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ABSTRACT
Social media, self-driving cars, and traffic cameras produce video
streams at large scales and cheap cost. However, storing and query-
ing video at such scales is prohibitively expensive. We propose to
treat large-scale video analytics as a data warehousing problem:
Video is a format that is easy to produce but needs to be trans-
formed into an application-specific format that is easy to query.
Analogously, we define the problem of Video Extract-Transform-
Load (V-ETL). V-ETL systems need to reduce the cost of running a
user-defined V-ETL job while also giving throughput guarantees
to keep up with the rate at which data is produced. We find that
no current system sufficiently fulfills both needs and therefore pro-
pose Skyscraper , a system tailored to V-ETL. Skyscraper can execute
arbitrary video ingestion pipelines and adaptively tunes them to
reduce cost at minimal or no quality degradation, e.g., by adjusting
sampling rates and resolutions to the ingested content. Skyscraper
can hereby be provisioned with cheap on-premises compute and
uses a combination of buffering and cloud bursting to deal with
peaks in workload caused by expensive processing configurations.
In our experiments, we find that Skyscraper significantly reduces
the cost of V-ETL ingestion compared to adaptions of current SOTA
systems, while at the same time giving robustness guarantees that
these systems are lacking.
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1 INTRODUCTION
Every day, millions of video streams are produced by smartphones,
TV stations, self-driving cars, dashcams, and CCTV cameras de-
ployed in cities and office buildings. These video streams can offer
great insights and enormous value in fields such as city planning,
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marketing, advertisement, smart retail, or autonomous driving. For
example, city planners around Vancouver are currently facing the
challenge of deciding where to place electric vehicle (EV) chargers.
For that, they want to obtain data that tells them which points in
the city are most commonly traversed by EVs. Most cities like Van-
couver already installed hundreds to thousands of traffic cameras,
which could be used to obtain such EV counts.

The naive way of counting how many EVs pass by each camera
is to store the video from all cameras and then run an object detec-
tion algorithm1 on the recorded video at query time. However, this
approach has major disadvantages. First, storing the video requires
outrageously large storage volumes. For example, one thousand
traffic cameras roughly produce 230 TB of data every month.2 Stor-
ing one month’s data on Amazon S3 would therefore cost $60,000
per year. Second, querying for trends or averages usually requires
analyzing months to years of data, which leads to large query laten-
cies. Even on modern GPUs, state-of-the-art computer vision (CV)
models can only process a few frames per second. For example,
processing one year of video with the YOLO object detector [47]
takes six months on an AWS p3.2xlarge instance (with an NVIDIA
Tesla V100 GPU). Third, naively applying CV techniques at such
scales is prohibitively expensive for many applications. For exam-
ple, naively running the YOLO object detector [47] to analyze a
month of traffic data from 100 cameras costs $110,000 on AWS.3

To address the limitations of the naive approach, we propose
to manage live video streams like in a data warehouse. Video is a
format that is easy to produce but hard to query. A video warehouse
allows for efficient querying by converting incoming video into
an intermediate format that is easy to query. This intermediate
format is application-specific and contains the extracted entities of
interest. In the EV example, it would contain car counts and types.
Analogous to traditional data warehouses, we refer to the process of
preparing the data for querying as Video Extract-Transform-Load
(V-ETL). Video is extracted from the cameras, transformed into the
intermediate format using CV, and loaded into a query engine like
a relational database system. This lets the user issue queries in SQL
against tables with the extracted entities (e.g., obtaining the EV
counts is a simple count query on a Detections table, where the
detected car is an EV, grouped by the camera id).

Video warehouses eliminate the storage problem since users may
throw video away after extracting all entities of interest during

1In Canada (as in many other countries), EVs are especially easy to distinguish from
other cars since they have green license plates.
2One traffic camera feed in our experiments produces 7.8GB of data per day.
3E.g., using 50 p3.2xlarge instances, each of which currently costs 3.06 USD/h.
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ingestion. They also solve the query latency issue, since users can
issue queries against the intermediate format and no expensive
CV algorithm needs to be run at query time. However, video ware-
houses do not magically solve the cost problem, as the video still
needs to be processed during the V-ETL Transform step. Further-
more, video processing must happen at the rate at which the video
is produced in order to achieve continuous ingestion.

To address the challenges imposed by V-ETL, we built Skyscraper
which allows for cheap video ingestion while also adhering to
throughput requirements. Skyscraper’s goal is to make the V-ETL
transform step more practical. It allows users to provision hardware
resources according to their monetary budget and optimizes the
quality of the extracted video entities on the given resources.

Depending on the provisioned hardware, Skyscraper reduces
the work imposed by the V-ETL job while degrading the result
quality as little as possible. Skyscraper does this by dynamically
configuring knobs that are inherent to CV workloads. Examples
of such knobs include the frame rate or the image resolution at
which the video is processed, as well as further, application-specific
knobs. Each of these knob represents a trade-off between work and
result quality: Expensive knob configurations can reliably deliver
good results, even for difficult inputs (e.g., many object occlusions);
cheap configurations, on the other hand, only deliver good results
on easy inputs (e.g. few occlusions, good lighting conditions etc.)
but are prone to mistakes on difficult inputs. The content of real-
world video streams is highly variable with frequent changes in how
difficult it is to analyze the content (i.e., every few 10s of seconds).
Skyscraper saves work by using expensive knob configurations on
difficult video segments and cheap configurations otherwise.

Since Skyscraper needs to process data on constrained hardware
at a required throughput, Skyscraper must configure the knobs not
only based on the video content but also on the available hardware
resources. Industrial deployments for live video processing are
typically provisioned with three types of resources [26]: a local
compute cluster with a high-bandwidth connection to the video
source, a video buffer, and cloud resources that may be used to
rent on-demand cloud compute (to limit cloud costs, users typically
want to set a cloud budget.) Skyscraper leverages all three of these
resource types: Skyscraper itself runs on the local cluster and uses
it to process video. To keep costs low, the local cluster is typically
not provisioned to process the most expensive knob configurations
in real-time. When it falls behind, Skyscraper sets aside video in the
buffer and, as the buffer starts to fill, offloads work to on-demand
cloud workers to keep up with processing.

Skyscraper must avoid prematurely using up buffer space and
cloud credits in order to not run out of them when expensive knob
configurations would have the greatest impact. Skyscraper therefore
forecasts the workload and rations compute resources with regard
to future demand. To still be robust to unavoidable inaccuracies in
the forecast, we propose to combine a predictive planning compo-
nent with a reactive execution component, which lets Skyscraper
make tuning decisions while considering both, the future demand
and the content that is actually streamed in the moment.

Despite the need for predictive knob tuning, Skyscraper’s knob
tuning decisions must impose a low overhead — this is especially
important in low-budget regimes, where large decision overheads
would consume a significant portion of the compute resources.

Figure 1: Skyscraper optimizing the expensive V-ETL Trans-
form step of the EV counting example job. The blue compo-
nents are provided by Skyscraper, the red ones by the user.

While prior content-adaptive knob tuners run additional CV oper-
ators to make tuning decisions [12, 31], Skyscraper adapts to the
video content only based on a user-defined quality metric (e.g.,
certainties commonly reported by CV models) that are extracted
anyways when running the V-ETL job. This allows Skyscraper to
make tuning decisions in under 0.5 ms on a single CPU core.

Figure 1 shows an overview of how Skyscraper processes the
EV example workload. The user specifies user-defined functions
(UDFs) that transform the video into the application-specific query
format. In Figure 1, the user only defines two UDFs. The object
detector UDF is responsible for detecting new cars, while the object
tracker UDF is responsible for tracking cars as they move across
the frame to avoid double counting them. Finally, the user registers
the workload’s tunable knobs. In the simple example, the user
only defines a single knob that controls how frequently the object
detector should be run. Skyscraper optimizes the costly Transform
step while the user code performs the Extract and Load steps.

Prior work. While Skyscraper is the first system to specifically
address the challenge of V-ETL, there are several lines of work that
are relevant to Skyscraper . We briefly highlight two of them here
and refer to Section 6 for a detailed discussion on related work.

First, there is prior work on content-adaptive knob tuning, such
as Chameleon [31] and Zeus [12]. These systems are designed to
reduce the average processing time per frame while assuming that
the provisioned hardware can always ingest video in real-time
(even during peak workload). However, when ingesting video on
cheaper machines that are not peak-provisioned, prior systems do
not provide throughput guarantees and are therefore impractical for
V-ETL. Adapting these systems to fulfill throughput requirements
on cheap hardware is challenging, since they are agnostic to lag
and the hardware resources they run on.

Second, there is prior work on systems that use knob tuning to
adapt to the current query load. VideoStorm [59] andVideoEdge [26]
are designed for scenarios where users run a dynamic set of queries
over video streams, which causes dynamic changes to the type
and number of queries running. At times when many queries are
running concurrently, not all queries may be able to run at maxi-
mum quality and in real time. VideoStorm and VideoEdge tune the
queries’ knobs such that the queries fulfill their quality and latency
goals as well as possible. However, VideoStorm and VideoEdge
only adapt to the query load (i.e., the queries present in the system)
and are agnostic to the streamed content. This brings no benefit in
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scenarios where the query load is static. While we envision most
V-ETL applications to ingest video using a static set of processing
jobs, VideoStorm might still be used if users dynamically redefine
how to ingest video.

In summary, our contributions are as follows:
• We define the problem of Video Extract-Transform-Load (V-

ETL) and identify its importance.
• To make V-ETLmore practical, we propose Skyscraper , the first

content-adaptive knob tuning system with throughput guarantees.
Skyscraper lets users provision compute resources according to their
budget and optimizes the result quality on the given resources.

• To effectively ration compute resources over time, we propose
a combination of predictive planning and reactive execution.

•We propose a tuning method that only relies on a user-defined
quality metric which is extracted anyways when running the V-ETL
job. We find that this method allows for negligible tuning overheads.

•We conduct experiments on several real-world and synthetic
workloads and find that Skyscraper can achieve cost reductions up
to 8.7× over baselines on various workloads.

2 PROBLEM DEFINITION AND SYSTEM
OVERVIEW

2.1 Problem definition
Video Extract-Transform-Load (V-ETL) refers to extracting entities
of interest from a video stream by processing it according to a
user-defined specification and adhering to two constraints. First,
V-ETL systems must process video at the rate at which it arrives. A
V-ETL system may lag behind on processing but may only do so
by a constant amount. In practice, this means that V-ETL systems
may use a fixed-size storage medium (i.e., buffer) to set video aside
for later processing. Equation 1 states that the size of the buffered
frames may not exceed the size of the buffer.

𝑜𝑢𝑡 (𝑡) ⊆ 𝑖𝑛(𝑡) ∧
∑︂

𝐹 ∈ 𝑖𝑛 (𝑡 )\𝑜𝑢𝑡 (𝑡 )
𝑠𝑖𝑧𝑒 (𝐹 ) ≤ 𝐵 ∀𝑡 (1)

where 𝑡 is a timestamp, 𝑖𝑛(𝑡) is the set of frames that the video
source has produced at time 𝑡 , 𝑜𝑢𝑡 (𝑡) is the set of frames that the
V-ETL system has processed at time 𝑡 , 𝑠𝑖𝑧𝑒 (𝐹 ) is the size of frame 𝐹
in bytes and 𝐵 is the buffer size in bytes.

Second, V-ETL systems must process video at a budget that is
defined by the user. This budget is provided as a dollar cost 𝑏𝑢𝑑𝑔𝑒𝑡𝑇
that may be spent over a given time interval 𝑇 . The processing
cost over interval 𝑇 encompasses all costs including average wear
of hardware, cloud costs, etc. The summed cost of processing all
frames in 𝑇 must be below 𝑏𝑢𝑑𝑔𝑒𝑡𝑇 :

∑︁
𝐹 ∈𝑇 𝑐𝑜𝑠𝑡 (𝐹 ) ≤ 𝑏𝑢𝑑𝑔𝑒𝑡𝑇 .

The combination of processing video at a required throughput
while being constrained on computing resources makes for exciting
optimization problems. Skyscraper aims to maximize the overall
result quality by tuning workload-specific knobs that are inherent
to computer vision workloads (e.g., the frame rate or image reso-
lution). In Skyscraper , the quality is user-defined and is measured
and returned by the user code — this lets Skyscraper generalize to
different workloads with different notions of quality.

Users may further register arbitrary knobs together with a cor-
responding knob domain. The knob domain is a user-defined set

of values that the knob may take (e.g. the knob domain for the
frame rate knob might be {15 FPS, 30 FPS}). Skyscraper dynamically
configures registered knobs based on the streamed video content
and maximizes the quality (e.g. accuracy) of the extracted entities
while adhering to the V-ETL requirements.

Formally, a knob configuration 𝑘 refers to an instantiation of
each knob to a value in its domain. Some knob configurations
induce more work than others. Similarly, some produce more qual-
itative results than others. However, the result quality of a knob
configuration depends not only on the configuration but also on
the video content. While a high image resolution may reliably
produce good results, it may not always be needed as some con-
tent can also be accurately processed at a lower resolution. Let
a video segment denote a sequence of successive frames of the
video (e.g., 2 seconds of video). We denote the quality that a knob
configuration 𝑘 achieves on a video segment 𝑠 as 𝑞𝑢𝑎𝑙 (𝑘, 𝑠). The
optimization goal of Skyscraper is to maximize the overall qual-
ity 𝑞𝑢𝑎𝑙 (𝑣) of entities extracted from video 𝑣 , which is given by
𝑞𝑢𝑎𝑙 (𝑣) =

∑︁
𝑠∈𝑣 𝑞𝑢𝑎𝑙 (𝑘𝑠 , 𝑠)where 𝑘𝑠 is the configuration used to

process segment 𝑠 .

2.2 System overview
The following subsection gives a high-level overview of Skyscraper .
Section 3 and Section 4 then provide a more detailed discussion of
Skyscraper’s design.

Design challenges. To explain why Skyscraper works the way it
does, we present a simplistic, idealized approach to content-adaptive
knob tuning with throughput guarantees, and show where this
approach fails in practice. We then present the ideas that Skyscraper
uses to overcome the issues of the idealized approach.

For now, we do not consider buffering or the scheduling of com-
putation between on-premise resources and the cloud. Instead, we
simply consider a computation budget 𝑏𝑢𝑑𝑔𝑒𝑡𝑇 on the number of
arithmetic operations that we may use to ingest video produced
during time period 𝑇 . We are further given a small set of knob
configurations K which allows us to process different segments of
the video at different costs and qualities (see Section 2.1).

We observe that the knob tuning system must speculate about
the future content of the video in order to effectively ration 𝑏𝑢𝑑𝑔𝑒𝑡𝑇
over time. Otherwise, the system can not assess whether it is sensi-
ble to process content with an expensive knob configuration now
or to save the budget for the future when expensive knob configu-
rations might have a larger impact. Furthermore, we find that the
effectiveness of different knob configurations often changes within
seconds — a content-adaptive knob tuning system should therefore
reassess which configuration to use every couple of seconds.

Now, suppose we have a forecasting function that can perfectly
predict what quality each knob configuration achieves at any given
time in the future. In this idealized world, we can easily build a
system that achieves optimal performance: Our optimal system
would slice time interval 𝑇 into segments 𝑡𝑖 of equal length, where
each segment 𝑡𝑖 is a few seconds long. The system then forecasts
the quality that each knob configuration achieves on each segment
𝑡𝑖 ∈ 𝑇 . Finally, given the forecasted qualities, optimizing the assign-
ment of knob configurations to segments is an instance of the 0-1
knapsack problem, where the overall quality must be maximized
under the given budget 𝑏𝑢𝑑𝑔𝑒𝑡𝑇 .
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Figure 2: Overview over all processing steps of Skyscraper.

Unfortunately, we find that achieving good accuracy on this
forecasting task is infeasible in the real world. To forecast the knob
configurations’ qualities for each 𝑡𝑖 ∈ 𝑇 , our forecasting function
needs to predict what happens at each second in the video, hours
into the future. This is impossible since the precise timing of events
is subject to substantial randomness. For example, it is impossible
to predict the exact moment in which a large group of pedestrians
will pass by a camera, hours into the future. To make our system
work in the real world, we design a more practical forecasting task.

We rely on two insights that guide the design of this new fore-
casting task. First, we observe that there are a few types of video
content that characterize any of the videos seen throughout the live
stream (e.g., rush hour traffic, normal traffic, low traffic). For the
content of the same kind, each knob configuration produces results
of similar quality. For example, for content with many occlusions
(e.g., rush hour), knob configurations that cannot handle occlusions
will always produce low-quality results. Second, we observe that,
while it is impossible to predict when certain content appears, it is
possible to predict how often it appears, assuming the future video is
distributed roughly as a recent historical video has been. For example,
while it is impossible to predict the precise moments (i.e. the 𝑡𝑖 ’s)
at which groups of pedestrian pass by the camera, it is possible to
estimate how often groups of pedestrians pass by the camera.

We can now design a forecasting task where accurate predictions
are feasible in practice. Based on the first insight (content falls
into a few categories), we use a simple clustering mechanism to
compute content categories such that all streamed content falls
into one of these categories. We construct them such that all knob
configurations achieve a similar quality on the content of the same
category (more details in Section 3). Then, based on the second
insight (content distribution is predictable), we simply predict how
often each content category appears within a time interval 𝑇 . For
example, if our forecasting model thinks that 10% of the video in
𝑇 shows rush-hour traffic, it would forecast 10% for the rush-hour
category. In practice, we can achieve high forecasting accuracy on
real-world workloads.

Finally, we need to re-think how to use the forecast for knob tun-
ing. Since we no longer forecast the qualities of individual segments
𝑡𝑖 , we cannot assign knob configurations the same way as in our
idealized system. Instead, we can only assign knob configurations
to content categories. Knowing how often each content category ap-
pears allows us precisely determine the overall cost of using a knob
configuration to process the content of that category. In Section 4,
we describe how this allows us to find the optimal assignment of
knob configurations to content categories under a given budget
and for a given forecast. Given this assignment, we then need to
reactively determine what category the current content belongs to.

Once we determine the category, we can simply look up and use
the knob configuration we assigned to this category. Section 4.2
describes a simple method for determining the current content
category, which runs fast and determines the correct category with
high accuracy.

In summary, we took a simplistic, idealized system and made it
practical by re-designing the forecasting task. We then built an effi-
cient system around it that can leverage this forecast for predictive
knob tuning. Skyscraper takes these ideas and implements them for
real hardware provisionings.

Skyscraper walk-through. Given these challenges imposed by
content-adaptive knob tuning with throughput guarantees, we now
give an overview on how Skyscraper uses these ideas when provi-
sioned with real hardware (i.e., with a local compute cluster, video
buffer and cloud credits). Skyscraper is split into an offline learning
phase and an online ingestion phase as shown in Figure 2. Section 3
gives a detailed description of the offline phase and Section 4 gives
a detailed description of the online phase.

The offline phase is used to pre-compute invariant properties of
the V-ETLworkload, which allow online ingestion at negligible over-
heads. To compute these properties, the user provides Skyscraper
with a small set (e.g. 5 minutes) of labeled data and a larger set
(e.g. two weeks) of unlabeled data from the ingested video source.
Skyscraper uses this data to prepare online ingestion in three steps.

First, Skyscraper profiles different knob configurations on the
provisioned on-premise hardware and cloud hardware. Each knob
configuration corresponds to a directed acyclic graph (DAG) of
UDFs. Skyscraper profiles the cloud cost and runtime of different
UDF placements — executing some UDFs on the cloud may reduce
the execution time (due to added parallelism) but increases the
cloud cost. Skyscraper filters out placements that do not lie on the
cost-runtime Pareto frontier. Similarly, Skyscraper filters out knob
configurations that do not lie on the runtime-quality Pareto frontier.

Second, Skyscraper uses the unlabeled data to construct the con-
tent categories as discussed under Design challenges. The content
categories are constructed solely based on a quality metric that is
measured and returned by the user code (e.g. certainty or errors
commonly reported by CV models). By construction, the content
categories discriminate between any content characteristic that af-
fects the quality of at least one knob configuration. Constructing the
content categories solely based on a user-defined quality metric lets
Skyscraper generalize across workloads since Skyscraper doesn’t
need to understand the precise workings of the UDFs and how
their performance is affected by pixel-level changes. Furthermore,
dealing with low-dimensional quality vectors (e.g., 5-dimensional)
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Figure 3: Running the EV workload over a traffic camera.

allows Skyscraper to run fast, which is almost impossible when deal-
ing with high-dimensional image data (e.g., 750,000-dimensional).

Third, Skyscraper uses the unlabeled data to train the forecasting
model. As in under Design challenges, the forecasting model fore-
casts how often each content category appears within a defined
future time interval. This forecast is based on how frequently the
content categories have appeared in the recent past.

After the offline phase, each knob configuration is characterized
by the quality it achieves on different content categories as well as
the profiled runtimes and cloud costs when executing the knob con-
figuration using different task placements. When optimizing video
ingestion, Skyscraper only considers the runtime of knob configu-
rations together with the quality the knob configuration achieves
on the current content category. This is sufficient to maximize the
quality under throughput constraints and lets Skyscraper agnos-
tic to the UDFs. Skyscraper periodically performs predictive knob
planning (e.g. every 2 days) and reactive knob switching (e.g. every
2 seconds): Knob planning involves forecasting how often each
content category appears in the future (e.g. within the next 2 days)
and assigning knob configurations to the content categories based
on the forecast. Knob switching involves determining the content
category of the current video content and looking up what knob
configuration the planning phase assigned to that category. Based
on the assigned knob configuration, the available buffer space, and
the profiled runtimes, Skyscraper then picks a knob configuration
and task placement and uses it to process the next segment of video.

Processing example Figure 3 shows how the knob planner and
knob switcher use the provisioned resources to achieve high-quality
results when running the EV example workload on 24 hours of a
traffic camera stream. The uppermost plot in Figure 3 shows how
three different knob configurations (expensive, medium, cheap)
achieve different result qualities. For the EV workload, the result
quality is mainly affected by object occlusions (i.e., one car overlaps
with another car). We observe that the expensive configuration
reliably produces high-quality results while the cheap one only
produces high-quality results at night, when there is little traffic
and few occlusions.

The second plot in Figure 3 shows how the dynamic knob switch-
ing in Skyscraper causes the change in the workload (TFLOP per
second). We can see that the workload is low during the night when

Skyscraper frequently uses the cheap configurations, but high dur-
ing the day when Skyscraper uses the expensive configurations. The
data in Figure 3 is smoothed and hides that Skyscraper switched
4500 times between knob configurations over the course of the plot-
ted time period. If we would instead always use the most expensive
configuration, the workload would be constant at 5.2 TFLOP/s.

The third plot in Figure 3 shows how Skyscraper sets video
aside into the buffer during the day when frequently running the
expensive knob configuration. We can also see how Skyscraper
catches up on processing the buffered video at 5PM, when the
workload decreases. The buffer has a size of 4GB and is full at
around 2 PM. When it is full, Skyscraper decides to offload some
work to the cloud which is reflected by the rising amount of cloud
credits spent in the bottom figure (note that the Y axis shows the
percentage of the daily cloud budget that has been spent). We can
see that Skyscraper spent the credits as it had planned for the day.

3 OFFLINE PREPARATION PHASE
In the offline preparation phase, Skyscraper is fitted on the historical
video data recorded from the same source that will be ingested in
the online phase. Skyscraper needs a small set of labeled data (i.e.,
20 minutes) and a larger set of unlabeled data (e.g., 2 weeks). Based
on this data, Skyscraper first leverages prior work [2, 59] to create a
filtered set of knob configurations and a set of good task placements
for them. Then, Skyscraper clusters video content into categories
allowing Skyscraper to reason about video content in the online
phase. Furthermore, Skyscraper trains a forecasting model to predict
the frequency that each content category appears in the near future.
We describe these procedures in more detail as follows.

3.1 Filter knob configurations and task
placements

In order to optimize video processing while inducing little decision
overheads during online ingestion, Skyscraper needs to decide the
desirable knob configuration 𝑘 to process the streamed content and
the placement 𝑇𝑃𝑘 of its task graph𝐺𝑘 . Recall that the placement
of 𝐺𝑘 specifies which computation components when using knob
configuration 𝑘 to run on the cloud and which ones to run on-
premises. The number of all knob configurations is exponential in
the number of user-registered knobs. Similarly, the number of all
possible placements for a task graph is exponential in the number
of tasks. Skyscraper leverages prior work [2, 59] to filter the set
of knob configurations and task placements down to a smaller set.
Thereafter, Skyscraper only needs to consider promising candidates
in the online phase, reducing the size of the decision problem and
therefore online overheads.

We leverage the greedy hill climbing algorithm [50] proposed in
VideoStorm [59] to filter the knob configurations.We use PlaceTo [2]
to filter the task placements.
3.2 Categorize video dynamics

Skyscraper discretizes video content into content categories with
the property that knob configurations achieve similar result quality
for all video segments belonging to the same content category . In
this section, we describe how to identify these content categories
and will discuss how to forecast them in Section 3.3 and how the
categories allow for efficient video ingestion in Section 4.
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Skyscraper categorizes video content using unlabeled training
data. Skyscraper first samples a set of video segments S′ from the
unlabeled data. Skyscraper then processes each segment 𝑠 ∈ S′

with all configurations 𝑘 ∈ K and records the result quality that
each 𝑘 achieves on the segment 𝑠 as 𝑞𝑢𝑎𝑙𝑠 (𝑘). The result qual-
ity measurement is defined by the user and will be further dis-
cussed in Section 4. We group the qualities of all configurations
𝑘 on a segment 𝑠 into a |K |-dimensional quality vector 𝑞𝑢𝑎𝑙𝑠 =

[𝑞𝑢𝑎𝑙𝑠 (𝑘1), ..., 𝑞𝑢𝑎𝑙𝑠 (𝑘 |K | )]𝑇 . We gather the 𝑞𝑢𝑎𝑙𝑠 for all segments
𝑠 ∈ S′ to form a set of quality vectors Q = {𝑞𝑢𝑎𝑙𝑠 | 𝑠 ∈ S′}.
Then, Skyscraper decides the content categories C by running
KMeans [40] on Q. Thereafter, the content is clustered according
to the quality that the knob configurations achieve on it, ensuring
that all knob configurations achieve similar result quality for the
content of the same category by the property of KMeans. A content
category 𝑐 ∈ C is therefore characterized by a |K |-dimensional
cluster center, which denotes the average quality that the knob
configurations will achieve on content belonging to 𝑐 . We denote
the cluster center as [𝑞ˆ︂𝑢𝑎𝑙 (𝑘1, 𝑐), ...𝑞ˆ︂𝑢𝑎𝑙 (𝑘 |K | , 𝑐)], where 𝑞ˆ︂𝑢𝑎𝑙 (𝑘, 𝑐)
is the average quality that 𝑘 will achieve on videos categorized as 𝑐 .

We find that Skyscraper is not very sensitive to 𝑘 as long as it
is not too small (e.g. ≥ 3). Furthermore, it is easy to tune such
hyperparameters during the offline phase.

3.3 Train the forecasting model
Skyscraper trains a forecasting model F to predict how frequently
each content category 𝑐 ∈ C appears in the near future time in-
terval given their frequency in the most recent history. F allows
Skyscraper to effectively ration computational resources and opti-
mally allocate them for different video content categories to come.
We denote the forecasted time interval as the planned interval.

Skyscraper uses a simple feed-forward neural network as fore-
casting model F , which we find to be sufficient in Section 5. Let
𝑟 (𝑇 ) be |C|-dimensional histogram representing the frequency each
category 𝑐 ∈ C appears over time interval 𝑇 . The output of F is
thus 𝑟 (𝑃𝐼 ) where 𝑃𝐼 is the planned interval. The input to F is the
content histograms of the most recently ingested data. We split
the most recent time interval 𝑇𝑖𝑛𝑝𝑢𝑡 into 𝑛 equally-sized intervals
𝑇𝑖𝑛𝑝𝑢𝑡 = [𝑇1, ...,𝑇𝑛] and provide their category occurring frequency
[𝑟 (𝑇1 ) , ..., 𝑟 (𝑇𝑛 ) ] as time-series inputs to F . We find that Skyscraper
is not very sensitive to 𝑇𝑖𝑛𝑝𝑢𝑡 and 𝑛 as long as both are reasonably
large (i.e. 𝑇𝑖𝑛𝑝𝑢𝑡 is a couple of days and is split into intervals of a
couple of hours).

Skyscraper pre-trains F in the offline phase using the unlabeled
data. Furthermore, F can be fine-tuned in the online phase using
the recently ingested data to provide more accurate forecasting.

4 ONLINE VIDEO INGESTION
After completing the offline learning phase, Skyscraper is ready to
ingest live video streams. During live ingestion, Skyscraper uses
both a predictive component (knob planner) and a reactive compo-
nent (knob switcher) to make knob tuning decisions. The predictive
knob planner periodically forecasts trends in the video content
and lets Skyscraper make knob tuning decisions with the future
workload in mind. This allows Skyscraper to put the provisioned
compute resources to optimal use and prevents premature use of

buffer space and cloud credits, making use of expensive knob con-
figurations when they have the greatest impact. However, while
it is possible to forecast long-term trends in the content, the exact
short-term occurrence of content is subject to substantial noise.
Thus, Skyscraper also uses a reactive knob switcher that switches
between knob configurations based on the current content. The
knob switcher presents a way to leverage the forecasted workload
trends while being robust to short-term noise. In the following
section, we describe the algorithms used for both the knob planner
and the knob switcher.

4.1 Knob planner
The knob planner computes a knob plan that specifies which knob
configurations 𝑘 ∈ K to use for each content categories 𝑐 ∈ C to
maximize the overall result quality given the available compute
resources. Such assignment of knob configurations to 𝑐 is based on
the forecasted content distribution, which specifies how frequently
each knob configuration will appear over the forecasted interval.
Recall from Section 3.3, we refer to this interval as the the planned
interval. We find that accurate forecasts can be achieved a couple
of days into the future and consequently re-compute the knob plan
every couple of days using a fresh forecast.

Formally, the knob plan generates a histogram 𝛼𝑐 over knob
configurations K for each content category 𝑐 ∈ C. 𝛼𝑐 determines
how often a knob configuration𝑘 ∈ K should be used for processing
content of category 𝑐 - i.e., there is one bucket in the histogram
for each knob configuration, indicating the relative frequency with
which that configuration should be chosen for the content category.
Let 𝛼𝑘,𝑐 denote the frequency that histogram 𝛼𝑐 assigns to knob
𝑘 ∈ K (i.e., how often knob 𝑘 should be used to process the content
of category 𝑐). A knob plan P is thus defined as the set containing
the histograms for all content categories: P = {𝛼𝑐 | 𝑐 ∈ C}.

Finding a knob plan that maximizes the result quality under
the compute budget involves jointly optimizing the histograms for
all content categories. Each category’s histogram determines the
total resource consumption for processing content of the category,
which in turn determines how many resources are available for the
remaining categories. Skyscraper creates a knob plan in two steps.

First, the knob planner uses the pre-trained model F from the of-
fline phase to forecast how often (the ratio 𝑟𝑐 described in Section 3)
each content category will appear over the planned interval.

Second, using the forecasted content ratios 𝑟𝑐 , Skyscraper for-
mulates the assignment of knobs to content categories as a linear
program. This allows Skyscraper to find the globally optimal knob
plan P. Skyscraper maximizes the expected overall result quality
using the content category cluster centers computed in the offline
phase. As described in Section 3, each content category 𝑐 ∈ C is
defined by a KMeans cluster center, which is a vector whose 𝑖-th
element denotes the average quality 𝑞ˆ︂𝑢𝑎𝑙 (𝑘𝑖 , 𝑐) that knob configu-
ration 𝑘𝑖 achieves on the content of category 𝑐 . Given the average
quality of each knob configuration for each content category, the so-
lution of the linear program maximizes the overall expected quality
while being constrained by the compute budget 𝑏𝑢𝑑𝑔𝑒𝑡 .4

4The unit of the compute budget is given in 𝑐𝑜𝑟𝑒 ∗𝑠 using the on-premise server cores.
Skyscraper internally takes care of converting the user-defined cloud credits budget.
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maximize
∑︂
𝑘,𝑐

𝛼𝑘,𝑐 ∗ 𝑟𝑐 ∗ 𝑞ˆ︂𝑢𝑎𝑙 (𝑘, 𝑐) (2)

subject to
∑︂
𝑘,𝑐

𝛼𝑘,𝑐 ∗ 𝑟𝑐 ∗ 𝑐𝑜𝑠𝑡 (𝑘) ≤ 𝑏𝑢𝑑𝑔𝑒𝑡 (3)∑︂
𝑘

𝛼𝑘,𝑐 = 1, 𝛼𝑘,𝑐 ≥ 0 ∀𝑐 (4)

The decision variables of the linear program are 𝛼𝑘,𝑐 , which
determine how often the content of category 𝑐 should be processed
by configuration 𝑘 and thereby make up the knob plan. The goal
of the knob plan is to maximize the overall result quality, which
is denoted by Line 2. Line 3 denotes that the total amount of cost
should stay below the user-specified budget. Finally, Line 4 enforces
that the assigned ratios 𝛼𝑘,𝑐 add up to 1 for each content category
(this is merely for normalization).

We use an off-the-shelf solver [54] which is able to find the
solution to this linear program in less than a second for the problem
sizes encountered by Skyscraper . After finding the optimal value for
the decision variables 𝛼𝑘,𝑐 , we have the knob plan P which tells us
how often to use each knob 𝑘 to process the content of category 𝑐 in
order to achieve maximum quality given the constrained computing
resources. In Section 4.2, we show how P can be leveraged to
efficiently switch between knob configurations.

4.2 Knob switcher
Based on the current video content, the knob switcher reactively
determines which knob configuration 𝑘𝑛𝑒𝑥𝑡 ∈ K to use and which
tasks of 𝑘𝑛𝑒𝑥𝑡 ’s task graph𝐺𝑘𝑛𝑒𝑥𝑡 to execute on the cloud and which
tasks to execute on-premises. The knob switcher is designed to be
lightweight and doesn’t induce significant decision overheads, even
when run frequently. It decides on the next knob configuration
𝑘𝑛𝑒𝑥𝑡 and task placement 𝑝𝑛𝑒𝑥𝑡 in three simple steps: First, it de-
termines the category 𝑐𝑐𝑢𝑟 ∈ C that the current content belongs to.
Second, it looks content category 𝑐𝑐𝑢𝑟 up in the knob plan to obtain
the configuration histogram 𝛼𝑐𝑐𝑢𝑟 that the knob plan assigns to
𝑐𝑐𝑢𝑟 . Third, the knob switcher picks knob configuration 𝑘𝑛𝑒𝑥𝑡 based
on 𝛼𝑐𝑐𝑢𝑟 along with a task placement 𝑝𝑛𝑒𝑥𝑡 — the knob switcher
hereby guarantees to never overflow the buffer. In the following,
we describe how the knob switcher performs each of these steps in
more detail.

In the first step, the knob switcher determines the category 𝑐𝑐𝑢𝑟
of the current contentmerely using the reported quality𝑞𝑢𝑎𝑙∗ (𝑘𝑐𝑢𝑟 )
of the current knob configuration𝑘𝑐𝑢𝑟 . This allows the knob switcher
to select a category in a low overhead way, rather than running an
expensive processing step on the video directly. Specifically, given
𝑞𝑢𝑎𝑙∗ (𝑘𝑐𝑢𝑟 ), the knob switcher selects the current content category
𝑐𝑐𝑢𝑟 as the one whose average quality for 𝑘𝑐𝑢𝑟 (𝑞ˆ︂𝑢𝑎𝑙 (𝑘𝑐𝑢𝑟 , 𝑐𝑐𝑢𝑟 ))
matches the currently reported quality (𝑞𝑢𝑎𝑙 (𝑘∗)) the closest. The
average quality 𝑞ˆ︂𝑢𝑎𝑙 (𝑘𝑐𝑢𝑟 , 𝑐) of 𝑘𝑐𝑢𝑟 for a category 𝑐 ∈ C is given
by 𝑐’s cluster center (see Section 3.1). This is denoted by Equation 5.

𝑐𝑐𝑢𝑟 = argmin
𝑐∈C

|︁|︁𝑞ˆ︂𝑢𝑎𝑙 (𝑘𝑐𝑢𝑟 , 𝑐) − 𝑞𝑢𝑎𝑙∗ (𝑘𝑐𝑢𝑟 )
|︁|︁ (5)

Note that the knob switcher’s content classification is analogous
to traditional classification with KMeans but only uses one vector
dimension since the other dimensions are unattainable. This works

well in Skyscraper’s case because the content of different categories
will induce different result qualities for all knob configurations.
As a result, the quality of one knob configuration is sufficient to
discriminate between content categories. We experimentally verify
this in Section 5.6.

In the second step, the knob switcher then looks up the derived
content category 𝑐𝑐𝑢𝑟 in the knob plan P. This yields a histogram
𝛼𝑐𝑐𝑢𝑟 dictating how often each knob configuration 𝑘 ∈ K should
be used to process the content of the current category 𝑐𝑐𝑢𝑟 :

In the third step, the knob switcher determines the knob config-
uration 𝑘𝑛𝑒𝑥𝑡 that will be used for processing the newly arriving
content, together with task placement 𝑝𝑛𝑒𝑥𝑡 that determines which
tasks of 𝑘𝑛𝑒𝑥𝑡 ’s task graph to execute on the cloud and which ones
to execute on-premises. The knob switcher tries to adhere as closely
to the planned histogram 𝛼𝑐𝑐𝑢𝑟 as possible and therefore keeps a
histogram ˆ︁𝛼𝑐 for each 𝑐 ∈ C, which denotes how frequently each
knob configuration has actually been used to process the content
of category 𝑐 . To adhere as closely to the knob plan as possible, the
knob switcher picks the knob configuration 𝑘𝑛𝑒𝑥𝑡 that minimizes
the difference between ˆ︁𝛼𝑐𝑐𝑢𝑟 and 𝛼𝑐𝑐𝑢𝑟 . This is denoted by Equa-
tion 6. Finally, the knob switcher picks a placement 𝑝𝑛𝑒𝑥𝑡 for 𝑘𝑛𝑒𝑥𝑡 .
Skyscraper picks the cheapest placement of 𝐺𝑘𝑛𝑒𝑥𝑡 that does not
overflow the buffer.

𝑘𝑛𝑒𝑥𝑡 = 𝑘𝑖 with 𝑖 = argmax
1≤𝑖≤ |K |

(𝛼𝑐𝑐𝑢𝑟 [𝑖] − ˆ︁𝛼𝑐𝑐𝑢𝑟 [𝑖]) (6)

It is worth noting that there is an edge case when picking the
task placement 𝑝𝑛𝑒𝑥𝑡 : Some knob configurations do not possess
task placements that run in real-time, even when heavily adding
cloud compute. Reasons for this include limited bandwidth to the
cloud, high round trip times to the cloud, and limited opportunities
for adding parallelism to the DAG execution. If all placements of
𝑘𝑛𝑒𝑥𝑡 would make Skyscraper’s buffer overflow, the knob switcher
will choose a different configuration 𝑘′𝑛𝑒𝑥𝑡 to be the next one. This
knob configuration 𝑘′𝑛𝑒𝑥𝑡 is the next less qualitative one compared
to 𝑘𝑛𝑒𝑥𝑡 . Like for 𝑘𝑛𝑒𝑥𝑡 , the knob switcher will pick the cheapest
placement of 𝑘′𝑛𝑒𝑥𝑡 that does not overflow the buffer. If all place-
ments of 𝑘′𝑛𝑒𝑥𝑡 would overflow the buffer, the knob switcher will
recursively apply this procedure of picking the next less qualitative
knob configuration until it finds a configuration and task placement
that do not overflow the buffer.

In summary, the knob switcher uses three steps to find a knob
configuration 𝑘𝑛𝑒𝑥𝑡 ∈ K along with a task placement 𝑝𝑛𝑒𝑥𝑡 while
adding little runtime overheads to the ingestion process. The knob
switcher tries to adhere as closely to the knob plan P as possible,
only deviating from the knob plan when this is required to avoid
a buffer overflow. This ensures that the knob switcher maximizes
the result quality with the given resources.

5 EVALUATION
We evaluate Skyscraper on several real-world applications, covering
public health monitoring, traffic planning, and social media analysis.
We describe these workloads in subsection 5.2. Then, we evaluate
Skyscraper on the following aspects:

§5.3 What cost savings does Skyscraper achieve versus using a
static knob configuration?
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§5.4 Howmuch do cloud bursting and buffering individually con-
tribute to cost savings in different quality regimes? When
do they perform well and when don’t they?

§5.5 How much decision overhead does Skyscraper impose at
different scales?

§5.6 How accurate are knob planner and knob switcher, and
what effect do inaccuracies have on Skyscraper’s end-to-
end performance?

When evaluating different hyperparameter choices of Skyscraper
(e.g., number of content categories (KMeans clusters), we find that
Skyscraper’s end-to-end performance is insensitive to many of the
hyperparameters as long as they are chosen from reasonable ranges.

5.1 Implementation
We implement Skyscraper in Python on top of Ray [46]. We in-
stantiate several Ray actors for both the on-premise and the cloud
version of each UDF. The number of duplicate actors is based on the
number of logical cores of the machine. We only map UDFs to Ray
actors; all of Skyscraper’s components run in the parent process
and synchronize the calls to the actors.

We use AWS Lambda [51] to run UDFs in the cloud and provision
3GB of memory for each cloud function. To simulate incoming
video streams in real time, we read video frames from the disk and
pause appropriately between frames to guarantee 30 fps streaming
rate. All workloads are compute-bound and we find that in our
experiments decode only amounted to 5% of the overall runtime.
The streamed video is encoded in H.264 [49] and has a resolution of
1280 × 720 (HD). In our experiments, each frame is decoded when
arriving in the system (as part of the user code).

When sending full or partial frames to the cloud, we compress
them to JPEG-1 format [10]. We then serialize the JPEG using
Base64 [29] and send the string as part of an HTTPS request. The
overhead for encoding and decoding is negligible compared to the
transfer time saved through compression.

5.2 Workloads
We evaluate Skyscraper using three workloads on public health
monitoring, traffic planning, and social media analysis. They cover a
diverse set of computer vision primitives including object detectors,
trackers, and classifiers, as described below.

COVID-19 safety measures (COVID) During the coronavirus
pandemic, decision-makers have executed several safety measures
to slow down the spread of the virus. Such measures include wear-
ing facial masks and social distancing. Measuring where and how
strictly people adhere to these measures can be used for decision-
making and informing people at risk. The COVIDworkload consists
of a YOLOv5 object detector [47] to detect pedestrians and a KCF
tracker [23] to track the detected pedestrians ("detect-to-track").
After the detection, for each detected pedestrian, the workload em-
ploys homography [14] to measure the pedestrian’s distance from
others.

This workload contains the following knobs: 1) frame rate at
which video is processed ({30FPS, 15FPS, 10FPS, 5FPS, 1FPS}), 2)
object detection rate to run object detector (every {1, 5, 30, 60} frames)
and 3) tiling for object detection that slices the frames into ({1x1,
2x2}) tiles.

The workload is executed on an 8-day video stream of a busy
shopping street in Tokyo.5We measure quality in terms of the num-
ber of people detected and tracked over time as YOLO has a low
false positive rate and KCF trackers reliably report tracking errors.

Multi-object tracking (MOT) Multi-object tracking (MOT) is a
key primitive in many video analytical pipelines. In this workload,
we adopt the recent state-of-the-art TransMOT [11] tracker on
MOT benchmark [17] and introduce four tunable knobs: 1) frame
rate (every {1, 5, 30, 60} frames), 2) number of tiles ({1x1, 2x2} tiling),
3) length of history denoting the number of historical frames ({1, 2,
3, 5}) as the TransMOT input, and 4) model size ({small, medium,
large}) that specifies different network sizes of TransMOT.

We run MOT on a stream of a traffic intersection, Shibuya in
Tokyo to track pedestrians for 8 days. MOT’s processing quality is
defined as the sum of tracked pedestrians weighted by the model’s
reported certainty. With this quality metric, we want to evaluate
how Skyscraper maximizes model certainty as a proxy for accuracy
as proposed in prior work [43, 48].

Multi-modal opinion sentiment and emotion intensity (MO-
SEI) This workload is synthetic and simulates a video stream anal-
ysis application on Twitch. The number of incoming streams varies
over time and mimics the number of live Twitch streams over
two days.6 We further introduce two types of spikes to evaluate
Skyscraper under difficult conditions:

• MOSEI-HIGH : We introduce high but short peaks in workload,
consisting of 62 concurrently incoming video streams. This makes
cloud bursting difficult due to bandwidth limitations.

• MOSEI-LONG: We introduce a long peak of continuous work-
load. In this case, the buffer alone cannot handle all the extra work.

We use the CMU-MOSEI [5] dataset to simulate incoming video
streams, as it has ground truth labels that allow us to train the
models used in the workload. It contains various talking head videos
from YouTube. The task of the MOSEI workload is to classify the
opinion sentiment of the speaker using both the audio and the visual
content. CMU-MOSEI provides extracted features from the video
with ground-truth labels. We trained a neural network on CMU-
MOSEI’s training set and used its test set to evaluate Skyscraper .

MOSEI workload contains the four knobs: 1) frame rate, 2) fre-
quency of sentiment analysis that we may run sentimental analysis
model once every {1, 2, 3, 4, 5, 6, 7} sentences of the spoken audio
and video, 3) model size of the sentimental analysis model, and 4)
the number of streams to analyze.

We evaluate the processing quality as the weighted sum over
the ingested streams weighted on model’s reported certainty.

5.3 Cost efficiency
This section evaluates the end-to-end cost savings that Skyscraper
achieves on these workloads. We hereby compare Skyscraper to
two baselines. The Static baseline processes the video streams stati-
cally using the same knob configuration throughout the stream. The
Chameleon* baseline refers to an adapted version of Chameleon [31].
We equip Chameleon with a buffer and adapt it to set video aside
when the provisioned hardware cannot process it in real-time. This

5The Koen-Dori street in the Shibuya district: https://youtu.be/gALQR-nsEME
6As recorded by Twitch Tracker at https://twitchtracker.com/statistics/active-
streamers
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Figure 4: Cost-quality trade-off of Skyscraper, Chameleon∗ and statically using the same knob throughout ingestion.

allows Chameleon to achieve cost savings, since it doesn’t need to
be provisioned to handle peak workload. However, Chameleon* is
not practical and may easily crash, as its lack of throughput guar-
antees may lead to buffer overflows. We benchmarked Chameleon*
on several hardware setups and only report the numbers where it
didn’t crash during the benchmark.

For each system, we report the overall result quality that the
system achieves on different hardware set ups. Since we do not have
access to a wide range of compute servers, we use Google Cloud
VM instances as the provisioned, always-on hardware ("on-premise
servers"). In the case of Skyscraper , which additionally uses AWS
Lambda, we have verified that the bandwidth and latencies from
the Google Cloud VMs to AWS Lambda realistically reflect the ones
of commodity on-premise setups. In our experiments, we consider
the following Google Cloud machines:

• e2-standard-4: 4 vCPUs, 16 GB memory, 0.14 USD/h
• e2-standard-8: 8 vCPUs, 32 GB memory, 0.27 USD/h
• e2-standard-16: 16 vCPUs, 64 GB memory, 0.54 USD/h
• e2-standard-32: 32 vCPUs, 128 GB memory, 1.07 USD/h
• c2-standard-60: 60 vCPUs, 240 GB memory, 2.51 USD/h
While these instance types do not possess hardware accelera-

tors (e.g., GPUs), we note that there is nothing fundamental about
Skyscraper that would prevent users from using hardware different
from only CPUs. If a user provisions Skyscraper with a server that
contains hardware accelerators, the application’s UDFs would need
to make sure that the hardware accelerators are used when execut-
ing the UDF. In the offline phase, Skyscraper will then just measure
the UDF’s runtime and work normally without any modifications.

Figure 4 visualizes the cost of processing the workloads from
Section 5.2 with each system. On average, content category changes
occured every 42s for COVID, every 43s for MOT, every 30s for
MOSEI HIGH, every 24s for MOSEI LONG. However, all workloads
had some periods with very frequent category changes and others
with few category changes. We pessimistically estimate that the
same amount of computing costs 1.8× more when using a Google
Cloud VM than when using a provisioned on-premise server (this
estimate is high and in favor of the baselines). Thus, the total cost
of all systems is given by the cost of renting the Google Cloud VMs
divided by 1.8 plus the cost of the AWS Lambda workers.

Summary. Overall, Skyscraper offers significantly better cost-
quality trade-offs than current approaches. Skyscraper’s perfor-
mance benefits are especially large on theMOTworkload: Skyscraper
is 8.7× cheaper than the static baseline at a comparable quality. Fur-
thermore, Skyscraper is 3.7× cheaper than Chameleon* at a better
quality. Chameleon* suffered from large profiling overheads. For
the COVID and MOT workload, our results are comparable to what
the authors report in the Chameleon paper (2-3× speedup over

the static baseline at the highest quality level). For the MOSEI
workloads, the profiling overheads were especially large since the
expensive knob configurations cause large amounts of work.

5.4 Ablation study
To evaluate how much buffering and cloud bursting individually
contribute to the cost savings, we run an ablation study where
we independently disable them. Running this ablation study on
unsimulated hardware is prohibitively expensive (i.e., we need to
conduct dozens of measurements as the one in Figure 4), so we
can only afford to analyze with simulated results. We use a simple
but accurate simulator, that we evaluated on the benchmarked
workloads and found to be accurate.

We use two metrics to evaluate the performance of Skyscraper :
(1) The monetary cost of processing the workload. We hereby

also evaluate Skyscraper for different cost ratios between the on-
premise and the cloud computing. We estimate that a ratio of 1:1.8
between on-premises and AWS Lambda is realistic at the current
market prices (this estimate is rather high and in favor of the base-
lines). We evaluate the monetary cost of four variants of Skyscraper :

(1a) No buffering, no cloud: We disable both buffering and cloud
bursting. Effectively, this corresponds to not switching knob con-
figurations and only using the most qualitative knob configuration
that runs in real time on the given on-premise server.

(1b) Only buffering: Skyscraper may only use placements that
place every task on-premise and can not use the cloud.

(1c) Only cloud: Skyscraper may use the cloud but not buffering.
(1d) Buffering & cloud: This corresponds to standard Skyscraper .
(2) The amount of work measured in 𝑐𝑜𝑟𝑒 ∗ 𝑠𝑒𝑐𝑜𝑛𝑑s used in

the processing. This is independent of whether the computation is
buffered or executed on the cloud or on premises. When evaluating
the amount of work, we compare Skyscraper to two baselines:

(2a) Static: This baseline corresponds to statically using the same
knob configuration. It is similar to baseline (1a) where Skyscraper
also statically uses the same configuration.

(2b) Skyscraper : We measure the amount of work that Skyscraper
performs for processing the workload.

(2c) Optimum: The optimum baseline fully leverages the ground
truth to always choose the optimal knob configuration. Specifically,
given the performance of each knob configuration beforehand,
it uses the greedy 0-1 knapsack approximation to choose knob
configurations that maximize quality under certain budget.

Figures 6, 8, 10, 12 show the cost-quality trade-off curves for
the COVID, MOT, MOSEI-HIGH, and MOSEI-LONG workloads.
Figures 7, 9, 11, 13 show the work-quality trade-off curves.

* Chameleon* is an adapted version of Chameleon [31] that uses a buffer. Chameleon*
would frequently crash in practice due to overflows of the unmanaged buffer.
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For the COVID and MOT workload, Only cloud and Only buffer-
ing alone can achieve significant speed-ups over the baseline. For
both workloads, when combining the two (Buffering & cloud), peak
quality can be roughly reached at 1.5× less cost than when only
buffering or only using the cloud for a cost ratio of 1.8:1. For 5:2 cost
ratio, Only cloud performs significantly worse, because off-loading
work off to the cloud incurs a very high cost. For 1:1 cost ratio, Only
cloud matches the performance of Buffering & cloud as using cloud
resources has the same cost the on-premises computations.

For the MOSEI workloads, we can see how Only buffering and
Only cloud struggle to deliver good performance for MOSEI-HIGH
andMOSEI-LONG, respectively. However, we observe that Buffering
& cloud delivers good performance on both. The reason for the
bad performance of Only cloud on MOSEI-HIGH is bandwidth
limitations that limit the number of social media streams that can
be offloaded to the cloud. The reason for the bad performance
of Only buffering on MOSEI-LONG is that the buffer gets filled
early on, which prevents Skyscraper from using expensive knob
configurations for the remainder of the long workload peak.

Finally, Figures 7, 9, 11 show that Skyscraper’s work reduction
method performs close to optimum. Skyscraper only leaves large
room for improvement for the MOSEI-LONG workload (Figure 13).

Summary. To certain extent, the buffering and cloud bursting
optimizations are complementary to each other. Specifically, the
performance improvement of using both over using one of them is
not as large as performance difference between them. Therefore,
cloud bursting lessens the need for buffering and vice versa. How-
ever, Skyscraper can still achieve 1.5× cost savings in the COVID

and MOT workloads over only one of the two methods. Further-
more, the MOSEI workloads show that buffering and cloud bursting
struggle for different kinds of workload spiking patterns. By com-
bining the two, Skyscraper can achieve good performance for both
kinds of patterns.

5.5 Runtime overheads
For the COVID workload, the overall runtime of the offline phase
was 1.6 hours on two c2-standard-60 machines. 83% of the time was
spent creating the training data for the forecasting model, which is
embarrassingly parallel and can be sped up by adding machines.

Skyscraper’s knob planner and knob switcher add overheads to
the online execution time. In this section, we evaluate their run-
times for different amounts of placements, content categories, and
knob configurations. All runtime measurements are performed on
a single core (no parallelization) of the Intel(R) Xeon(R) Gold 6130
CPU with 64 cores at 2.10GHz with 198 GB memory.

The worst-case runtime of the knob switcher is linear in the total
number of placements (for all knob configurations). This worst
case is achieved when the knob switcher needs to iterate through
all configuration-placement pairs until it finds one that does not
overflow the buffer (see Section 4). The left plot in Figure 13 shows
the worst-case runtime as the dashed line and the average runtimes
of the knob switcher for the COVID, MOT, and MOSEI experiments.

The knob planner conducts an inference pass through a small
neural network and solves a linear program. For the linear program,
the number of variables is |C| ∗ |K | and the number of constraints
is 1 + 2 ∗ |C|, where C denotes the number of content categories
and K is the number of knob configurations. The right image in
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Figure 13: Overheads of knob switcher and planner

Figure 13 uses the heat map to visualize the overheads caused by
the knob planner for different amounts of content categories and
knob configurations. This image also shows the actual runtime of
knob planner on the three workloads.

Summary. For common problem such as the COVID, MOT, and
MOSEI workloads, the overheads of both the knob switcher and
knob planner are negligible. While the knob switcher runs every
few seconds, its runtime is typically below a millisecond. Similarly,
the knob planner typically runs every few days but with a runtime
below a second. We also show that the runtime overhead of our
optimization is reasonable for more complicated workloads.

5.6 Microbenchmarks
This subsection evaluates how accurately Skyscraper’s forecasting
model F can predict the future content distribution and how sen-
sitive Skyscraper’s performance is to inaccuracies in the forecast.
Similarly, the subsection evaluates the accuracy at which the knob
switcher classifies the video content into a content category 𝑐 ∈ C
and how sensitive Skyscraper’s performance is to misclassifications.
In our evaluation, we focus on the real-world workloads COVID and
MOT. The MOSEI workloads are synthetically created by inducing
workload spiking patterns as described in Section 5.2. While these
workloads present especially difficult spiking patterns for buffering
and cloud bursting, the forecasting model achieves 100% accuracy
and the knob switcher particularly high performance due to the
regularity and smoothness of their workload peaks. We therefore
do not evaluate them in terms of accuracy in this subsection.

Forecasting modelWe evaluate the forecasting model on 8 days
of test data after training it on 16 days of unlabeled training data.We
train and evaluate the forecasting model on four different lengths of
the planned interval: {1, 2, 4, 8} days. As described in Section 4.1, the
length of the planned interval determines the frequency of running
knob planner and how long F needs to forecast into the future.

We find that for both workloads, Skyscraper’s forecastingmethod
achieves a low Mean Absolute Error (MAE) when forecasting 1 to
4 days into the future. For both workloads, the lowest MAE was
achieved when forecasting 2 days into the future, while the largest
MAE was incurred when doing so for 8 days.

There is a sweet spot on how far to forecast into the future but
this sweet spot is unrelated to the frequency of content category
changes. Forecasting over very large time intervals is hard because
events far in the future become increasingly uncorrelated to the
current events, which the forecast is based on. On the other hand,
forecasting over too short time periods is also hard: The streamed

Figure 14: The effect of different planned interval lengths on
Skyscraper’s end-to-end performance

video content is always subject to a certain amount of randomness
(e.g. a large group of people randomly walking past a camera).
Over large enough time intervals, this randomness is smoothed
out, which makes the forecast more precise. When this smoothing
effect is not achieved, errors due to unforeseen randomness will
be noticeable in the MAE of the predictions. The high MAE when
forecasting 8 days into the future shows that forecasting far into
the future is difficult as events become increasingly uncorrelated
to the current events, which the forecast is based on. On the other
hand, forecasting over too short time periods also leads to higher
MAEs: Streamed video content is always subject to a certain amount
of randomness (e.g. a large group of people randomly walking
past a camera). Over large enough time intervals, this randomness
is smoothed out and therefore doesn’t show in the MAE, which
doesn’t occur for forecasts over short periods.

Figure 14 shows the impact of the prediction errors in terms
of end-to-end performance. For comparison, we additionally run
Skyscraper using the ground truth content distributions (perfect
forecast). For planned interval lengths between 1 and 4, Skyscraper’s
performance is very close to the optimal performance using the
ground truth predictions. However, for both workloads Skyscraper
performs significantly worse for a planned interval length of 8.

Knob switcher As described in Section 4.2, it is possible that the
knob switcher misclassifies video content into the wrong content
category. We identify two reasons for such misclassifications. First,
the knob switcher classifies content based on the quality of one
knob configuration. This corresponds to KMeans classification,
where a vector is classified using only one dimension instead of all.
We denote misclassifications, that occur because of this as Type-A
errors. Second, the knob switcher determines the current content
category based on the past couple of seconds of the video. It will
then switch to a knob configuration that is used for processing the
next couple of seconds of video, which creates a time mismatch. The
last couple of seconds might belong to a different content category
than the next couple of seconds. We denote errors caused by this
timing mismatch as Type-B errors. Distinguishing between these
two errors lets us gain insight into where performance losses come
from, which could be used for further enhancements of Skyscraper .

In Figure 15, we denote the standard knob switcher as described
in Section 4.2 as Standard and compare it against two baselines:
Ground truth denoting Skyscraper using the ground truth content
categories and No Type-B errors denotes a baseline that partially
uses the ground truth to eliminate errors of Type-B. Specifically,
it determines the content category using Skyscraper’s standard
approach but on the data of a future couple of seconds (i.e., it
knows how the current knob configuration would perform in the
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Figure 15: End-to-end performance of knob switcher against
baselines that leverage ground truth for content classification

next couple of seconds without executing it). Like this, only errors
of Type-A impede the performance of the No Type-B errors baseline,
which shows their impact on Skyscraper’s end-to-end performance.

Figure 15 shows that the knob switcher’s misclassifications have
a negative impact on Skyscraper’s end-to-end performance when
using the Standard. The misclassification rate of Standard is 2.1% on
COVID and 6.6% on the MOT workload. However, the performance
of the No Type-B errors baseline almost matches the optimum. This
suggests that the remaining Type-A errors barely impede the overall
performance. These errors constitute 0.5% of the knob switcher’s
error rate on COVID and 3.7% on the MOT workload.

Summary The microbenchmarks provide two insights. First,
when forecasting between 1 to 4 days into the future, Skyscraper’s
forecasting method is accurate and does not significantly harm
end-to-end performance when compared to using the ground truth
as forecast. However, when forecasting further into the future (e.g.,
8 days), the forecasts become less accurate, which shows an effect
on Skyscraper’s end-to-end performance. Second, misclassifications
of the knob switcher negatively impact Skyscraper’s performance.
We hereby identify a time mismatch as the sole driver for the per-
formance losses. This timing mismatch occurs because the knob
configuration to process the next couple of seconds with is based
on the content of the last couple of seconds.

6 RELATEDWORK
While we are not aware of past research which manages video
streams like in a data warehouse, several systems propose end-to-
end solutions for managing archived collections of video like in a
relational database system [16, 21, 41, 56, 57]. Likewise, we are not
aware of past work that directly addresses the V-ETL problem, but
there are several lines of work on efficient video processing that
are relevant to Skyscraper . We summarize them below.

Content-adaptive knob tuning systems. Content-adaptive
knob tuning systems aim at saving computational work by dy-
namically adjusting knobs that are inherent to CV workloads to
the video stream’s content. Chameleon performs content-adaptive
knob tuning for general CV workloads [31]. However, Chameleon
assumes that each knob configuration can be run in real-time on the
provisioned hardware resources ("peak provisioning"). Chameleon
then minimizes the average processing time per frame. As discussed
in Section 1, such systems cannot deliver cost savings while also
adhering to throughput guarantees, which is required in the V-ETL
problem. Zeus is another content-adaptive knob tuning system [12],
but cannot be used for general-purpose V-ETL, as it is specific to
action detection (e.g., detect someone crossing the street).

Query-load-adaptive knob tuning systems. Instead of adapt-
ing to the streamed content, some systems tune the knobs of a CV

workload solely based on the concurrently running queries (while
being agnostic to the streamed content). These systems are useful
in scenarios where users issue dynamic queries over video streams,
which require the system to dynamically multiplex compute re-
sources among the queries. VideoStorm [59] and VideoEdge [26]
go beyond dynamic resource allocation and also tune the queries’
knobs based on the other queries that are concurrently running.
However, in scenarios where the query load remains static, there is
no benefit in dynamically adapting to the query load. In V-ETL, a
constant set of jobs is used to ingest the video streams. In contrast
to VideoStorm and VideoEdge, Skyscraper therefore dynamically
adapts to changes in the video content instead of the query load.

Streaming ETL. Treating data warehouse ingestion as a state-
ful stream processing problem is an established approach [18],
which is successfully used in many big data applications [44]. Like
Skyscraper , traditional streaming ETL is also concerned with main-
taining data quality while handling fluctuating workloads without
peak provisioning. This is typically achieved through methods like
back pressure or load shedding, which mitigate workload peaks
arising from fluctuating volumes of arriving data [52]. However, in
V-ETL, data often arrives at constant volume, and only the content
of the data changes. In contrast to traditional streaming systems,
Skyscraper ’s optimizations therefore focus on adapting to the con-
tent of the streamed data and not to its volume.

General-purpose cloud offloading. Several works have pre-
viously explored the idea of offloading work from an on-premise
server to on-demand cloud workers [1, 13, 15, 19, 28, 36, 38, 60].
These works assume that jobs occasionally arrive and these jobs
may be executed locally or offloaded to the cloud. However, these
works only optimize the placement of work and do not reduce work
by means like knob tuning as Skyscraper does.

Task-specific computer vision optimizations. Several works
optimize the application of CV for specific tasks and queries. While
these methods cannot be used to optimize arbitrary V-ETL jobs,
they can be used inside Skyscraper’s UDFs to further reduce cost.
General methods to improve the efficiency of neural networks
include model compression [20, 37], compact neural architectures,
[27, 39, 47], and knowledge distillation [4, 24, 33, 53]. Further works
propose efficient CV primitives that are query-aware or content-
adaptive [3, 7–9, 30, 33, 55]. Finally, some works reduce processing
costs of certain video queries by intelligently skipping frames [6,
22, 25, 32, 34, 35, 42, 45, 58].

7 CONCLUSION
In this paper, we defined the problem of V-ETL for transforming
video streams to a queryable format through expensive ML-based
video processing DAGs. In response, we introduced Skyscraper ,
which uses content-adaptive knob tuning to reduce the cost of
the V-ETL Transform step while adhering to V-ETL’s throughput
requirements on constrained hardware resources. Skyscraper sup-
ports conversions to arbitrary query formats.
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