each 𝑝 ∈ [0..(2𝑏𝑖𝑡𝑠 − 1)] do
5: CrackStageAndBuild(𝑟𝑜𝑜𝑡𝑅, 𝑝)
6: CrackStageAndProbe(𝑟𝑜𝑜𝑡𝑆, 𝑝)

Running Example. Figure 5 shows a fragment of CrkJoin’s execu-

tion. Throughout the paper, we use this figure as a running example

to better visualize the cracking-like join idea. Figures 5a-b show the

data and computation primitives. For the partitioning algorithm,

we assign a playing card suit to each partition. We use hearts ( ),

diamonds ( ), clubs ( ), and spades ( ) (see table in Figure 5).

Cracking Primitives. Efficiently performing lazy data partition-

ing, such as cracking relation, requires primitives that do not violate

the desiderata: no random access, low memory consumption, and a

wait-free design. We introduce two primitives: (i) Cracking Tree, a

data structure to keep track of the progress of the algorithm, and

(ii) stage, a basic unit of computation when cracking relations.

The purpose of the Cracking Tree (CT) is to keep track of the

partitioning progress in a data structure so that it can build atop

results from previous stages (Figure 5a). CT is a binary tree: The

nodes store pointers to a slice’s beginning and the number of tuples

it contains. In its structure, CT intrinsically stores the bit mask of a

slice. For example, the diamonds represent a mask b01. The node

containing the diamond tuples, therefore, is located from the root

down left (0-bit), and then right (1-bit). Correctly identifying the

slice with diamond tuples significantly reduces the size of the scan.

Algorithm 2 Cracking Relation Stage

1: procedure CrackStage(CT *root, int partition):

2: 𝑠𝑙𝑖𝑐𝑒 ← FindSmallestSlice(𝑟𝑜𝑜𝑡, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)
3: 𝑝0 ← 𝑠𝑙𝑖𝑐𝑒.𝑓 𝑖𝑟𝑠𝑡, 𝑝1 ← 𝑠𝑙𝑖𝑐𝑒.𝑙𝑎𝑠𝑡

4: 𝑏 ← DetermineBit(𝑠𝑙𝑖𝑐𝑒, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)
5: while 𝑝0 < 𝑝1 do
6: while CheckBit(𝑝0, 𝑏) = 0 do
7: 𝑝0++;

8: while CheckBit(𝑝1, 𝑏) = 1 do
9: 𝑝1--;

10: if 𝑝0 < 𝑝1 then
11: SwapTuples(𝑝0, 𝑝1);

12: slice.AddLeafNodes(slice.first, slice.last, 𝑝0);

In contrast to CT, a stage is a computation primitive. The goal of

a stage is to partition a slice of a relation by one bit, which leads

to adding two new nodes to a CT. Therefore, a stage outputs the

same slice internally partitioned in two. A stage consists of multiple

steps, which advance the pointers toward each other and perform a

single tuple swap. For instance, slice b0x (Figure 5a) is partitioned

into b00 and b01. The challenge is to do so efficiently, i. e., without

violating the desiderata. We achieve this by implementing stages

with sequential scans and in-place swapping. Algorithm 2 shows

the pseudo-code of a stage. CrkJoin traverses the CT to find the

slice containing all relevant tuples (lines 2 and 3). Next, it identifies

the bit b to partition on. Finally, it partitions the slice (lines 5-11).

Let us use the running example to visualize CrkJoin’s partition-

ing (Figure 5b). Recall that we use card suits to represent partitions.

CrkJoin starts with the slice between 𝑝0 and 𝑝1, pointers to the first

and last tuples of the slice (step 1). It, then, scans the slice from

both ends and swaps tuples that do not match the partition. Here, it

swaps diamond tuples pointed by 𝑝0 with hearts tuples pointed by

𝑝1 (step 2). Once the pointers meet, the slice is internally split into

two – hearts and diamonds (step n). CrkJoin stores the information

about the new partitions as b00 and b01 in the CT (line 12).

Bricks as Building Blocks. We now explain how CrkJoin builds

on top of these two primitives to lazily partition a relation. CrkJoin

takes the number of partitioning bits, b, as input and devises the

number of partitions and their bit masks. In the running example,

the number of bits is two (we discuss setting this number in Sec-

tion 4.3). Therefore, there are four partitions with bit masks from

b00 to b11. Although our algorithm might resemble radix parti-

tioning, we do two fundamental things differently: (i) we process

a relation iteratively using always one bit of the key, and (ii) we

partition in-place and, therefore, do not create a copy of the data.

We start the partitioning by initializing the CT, which we use to

record the progress. Then, we iterate over each of the four partitions.

For instance, in the running example, we process partitions in the

following order: hearts, diamonds, clubs, and spades. Yet, we do not

partition the entire relation in each stage. We reuse results from
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Figure 5: Cracking and joining a relation.

previous stages to find the smallest slice that contains relevant

tuples. For example, in Figure 5b, while searching for heart tuples,

we see that all of them are within 𝑝0 and 𝑝1 pointers. Hence, we

avoid scanning the tuples in the remainder of the relation.

Let us explain the first two stages of the algorithm using again

our running example, to better illustrate the relation cracking pro-

cess. We start with the hearts partition, as its mask, b00, is the first

in the order. Initially, we have no information about the order of

the tuples (stage 0 in Figure 5a). Therefore, we partition the entire

relation on the first Most Significant Bit (MSB) of the bit mask. The

relation becomes internally partitioned in two – one partition with

hearts and diamonds, and one with clubs and spades. We store the

relevant pointers in the CT (stage 1). We proceed to the second

stage. This time, we process the diamond partition (b01 mask). Us-

ing the CT, we know that all diamond tuples are in the left leaf node

(b0x). We partition this slice on the second MSB. As a result, we

derive two slices – one with hearts and one with diamonds. Again,

we store this information in the CT (stage 2). We repeat the process

for the remaining partitions. We observe that stages modify the

order of the tuples in the slices contained in the CT. Yet, a stage

never moves a tuple out from a slice defined by previous stages.

Theorem 1. A CrackStage (CS) preserves the integrity of a CT.

Proof Sketch. ACS could break the integrity of a CT if it swaps

tuples between already-defined slices or it inserts new faulty slices:

1) Let a relation slice𝐴 = [𝑝0, 𝑝1] be the area scanned by the CS. By
Algorithm 2, we know that 𝑝0 only increases and 𝑝1 only decreases

(lines 7 and 9), and that the scan finishes when 𝑝0 = 𝑝1. Thus,

SwapTuples is invoked only within 𝐴.

2) The CS inserts new slices when 𝑝0 = 𝑝1. As of specification

(Algorithm 2), 𝑝0 (𝑝1) increases (decreases) only if all tuples to its

left (right) are in the correct partition. Therefore, we conclude that

all tuples are in correct partitions when 𝑝0 = 𝑝1. □

For example, in Figure 5b, we swap diamonds with hearts within

the red tuples slice. Yet, we do not swap a red with a black tuple.

Note that while partitioning, CrkJoin performs a join at each iter-

ation. Joining shares the scans with cracking (Algorithm 1 lines 5-6).

In the next section, we will see how CrkJoin achieves efficient scan

sharing between the cracking and joining phases.

4.2 Joining the Cracking Slices
As in the cracking phase CrkJoin reorganized tuples and identified

the ongoing smallest slices with relevant tuples, the joining phase is

Figure 6: Probe table scans (arrows) and temporal memory
consumption (white boxes) of CrkJoin.

simplified: CrkJoin has more organized data throughout the crack-

ing stages and steadily reduces the scans while keeping the memory

consumption low (Figure 6). Yet, the remaining challenge is joining

two partitions with few cache misses and low memory footprint.

Conceptually, we integrated the joining process into the cracking-

like process in the compute phase. Yet, we take a step further and

fuse cracking with joining. Both phases now share a single relation

scan. The idea behind the fusion is simple: While examining the

tuples for cracking, we also examine them for finding join matches.

Following our findings in [47], we decided to join with a hash

join. A hash-based partitioning join performed best across an ex-

tensive number of experiments. We defined two functions for the

fusion operations: CrackStageAndBuild (Algorithm 1 line 5) and

CrackStageAndProbe (Algorithm 1 line 6). The former cracks the

slice into two and builds a hash table with relevant tuples. The latter

also cracks the slice but then probes the hash table for matches.

In the initial stages, slices are partitioned only on a subset of the

bit mask. Therefore, they can contain tuples from other partitions.

CrkJoin filters out irrelevant tuples and builds a hash table with the

relevant ones. In later stages, a slice may be already fully partitioned.

If so, CrkJoin performs a Build or a Probe scan without cracking.

In detail, it builds a bucket chaining hash table [49]; This technique

performs best in the lack of SIMD instructions [9]. Next, CrkJoin

scans the slice of the probe relation and probes the table with the

relevant tuples. Notice that, as one of the goals of CrkJoin is to

achieve a low memory footprint, it ensures that the hash table fits

into CPU caches by adapting the number of partitioning bits.

4.3 Selection of Partitioning Bits
All partitioning algorithms decide how granular they split the data.

For instance, while GRACE join [39, 55] selects the number of

buckets (i. e., partitions) such that each bucket fits in the main

memory, radix join minimizes TLB misses. CrkJoin faces a similar
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Figure 7: CrkJoin cost vs. partitioning bits. Red points indi-
cate the optimal configuration, green circles indicate dynam-
ically selected configuration.

trade-off; while fewer partitions introduce fewer scans and increase

the size of the hash tables, more partitions do the opposite. We

evaluated the performance impact of this trade-off on CrkJoin. To

achieve that, we measured CPU cycles per input tuples for a range

of partitioning bits. We also varied the dataset size (4-512M) and

the input’s cardinality ratio (1:1, 1:10, and 1:50). The results of the

experiment (Figure 7) show that the right number of partitioning

bits greatly influences CrkJoin’s performance. On one hand, if the

number of partitions is too low, we observe excessive random access

to the hash tables. These accesses in turn generate cache misses. On

the other hand, in the case of too many partitions, the algorithm

creates many fine-grained partitions, which are joined one by one.

We marked in red the optimal configuration of each run.

We observe two things from this experiment. First, although the

cardinality ratio can influence the performance, it does not affect

the optimal number of partitions; almost all datasets achieve their

minimum for the same number of bits. Hence, the size of the probe

relation does not impact the performance. Second, the average size

of a partition in all optimal cases is close to 2 MB, i. e., the size of the

L2 cache. Therefore, we propose a model that selects the smallest

number of partitions such that they do not exceed the L2 cache:

𝑏 = 𝑐𝑒𝑖𝑙 (log
2
( |𝑅 | × 𝑡𝑠𝑖𝑧𝑒

𝐿2𝑠𝑖𝑧𝑒
)) (1)

, where 𝑏 is the number of partitioning bits, 𝑡𝑠𝑖𝑧𝑒 is the size of a

tuple, and 𝐿2𝑠𝑖𝑧𝑒 is the size of the L2 cache. Previous approaches [21,

39, 55] have addressed a similar limitation w.r.t. the main memory.

Yet, their split functions introduced skew in the bucket distribution

and forced the community to search for more complex, dynamic

solutions. CrkJoin avoids this problem thanks to radix partitioning,

which mitigates most of the commonly occurring skews [15].

We tested the model by selecting the number of bits according to

Formula (1). We include the results in Figure 7 as green circles. We

see that this simple model is very accurate. It selected the optimal

configuration for all but one run (𝑅𝑠𝑖𝑧𝑒 = 8𝑀 in Figure 7c). However,

the selected and the optimal configurations differ by less than 1%,

which is negligible. We conclude that CrkJoin is capable of selecting

the right number of bits and use this model in all experiments.

4.4 Analysis
The CLP finds the balance between memory access and consump-

tion. Figure 3 shows two table scan approaches: a minimum number

of scans (radix join) and a complete scan per block (MCJoin). In

the first iteration, CrkJoin performs a complete scan (similar to

Table 2: Comparison of algorithms costs.

CrkJoin RHO MCJoin

table scans 𝑂 (𝑏 × 𝑁 ) 3 𝑂 ( |𝑅 | + |𝑅 |𝑚 × |𝑆 |)
memory usage

|𝑅 |
2
𝑏

𝑁 𝑚

MCJoin). However, cracking greatly reduces the scans in the next

iterations. We now estimate the number of scanned tuples.

Given a relation with 𝑁 tuples, we crack the relation on 𝑏 parti-

tioning bits. We represent the cracking process as a binary tree (as

in Figure 5a). Note that the depth of the tree is equal to 𝑏. The sum

of tuples in each level is 𝑁 . In the worst-case, all tuples belong to

the last scanned partition (spades tuples in the running example).

Therefore, we scan 𝑁 tuples for all levels from 0 (i. e., root) until

𝑏 − 1. Thus, the upper bound for the number of scanned tuples is

𝑂 (𝑏 × 𝑁 ). We summarize the key cost parameters in Table 2.

Let us interpret what this complexity means for common query

execution in TEEs and how it compares to related work. We first

consider the probe relation. Typically, our algorithm achieves the

highest throughput using ten partitioning bits (Section 4.3). In

this configuration, CrkJoin carries out up to ten table scans. Radix

join performs three complete scans of the probe relation: to build a

histogram, to partition, and to join. On the contrary, MCJoin divides

the build relation into blocks that fit the restricted memory𝑚 and

scans the probe relation
|𝑅 |
𝑚 times (Figure 3b). While running on

Intel SGX, the memory limit can be as low as 90MB (Section 2.1),

which can fit up to 12M tuples (as in Table 3). Hence, MCJoin on

SGX performs thirteen complete scans of the probe relation for

dataset D. It is worth noting that smaller does not mean better; It

is more important how each of these algorithms completes these

scans with respect to access patterns and memory consumption.

5 PARALLEL CRACKING-LIKE JOIN
We now release our single-threaded assumption and focus on lever-

agingmultiple cores to speed up CrkJoin. As seen in Section 2.2, ben-

efiting from parallel execution is particularly challenging on SGX:

Threads and mutexes are implemented with expensive OCALLs.

Figures 8a-b compare two popular threading models in join al-

gorithms, such as in radix join [9] and PaMeCo [11]. Radix join

partitions the data by assigning sub-relations to individual threads.

It adds their output to a queue, which coordinates the threads in the

join phase. PaMeCo’s approach is simple – it parallelizes the build

and probe phases within each iteration of the hash join. Its tasks

are short. They synchronize after each of the two phases and their

sub-phases (i. e., flip-flop, scatter, and join). The main weaknesses

of these existing threading models are their strong dependency on

synchronization. PaMeCo additionally suffers from excessive thread

creation. This is not suitable for SGX due to its expensive OCALLs.

Instead, we need a design with no synchronization and with more

long-running threads for optimal multi-core performance on SGX.

We, thus, introduce a new threading model that intrinsically

addresses the third desiderata, i. e., wait-free execution. Recall that

CrkJoin is based on CTs and stages, which always output two slices

(Section 4.1). We observe that these two output slices are indepen-

dent, i.e., each contains tuples from a separate partition range. For

instance, in stage 1 in Figure 5a, slices b0x and b1x are independent.
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Figure 8: Threading models in join algorithms.

While the first contains only red tuples, the second contains only

black tuples. This presents a clear opportunity for parallelization:

Independent slices can be processed by separate threads. We have

designed the CT structure in such a way that keeps this indepen-

dence behaviour. The branches representing independent slices in

the CT structure are also independent, i. e., CrkJoin never accesses

irrelevant parts of the tree. Clearly, we can independently join each

of the slices when the relations are partially-partitioned. The main

idea resembles the morsel parallelism proposed by Leis et al. [42]

because of its elasticity in distribution that both models perform at

runtime. Nonetheless, while the morsel approach splits the relations

horizontally into chunks, our parallelism sprouts as an effect of

data partitioning. Moreover, in contrast to [42], CrkJoin’s threads

share no data structures and are not synchronized.

Parallel CrkJoin leverages this threading model to fully comply

with the third desiderata. The main idea behind Parallel CrkJoin is

to split relations into independent slices and join each of them in a

separate thread. Figure 8c illustrates Parallel CrkJoin. We introduce

a pre-partitioning step (the Pre-Cracking phase in the figure) to

reorganize relations such that they form 𝑁 independent slices. To

achieve this, we use our two cracking primitives: stage and CT.

That is, we partition the relations with stages and store the results

in CTs. We inherit the correctness of the pre-partitioning step by

reusing already introduced building blocks. Once we partitioned

the relations to 𝑁 slices, we proceed to the Crack & Join phase. We

delegate each independent slice to a separate thread and execute

single-threaded instances of CrkJoin (ST-CrkJoin, for short) that

require no synchronization. Let us illustrate this process using the

motivating example. We start with one thread that cracks a relation

into two. It recursively starts two threads that repeat this task - they

crack their slices and create two child threads. This continues until

reaching 𝑁 /2 threads, which crack both relations into 𝑁 slices. In

Figure 5a, the first thread cracks slice bxx. It then creates two threads

that further crack slices b0x and b1x. The process continues until

reaching 𝑁 slices. At that stage, we run 𝑁 instances of ST-CrkJoin

and complete the join operation. The threads in the Pre-Cracking

and Crack & Join phases do not require synchronization and, thus,

comply with the desiderata. By default, CrkJoin assigns equal num-

ber of partitions to each thread. Yet, uneven partition ranges can

potentially counterbalance data skew. Thanks to its flexible design,

CrkJoin can easily adapt to a different strategy: It extends the Pre-

Cracking phase to achieve a higher partitioning granularity and,

depending on the strategy, assigns different ranges to each thread.

This mechanism can mitigate input data skew problems.

Figure 9: Time per partition.

6 IMPLEMENTATION
We now provide implementation details on CT operations and three

types of table scans in CrkJoin.

CT Operations. We recall that a CT is a binary tree, where each

node represents a relation slice partially or fully partitioned by the

partitioning bits. A node stores a pointer where the slice starts and

the length of the slice. The structure of the tree stores the informa-

tion on the already-partitioned bits. We perform three main oper-

ations on a CT (Algorithm 1). First, FindSmallestSlice searches

for the smallest relation slice that contains relevant tuples. The

operation is a tree traversal that compares bit-by-bit the partitions’

bit mask with the existing nodes in the CT. The operation starts at

the root and finishes if the current node has either no children or

is fully partitioned. Second, we pick the next partitioning bit with

DetermineBit. This operation compares the partitioned bits of a

slice with the full partitioning mask and determines the next bit to

crack the relation. Third, we add new nodes to CT with AddLeafN-

odes. It stores the results of a cracking stage (i. e., two new slices)

in the CT as two new leaf nodes.

Cracking Table Scans. Parallel CrkJoin performs three types

of table scans: basic cracking stage, cracking with building, and

cracking with probing. We already explained the first scan type

in Algorithm 1. CrkJoin uses CrackStage in the pre-partitioning

phase. This operation is also the base for the two other scans.Crack-

StageAndBuild extends CrackStage by examining each scanned

tuple as a candidate for joining. This is done after checking the

value of the bit the slice is being cracked on (i. e., Algorithm 1 be-

tween lines 6 and 7, and 8 and 9). If the tuple is relevant, we add

it to a hash table. CrackStageAndProbe examines each scanned

tuple for its relevance and probes the hash table for join matches.

We measured the time to process each partition in ST-CrkJoin.

The results of the experiment (Figure 9) show a general behavior:

The more the data is organized, the smaller the processing time.

The sudden spikes indicate that a new tree branch is being explored.

In the running example, such a spike is visible when we finish

processing branch b0x and start processing branch b1x.

7 EXPERIMENTAL EVALUATION
Recall the major goal of CrkJoin is high efficiency in untrusted,

concurrent environments, such as the public cloud. We present an

extensive experimental evaluation of our algorithm that validates

this performance goal. We answer the following key questions: How

fast is CrkJoin in a real-life environment (Section 7.2)? How well

does CrkJoin perform for a single query (Section 7.3)? How well

does CrkJoin scale with respect to the number of cores and data size

(Section 7.4)? Is CrkJoin robust for query processing (Section 7.5)?

How does CrkJoin behave with diverse datasets (Section 7.6)?
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Table 3: Dataset used in the experiments.

Synthetic TPC-H (SF 100)⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟ ⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
Dataset A B C D
R cardinality 32M 32M 150M 15M

S cardinality 320M 32M 600M 150M

|R| : |S| ratio 1:10 1:1 1:4 1:10

total input size 2.6 GB 0.5 GB 5.6 GB 1.2 GB

7.1 Setup
In the following, we describe the hardware, baselines, datasets, and

queries that we used for our experiments.

Platform. We ran all experiments on a 3.4GHz 16-core Intel Xeon

E-2278G CPU with 256 kB L1, 2 MB L2, 16 MB L3, 256 MB EPC,

and 125 GB RAM. The machine ran Ubuntu 20.02.2 OS and SGX

v2.15.101. We wrote all joins in C++ and compiled them with gcc

v9.4.0 with -O3. We used TeeBench [47] to manage the experiments.

Baselines. We compared the performance of CrkJoin to three

memory-constrained join algorithms (core baselines), namely Block-

nested Hash Join (BHJ), MCJoin [12], and PaMeCo [11]. BHJ is

our best-effort implementation of the naive approach discussed in

Section 2.3. MCJoin [12] is a single-threaded memory-constrained

join algorithm based on BHJ principles. It reduces memory con-

sumption with extensive usage of compression. PaMeCo [11] is a

multi-threaded MCJoin. MCJoin and PaMeCo can be configured to

consume less memory. We determined experimentally that MCJoin

performs optimally with 275 MB and PaMeCo with 90 MB on SGX.

We use these values in all experiments. Furthermore, we considered

the radix join algorithm (RHO) [9] as a core baseline because our

recent study [47] showed that RHO is the most versatile on SGX. In

all experiments, algorithms use the optimal number of threads per

dataset. We determine these values experimentally in Section 7.4.

For completeness, we also consider TinyDB [44] as a baseline

when evaluating CrkJoin for a single query. The TinyDB algorithm

is based on the traditional nested-loop join. We call it TinyDB

because the TinyDB system [44] used it as a memory-efficient join

algorithm. Other memory-constrained database systems [14, 36]

also followed the same approach. We avoid reporting the results for

TinyDB in other experiments as it significantly underperformed.

Datasets. We used two synthetic datasets (Table 3): A and B. The

datasets represent a column-oriented storage model. They contain

<key, payload> tuples with 4-bytes attributes. The tables follow a

primary key-foreign key relationship, which is the prevalent join

use case in DBMSs. The join keys are uniformly distributed unless

stated otherwise. The sizes and other characteristics of the datasets

are similar to related work [9, 13, 38, 47, 61] to allow comparability

across works. Similarly, we extracted TPC-H data (SF 100) to two

datasets: C and D. Dataset C joins tables orders with lineitem on the

o_orderkey attribute. Dataset D joins tables customer with orders on

the c_custkey attribute. Both joins are used in many TPC-H queries.

Queries. We focus on relational equi-joins. We join a relation R

with a relation S on an equi-join predicate 𝑅.𝑘𝑒𝑦 = 𝑆.𝑘𝑒𝑦. Over-

all, in our experiments, we measure the throughput of CrkJoin to

evaluate its efficiency. We define throughput as the sum of input

cardinalities divided by the join execution time. We take each mea-

surement five times and report the median value. We mark queries

Figure 10: Eight concurrent queries per dataset.

Figure 11: Multi-tenancy performance.

that completed but took more than several hours as Timeout. In our

micro-benchmarks, we avoided materializing the output and only

counted the number of join matches (similar to [9, 47, 61]). Last but

not least, we ran a set of TPC-H queries to measure the end-to-end

performance with different algorithms. We simplified the queries

so that their performance depends primarily on the join operators.

7.2 Multi-Tenancy Environments
In real, untrusted environments (such as the public cloud), infras-

tructure (especially SaaS) is often shared by multiple users running

many queries at a time. Although multi-tenancy in TEEs is not a

security threat, users’ queries share the resources. We validate the

performance when multiple enclaves run joins concurrently on one

machine. To validate CrkJoin, we start multiple join operators (Sec-

tion 7.1) on the test datasets, each operating on separate tables and

in a separate enclave to emulate users with no shared privileges.

As a first experiment, we ran eight concurrent join queries at

the same time (similar to Figure 1). Figure 10 illustrates the average

query throughput achieved by CrkJoin for all datasets. We see that

CrkJoin outperforms the baselines consistently for all datasets: It

achieves up to three orders of magnitude higher throughput. BHJ

and RHO perform significantly worse due to high memory footprint

and excessive thread synchronization.MCJoin and PaMeCo perform

better thanks to the low-memory design. Yet, they still perform

multiple full scans of the probe table, which leads them to two

orders of magnitude worse performance than CrkJoin. Moreover,

in three experiments, PaMeCo did not benefit much from multi-

threading due to a thread management incompatibility with SGX.

As a second experiment, we manipulated the number of con-

current queries. The objective of this experiment was to confirm

that the CrkJoin’s improvement in Figure 10 was not coincidental.

We vary the number of queries until the machine runs out of main

memory. We ran this experiment with a set of eight queries for one

synthetic dataset (A) and one TPC-H dataset (D). We present the

results in Figures 11a-b. We observe that CrkJoin always outper-

forms the baselines independently of the number of queries. With

more queries, CrkJoin gracefully degrades, while the baselines de-

grade drastically. CrkJoin outperforms MCJoin and PaMeCo by

more than two orders of magnitude and RHO by more than three
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Figure 12: Single-query throughput comparison.

orders of magnitude. We attribute this to CrkJoin’s very low mem-

ory consumption. The baselines operate on larger data structures

and quickly exhaust the EPC memory; we noted EPC thrashing

already for two concurrent RHO queries. We excluded BHJ from

all experiments in Figure 11 due to timeout errors.

Lastly, we considered a scenario where queries arrive one after

the other with a delay between them. Besides this being common

in practice, our goal is to evaluate if a simple delay between queries

reduces the concurrency and alleviates the memory bottleneck; A

delay can lead to queries running individually on a machine. Note

that single-query execution represents the optimal performance of

each join as there is no contention coming from other operators. In

this experiment, we ask how big this delay has to be so that each join

converges to the optimal, single-query performance. Figures 11c-d

illustrate the results with the dotted lines representing single-query

performance. We observe that CrkJoin reacts well when queries

arrive one after the other: It is up to three orders of magnitude

faster than the baselines. Its throughput quickly converges to the

single-query performance; it achieves 90% of the single-query per-

formance for a 3.5-second delay for dataset A. On the other hand,

the other baselines prove to be impractical. RHO needs at least a

13-second delay, and other baselines more than 15 seconds, to con-

verge to the single-query performance for dataset A. We observe

similar behavior for dataset D, which is unacceptable for the public

cloud. Overall, we showed that memory consumption is important

in a multi-tenant setup due to contention coming from parallel exe-

cution. Thanks to its design, CrkJoin multiplied the improvement

factor from one order of magnitude for a single-query to up to three

orders of magnitude for a multi-tenant environment. We expect

the real-life public cloud setups to be multi-tenant. We recall that

the new generation of SGX comes with a larger EPC and would

delay EPC thrashing, i. e., entering the red zone defined in Figure 2.

However, in the future, we expect hundreds of concurrent queries

that will inevitably exceed the EPC.

CrkJoin improves multi-tenancy performance by up to three or-

ders of magnitude compared to baselines.

7.3 Single-Query Performance
We now isolate CrkJoin to evaluate its performance in a confined

environment. A single enclave has now all the resources of a single

machine to run one join query. Such an isolated environment has

been the measurement base case of many related works on join

performance [9, 10, 12, 15, 23, 47, 61]. This allows us to evaluate

the performance without the race for resources between operators.

Concretely, we compared the throughput of CrkJoin to all core

baselines and TinyDB using the four test datasets.

Figure 12 shows the results of this experiment. We observe that

CrkJoin performs significantly better for all datasets. It outperforms

Table 4: Hardware performance counters.

Dataset A Dataset B

IR[M] L3Miss [k] L2Miss [k] IR[M] L3Miss [k] L2Miss [k]

CrkJoin 135 190 1552 81 80 620

RHO 26670 4526 114856 4481 786 18790

MCJoin 6251 1692 20772 6205 1511 20399

PaMeCo 4501 2070 19638 4066 728 12789

BHJ 2301 3663 25994 719 532 4748

other algorithms by at least 2.9× (RHO) and up to four orders of

magnitude (TinyDB).We attribute this to lowmemory consumption

(in contrast to RHO) and efficient usage of the multi-core archi-

tecture. In fact, we see that PaMeCo benefits very little or even

deteriorates when using multiple threads compared to its single-

threaded version (MCJoin). PaMeCo introduces a threading model

that does not scale on Intel SGX. In addition, we observe that both

BHJ and TinyDB perform substantially worse than our algorithm.

Both introduce an excessive amount of scans of the input tables

which dwindle the performance. All algorithms behave similarly

across datasets. Yet, we see that MCJoin and PaMeCo benefit when

the cardinalities of the input tables differ more: They perform many

smaller scans per block of the outer table when the ratio is smaller

(e. g., for datasets B and C), which leads to lower throughput.

Next, we measured the hardware performance counters for both

synthetic datasets. Table 4 shows the most relevant results. We

see that the L2 and L3 cache misses of CrkJoin were 1-2 orders of

magnitude lower compared to the baselines. This indicates that the

simplicity of the cracking primitives enables high data locality and

successful work of prefetchers. Effectively, it leads to a smaller num-

ber of retired instructions and higher throughput. On the contrary,

RHO performs excessive random writes during the partitioning

phase, which caused a high number of cache misses.

Based on these results and those from Section 7.2, we decided to

discard baselines that underperform on SGX to improve the clarity

of the remaining experiments. Thus, in the following experiments,

we compare CrkJoin only with MCJoin, PaMeCo, and RHO.

In confined environments, CrkJoin outperforms core baselines

and TinyDB with improvements from a factor of 2.9 up to three

and four orders of magnitude, respectively.

7.4 Scalability
In the following, we evaluate CrkJoin’s scalability with respect to

the number of concurrent threads and the database size. For the

former, we measured the throughput of all the join algorithms while

increasing the number of threads. For the latter, we picked the opti-

mal number of threads per join algorithm and scaled up the datasets.

These experiments allow us to determine if CrkJoin performs well

on multi-core hardware and with real-life size datasets.

Number of Threads. Figure 13 presents the results when increas-

ing the number of threads used by the algorithms for all test datasets.

First, we see that, in a single thread setup, CrkJoin outperforms

the baselines by 2.8× on average. It achieves so via low memory

consumption and by prioritizing sequential scans. Second, CrkJoin

improves by up to 15× over the baselines in terms of throughput.

It can only achieve so by simultaneously exploiting good memory

utilization and an effective wait-free design. It is the only algorithm
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Figure 13: Scalability of joins with the number of threads.

Figure 14: Scaling the input relations for 𝑅 ⋈︁ 𝑆 (R = build).

to scale beyond three threads. We particularly observe that RHO

scales only up to three threads and then steadily deteriorates (simi-

lar to [47]). This is because RHO’s threads synchronize outside of

the enclave using expensive OCALLS, which quickly become a bot-

tleneck. For more than eight threads, the performance of RHO goes

below the performance of single-threaded MCJoin. Similarly, we

see that PaMeCo achieves negligible scalability for more than four

threads. When investigating this further, we observed it performs

excessive thread management outside the enclave. We selected the

optimal number of threads for CrkJoin (16), RHO (3), and PaMeCo

(4); and used them across all experiments.

Dataset Size. We now increased the cardinalities of both rela-

tions from the synthetic datasets up to the maximum 4-byte val-

ues (i. e., over four billion tuples). We observe from Figure 14 that

CrkJoin outperforms the baselines by 2.8 − 252× and is the only

algorithm able to process the largest datasets. RHO requires cre-

ating very large enclaves (i. e., at least the size of the input data)

that are impractical and discouraged by Intel [34]. In particular, we

observe that CrkJoin shows a stable performance across all inputs.

We attribute this stability to fair work distribution between wait-

free threads and the correct selection of the number of partitioning

bits. CrkJoin cracks on more bits for larger datasets, which prevents

it from exceeding the CPU caches for a single partition. We also

see that, similarly to CrkJoin, MCJoin has a stable performance.

This is because it adapts the number of scans based on the memory

limitation and the sizes of the input tables. This is not the case

for PaMeCo and RHO. The performance of PaMeCo deteriorates

due to two memory events: when the input data exceeds the re-

stricted memory (> 8M tuples) and the EPC (> 64M tuples). The

performance of RHO fluctuates due to its static configuration. This

confirms the findings from previous works on the volatility of the

performance of the radix join [15, 61].

CrkJoin scales efficiently across all CPU cores and outperforms

the baselines from 2.8× up to more than two orders of magnitude.

7.5 End-to-End Performance
We, now, turn our attention to the performance of CrkJoin in “the

big picture“, i. e., when the join operators form part of a query. For

Figure 15: Simplified TPC-H queries. Color bars represent
the time spent on join; white bars mark the time of the rest
of the query (including the join output materialization).

Figure 16: Data twists.

this, we selected queries from the TPC-H benchmark that contain

primarily joins and no sub-queries; we chose queries 3, 10, 12, and

19 for the evaluation. As we focus on the performance of joins,

we simplified the queries by removing operations other than join,

selection, and projection. We then manually “compiled“ the queries

to their C++ representations following the column-store [16] and

query compilation [56] principles. Our approach strongly resembles

the approach taken in [61], which follows the execution strategy of

HyPer [37]. We ran all queries in a confined environment, similar

to Section 7.3. Note that all joins in this experiment are pipeline-

breakers. We, thus, materialize the output after each operator.

The results of this experiment (see Figure 15) show that queries

with CrkJoin outperform all baselines for all cases. The queries are

up to 11× faster than PaMeCo, 9× than with MCJoin and 2.2× faster
than with RHO. We marked the execution time of individual joins

in relation to the overall time. In general, the obtained results align

with the results of the single-query results in Sections 7.3 and 7.4,

confirming the correctness of the previous results. For a few cases

(e. g., Q3), we observe that the difference between CrkJoin and the

baselines is smaller than expected. This is caused by the additional

memory consumption introduced by selections and projections. Its

effect is particularly seen with CrkJoin due to the algorithm’s tiny

memory consumption; EPC now receives significantly more calls.

Overall, the results confirm that CrkJoin maintains its superior

performance also when it forms part of a complete query.

CrkJoin speeds up TPC-H queries by up to 11×.

7.6 Data Twists
We now evaluate whether CrkJoin is resilient to diverse data inputs.

To achieve that, we followed a similar approach to other studies on

join performance [9, 10, 12, 13, 47]: We introduced skew into the

synthetic datasets and we varied the cardinalities ratio.

Data Skew. We generated datasets A and B with a skew to val-

idate the performance with non-uniform data distributions. We

considered the Zipfian distribution varying the Zipf factor from 0.4
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to 1 and measured the throughput of the algorithms. Figure 16a-b

shows that CrkJoin is resilient to data skew. CrkJoin outperforms

the baselines by 2.2−10×. Yet, in contrast to all baseline algorithms,

our algorithm slightly decreases its performance for higher skew

due to uneven work distribution between threads. Some threads

take more time because they process more tuples than others. RHO

mitigates it with task decomposition, a technique that divides large

partitions and distributes them to more threads. We, thus, evaluated

a different strategy to assign uneven partition ranges to threads: We

considered a simple strategy that balances out the number of the

tuples in the probe relation assigned to each thread. While it is con-

ceptually similar to task decomposition, CrkJoin further cracks the

largest slices in the CT and distributes these slices among threads.

The results (CrkJoin+Skew) show that this strategy improves the

throughput by up to 30%, fully mitigating the impact of data skew

for dataset B. Although the results are promising, designing a full

version of this strategy is out of the scope of this paper.

Cardinalities Ratio. Lastly, wemanipulated the ratio between the

cardinalities of the input tables from 1 : 1 until 1 : 10. The goal was

to evaluate the stability of CrkJoin. In this experiment, we excluded

the baselines and, instead, introduced more workloads. Figure 16c

illustrates the results for six different inputs. Overall, we see that the

performance of CrkJoin is balanced independently of the cardinality

ratio. This tells us that the build and probe stages achieve similar

performance and are not prone to become performance bottlenecks

for datasets with other characteristics.

CrkJoin performs in a stable way for data with diverse character-

istics and outperforms others by up to 10× for skewed data.

8 RELATEDWORK
The two main lines of related work are relational joins and TEE-

based systems. Also note that there are other aspects related to

our work (e. g., data partitioning or modern hardware), which we

already cited throughout the paper whenever necessary.

Relational joins have been studied for decades from many dif-

ferent angles [8, 9, 13, 15, 21, 38, 39, 48, 49, 55]. DeWitt et al. [21]

devised the textbook join algorithms. Nakayama el at. [55] and [39]

improved the hybrid hash join to avoid disk paging for skewed

data. Later, Boncz et al. [15] and [49] considered memory as the

main bottleneck and proposed radix partitioning and radix join [48].

A decade later, the community revisited the performance of join

algorithms. Kim et al. [38] improved the performance of sort-merge

joins using SIMD instructions. Their work was further improved by

Balkesen et al. [8]. Meantime, Blanas et al. [13] advocated for non-

partitioning joins. Balkesen et al. [9] also proposed the currently

fastest implementation of radix join, which we included as one of

our baselines. The other works proved unstable and unreliable in

secure enclaves [47]. Joins in resource-constrained environments

have also been extensively studied [10–12, 14, 36, 44]. TinyDB [44],

PicoDBMS [14], and DB2 Everyplace [36] used the nested-loop join

as a no-memory solution. MCJoin [12] and PaMeCo [11] are block-

nested loop algorithms designed for memory-constrained environ-

ments.We compared the performance of CrkJoin to all of these three

algorithms. Barber et al. [10] proposed a compressed hash table that

reduced the memory footprint of their hash join. Secure relational

joins have mostly focused on hiding access patterns [1, 5, 40, 43].

Yet, these works have not considered the performance in TEEs. The

performance of join algorithms has been evaluated in benchmarks

on plain CPU [61], in streaming engines [70], and in TEEs [46, 47].

The findings from these works helped us to identify the bottlenecks

of SGX and select the right baselines.

TEE-based DBMSs have also been extensively researched in re-

cent years as data privacy becomes increasingly important [4, 23,

52, 60, 66, 68, 72]. Always Encrypted [4] enables some operations

in secure enclaves with Azure SQL Database. Yet, the paper only

mentions hash joins, which proved to be inefficient in enclaves [47].

Opaque [72] is a distributed analytics platform and ObliDB [23]

is a secure database engine with obliviousness guarantees. Both

propose joins that hide data access patterns but sacrifice the perfor-

mance to achieve their goal. EnclaveDB [60] is a database engine

that ensures confidentiality, integrity, and freshness of data and

queries. Sun et al. [66] built the first enclave-native storage engine.

Oblix [52] is an oblivious index based on SGX. Operon [68] is a data-

base that preserves data ownership throughout the entire pipeline.

However, none of these three works considered the join processing

problem. In addition, some works have analyzed and tried to im-

prove the performance of TEEs [6, 67]. Arnautov et al. [6] analyzed

Intel SGX to design secure Linux containers on top of it. Taassori

et al. [67] proposed a way to reduce the EPC paging overheads. All

these works are orthogonal to CrkJoin. Lastly, works on encrypted

data processing have strongly influenced how TEE-based systems

are being developed [27, 29, 54, 59, 71]. Fully homomorphic encryp-

tion [27] enables any operation on encrypted data. However, these

schemes are currently impractical in terms of performance [54].

CryptDB [59] is a database that uses many encryption schemes to

protect the data. Yet, [29, 71] have pointed out that the existing

encrypted databases might have undisclosed vulnerabilities.

9 CONCLUSIONS
We found that joins currently underperform on TEEs due to three

bottlenecks: access patterns, limited memory, and threading costs.

Related work has focused primarily on security, paying significantly

less attention to efficiency. We have introduced the CLP, a set of

processing principles that mitigate the bottlenecks of TEEs. We

have then proposed CrkJoin, a join algorithm that instantiates this

philosophy. We have shown that CrkJoin performed notably better

in a multi-tenant cloud scenario, outperforming the baselines by

up to three orders of magnitude. CrkJoin also performs at least

2.9× better than baselines in an isolated, single-query environment.

Overall, our findings have enabled efficient join processing in TEEs,

leading to a more practical and safer cloud. We are excited by the

potential of CrkJoin, and, in future work, would like to introduce

CrkJoin into a secure database engine and devise its cost models

for the database optimizer. We would also like to study inequality

joins as well as other relational operators (e. g., aggregation and

group-by) as they could also benefit from the principles of the CLP.
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