
Pando: Enhanced Data Skipping with Logical Data Partitioning
Sivaprasad Sudhir

MIT, Meta
siva@csail.mit.edu

Wenbo Tao
Meta

wenbo0@meta.com

Nikolay Laptev
Meta

nlaptev@meta.com

Cyrille Habis
Meta

cyrilleh@meta.com

Michael Cafarella
MIT

michjc@csail.mit.edu

Samuel Madden
MIT

madden@csail.mit.edu

ABSTRACT
With enormous volumes of data, quickly retrieving data that is
relevant to a query is essential for achieving high performance.
Modern cloud-based database systems often partition the data into
blocks and employ various techniques to skip irrelevant blocks
during query execution. Several algorithms, often based on histor-
ical properties of a workload of queries run over the data, have
been proposed to tune the physical layout of data to reduce the
number of blocks accessed. The effectiveness of these methods at
skipping blocks depends on what metadata is stored and how well
the physical data layout aligns with the queries. Existing work
on automatic physical database design misses significant oppor-
tunities in skipping blocks because it ignores logical predicates in
the workload that exhibit strongly correlated results. In this paper,
we present Pando which enables significantly better block skip-
ping than past methods by informing physical layout decisions with
correlation-aware logical partitioning. Across a range of benchmark
and real-world workloads, Pando attains up to 2.8X reduction in
the number of blocks scanned and up to 2.3X speedup in end-to-end
query execution time over the state-of-the-art techniques.

PVLDB Reference Format:
Sivaprasad Sudhir, Wenbo Tao, Nikolay Laptev, Cyrille Habis, Michael
Cafarella, and Samuel Madden. Pando: Enhanced Data Skipping with
Logical Data Partitioning. PVLDB, 16(9): 2316 - 2329, 2023.
doi:10.14778/3598581.3598601

1 INTRODUCTION
With increasing volumes of data, reducing the amount of data that
is accessed and processed is key to achieving high performance and
reducing resource consumption in data-intensive systems. Modern
data warehouses use a variety of techniques like horizontal and
vertical partitioning, clustered indexes, sort orders, etc. to avoid
scanning unnecessary data during query processing [1, 9, 12, 36].

Typically, cloud-based database systems organize data as com-
pressed columnar blocks in storage, each block containing thou-
sands or millions of tuples [26]. A block is the smallest unit of I/O,
i.e., a block is either skipped or scanned entirely at query time.
I/O required for accessing data blocks from storage is one of the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.
doi:10.14778/3598581.3598601

dominant costs for query processing in these systems. To mini-
mize the amount I/O performed, DBMSs maintain metadata such
as block indexes, per-block statistics, etc. along with the data to
skip accessing irrelevant blocks during query execution.

The effectiveness of data skipping depends on what metadata
is stored, how the data is laid out, and how well it aligns with the
query patterns. Range partitioning that is used by most produc-
tion systems is useful for skipping blocks for queries that filter
on the partitioned columns, but does not collect enough metadata
to provide any benefits for queries that filter on other columns.
Commercial systems maintain per-block metadata such as min-
max values of each column to skip blocks when the range of values
in it does not intersect the query filter [11, 14, 30, 34]. But their
effectiveness depends on the tightness of each block’s min-max
range which depends on how tuples are assigned to blocks.

Recent studies such as Qd-trees [45] and MTO [15] have shown
that more expressive partitioning schemes can achieve higher per-
formance by leveraging data and workload-specific information.
These methods tailor the data layout for a specific application by
hierarchically partitioning the physical data space using filter ex-
pressions that appear in the query workload. However, even these
methods fail to exploit a common workload pattern: correlation
among query predicates. Modern applications generate queries that
involve complex predicates that are often correlated with each
other, i.e., the predicates are satisfied by a similar set of tuples
[23, 27]. For example, queries with filters DISTANCE(start_point,
end_point) < 3 miles and cost < $7 on an NYC Taxi dataset
will select similar tuples. Ideally, a storage system would exploit
this property by creating blocks that can supply tuples for either
predicate. However, existing systems create blocks that reflect each
predicate independently; for example, a split in the hierarchical
partitioning based on cost is not useful for queries with filters on
DISTANCE(start_point, end_point) and thereby forces corre-
lated queries to touch more blocks during query processing.

In this paper, we present Pando1, a metadata-rich correlation-
aware storage system for aggressively skipping data blocks. Pando
is able to deliver substantially better block skipping than past meth-
ods by informing physical layout decisions with correlation-aware
logical partitioning. Pando takes advantage of correlated predicates
by creating multiple logical partitionings to minimize I/O for a
variety of queries. In the NYC taxi dataset, we can create one logical
partitioning that splits the data space based on cost attribute and
one that splits based on DISTANCE(start_point, end_point).
Each logical partition maps to physical data blocks that intersect
1Pando is a huge grove of quaking Aspen that share a single root system and are
considered one organism; In Latin, Pando means I Spread.

2316

https://doi.org/10.14778/3598581.3598601
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598601

Figure 1: An example Pando layout for NYC Taxi dataset. 𝐵0,
𝐵1, etc. are physical data blocks. There are two logical parti-
tioning trees, one with predicates on DISTANCE(start_point,
end_point), another on cost. Leaf nodes of the tree map to
the physical blocks that intersect the logical data ranges.

it. To ensure good performance, each logical partition should map
to only a few data blocks, i.e., the physical data layout has to align
well with the logical partition boundaries. Pando optimizes the
physical data layout to maximize the utility of these logical indexes
while handling outlier tuples in separate outlier partitions. For ex-
ample, the high-cost / low-distance and low-cost / high-distance
rides might be stored together in an outlier partition. This layout is
shown in Fig. 1.

Pando co-optimizes a set of correlation-aware logical partition-
ings and the physical layout of the data to maximize the overall
performance of a given workload on a dataset, allowing it to special-
ize to data and workload distributions. Pandomaintains a collection
of logical partitionings of the data, each arranged as a tree that hier-
archically splits the logical data space using predicate expressions
that are useful for skipping blocks during query processing. The
leaves of these trees point to the physical blocks that contain the
logical ranges in the tree nodes. At execution time, these expres-
sions are intersected with the query filters to skip blocks that do
not intersect with the query. Pando chooses the underlying phys-
ical blocks in such a way to maximize the opportunity for block
skipping, exploiting correlations between expressions to find good
physical designs.

Decoupling the physical data layout and logical partitioning
trees creates an extremely large search space of configurations that
need to be considered during optimization. Data can be partitioned
into blocks in a large number of ways (the so-called Bell number),
which grows faster than exponential in the number of tuples. For
any given blocking, an exponentially large number of index trees
can be created, causing a combinatorial explosion in the space of
physical design alternatives. We present a layout optimizer that
efficiently navigates this space by leveraging properties of the data
and workload.

To summarize, this paper makes the following contributions

(1) We present Pando, a metadata-rich correlation-aware data
layout that jointly optimizes the selection of multiple log-
ical partitioning trees and the physical data layout to en-
hance query performance by reducing the amount of data
accessed.

(2) We provide an efficient heuristic algorithm to determine a
good set of partitioning trees and the assignment of tuples
to blocks for a given dataset and workload.

(3) Finally, we demonstrate that Pando outperforms other lay-
outs across a range of real-world and benchmark datasets
and workloads. Pando is up to 2.3X faster in overall query
execution time and reduces the number of blocks scanned
by up to 2.8X when compared to the state-of-the-art learned
data layout, MTO.

2 MOTIVATION
We begin with an overview of the limitations of the existing solu-
tions and then make the case for Pando. Qd-tree [45] is a recently
proposed learned data layout framework for single tables, that spe-
cializes its data layout to a specific dataset and the workload of
queries that run on it to minimize the amount of data scanned dur-
ing query processing. To optimize the layout, it extracts "simple"
predicates from the workload, like X < 50, X < Y, etc. and constructs
a binary decision tree from them. Data is partitioned according to
this tree. Each inner node in the tree is a predicate expression,
called a cut, that cuts the physical data space into two child nodes.
One of the child nodes corresponds to the tuples that satisfy the
predicate expression and the other corresponds to the tuples that
do not. The leaf nodes of the tree correspond to a data block. At
execution time, a query traverses the tree to find the blocks that
need to be scanned. At any given node, if the query intersects only
one of the cut or its negation, only the corresponding child node is
traversed. Otherwise, both children are traversed.

MTO [15] extends qd-trees to optimize the layout across multiple
tables. MTO takes a set of tables as the input and produces one
qd-tree layout per table. In addition to single table predicates in
qd-trees, MTO uses join-induced predicates to cut the nodes in the
partition tree. For example, if the workload contains queries like

SELECT * FROM T1 JOIN T2 on T1.Key = T2.Key
WHERE T1.X < 50 ANF T2.Y > 75

the predicate T1.Key IN (SELECT T2.Key FROM T2 WHERE T2.Y
> 75) is considered for cutting T1’s partitioning tree and T2.Key
IN (SELECT T1.Key FROM T1 WHERE T1.X < 50) for cutting T2’s
data space. These cuts are useful for pre-filtering tuples that would
otherwise be dropped during the join operation.

Both MTO and qd-tree construct a single tree per table which
is both a partition function and an index for skipping blocks at
query time. Most cloud systems have a large minimum block size
(millions of tuples) to hide the latency of accessing cloud storage
and to achieve high compression ratios [26]. As each leaf node of
this tree corresponds to a block with a minimum size, the height of
the tree is limited, so just having a single tree of expressions limits
the number of expressions that can be present in the tree. This in
turn reduces the utility of the tree for skipping data for a variety
of queries. This can be particularly bad when there are correlated
expressions, i.e., expressions over different fields that are satisfied
by substantially overlapping sets of tuples.

To illustrate where this overhead comes from, consider a toy
example with a single two-dimensional table visualized in Fig. 2a.
The X and Y axes correspond to two correlated columns in the
table (e.g., cost and distance). The grey dots represent the tuples in
the table. Consider a workload with 2 kinds of queries uniformly
distributed in the data space. Half the queries have a range predi-
cate on column X and the other half have a range predicate on Y

2317

(a) Dataset (b) Qd-tree / MTO

(c) Pando

Figure 2: Fig. 2a shows a 2-dimensional dataset with correlated columns X and Y. Consider a workload with 2 kinds of queries.
Half the queries have a range predicate on column X and the other half have a range predicate on Y. Fig. 2b shows the layout
that qd-tree and MTO will find. Nodes traversed during execution of queries are marked along the edges of the tree. Each query
scans the blocks in the leaf nodes that intersect the query. Fig. 2c shows the Pando layout with two logical partitioning trees
and data blocks that align well with the logical trees and query access patterns.

that select a narrow range of data. The table has 500 tuples and a
minimum block size of 100 tuples.

Fig. 2b shows the layout for the dataset that qd-tree/MTO would
find for the given workload. The root node of the expression tree
has the predicate X < 50 and the two inner nodes have predicates
on Y. The tuples that satisfy X < 50 AND Y < 25 are in block
𝐵0, the tuples that satisfy X < 50 AND NOT(Y < 25) are in 𝐵1,
and so on. The black dotted lines in the grid represent the physical
partition boundaries. When a query with filter 5 < Y < 10 arrives,
we first intersect it with the filter in the root node expression X <
50. As they are not comparable, the query may intersect both child
nodes. The query intersects with the left side of both children, so
we only scan the blocks 𝐵0 and 𝐵2, scanning half the data in the
table. Fig. 2b highlights the nodes traversed during query execution
using this tree. Most queries in the workload will also scan half of
the table. Queries with a filter on X can use the root node to skip
half the data, and those with a predicate on Y can use the child
nodes with an expression on Y.

An issue with the qd-tree is that correlated expressions X < 25
and Y < 25 cannot appear on a path from the root node to a leaf. If
they do, then the child node corresponding X < 25 AND NOT(Y <
25) will have very few tuples as the columns are correlated. But if
we can create two different trees, then we can create one tree with
predicates on X and one on Y as shown in Fig. 2c. One of the trees
can be used for skipping queries with filters on X, and the other for
queries that filter on Y.

A qd-tree is not only an index but also a partitioning function.
Each leaf node maps to one physical data block with precisely the
tuples that satisfy the leaf node’s expression. But with two index
trees, it is unclear what the data blocks are. If both trees have to
be partitioning functions, then they have to be perfectly correlated
i.e., both trees have to partition the tuples into the exact same
blocks. This restricts the space of possible trees significantly as
most datasets have outliers of some form.

If, as we do in Pando, we relax the precision of the leaf node
expressions and allow them to point to multiple blocks containing
a superset of tuples that satisfy the expressions, we can lay out the
data to align well with the two trees as shown in Fig. 2c.

Here, each tree is a logical partitioning of the data space. The
orange dotted line in Fig. 2c corresponds to the boundaries of the
orange partitioning tree with predicates on X. Similarly, the blue
dotted lines show the logical partition boundaries of the second par-
tition tree with predicates on Y. Tuples with different colors/shapes
represent the physical data blocks. The leaf nodes of the trees map
to blocks that intersect its logical subspace. The leaf node of the
orange tree corresponding to the expression X < 25 points to blocks
𝐵0 and 𝐵4 as the blue/purple tuples intersect the subspace of data
corresponding to X < 25.

Each leaf node in Fig. 2c points to 2/5𝑡ℎ of the data, more tuples
than earlier. But with more expressions stored in the trees, queries
scan fewer leaf nodes. The query 5 < Y < 10 can use the second
partitioning tree and only intersects the first leaf node that maps
to 𝐵0 and 𝐵4. In our workload, most queries intersect only one leaf

2318

Figure 3: Overview of Pando architecture.

node and scan only 2/5𝑡ℎ of the data compared to half the data
when using a qd-tree. Intuitively, the layout in Fig. 2c reduces the
amount of data scanned by splitting correlated expressions like
X < 25 and Y < 25 across two logical partitioning trees, and
assigning tuples to blocks to maximize the utility of the trees.

This is a toy example and a simple correlation between two
columns like this can also be addressed by existing techniques like
Correlation Maps [22], zone maps [19], etc. But our method goes
beyond that and captures the correlation between expressions that
exist in the workload. For example, in the NYC taxi dataset, the trees
may contain complex predicates such as DISTANCE(start_point,
end_point) < ? and cost < ? that are correlated but where
DISTANCE() does not exist as an attribute in the database. Pando
builds two trees for expressions on X and Y that are correlated.
The X and Y axes in the Fig. 2c correspond to the sort order of
the data dictated by the two trees, and it visualizes the correlation
between the expressions in the two trees. Our method can also take
advantage of correlations across tables. For example, in TPC-H,
predicate l_shipdate > ? and join-induced predicate l_orderkey
IN (SELECT o_orderkey FROM orders WHERE o_orderdate
> ?) are correlated. Pando leverages this to construct multiple
expression trees that work in conjunction and organizes the data
to maximize their effectiveness.

Even if the expressions are not correlated, storing multiple trees
can perform well and in fact, save space. A single query can com-
bine information from multiple indexes to scan fewer blocks. For
example, if columns X and Y were not correlated and uniformly
distributed, the layout corresponding to the 16 grid cells in Fig. 2c
can be optimal for a minimum block size of one-sixteenth of the
table size. A single tree that can index the 16 blocks will need 15 ex-
pression nodes. This single tree can be visualized by appending the
second partitioning tree to every leaf node of the first tree. The two
trees shown in Fig. 2c can index the 16 blocks with equal expressive
power, but with just 6 expressions. A query with a predicate on both
X and Y can combine information from both trees to only access the
data blocks that intersect the query. We incur additional overhead
in maintaining the pointers to blocks, but it is outweighed by the
space benefits from fewer nodes. So we focus on creating multiple
partitioning trees instead of one large tree.

3 OVERVIEW
As shown in Fig. 3, Pando is comprised of two components: a layout
optimizer which determines what indexes to create and how to lay
out the data, and a query executor which executes queries on this
layout. Pando organizes data as blocks, disjoint sets of rows, with a

minimum size in storage and builds one or more binary partitioning
trees that index these blocks (§4). When a query arrives, the query
executor gets the data blocks to retrieve using each partitioning tree
and combine them smartly to access as few blocks as possible from
storage (§5). Given a multi-table dataset, a representative workload,
a minimum block size, and a number of indexes to create per table,
the layout optimizer finds the data layout and associated indexes for
each table to maximize overall performance (§6). Now, we describe
these components in more detail.

4 DATA STRUCTURE
Pando organizes data for each table in a database as compressed
columnar blocks in storage. A block only contains tuples from one
table. Blocks are mutually exclusive, i.e., tuples are not replicated
across blocks. There is only one copy of the data for each table.

For each table, we create 𝑘 logical partitionings. Each logical
partitioning is an expression tree that indexes a table’s blocks. Each
node in the tree is a predicate expression that filters that table’s
tuples, called cut. For example, the cuts in table T1’s partitioning
tree can contain single-table expressions like T1.Col < 5 or join-
induced predicates like T1.Key IN (SELECT T2.Key from T2
WHERE T2.Z > 2). The former is useful for queries that have a
predicate on T1.Col. The latter is useful for skipping blocks for
queries that join T1 with T2 and have a filter on T2.Z.

Unlike qd-trees that cut the physical data space into blocks,
Pando’s partitioning trees cut the logical data space. The left child
of the node corresponds to the logical data subspace that satisfies
the expression, and the right child corresponds to the subspace that
do not satisfy the predicate. For example, the predicate T1. Key IN
(SELECT T2.Key from T2 WHERE T2.Z > 2) splits table T1’s data
space into two subspaces: tuples that when joined with T2 on Key
will satisfy T2.Z > 2 and tuples that will not find a match during
join or when joined will not satisfy T2.Z > 2.

Each tree partitions the logical data space into mutually exclusive
subspaces. Each leaf node corresponds to a predicate based on a
conjunction of the expressions (or their negations) in the tree as
we traverse the tree from root to leaf. For the rest of the paper, we
call this leaf node expression. In the first partition tree in Fig. 2c,
the first leaf node from left (the one that points blocks 𝐵0, and 𝐵4)
corresponds to the expression X < 50 AND X < 25. Similarly, the
second one has X < 50 AND NOT(X < 25).

Each leaf node contains a set of pointers to the physical blocks
that intersect with this logical space. In other words, the leaf node
maintains a list of blocks with at least one tuple satisfying the leaf
node expression. Note that each leaf node expression is complete,
i.e., it points to every block that contains a tuple that satisfies the leaf
node expression. However, it is not precise, as there may be tuples
in some of the pointer blocks that do not satisfy the expression.

5 QUERY EXECUTION
When a query arrives, we leverage information from all expression
trees to minimize the number of blocks scanned. Each index in
Pando is a logical partitioning of the data space. We use each index
to identify the leaf nodes of the tree that needs to be scanned to
answer the query. We traverse down each expression tree to find
the leaf nodes that intersect the query filters. At each node, if the

2319

Figure 4: Query execution in Pando for the layout in Fig. 2

query does not intersect the cut in the node, we skip the left child.
If it does not satisfy the negation of the cut, we skip the right child.
For e.g., consider a node with cut X < 50. For query X > 70, we skip
scanning the left child. Similarly, for the query X < 10, we skip the
right child. For queries like X < 60 that intersect both the cut and
its negation, or for queries like Y < 10 where intersection cannot
be determined from the expressions, we scan both child nodes.

The set of leaf nodes returned by a tree corresponds to a logical
data subspace that subsumes the query i.e., all tuples that satisfy
the query are contained in this space. The physical blocks pointed
to by these leaf nodes are a superset of the logical space represented
by the expressions. Scanning these blocks is sufficient to answer
the queries. We obtain the set of blocks to scan from each tree
independently and then intersect all the sets to get the set of blocks
to retrieve from storage.

Fig. 4 shows the execution of an example query with filter 55
< X <= 60 AND 40 < Y <= 45. The black rectangle in the grid
visualization corresponds to the subspace of data that corresponds
to the query filter. The two indexes are used to identify the set
of leaf nodes that intersect the query filter. The path traversed
is highlighted in each tree. The index on X finds the leaf node
corresponding to 50 < X <= 75, and the index on Y finds the
leaf node corresponding to 25 < X <= 50. The logical subspace
of data that satisfies these leaf node expressions is highlighted by
the red/green rectangle in the grid that subsumes the black query
rectangle. The leaf node 50 < X <= 75maps to physical data blocks
𝐵2 and 𝐵4 which correspond to all green and purple tuples. These
blocks subsume the red rectangle in the grid which subsumes the
query. Similarly, blocks 𝐵1 and 𝐵4 subsume the query. As physical
data blocks are mutually exclusive, only the blocks that are in the
intersection of the two sets need to be retrieved. So Pando only
retrieves block 𝐵4 to answer the query.

6 LAYOUT OPTIMIZATION
The input to our layout optimizer is a multi-table dataset 𝐷 , a
representative workload𝑊 , a minimum block size 𝑏, and a number
of expression trees to create per tree 𝑘 . The output is a blocked
layout for each table such that each block has greater than 𝑏 tuples
and 𝑘 expression trees per table to index the blocks in the table.
We note that our algorithm works for different values of 𝑘 for each
table. For simplicity of presentation, we use one 𝑘 for all tables in
the database. Our algorithm works in two phases.

Top-Down tree construction: We first extract relevant single-
table and join-induced predicates from the representative workload
and use them to construct 𝑘 trees per table in a top-down fashion.
Trees are constructed to capture different expressions that are useful

for accelerating queries in the workload. As we will describe below,
correlated expressions that exist in the workload are captured in
different trees if they are useful for skipping queries.

Bottom-Up blocking assignment: We then group the tuples
in a bottom-up fashion to maximize the utility of these indexes until
each block has at least 𝑏 tuples. This bottom-up clustering of tuples
is done to minimize the I/O cost of the queries when executed using
the indexes constructed in the previous phase. The expression trees
created in phase 1 are updated if required.

We now discuss each step in detail.

6.1 Top-Down Tree Construction
The goal of this stage is to construct 𝑘 partitioning trees per table,
each with predicates that are useful for skipping blocks for queries
in the workload. The top-down stage works as follows:

(1) Extract useful predicates from the workload and create a
set of candidate cuts for each table.

(2) For each table independently: construct 𝑘 partitioning trees
using the cuts from its candidate set tominimize the number
of tuples scanned from the table.

First, we extract candidate expressions from the workload for
cutting the data space in the tree nodes. For each query in the
workload, we extract predicates on each table and decompose them
into simple expressions without any conjunctions or disjunctions
and add them to a set of candidate cuts for that table. For example,
consider the query: SELECT ... FROM T1 JOIN T2 on T1.Key
= T2.Key WHERE T1.X < 100 AND T1.Y > 72 AND T2.Z > 2.
Single-table candidate cuts extracted for table T1 are T1.X < 100,
and T1.Y > 72. Similarly, T2.Z > 2 is added to the candidate cuts
set for table T2. These single table predicates are then propagated
through the join graph to create join-induced candidate cuts. The
predicate on T2, T2.Z > 2 is propagated to table T1 through the
join T1.Key = T2.Key to create the join-induced candidate T1.Key
IN (SELECT T2.Key from T2 WHERE T2.Z > 2). This is added to
T1’s set of candidate cuts. Similarly, T2.Key IN (SELECT T1.Key
from T1 WHERE T1.X < 100) and T2.Key IN (SELECT T1.Key
from T1 WHERE T1.Y > 72) are added to T2’s candidate cuts.
We then construct the 𝑘 trees independently for each table using
expressions from its candidate set.

We give a top-down greedy algorithm, which extends the al-
gorithm for the construction of trees from qd-tree and MTO, to
construct 𝑘 trees, one cut at a time. Throughout the first stage of
the algorithm, we assume that each tuple is in a separate block. The
iterative algorithm works as follows:

(1) Initialize 𝑘 trees, each with exactly one node that does not
have any cuts and points to every block in the table.

2320

Figure 5: The trees constructed during the top-down phase of Pando’s layout optimizer. The grid visualizes the correlation
between the leaf nodes of the trees.

(2) For each tree, for each leaf node, for each candidate cut,
find the cost of executing the workload if the leaf node is
cut using the candidate.

(3) Let (𝑡, 𝑙, 𝑐) be the tree, leaf node, and candidate cut triple
with the lowest cost in step 2. Cut the leaf node 𝑙 of the tree
𝑡 using the cut 𝑐 .

(4) Repeat steps 2 and 3 until one of the following conditions
is satisfied:
(a) Cutting leaf nodes no longer yield any more benefit.
(b) Cutting leaf nodes result in child nodes that point to

fewer than a threshold number of tuples.

We start with 𝑘 trees with no cuts in any of the trees, i.e., the root
node of each tree is also a leaf node. Each leaf node corresponds to
the entire logical dataspace and maps to every block in the table
(each block is a tuple).

In each iteration of the algorithm, we pick a leaf node of one
of the 𝑘 trees and a cut from the candidate cuts to split the leaf
node into two child nodes. This choice is made greedily by picking
the tree/leaf node/cut combination that provides the maximum
I/O benefit for the workload. We consider a cut only if the child
nodes after the node is cut have greater than a threshold number
of tuples. The threshold number of tuples can be varied to trade
off optimization time for higher-quality layouts (discussed in §6.2).
The child nodes become new leaf nodes that are considered for
cutting in later iterations. We continue splitting leaf nodes until no
more nodes can be cut or cutting nodes yields no benefit.

The cost model in step 2 is the I/O cost which is simply the total
number of blocks scanned (the same as the number of tuples as
each tuple is in a separate block) for all queries in the workload.
The I/O benefit is estimated using the query execution described
in §5 i.e., for each query we only scan the blocks that are returned
from all the trees. A cut 𝑐 is useful for cutting a leaf node 𝑙 in tree 𝑡
only if queries can skip blocks using 𝑐 that they could not already
skip using predicates in other trees. This means that the benefit
of a cut in one tree depends on the cuts in other trees. Our cost
estimation accounts for using multiple trees to skip blocks for each
query so that we do not end up with 𝑘 identical trees. Using these
trees can reduce the cardinality of the scan output (eg. join-induced
cuts pre-filter tuples that would otherwise be dropped during join),

thus can have an impact on query plan (eg. join order). Our cost
model does not account for that and only models the I/O cost.

This algorithm picks expressions that are useful for minimizing
the I/O needed for the workload when the indexes are used in
conjunction. The expressions that yield a higher reduction in the
amount of data scanned for most queries appear at the higher levels
of the tree. For example in our running example, the predicates X <
50 and Y < 50 can reduce the number of records scanned by half
for queries that filter in X and Y respectively, so will be picked first.

We note that this algorithm tends to pick correlated expressions
in different trees, and not in the same tree. To understand why
correlated expressions tend to be picked in different trees, consider
Y < 25 being considered as a candidate to cut the left child node X
< 25. The benefit of this cut for a query that does not intersect the
negation of the predicate is bounded by the number of tuples that
satisfy X < 25 AND NOT(Y < 25) which is a very small number.
Whereas in another tree, where the path to the leaf node has not
been cut by X < 25, the benefit is likely higher. Our algorithm will
pick such a leaf node if it is beneficial for the overall cost of the
optimization process.

Now we discuss, how to scale this phase of the optimization
algorithm for large datasets. Our cost model is the total amount of
data that is scanned by the queries in the workload when 𝑘 trees
are used in conjunction. This requires finding the tuples that satisfy
the leaf node expression for each candidate cut considered which
can be very expensive. To reduce the runtime of the optimization
algorithm, we run this stage using a sample of the dataset for es-
timating the cost, similar to qd-tree and MTO. This is done for all
the tree, leaf node, and candidate cut triplets considered in step 2
in parallel.

At the end of this stage, we have constructed 𝑘 trees for each
table that cut the logical data space using a variety of expressions
that are useful for avoiding unnecessary data access during query
execution. The cuts that yield higher benefits or are useful for a
large number of queries tend to be in the higher levels of the trees
and correlated expressions if useful for block skipping tend to be
in different trees. Fig. 5 shows the trees that are constructed by the
algorithm with a threshold size of one-eighth of the table. We use 𝑙𝑖

𝑗

to denote the 𝑗𝑡ℎ leaf node of the 𝑖𝑡ℎ tree. We now discuss how we
find the block assignment to maximize the benefit of these trees.

2321

6.2 Bottom-Up Block Assignment
The goal of the second stage of the algorithm is to assign tuples to
blocks that maximize the utility of the indexes in skipping blocks
for the given workload. Each tree partitions the logical data space
into mutually exclusive subspaces, so each tuple satisfies the leaf
node expression for exactly one leaf node in a given tree. Logically,
each tuple has an associated k-tuple whose 𝑖𝑡ℎ entry is the id of
the leaf node of the 𝑖𝑡ℎ tree that the tuple belongs to. The grid in
Fig. 5 illustrates the mappings between tuples and leaf nodes for
the two trees constructed in the top-down phase of our algorithm.
The two axes in the visualization correspond to the leaf nodes of
the two trees, i.e., each partition along each axis corresponds to a
leaf node in a tree. Each cell in the grid formed by these partitions
corresponds to a k-tuple. In our running example, consider the
tuple (𝑋 = 5, 𝑌 = 5) in our running example. When routed down
the first partitioning tree with predicates on X, this lands in the
leaf node 𝑙00 . Similarly, it lands in the leaf node 𝑙10 in the second tree.
So this tuple has an associated k-tuple (𝑙00 , 𝑙

1
0).

The goal of our bottom-up clustering algorithm is to merge
the tuples into blocks such that queries when executed using the
indexes created in the first phase scan as few blocks as possible. To
minimize the number of blocks, we need to group tuples that are
accessed together in the same block. In other words, tuples should
be assigned to blocks such that queries that need to scan one tuple
in the block also need most other tuples in the block. Outliers are
those tuples that hinder this, i.e., they are needed for answering
queries that scan very different sets of tuples. So however you
assign these outlier tuples to blocks, it is likely that many queries
that need to scan the outlier tuples do not require other tuples
in the block. As trees in the first phase were constructed to align
the leaf nodes well with the queries assuming each tuple is in a
separate block, it is likely these outlier tuples are also outliers in
the leaf-node expression space that is visualized in the grid Fig. 5.

In our example, nearby tuples along the diagonal X=Y are good
candidates to be in the same block as most queries of both templates
(the ones with a predicate on X, and ones with a predicate on Y) that
intersect them scan many of the nearby tuples. In contrast, a tuple
far away from the diagonal, such as X=15, Y=100, is an outlier.
Queries with a predicate on X that need this tuple mostly scan the
bottom left corner of the grid, whereas queries with a predicate on
Y that need this tuple scan the top right corner of the grid. So if you
group the outlier tuple with ones in the bottom left, then queries on
Y will scan an unnecessary amount of data. Similarly, if you group
it with tuples in the top right corner, then queries on X will scan
irrelevant tuples. So to maximize skipping, we should minimize the
number of blocks with outliers by assigning the outlier tuples to
separate outlier blocks.

We now describe our bottom-up algorithm that clusters tuples
to minimize the total amount of data scanned using these trees.

(1) Route the tuples down each partitioning tree to find the
associated k-tuple.

(2) Merge all tuples with the same k-tuple into a block.
(3) For each pair of blocks, find the cost of merging them.
(4) Merge the pair with the lowest cost from step 3.
(5) Repeat steps 3 and 4 until each block has greater than the

required minimum block size 𝑏.

All tuples that have the same k-tuple cannot be differentiated
by the trees that we have constructed, so there is no benefit in
spreading the tuples across blocks. So all the tuples that satisfy the
same k-tuple are merged into the same block. In Fig. 5, each k-tuple
corresponds to a cell in the grid. Thus, all tuples that fall in the
same grid cell are merged into a block.

We then iteratively merge these cells until each block has more
tuples than the minimum block size 𝑏. We start with each block
having just one k-tuple, corresponding to one cell in the above grid.
In each iteration, we pick two blocks to be merged into one. We
make this choice greedily by merging two blocks that incur the
least cost for executing the queries. We continue merging blocks
until each block has more tuples than the minimum number of
tuples in a block, 𝑏.

To compute the cost of merging two blocks, we use a cost model
that is the total number of records that are scanned according to
query execution described in §5. For each query, we get the set of
blocks to scan from each partitioning tree and scan the ones that
are returned by all trees. When we merge two blocks 𝐵𝑖 and 𝐵 𝑗 , all
queries that scanned block 𝐵𝑖 or 𝐵 𝑗 will now scan the data that is in
both blocks. It is also possible that some queries that did not access
either of the blocks will now scan the merged block. To see this,
suppose that, before merging, the blocks to be scanned returned
for a query Q in tree 1 are (𝐵𝑖 , 𝐵𝑘), and in tree 2 are (𝐵 𝑗 , 𝐵𝑘). The
query would only scan 𝐵𝑘 as that is the only block that is in the
intersection of sets returned by the two trees. After merging, both
trees now return (𝐵𝑖 𝑗 , 𝐵𝑘) where 𝐵𝑖 𝑗 is the merged block, so both
blocks will be scanned during query execution.

Intuitively, two blocks are merged if most queries that scan one
block also scan the other. In the running example, this is true for
blocks along the diagonal of the data space. The outlier tuples are
scanned by queries that scan a variety of other blocks. Outliers
k-tuples that are fewer in number get merged into their own block.
This outlier block is unlikely to be merged with the diagonal block
as that will incur high costs for most queries that scan either of
the blocks. This handling of outliers is essential for finding a block
assignment that is good for the indexes. We eventually end up with
a block assignment shown in Fig. 2c.

At this point, many sibling leaf nodes in the partitioning trees
will point to the same set of blocks. A cut in the tree is not useful
if both child nodes point to the same set of blocks. We truncate
the trees by merging nodes of the tree in a bottom-up fashion,
eliminating cuts if they provide no benefit. For example, both child
nodes of X < 12.5 in Fig. 5 will point to blocks 𝐵0 and 𝐵4. The cut
can be eliminated and the node corresponding to X < 12.5 can
be made a leaf node that points to 𝐵0 and 𝐵4. This is done until all
sibling nodes have different block mappings, thus yielding a tree
shown in Fig. 2c.

We now discuss how to scale this phase of the algorithm. Step 3
can be done in parallel and the cost model depends on the number of
tuples in each block, which can be easily maintained while merging
blocks. If a table has 𝑁𝑇 tuples and each tree has 𝑁𝐿𝑖 leaf nodes,
the number of possible values of k-tuples, 𝑁𝐾 , is𝑚𝑖𝑛(𝑁𝑇,Π𝑁𝐿𝑖)
which can be huge. The complexity of this phase is quadratic in
𝑁𝐾 . Capturing correlated expressions in separate trees in the top-
down phase results in many of these cells being empty, making this
bottom-up algorithm tractable. The threshold parameter we have in

2322

the first phase can be tuned to trade-off time spent in optimization
for a higher quality layout. The smaller the threshold, the more the
number of leaf nodes, the more the number of distinct k-tuples, and
the longer it takes for merging. But smaller thresholds can capture
finer-grained outliers improving the layout quality.

We note that Pando with 𝑘 = 1 is the same as MTO. We can
use 𝑏 as the threshold for the top-down algorithm and we will
create the same tree as MTO. For values of threshold lower than 𝑏,
the top-down phase will pick additional predicates in the deeper
levels of the tree, which will be removed during the bottom-up
phase. Increasing 𝑘 will improve the performance of the layout
with diminishing returns. However, this comes at the cost of an
increasingly larger offline optimization time. In theory, the optimal
value of 𝑘 can be arbitrary as workloads could contain an arbitrary
number of distinct expressions that are correlated. We did not
observe many such expressions in the workloads at Meta and expect
small values of 𝑘 would be sufficient for most workloads. Based
on our experiments in §8.3, we expect 3 or 4 trees to be sufficient
for many realistic datasets. To pick 𝑘 , we can evaluate the query
performance for increasing values of 𝑘 on a dataset sample until
the query performance flattens.

7 DATA CHANGES ANDWORKLOAD SHIFTS
In this section, we describe how Pando adapts to evolving data
and workload distributions. Pando supports both bulk and regular
data changes. Most analytic data systems handle regular inserts,
updates, and deletes by absorbing them in a delta store which is
periodically merged with the main data store, effectively turning
point modifications into batch updates [26]. Any data layout that
maintains data in some sorted order, including simple schemes like
single-column range partitioning will impose some overhead as a
result of merging to maintain its performance advantages. Pando
faces two types of performance challenges related to updates.

First, mapping from leaf nodes of the partitioning tree to physical
blocks can become stale with data changes because of join-induced
predicates. Consider a join-induced predicate T1.Key IN (SELECT
T2.Key FROM T2 WHERE T2.X > 10) that is present in one of the
partitioning trees of T1. When the tree was constructed, suppose
this predicate was equivalent to the literal cut T1.Key IN (1, 2,
7), i.e., SELECT T2.Key FROM T2 WHERE T2.X > 10) evaluated to
(1, 2, 7). When a new tuple, say (Key:10, X:15), is added to
T2, the join-induced predicate is now equivalent to T1.Key IN (1,
2, 7, 10), but the mappings in the leaf nodes still correspond to
the old literal cut. When data is inserted to T2, the mapping from
logical blocks to physical blocks in T1 might be stale and requires
remapping. This can be expensive.

We use the same approach as MTO for handling inserts and
deletes. Specifically, for the case of induced join predicates, we
restrict the joins to be foreign key-primary key joins and only
induce predicates from the primary key table to the foreign key
table. Continuing the example, we use the cut T1.Key IN (SELECT
T2.Key FROM T2 WHERE T2.X > 10) in T1’s partitioning tree
only if T2.Key is the primary key of T2 and T1.Key is a foreign
key that references it. More generally, for star schemas, we induce
predicates from a dimension table to a fact table, but not from a
fact table to a dimension table. Intuitively, this has minimal impact

on performance as dimension tables are typically smaller than fact
tables. Assuming referential integrity, data inserts or deletes do not
affect the logical to physical block mapping. In our example, none
of the tuples in T1 will have Key=10, the newly inserted unique
value in T2, so the mappings in T1’s trees are still correct.

To route tuples down the partitioning tree during insertion, we
need to evaluate the predicate in each node. To do this efficiently
for join-induced predicates, we store the literal version of the cut in
each node, as inMTO. This can potentially be very large, so we store
them as compressed bitmaps. This literal cut needs to be maintained
in the presence of inserts and deletes. This can be performed by
evaluating the relevant join-induced predicate on only the inserted
or deleted records, not the entire table. In our example, the join-
induced predicate is evaluated on the newly inserted tuple in T2,
(Key:10, X:15), to update the literal cut from T1.Key IN (1, 2,
7) to T1.Key IN (1, 2, 7, 10). Updates can be implemented as
a delete followed by an insert but may cause existing tuples to shift
between blocks.

The second update-related challenge is that Pando’s logical par-
titioning trees do not give a unique block to insert the data into.
To merge deleted records from the delta store, we need to locate
the blocks with the deleted records; Pando’s logical partitioning
trees can be used to find those blocks. However, if we route a tuple
down 𝑘 partitioning trees in Pando, we will get a set of possible
blocks the tuple could be in. In Pando, each block is a collection
of k-tuples. To support point (trickle) inserts, we can maintain the
non-truncated trees and the mapping from k-tuples to blocks. This
can be used to route tuples to blocks during insertion.

While this can work well for small in-distribution inserts, most
analytics systems ingest data in large batches and contain out-of-
distribution data. For example, a day’s worth of data is loaded into
the table by nightly ETL jobs, and the data contains date/timestamp
columns, serial ids, etc. with increasing values that are out-of-
distribution (unseen during layout optimization done in the past).
Each such new batch is written into a new partition, naturally re-
sulting in a partitioning on the data/timestamp column as data is
usually inserted in the order of these columns. Most queries that
run on this data filter on these columns. Pando’s layout optimizer
can be the last step of these ETL jobs, which optimizes the layout for
each bulk insertion batch independently and writes the data blocks
according to this layout. Intuitively, this is a two-level partitioning.
At the first level, data is partitioned based on the date column, and
each such partition is organized into blocks using Pando at the
second level. Tuples that arrive out-of-order can be buffered and
periodically merged with data that is already partitioned according
to Pando as described above. This is similar to how systems like
Amazon Redshift maintain data with sort keys [4]. The staleness of
the layout from shifts in workload and data distribution can be mon-
itored for each partition. Reorganization of data can be triggered at
the granularity of each partition if required.

Decoupling logical and physical partitioning gives more degrees
of freedom for evolving the index structures and the data layout.
Logical partitioning trees can be adapted in a lightweight manner
without reorganizing the physical data blocks. Physical layout of
the data can be reorganized based on howwell the logical structures
align with the physical block boundaries. We defer exploring these
strategies to future work.

2323

8 EVALUATION
In this section, we present an experimental evaluation of Pando. In
our experiments, we seek to answer the following questions.

(1) How does Pando compare against other baselines on the
amount of I/O performed and overall query execution time?

(2) What is the computational and storage overhead in finding
the optimized layouts, organizing data according to it, and
storing the associated metadata?

(3) How does the performance advantage of Pando scale with
dataset and workload complexity?

(4) How does dynamic data affect Pando’s performance?

8.1 Datasets and Workloads
We evaluate Pando on TPC-H [43], TPC-DS [42], and two produc-
tion workload traces from Meta. We use a scale factor of 100 for
the synthetic datasets which corresponds to 100GB of data. For
TPC-H, we support all 22 templates and use a workload with 176
queries, 8 queries per template. For TPC-DS, we use 184 queries,
4 queries for each of templates 1-50, except for 14, 23, 24, and 39,
which contain multiple queries. We use two real-world datasets
from Meta. Meta 1 is a single table dataset. We use a sample from
one day’s data amounting to around 40 GB of data. Queries are
generated from an interactive query engine and involve many cor-
related LIKE predicates on different attributes. The second dataset,
Meta 2, contains 4 tables amounting to 120GB of data that powers
an interactive dashboard. Queries involve joins over these tables
with a variety of predicates on each table. We use a sample of 100
queries from the production traces that were generated on one day
in our experiments.

8.2 Experimental Setup
We implemented Pando’s layout optimizer and a simulator for the
number of blocks accessed during query execution in Python. We
performed a shallow integration with Meta’s internal version of
Spark. We use Hive [41] for storing the data in our experiments.
We augment each table in the dataset with an additional partition
column block_id. This field is the block id for each tuple obtained
after running Pando’s layout optimizer. Each table is partitioned on
block_id in the Hive cluster. Each block is stored as an ORC file.
Integer columns are run-length encoded and strings are dictionary
encoded which are in turn compressed using Zstandard algorithm.
We augment each query with an additional filter for each table of
the form block_id IN () with the block ids obtained from Pando
index data structures. For example, if the index on T1 return blocks
1 and 7, and the index on T2 returns blocks 8 and 14 for the query
SELECT * FROM T1 JOIN T2 on Key WHERE T1.X < 17 AND T2.Y
>= 45, we execute the query SELECT * FROM T1 JOIN T2 on Key
WHERE T1.X < 17 AND T2.Y >= 45 AND T1.block_id IN (1,
7) AND T2.block_id IN (8, 14). Spark uses this filter to skip
unnecessary blocks. The partition column block_id is encoded in
the directory path and not materialized as a part of the table’s data
in Hive. So the overhead of this integration on query performance
is minimal. We report the end-to-end query execution time for a
single-node spark environment.

We compare Pando against two other layouts. First, a baseline,
that range partitions each table on a single user-tuned column. For

TPC-H, we sort lineitem by shipdate, orders by orderdate, and all
other tables by primary key for the baseline. For TPC-DS, we sort
all fact tables by date (sold_date for sales tables and returned_date
for returns tables) and all dimension tables by primary key. For
Meta datasets, we use the same single/multi-column range parti-
tioning as in the production instance. Second, we use MTO as the
instance-optimized layout that organizes data according to a single
hierarchical physical partitioning tree.

Data-induced predicates (diPs) [21] is a recently proposed tech-
nique to propagate predicates that are pushed down on one table
through joins to benefit from block skipping on other tables at
query execution time, similar to join-induced predicates in Pando.
We use diPs to show that baseline layouts along with runtime op-
timizations cannot achieve the same speed up as a layout that is
aware of correlated expressions. We use this in our simulator to
show the reduction in I/O. Spark does not support diPs and it needs
a deeper integration into Spark’s query optimizer and execution
engine. So we could not show end-end runtime numbers with diP.

We performed all our experiments on a machine running CentOS
Stream 8 equipped with a 72core Intel Core Processor (Broadwell)
with 224GB RAM and a 2TB Toshiba XD5 local SSD. We use a
block size of 1M tuples for all our experiments which is the default
for many systems like Microsoft SQL Server [26]. We optimized
the layout using 50% of the workload and evaluated using the
remaining half. We used a 1% sample of the data for optimization.
The threshold number of tuples for the top-down stage is set such
that there are under 10000 k-tuples for the bottom-up stage. This
means the more the number of trees, the larger the leaf nodes
of each tree, and the smaller each tree. We report the end-to-end
query execution time, the number of blocks accessed during query
processing, the space overhead in storing the logical partitions, and
the time overhead in optimizing the layout and reorganizing data.

8.3 Results
Fig. 6 shows the overall performance on various layouts. Pando-k
means, we created 𝑘 trees for each table in the dataset. Fig. 7 plots
the number of blocks that are accessed during query execution.

Overall Performance: Pando is consistently better than MTO
and range partitioning (the baseline) across datasets and workloads.
Pando achieves up to 4.2X faster query performance than range
partitioning and up to 2.3X faster performance than MTO. Pando
attains up to 9.5X reduction in I/O compared to the baseline and
up to 2.8X reduction compared to MTO. By capturing correlated
expressions in the workloads, Pando is up to 2X faster than MTO by
creating just one additional logical partitioning tree. As the number
of indexes increases, the performance of the layout also increases,
but with diminishing returns. For all the workloads we tested on,
adding a fourth tree resulted in minimal performance advantages.
The trends in the amount of data that is scanned are similar to the
overall performance as shown in Fig. 7.

Impact of diPs: diPs compute join-induced predicates at query
optimization time to improve skipping blocks. Its effectiveness
depends on how the data is blocked and is sensitive to outliers.
While this gives some benefit over all the layouts, it does not match
the performance of Pando that co-optimizes its indexes and the
data layout. diPs decrease the I/O done by MTO as well as Pando.

2324

Figure 6: End-to-end query execution time on Spark.

Figure 7: Average number of blocks accessed during query execution. Data-induced predicates (diPs) is not relevant to Meta1 as
it does not involve any joins.

Figure 8: Reduction in query times achieved by Pando com-
pared to MTO for each query template.

But Pando still achieves a better reduction in I/O than MTO with
diPs. Meta 1 is a single table dataset and the workload does not
involve any joins, so diPs are not relevant.

Where does the advantage come from?: Meta 1 is a single
table dataset with many LIKE predicates on different columns in
the table. Several of these predicates are correlated and Pando
leverages these in creating multiple partitioning trees to improve
query performance. Pando accelerates query performance in the
other three datasets by capturing correlated expressions across
tables. Let us look at TPC-H as an example. Clearly, partitioning
the lineitem using predicates on l_shipdate is useful for TPC-H
queries. Attributes l_shipdate and o_orderdate are correlated, so
are the predicates l_shipdate > ? and l_orderkey in (SELECT
o_orderkey FROM orders WHERE o_orderdate > ?). A single
physical partitioning does not fully capture these predicates in the
same tree, thus limiting the skipping opportunities. In contrast,
Pando effectively distributes these predicates over multiple trees
and optimizes the data layout to maximize its effectiveness. This
improves skipping for queries that predicate on l_shipdate as well
as that join lineitem and orderswith a predicate on o_orderdate.
Fig. 8 shows the reduction in query time Pando achieves compared
toMTO for different query types. As Pando optimizes for the overall
workload, performance may regress for some query types.

Index Size: Fig. 9 plots the space required in storing the partition
trees. This includes the space required for the literal cuts, non-
truncated trees, and the mapping from k-tuples to block id that
is required for supporting data changes. Without including these,
all schemes take under 1MB for all their indexes for each of the
datasets. The size of the index with joins-induced cuts can be high,
depending on the number of cuts in the tree, selectivity of joins,
number of unique keys, etc. As discussed earlier, storing multiple
trees has the same expressive power as a much larger single tree.
So storing multiple trees can also save space. The takeaway from
Fig. 9 is that the partitioning trees that index data blocks are not
prohibitively large like secondary indexes. The size of the index
does not increase linearly with the number of partitioning trees.
We are able to achieve better performance without a major increase
in the space requirements for the index.

Offline Optimization Time: Instance-optimized data layouts
are only useful when they can be efficiently found and organized.
The offline optimization time required for Pando is shown in Fig. 10.
opt time (optimization time) is the time spent in finding the opti-
mal layout. In Pando, this includes the time spent in the top-down
and bottom-up stages of the algorithm. routing time is the time
spent in locally partitioning the full dataset using the tree indexes,
i.e., finding the tuple assignment for each block. This combined
is the overhead that Pando adds over other methods. After local
partitioning, each partition is uploaded to the Hive cluster. All par-
titioning schemes with the same minimum block size take roughly
the same time to upload the partitions to Hive, so we do not include
it here. In general, the optimization time and data routing time
increase with more trees. Fig. 10 shows that overhead is in ∼10s of
minutes for datasets with ∼ 100 GBs of data. For the workloads that
we tested on, Pando-2 offsets this overhead in as low as 7 queries for
Meta1 and as high as 37 queries for TPC-H. The minimum number
of queries is 7 and the maximum is 36 for Pando-2 to offset the
overhead over MTO. A C++ implementation of the layout optimizer
may be faster, and the absolute overhead incurred by Pando may
be smaller. Pando can make up for the overhead in fewer queries.

2325

Figure 9: Size of the partition tree indexes.

tFigure 10: Time overhead incurred by Pando in offline optimization.

Figure 11: Pando’s performance across varying dataset sizes,
and workload sizes.

Figure 12: Pando’s performance with data inserts. Although
inserted data is available for querying quickly in the base-
lines, Pandomakes up for it with faster execution of queries.

Scalability: Fig. 11 shows that Pandomaintains its performance
advantage over the baseline across varying dataset and workload
sizes. To study the impact of increasing dataset sizes, we vary the
scale factor on TPC-H from 1 to 100, resulting in 1 to 100GBs of
data. We use a workload with 176 queries, 8 per template, and set
the minimum block size to 1 million tuples. Fig. 11 plots the number

Figure 13: Pando’s performance across varying minimum
block sizes, and optimizer sample rates.

of blocks scanned normalized against the number of blocks scanned
by the baseline as the total number of blocks varies with data size.
Pando (and MTO) performs better at higher dataset sizes. This is
because larger datasets have a larger number of blocks and the
partitioning tree can store more expressions for more fine-grained
skipping. To study the impact of scaling the workload size, we vary
the number of queries per template in the workload from 1 to 64.
With 22 templates, this results in workloads ranging from 22 to 1408
queries. We use scale factor 100 for dataset size. Fig. 11 shows that
the number of blocks scanned by Pando (and MTO) increases as
the workload size increases. This is because, with more templates,
we need to store more expressions to achieve better skipping. This
affects Pando slower than MTO. Pando continues to perform better
than other baselines across varying workload sizes.

Dynamic Data: To show how Pando adapts to data changes, we
use the Meta2 dataset. We start with one day’s worth of data that is
already optimized according to Pando in the database.We then bulk-
insert another day’s worth of data into this database as described
in §7. Pando spends around 9.6 mins in repairing the join-induced
predicates in the previous day’s partitioning trees and MTO spends
around 6.4 mins. Optimization and local data partitioning take 21.3
mins for Pando, 13.4 mins for MTO, and 2.4 mins for the baseline.

2326

Meta’s implementation of Hive does not support repartitioning the
data based on a new column. So we have to repartition the data
separately and insert each partition separately into the Hive cluster
by explicitly mentioning the value of the partition column (aka the
directory path). Uploading the data to Hive takes around 3 hrs in
our setup. As shown in Fig. 12, Pando is able to quickly recover the
additional time spent in optimization and repair and surpass the
baselines in the number of executed queries.

Sensitivity: Fig. 13 shows the impact of varying minimum block
sizes (100k, 500k, 1M, and 5M tuples) on query performance and
offline optimization time using TPC-H with scale factor 100 using
8 queries per template. The offline optimization time decreases
with increasing block size. The query latency initially decreases as
queries scan fewer data, but eventually increases due to too many
small block accesses. We study the impact of varying sample rates
during layout optimization (0.1%, 1%, 10%, and 100%) on Pando’s
query performance and optimization time. We use TPC-H with a
scale factor 10, 8 queries per template, and a minimum block size
of 100k. Pando is able to significantly reduce the optimization time
by sampling without significantly affecting the layout quality.

9 RELATEDWORK
Data Partitioning: Carefully organizing data on storage for ac-
celerating the performance of queries is a well-studied area. Most
production systems often partition the data either based on inges-
tion time, or using range, hash, or round-robin distribution schemes
[26]. Several techniques have been proposed to tune the data layout
to reduce the amount of data that is scanned using horizontal, ver-
tical, and hybrid partitioning [3, 5, 12, 17, 36, 37]. To prune the set
of the blocks that are scanned, these systems maintain additional
statistics along with these blocks such as minimum and maximum
values for each attributes called Small Materialized Aggregates
(SMAs) [31], and zone maps [19]. Slalom [33] logically partitions
the data and build lightweight partition-specific indexes, but they
do not consider optimizing the physical layout of the data. [18]
combines physical and virtual partitioning to fragment and dynam-
ically tune partition sizes for efficient intra-query parallelism, but
not data skipping. Distributed database systems employ various
strategies to partition data between nodes to minimize the number
of cross-partition queries [13, 20, 28]. Pando can be used to optimize
the layout within each node.

Learned Layouts: Recent work has shown that significant gains
in query performance can be achieved by more expressive partition-
ing schemes that collect rich metadata and can adapt to datasets and
workloads [15, 16, 24, 29, 38, 45]. Qd-tree [45] and MTO [15] are
learned layouts that maximize data skipping in cloud-based DBMSs
(discussed in this paper). Feature-based data skipping [39, 40] main-
tains a bit vector per block where each bit indicates whether a
predicate corresponding to the bit is satisfied by any tuple in the
block. These methods and Pando use bottom-up clustering to find
the data layout, but their method only scales to a small number
of predicates and we store much richer metadata in the form of
multiple expression trees. Qd-trees [45] already showed better per-
formance than feature-based skipping with just one partitioning
tree. Tsunami [16] is a learned partitioning scheme that is aware
of correlations, but they only capture simple correlations in data

and only work for multi-dimensional range queries on in-memory
databases. CopyRight [38] co-optimizes multiple expressive parti-
tionings, but replicates data and creates one partitioning per replica.

Automated Physical Database Design: There is a rich cor-
pus of work on automatically tuning a database and its physical
design that focuses on selecting structures like indexes and materi-
alized views for optimizing query performance [1, 2, 9, 10, 35]. Each
partitioning tree in Pando is a coarse-grained index that indexes
data blocks. Many index selection works consider co-optimizing
the layout along with indexes [1, 3, 10]. However, they only work
for simple schemes like single or multi-column range and hash
partitioning, b-tree indexes, etc. Materialized view selection algo-
rithms explore the space of syntactically relevant views, focusing
on creating logical views that cover queries, whereas we focus on
optimizing the physical layout of the table [2, 8, 46]. Pando can be
used to partition materialized views.

Correlation Awareness: Prior work has explored several meth-
ods to take advantage of column correlations such as automatically
discovering algebraic constraints [6], soft functional dependencies
[7], and approximate dependencies between columns [25] in the
data. Our method goes beyond these methods and captures cor-
relations using predicates that appear in the workload. Various
techniques such as Hermit [44], Correlation Maps [22], Cortex [32]
exploit correlation among columns to improve the performance
and reduce the size of the secondary indexes. Hermit [44] captures
monotonic functional dependencies between attributes, while Cor-
relationMap [22] maintains a mapping between correlated columns.
Cortex and Pando look at outliers from a similar lens of query per-
formance, but Cortex focuses on capturing correlation between a
user-provided set of columns. None of these techniques consider
optimizing the physical layout of the table. CORRADD [23] is a
correlation-aware physical database designer but they explore a
smaller search space that consists of only single-column sort orders
for physical layouts and single-column b-tree indexes.

10 CONCLUSION
I/O for accessing data from storage is a major bottleneck for cloud-
based data analytics systems. Modern cloud-based database systems
employ a variety of strategies to partition the data into blocks
and skip accessing irrelevant blocks during query execution. The
effectiveness of these systems depends on how well the data layout
and the associated metadata align with the queries that are run
on it. Existing methods miss substantial opportunities for block
skipping blocks because they do not collect enough metadata or
do not exploit correlated predicates in the workloads. In this paper,
we propose Pando a metadata-rich data layout framework that
achieves a significant reduction in the amount of I/O performed
by jointly optimizing the physical layout of the data and multiple
correlation-aware logical partitionings. Our experiments show that
Pando achieves up to 2.3X speedup in end-to-end query execution
time and up to 2.8X reduction in the number of blocks scanned
compared to the state-of-the-art data layouts.

ACKNOWLEDGMENTS
This work was supported by the MIT Data Systems and AI Lab
(DSAIL).

2327

REFERENCES
[1] Sanjay Agrawal, Nicolas Bruno, Surajit Chaudhuri, and Vivek Narasayya. 2006.

AutoAdmin: Self-Tuning Database Systems Technology. IEEE Data Engineering
Bulletin (2006), 7–15.

[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated
Selection of Materialized Views and Indexes in SQL Databases. In Proceedings of
the 26th International Conference on Very Large Data Bases (VLDB ’00). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 496–505.

[3] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating Vertical
and Horizontal Partitioning into Automated Physical Database Design. In Pro-
ceedings of the 2004 ACM SIGMOD International Conference on Management of
Data (Paris, France) (SIGMOD ’04). Association for Computing Machinery, New
York, NY, USA, 359–370. https://doi.org/10.1145/1007568.1007609

[4] Amazon [n.d.]. Managing the volume of merged rows. https://docs.aws.amazon.
com/redshift/latest/dg/vacuum-managing-volume-of-unmerged-rows.html.

[5] Manos Athanassoulis, Kenneth S. Bøgh, and Stratos Idreos. 2019. Optimal Column
Layout for Hybrid Workloads. Proc. VLDB Endow. 12, 13 (Sept. 2019), 2393–2407.
https://doi.org/10.14778/3358701.3358707

[6] Paul G. Brown and Peter J. Hass. 2003. BHUNT: Automatic Discovery of Fuzzy
Algebraic Constraints in Relational Data. In Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29 (Berlin, Germany) (VLDB ’03).
VLDB Endowment, 668–679.

[7] Paul G. Brown and Peter J. Hass. 2003. BHUNT: Automatic Discovery of Fuzzy
Algebraic Constraints in Relational Data. In Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29 (Berlin, Germany) (VLDB ’03).
VLDB Endowment, 668–679.

[8] Nicolas Bruno and Surajit Chaudhuri. 2007. Physical Design Refinement: The
‘Merge-Reduce’ Approach. ACM Trans. Database Syst. 32, 4 (Nov. 2007), 28–es.
https://doi.org/10.1145/1292609.1292618

[9] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A
Decade of Progress. In Proceedings of the 33rd International Conference on Very
Large Data Bases (Vienna, Austria) (VLDB ’07). VLDB Endowment, 3–14.

[10] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB ’97). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 146–155.

[11] Zach Christopherson. 2016. Amazon Redshift Engineering’s Advanced
Table Design Playbook: Compound and Interleaved Sort Keys. (2016).
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-
advanced-table-design-playbook-compound-and-interleaved-sort-keys/

[12] Douglas W. Cornell and Philip S. Yu. 1990. An Effective Approach to Vertical
Partitioning for Physical Design of Relational Databases. IEEE Trans. Softw. Eng.
16, 2 (Feb. 1990), 248–258. https://doi.org/10.1109/32.44388

[13] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden.
2010. Schism: a workload-driven approach to database replication and partition-
ing. (2010).

[14] Databricks [n.d.]. Data skipping index. https://docs.databricks.com/delta/data-
skipping.html/. Accessed: 2022-12-01.

[15] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,
Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
Optimized Data Layouts for Cloud AnalyticsWorkloads. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 418–431. https:
//doi.org/10.1145/3448016.3457270

[16] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-Dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (nov 2020), 74–86. https://doi.org/10.14778/
3425879.3425880

[17] Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, and Hasso Plattner. [n.d.]. Hyrise Re-engineered: An Extensible Data-
base System for Research in Relational In-Memory Data Management.

[18] Camille Furtado, Alexandre A. B. Lima, Esther Pacitti, Patrick Valduriez, and
Marta Mattoso. 2005. Physical and Virtual Partitioning in OLAP Database Clus-
ters. In Proceedings of the 17th International Symposium on Computer Architecture
on High Performance Computing (SBAC-PAD ’05). IEEE Computer Society, USA,
143–150. https://doi.org/10.1109/CAHPC.2005.32

[19] Goetz Graefe. 2009. Fast Loads and Fast Queries. In Proceedings of the 11th
International Conference on Data Warehousing and Knowledge Discovery (Linz,
Austria) (DaWaK ’09). Springer-Verlag, Berlin, Heidelberg, 111–124. https:
//doi.org/10.1007/978-3-642-03730-6_10

[20] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a parti-
tioning advisor for cloud databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 143–157.

[21] Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. 2019. Pushing Data-Induced
Predicates through Joins in Big-Data Clusters. Proc. VLDB Endow. 13, 3 (nov
2019), 252–265. https://doi.org/10.14778/3368289.3368292

[22] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B.
Zdonik. 2009. Correlation Maps: A Compressed Access Method for Exploiting
Soft Functional Dependencies. Proc. VLDB Endow. 2, 1 (aug 2009), 1222–1233.
https://doi.org/10.14778/1687627.1687765

[23] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B.
Zdonik. 2010. CORADD: Correlation Aware Database Designer for Materialized
Views and Indexes. Proc. VLDB Endow. 3, 1–2 (sep 2010), 1103–1113. https:
//doi.org/10.14778/1920841.1920979

[24] Tim Kraska, M. Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume Leclerc,
S. Madden, Hongzi Mao, and V. Nathan. 2019. SageDB: A Learned Database
System. In CIDR.

[25] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate
Dependencies. Proc. VLDB Endow. 11, 7 (mar 2018), 759–772. https://doi.org/10.
14778/3192965.3192968

[26] Per-Ake Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson,MostafaMokhtar,
Michal Nowakiewicz, Vassilis Papadimos, Susan L. Price, Srikumar Rangarajan,
Remus Rusanu, and Mayukh Saubhasik. 2013. Enhancements to SQL Server
Column Stores. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, New York, USA) (SIGMOD ’13). Association
for Computing Machinery, New York, NY, USA, 1159–1168. https://doi.org/10.
1145/2463676.2463708

[27] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (nov 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[28] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions
throughAsymmetric Replication. Proc. VLDB Endow. 12, 11 (July 2019), 1316–1329.
https://doi.org/10.14778/3342263.3342270

[29] Samuel Madden, Jialin Ding, Tim Kraska, Sivaprasad Sudhir, David Cohen, Timo-
thy Mattson, and Nesime Tatbul. 2022. Self-Organizing Data Containers. (2022).

[30] Microsoft [n.d.]. Columnstore Indexes Query performance. https:
//learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-
indexes-query-performance?view=sql-server-ver16. Accessed: 2022-12-01.

[31] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In Proceedings of the 24rd International Confer-
ence on Very Large Data Bases (VLDB ’98). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 476–487.

[32] Vikram Nathan, Jialin Ding, Tim Kraska, and Mohammad Alizadeh. 2020. Cortex:
Harnessing Correlations to Boost Query Performance. https://doi.org/10.48550/
ARXIV.2012.06683

[33] Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis, Manos Athanas-
soulis, and Anastasia Ailamaki. 2017. Slalom: Coasting through Raw Data
via Adaptive Partitioning and Indexing. Proc. VLDB Endow. 10, 10 (jun 2017),
1106–1117. https://doi.org/10.14778/3115404.3115415

[34] Oracle [n.d.]. Database Data Warehousing Guide. https://docs.oracle.com/
database/121/DWHSG/zone_maps.htm#DWHSG-GUID-BEA5ACA1-6718-
4948-AB38-1F2C0335FDE4. Accessed: 2022-12-01.

[35] Stefano Paraboschi, Giuseppe Sindoni, Elena Baralis, and Ernest Teniente. 2003.
Materialized Views in Multidimensional Databases. IGI Global, USA, 222–251.

[36] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Automating
Physical Database Design in a Parallel Database. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data (Madison, Wiscon-
sin) (SIGMOD ’02). Association for Computing Machinery, New York, NY, USA,
558–569. https://doi.org/10.1145/564691.564757

[37] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-
ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil,
Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-
Oriented DBMS. In Proceedings of the 31st International Conference on Very Large
Data Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment, 553–564.

[38] Sivaprasad Sudhir, Michael Cafarella, and Samuel Madden. 2022. Replicated
Layout for In-Memory Database Systems. Proc. VLDB Endow. 15, 4 (apr 2022),
984–997. https://doi.org/10.14778/3503585.3503606

[39] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. 2014. Fine-
Grained Partitioning for Aggressive Data Skipping. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
1115–1126. https://doi.org/10.1145/2588555.2610515

[40] Liwen Sun, Michael J. Franklin, Jiannan Wang, and Eugene Wu. 2016. Skipping-
Oriented Partitioning for Columnar Layouts. Proc. VLDB Endow. 10, 4 (nov 2016),
421–432. https://doi.org/10.14778/3025111.3025123

[41] Ashish Thusoo, Joydeep Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning
Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. 2010. Hive - A
Petabyte Scale DataWarehouse Using Hadoop. Proceedings - International Confer-
ence on Data Engineering, 996–1005. https://doi.org/10.1109/ICDE.2010.5447738

[42] TPC-DS [n.d.]. TPC-DS. https://www.tpc.org/tpcds/. Accessed: 2022-12-01.
[43] TPCH-H [n.d.]. TPC-H. https://www.tpc.org/tpch/. Accessed: 2022-12-01.
[44] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. 2019. De-

signing Succinct Secondary Indexing Mechanism by Exploiting Column Correla-
tions. In Proceedings of the 2019 International Conference on Management of Data

2328

https://doi.org/10.1145/1007568.1007609
https://docs.aws.amazon.com/redshift/latest/dg/vacuum-managing-volume-of-unmerged-rows.html
https://docs.aws.amazon.com/redshift/latest/dg/vacuum-managing-volume-of-unmerged-rows.html
https://doi.org/10.14778/3358701.3358707
https://doi.org/10.1145/1292609.1292618
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://doi.org/10.1109/32.44388
https://docs.databricks.com/delta/data-skipping.html/
https://docs.databricks.com/delta/data-skipping.html/
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.1109/CAHPC.2005.32
https://doi.org/10.1007/978-3-642-03730-6_10
https://doi.org/10.1007/978-3-642-03730-6_10
https://doi.org/10.14778/3368289.3368292
https://doi.org/10.14778/1687627.1687765
https://doi.org/10.14778/1920841.1920979
https://doi.org/10.14778/1920841.1920979
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.1145/2463676.2463708
https://doi.org/10.1145/2463676.2463708
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3342263.3342270
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance?view=sql-server-ver16
https://doi.org/10.48550/ARXIV.2012.06683
https://doi.org/10.48550/ARXIV.2012.06683
https://doi.org/10.14778/3115404.3115415
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG-GUID-BEA5ACA1-6718-4948-AB38-1F2C0335FDE4
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG-GUID-BEA5ACA1-6718-4948-AB38-1F2C0335FDE4
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG-GUID-BEA5ACA1-6718-4948-AB38-1F2C0335FDE4
https://doi.org/10.1145/564691.564757
https://doi.org/10.14778/3503585.3503606
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.14778/3025111.3025123
https://doi.org/10.1109/ICDE.2010.5447738
https://www.tpc.org/tpcds/
https://www.tpc.org/tpch/

(Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery,
New York, NY, USA, 1223–1240. https://doi.org/10.1145/3299869.3319861

[45] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-Tree: Learning Data Layouts for Big Data Analytics. In Proceedings of
the 2020 ACM SIGMOD International Conference onManagement of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,

USA, 193–208. https://doi.org/10.1145/3318464.3389770
[46] D. Zilio, C. Zuzarte, S. Lightstone, Wenbin Ma, G. Lohman, R. Cochrane, H.

Pirahesh, L. Colby, Jarek Gryz, E. Alton, Dongming Liang, and G. Valentin.
2004. Recommending materialized views and indexes with the IBM DB2 design
advisor. International Conference on Autonomic Computing, 2004. Proceedings.
(2004), 180–187.

2329

https://doi.org/10.1145/3299869.3319861
https://doi.org/10.1145/3318464.3389770

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	4 Data Structure
	5 Query Execution
	6 Layout Optimization
	6.1 Top-Down Tree Construction
	6.2 Bottom-Up Block Assignment

	7 Data Changes and Workload Shifts
	8 Evaluation
	8.1 Datasets and Workloads
	8.2 Experimental Setup
	8.3 Results

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

