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ABSTRACT
In data streaming, why-provenance can explain why a given out-
come is observed but offers no help in understanding why an ex-
pected outcome is missing. Explaining missing answers has been
addressed in DBMSs, but these solutions are not directly applicable
to the streaming setting, because of the extra challenges posed by
limited storage and by the unbounded nature of data streams.

With our framework, Erebus, we tackle the unaddressed chal-
lenges behind explaining missing answers in streaming applica-
tions. Erebus allows users to define expectations about the results
of a query, verifying at runtime if such expectations hold, and also
providing explanations when expected and observed outcomes di-
verge (missing answers). To the best of our knowledge, Erebus is the
first such solution in data streaming. Our thorough evaluation on
real data shows that Erebus can explain the (missing) answers with
small overheads, both in low- and higher-end devices, even when
large portions of the processed data are part of such explanations.
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1 INTRODUCTION
Data streaming [1, 32] allows users to query unbounded datasets in
a continuous manner with Stream Processing Engines (SPEs) [4, 10].
SPE users can connect query outputs to their contributing inputs
using why-provenance [23], which, however, cannot explain why
an expected output ismissing since, by definition, it only records in-
formation related to generated outputs. Such expected but missing
answers can indicate problems in the query, the input data, or both.
Knowing if and why answers are missing can be critical in vali-
dating query correctness and understanding issues, unanticipated
during the query design, which now need to be addressed [12].
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In DBMSs, missing answers can be explained through provenance
of missing answers (also known as why-not provenance) [9]. Since
DBMSs manage bounded datasets, though, existing why-not prove-
nance solutions are not applicable to the streaming setting. First,
such solutions assume that the query can be replayed with the exact
same (bounded) data. This is not necessarily the case in streaming
queries, whose one-pass analysis is commonly motivated by the
inefficiency of maintaining all the data to be analyzed [1]. Second,
streaming queries produce results continuously [32], introducing
the issue of discerning missing from yet-to-be-produced answers,
which lies outside DBMSs’ closed-world assumption.

Example - Part 1 introduces a scenario of missing answers and
their explanations in a streaming use-case from our evaluation.

Example - Part 1

An analyst runs the query of Figure 1 over household power data to
find faulty plugs. The figure shows the operators, tuple schemas, and
attribute transformations, discussed in the next sections. At 23:30, the
analyst is notified by a customer about a broken plug: since 22:00 the
display of that plug has been showing seemingly random power loads
between 0 and 29 watts, but nothing is connected to it. The analyst
checks the mean usage of that whole customer household and it has
been above 34 watts since 22:00. The analyst believes the query should
have produced an alert in this situation, but no alert has been produced
yet. Is the alert going to be delivered in the immediate future or is the
query ignoring the faulty plug’s data? To understand the problem of
the query (if any), the analyst would benefit from system-generated
information on whether relevant alerts are finally generated or if tuples
that could have contributed to the alerts were pruned by an operator.
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Figure 1: Example streaming query from Erebus’ evaluation.
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Contribution. Considering the above, we ask: How can we effi-
ciently monitor user-defined expectations about query results and
explain missing answers in a streaming manner? We propose a new
framework, called Erebus,1 which allows users to define expectations
about query results at runtime. Erebus notifies users about whether
their expectations were met and, if they were not, it explains “why
not”, relieving users from the necessity of manual query debugging
or replaying of the data. We make the following contributions:
● We formally define the problem of explaining missing answers

in streaming. We propose query-based explanations, which iden-
tify operators pruning off tuples that could have contributed to
missing results together with such pruned-off tuples.

● We formalize the notion of an expectation predicate for a stream-
ing query as boolean conditions describing user expectations
about the query outputs at certain time intervals.

● We describe Erebus, the first framework that can provide expla-
nations for already processed and yet to be processed streaming
data, augmented with explanation markers indicating if the pro-
duced explanations are finished and complete, at a specific time.

● Erebus can work as a holistic why- and why-not provenance
solution by seamlessly integrating with why-provenance tools
to connect its answers to their contributing source tuples (both
for met expectations and for pruned-off tuples).

● We implement Erebus [27] on top of Apache Flink [10] and evalu-
ate it with a wide range of predicates on real-world and synthetic
workloads, showing that its low overheads allow it to run along-
side streaming queries, both on low- and higher-end devices.
We describe streaming in §2, introduce the expectations and

explanations problem in §3, our methodology for translating predi-
cates in §4, Erebus’ design and implementation in §5, our evaluation
in §6, related work in §7 and we conclude in §8.

2 PRELIMINARIES
In the DataFlow model [1, 10], streams are unbounded sequences
of tuples 𝑡 defined as lists of attribute-value pairs, i.e., (𝜏 ∶ 𝑣0,𝐴1 ∶
𝑣1, . . . ,𝐴𝑛 ∶ 𝑣𝑛), where 𝑡 .𝐴𝑖 denotes the value of 𝑡 ’s 𝑖−th attribute
(omitting 𝑡 when clear from the context). The first attribute is the
timestamp 𝜏 . The 𝑡𝑦𝑝𝑒 of tuple 𝑡 in stream 𝑆 is 𝑡 ’s attribute list
excluding 𝜏 and denoted as 𝑡𝑦𝑝𝑒(𝑡) (or 𝑡𝑦𝑝𝑒(𝑆)). Wewrite𝑑𝑜𝑚(𝐴𝑖)
to denote 𝐴𝑖 ’s domain. Attribute names are unique in each 𝑡𝑦𝑝𝑒 .

A streaming query (or simply query) is a Directed Acyclic Graph
composed of Sources, operators and Sinks. Sources produce source
tuples (e.g., events from IoT sensors) and deliver them as streams to
operators. Sources set the timestamp 𝜏 to the time when the corre-
sponding event took place, i.e., the event time. Operators manipulate
tuples through user-defined functions (UDFs) and can forward (po-
tentially new) tuples or prune off tuples. Query results reach the
Sinks as sink tuples and are delivered to downstream applications
or end-users. For simplicity, we refer to Sources/Sinks as operators
when there is no need to differentiate them. Operators assign a
value to 𝜏 according to their semantics, and the values of the other
attributes according to their UDFs. Given operators 𝑂1, 𝑂2, a path
𝑔 = (︀𝑂1, . . . ,𝑂2⌋︀ is a list of consecutive operators connecting 𝑂1 to
𝑂2 in the query, with length ⋃︀𝑔⋃︀ ≥ 2. Two operators can be connected

1Erebus is the personification of darkness in Greek mythology.

by multiple paths. Operator 𝑂1 is upstream of operator 𝑂2 (and 𝑂2
is downstream of 𝑂1), if there exists a path from 𝑂1 to 𝑂2.

Modern SPEs [2–4, 10] provide native operators like Map and
Filter (stateless), and Aggregate and Join (stateful). Stateless oper-
ators do not maintain a state based on the tuples they process. A
Filter (F) checks a user-defined condition on each input tuple 𝑡 ,
forwarding 𝑡 if the condition holds. A Map (M) transforms each
input tuple 𝑡 into an arbitrary number of output tuples by applying
a UDF to 𝑡 and copying 𝑡 .𝜏 into each output.

Each stateful operator executes its computation over groups of
tuples organized in time windows, represented as intervals (︀𝐿, 𝑅),
where 𝐿 is the left and𝑅 the right boundary of thewindow. A stateful
operator is characterized by its window size𝑊𝑆 = 𝑅−𝐿 and advance
𝑊𝐴 (the difference between the 𝐿 of consecutive windows). Left
boundaries are at timestamps 𝐿 = 𝑛𝑊𝐴, 𝑛 ∈ N and right boundaries
at 𝑅 = 𝑛𝑊𝐴 +𝑊𝑆, 𝑛 ∈ N. Here, we study the usual case in which
𝑊𝐴 ≤𝑊𝑆 [1]. A tuple 𝑡 falls in the window (︀𝐿, 𝑅) if 𝑡 .𝜏 ∈ (︀𝐿, 𝑅).

An Aggregate (AG) applies a UDF to emit aggregated tuples for
windows, optionally using a Key-By (𝐾𝐵) function to split tuples of
different keys into different (aligned) windows (similarly to GROUP
BY in DBMSs). A Join (J) joins two input streams by windowing and
optionally keying each stream with a 𝐾𝐵 function, and applying
a UDF to each matching tuple pair to produce an output. Condi-
tions on the outputs of AG/J (e.g., HAVING/WHERE clauses) can be
enforced by adding a Filter after the respective AG/J. AG and J set
the timestamp 𝜏 of each output 𝑡 to a fixed distance from the right
boundary 𝑅 of the window from which the output is emitted [10],
i.e., 𝑡 .𝜏 = 𝑅 − 𝜖, 0 ≤ 𝜖 ≤𝑊𝑆 , where 𝜖 is SPE-specific.

The event time of operators progresses in discrete, SPE-specific
increments 𝛿 (e.g., 1 millisecond [10]), and thus 𝜏 ∈ N. Event time
is usually tracked through watermarks. Paraphrasing from [30]:

Definition 2.1. The watermark𝑊𝜔
𝑂 of operator 𝑂 at wall-clock

time𝜔 is the earliest possible event time of tuples processed by𝑂 from
𝜔 onward: 𝑡𝑜 .𝜏 ≥𝑊𝜔

𝑂 ,∀𝑡𝑜 processed at (wall-clock) time2𝜔′ ≥ 𝜔 .

Sources periodically propagate watermarks. An operator’s wa-
termark is the minimum watermark of its input streams. A stateful
operator 𝑂 emits timestamp-sorted outputs for its windows with
right boundaries up to 𝑅 after 𝑂 ’s watermark becomes𝑊𝜔

′

𝑂 ≥ 𝑅.

3 PROBLEM ANALYSIS AND FORMALIZATION
Our goal is to allow users to identify and debug potential prob-
lems of a (running) query Q by 1) validating that Q is producing
the expected results and 2) explaining missing answers, i.e., why
(some) expected results were not produced by Q within a given
time interval. Expressing user expectations as a boolean expectation
predicate 𝑃 on the attributes of a sink stream of Q, the former can
be achieved by checking all sink tuples against 𝑃 and reporting any
matches. For the latter, we focus on query-based explanations [23],
pinpointing culprit operators. To compute such explanations, we
use the notions of successors and pruned tuples, defined below:

Definition 3.1 (Successor). We say that tuple 𝑡 ′ is a successor
of tuple 𝑡 (and write 𝑡 ′ ∈ 𝑠𝑢𝑐𝑐(𝑡)) if 𝑡 ′ is produced by an operator 𝑂
when 𝑂 processes 𝑡 or a successor of 𝑡 .

2In the remainder, we refer to wall-clock time as simply time, unless it is necessary to
differentiate it from event time in that context.
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We say that operator 𝑂 pruned tuple 𝑡 if 𝑡 is processed by 𝑂
without producing any successors. To explain missing answers, we
want to identify tuples that were pruned by some operator 𝑂 and
could have led to a successor satisfying 𝑃 , i.e., are compatible with 𝑃 .
We want to find all such pruned compatible tuples along with their
pruning operator 𝑂 , in a streaming manner, without replaying the
query. This, in turn, requires the two issues below to be addressed.

First, 𝑃 is defined on the 𝑡𝑦𝑝𝑒 of the results, which usually differs
from the 𝑡𝑦𝑝𝑒 of tuples processed by operators in other parts of Q.
Thus, 𝑃 needs to be translated so that it can be applied to tuples
with different 𝑡𝑦𝑝𝑒s. Since it is impractical for users to manually
perform this translation for any combination of Q, 𝑃 , and𝑂 , our so-
lution needs to perform this step automatically for Filters and Joins,
the only native operators that can prune tuples. In §5, we outline
possible extensions for other pruning operators. Second, 𝑃 needs to
be bounded in event time so that the delivery of explanations even-
tually terminates. However, 𝑃 ’s event-time boundaries can align in
arbitrary ways with Q’s state. If 𝑃 refers to Q’s event-time future,
operators can evaluate 𝑃 each time they prune a tuple. However,
if 𝑃 overlaps with Q’s past, 𝑃 must also be checked for tuples that
have been buffered. The size of such a buffer is a trade-off between
the explanation completeness and the buffering overheads.

Below, we formalize the concepts necessary to analyze the prob-
lem and address the issues highlighted above.

Definition 3.2 (Expectation Predicate). Given a query Q and
a Sink 𝐾 fed by a stream 𝑆𝐾 , an expectation predicate (or simply
predicate) is a boolean predicate 𝑃𝐾 on 𝑡𝑦𝑝𝑒(𝑆𝐾), expressed as:

𝑃𝐾 = 𝑐0(𝜏) ∧ 𝑐1(A1) ∧ ⋅ ⋅ ⋅ ∧ 𝑐𝑚(A𝑚) , 𝑚 ∈ N (3.1)

where the timestamp condition is 𝑐0(𝜏) = (𝑙 ≤ 𝜏 < 𝑟) ⋃︀ 𝑙, 𝑟 ∈ N and
for 𝑖 ∈ (︀1,𝑚⌋︀, the conditions are: 𝑐𝑖 ∶ A𝑖 → {0, 1} ⋃︀ A𝑖 ⊆ 𝑡𝑦𝑝𝑒(𝑆𝐾).

We write 𝑡𝑘 ⊧ 𝑃𝐾 if 𝑡𝑘 satisfies 𝑃𝐾 , or 𝑡𝑘 ⇑⊧ 𝑃𝐾 otherwise. Also,
we write 𝑐𝑖(𝑡𝑘) to denote that 𝑐𝑖 is applied to the subset of attributes
of 𝑡𝑘 to which it refers. Erebus’ predicate can be a disjunction of
multiple 𝑃𝐾 of Definition 3.2, allowing users to test arbitrarily
complex conditions. Below we study one 𝑃𝐾 for simplicity, noting
that it is straightforward to extend the analysis to multiple 𝑃𝐾 .

Example - Part 2

The query of Example - Part 1 compares the load of each plug at the start
of every minute (F2-AG2-F3) with the average load of the household for
the same minute (AG1), producing an alert if the difference between
the two exceeds a threshold (J1-F4). In Figure 1, stream numbers (1 − 4)
point to the tuple schemas. For brevity, the figure does not show the
complete operator UDFs but only how attributes are transformed (e.g.,
3.usage rounded into 4.plugUsage by J1). Attributes with the same name
are preserved between operators (e.g., house).

In our example, the usage of the broken plug is between (︀0, 30)watts
and the household average usage is 34 watts. Thus, looking at the Sink
attributes, the analyst expects relevant alerts to have plugUsage < 30
and diff > 4. These expectations can be expressed as the predicate:

𝑃𝐾 = (22:00:00 ≤ 𝜏 < 00:20:01) ∧ (diff > 4) ∧ (plugUsage < 30)

The analyst assumes the alert could be delayed until 00:20 and, to inspect
the problem for any customer, poses no condition on the household.

In order to translate 𝑃𝐾 and evaluate it on tuples pruned by
upstream operators of 𝐾 , we will use static information about how

operators of Q transform the timestamps and other tuple attributes.
This information is encoded in the timestamp and the attribute
mappings, defined below for an arbitrary operator and path 𝑔 in Q.
For tuples 𝑡1, 𝑡⋃︀𝑔⋃︀, inputs of operators𝑂1,𝑂⋃︀𝑔⋃︀, wewrite 𝑡⋃︀𝑔⋃︀∈𝑠𝑢𝑐𝑐

𝑔(𝑡1)
to denote that 𝑡⋃︀𝑔⋃︀ is a successor of 𝑡1 through path 𝑔.

Definition 3.3 (Timestamp Mapping). For any operator 𝑂 , the
single-operator timestamp mapping 𝑇𝑂 is a set of pairs of timestamp
values, matching the timestamps of all possible pairs of input and
output tuples of 𝑂 . If 𝑂 is stateless, then 𝑇𝑂 = {(𝜏, 𝜏) ⋃︀𝜏 ∈ N}. Oth-
erwise, if 𝑂 is stateful with window size𝑊𝑆 and advance𝑊𝐴, then
𝑇𝑂 = {(𝜏,𝑛𝑊𝐴 +𝑊𝑆 − 𝜖) ⋃︀𝑛 ∈ N, 𝜏 ∈ (︀𝑛𝑊𝐴,𝑛𝑊𝐴 +𝑊𝑆)}.

Extending to a path 𝑔, the transitive timestamp mapping 𝑇𝑔 is
a set of pairs of timestamp values, such that 𝑡⋃︀𝑔⋃︀ ∈ 𝑠𝑢𝑐𝑐

𝑔(𝑡1) ⇒
(𝑡1 .𝜏, 𝑡⋃︀𝑔⋃︀ .𝜏) ∈ 𝑇

𝑔 . We construct 𝑇𝑔 by combining the timestamp map-
pings 𝑇𝑂𝑖 for each 𝑂𝑖 in 𝑔, requiring for each (𝜏1, 𝜏⋃︀𝑔⋃︀) ∈ 𝑇

𝑔 that:

∃𝜏1, . . . , 𝜏⋃︀𝑔⋃︀ ∶ (𝜏𝑖 , 𝜏𝑖+1) ∈ 𝑇𝑂𝑖 , 𝑖 = 1, . . . , ⋃︀𝑔⋃︀ − 1

For attributes other than the timestamp, we assume that users or
static analysis tools provide metadata describing how the attribute
value of an input tuple of operator 𝑂 is transformed to a certain
attribute value of its successors through 𝑂 [12, 30]. Starting with a
single operator and extending to a path, we define such metadata:

Definition 3.4 (Attribute Mapping). Being 𝑆𝑖 an input stream
of operator 𝑂𝑖 and 𝑆𝑖+1 an output stream of 𝑂𝑖 (and an input stream
of operator 𝑂𝑖+1), the single-operator attribute mapping is the set:

�̂�𝑂𝑖 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
(𝐴,𝐴′, 𝑓 )

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

𝐴 ∈ 𝑡𝑦𝑝𝑒(𝑆𝑖),𝐴′ ∈ 𝑡𝑦𝑝𝑒(𝑆𝑖+1)

𝑡𝑖+1 ∈ 𝑠𝑢𝑐𝑐(𝑡𝑖)⇒ 𝑓 (𝑡𝑖 .𝐴) = 𝑡𝑖+1 .𝐴′
[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀

Extending to a path 𝑔, being 𝑆1, 𝑆⋃︀𝑔⋃︀ an input stream of the first
and last operator in 𝑔, the transitive attribute mapping is:

𝑀
𝑔 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
(𝐴,𝐴′, 𝑓 )

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

𝐴 ∈ 𝑡𝑦𝑝𝑒(𝑆1),𝐴′ ∈ 𝑡𝑦𝑝𝑒(𝑆⋃︀𝑔⋃︀)

𝑡⋃︀𝑔⋃︀ ∈ 𝑠𝑢𝑐𝑐
𝑔(𝑡1)⇒ 𝑓 (𝑡1 .𝐴) = 𝑡⋃︀𝑔⋃︀ .𝐴

′

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀

𝑀
𝑔 can be constructed by combining the attribute mappings �̂�𝑂𝑖 of

each operator 𝑂𝑖 in 𝑔. For each triplet (𝐴1
,𝐴
⋃︀𝑔⋃︀
, 𝑓 ) ∈ 𝑀𝑔 , we require:

∃𝐴1
, . . . ,𝐴

⋃︀𝑔⋃︀ ∶ (𝐴𝑖 ,𝐴𝑖+1, 𝑓𝑖) ∈ �̂�𝑂𝑖 , 𝑖 = 1, . . . , ⋃︀𝑔⋃︀ − 1 and
𝑓 = 𝑓1 ○ ⋅ ⋅ ⋅ ○ 𝑓(⋃︀𝑔⋃︀−1)

Joins, whose input streams can have different 𝑡𝑦𝑝𝑒s, can have
two �̂�𝑂𝑖 . Notice that, depending on each operator 𝑂’s semantics,
it might not be possible to include all of 𝑂’s input and output at-
tributes in𝑀𝑔 . For example, if 𝑂 computes many-to-one functions
(e.g., an Aggregate computing a mean of its window), the attribute
mapping can describe the attribute corresponding to the aggrega-
tion key (which does not change between the input and the output)
but not the one of the aggregated value, because the value of the
latter depends on multiple inputs. On the other hand, if an Ag-
gregate is computing, e.g., max, it can be possible to also include
the aggregated attribute (which depends on one input) in𝑀𝑔 . We
formalize our handling of such attributes absent from𝑀

𝑔 in §4.
We can now use the timestamp and attribute mappings to intro-

duce the notion of potential successors as follows:
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Definition 3.5 (Potential Successors). For path 𝑔, tuple 𝑡1 an
input of operator 𝑂1, and 𝑆⋃︀𝑔⋃︀ the input stream of operator 𝑂⋃︀𝑔⋃︀, the
potential successors of 𝑡1 over 𝑔 is a superset of the successors of 𝑡1,
with each element having 𝑡𝑦𝑝𝑒(𝑆⋃︀𝑔⋃︀), defined as follows:

𝑝𝑠𝑢𝑐𝑐
𝑔(𝑡1) =

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
(𝜏 ∶ 𝑣0,𝐴1 ∶ 𝑣1, . . . ,𝐴𝑛 ∶ 𝑣𝑛)

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

(𝑡1 .𝜏, 𝑣0) ∈ 𝑇𝑔,
𝑣𝑖 ∈ 𝜇𝑔(𝐴𝑖 , 𝑡1), 𝑖 > 0

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
where 𝜇𝑔 is defined as:

𝜇
𝑔(𝐴, 𝑡) =

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

{𝑓 (𝑡 .𝐴′)} , if ∃(𝐴′,𝐴, 𝑓 ) ∈ 𝑀𝑔

𝑑𝑜𝑚(𝐴) , otherwise

Intuitively, 𝜇𝑔(𝐴, 𝑡) returns either a singleton containing the
converted value of attribute 𝐴′ from tuple 𝑡 if 𝐴′ is mapped to 𝐴
in 𝑀𝑔 , or 𝑑𝑜𝑚(𝐴) if 𝐴 is not mapped in 𝑀𝑔 . Potential successors
describe what is produced by Q but also what could have been
produced due to some pruned tuple 𝑡1 if 𝑡1 (and 𝑡1’s successors) had
not been pruned out by some operator(s). Since the set is computed
from the static mappings 𝑇𝑔 ,𝑀𝑔 , it does not require a replay of Q.

Next, we need to define the tuples compatible with the predicate
since these are the tuples we are primarily interested in.

Definition 3.6 (Compatible Tuple). Given predicate 𝑃𝐾 defined
at Sink 𝐾 of query Q and any input tuple 𝑡𝑘 of 𝐾 , we define:

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑘 , 𝑃𝐾) ≡ 𝑡𝑘 ⊧ 𝑃𝐾
Additionally, for operator𝑂 upstream of 𝐾 , connected to 𝐾 through a
set of paths G, for any tuple 𝑡𝑜 input of 𝑂 we define:

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑜 , 𝑃𝐾) ≡ ⋁
𝑔∈G
(∃𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐

𝑔(𝑡𝑜) ∶ 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑘 , 𝑃𝐾))

Thus, a tuple 𝑡𝑜 is compatible with 𝑃𝐾 if it has at least one
potential successor at 𝐾 (over any path) that satisfies 𝑃𝐾 . Using the
above, we define an explanation as a pair of a compatible tuple and
its pruning operator (or 𝐾 if the tuple is at the Sink):

Definition 3.7 (Explanations). Let 𝐾 be a Sink of a query Q
and 𝑃𝐾 a predicate activated at Q at time 𝜔1. We define the expla-
nations of 𝑃𝐾 at time 𝜔2 > 𝜔1 as the set of pairs 1) (𝑡𝑘 , 𝐾), where
tuple 𝑡𝑘 arrived at 𝐾 before event time𝑊𝜔2

𝐾
and for which it holds

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑘 , 𝑃𝐾), and 2) (𝑡𝑜 ,𝑂), where tuple 𝑡𝑜 was pruned by op-
erator𝑂 of Q before𝑊𝜔2

𝑂
and for which it holds 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑜 , 𝑃𝐾).

Example - Part 3

Taking 𝑃𝐾 from Example - Part 2 and supposing F3 pruned tuples
𝑡1=(𝜏=23:50, house=14, household=5, plug=7, usage=0.4) and 𝑡2=(𝜏=18:59,
house=14, household=5, plug=7, usage=0.3), we would like to know if
𝑡1 and/or 𝑡2 are compatible with 𝑃𝐾 . F3 is connected to K by path 𝑔 =
(︀F3, J1, F4,K⌋︀, containing one stateful operator with𝑊𝑆 =𝑊𝐴 = 15s.

From Definition 3.3, we compute the relevant timestamp pairs for
𝑡1 .𝜏 and 𝑡2 .𝜏 in𝑇𝑔 , which are (23:50:00, 23:50:14), (18:59:00, 18:59:14)
(assuming 𝜖 = 1). The attribute mapping 𝑀𝑔 (Definition 3.4) can be
computed from the attribute transformations of each operator, shown in
the Figure 1:𝑀𝑔 = {(. . . , (plug, plug,=), (usage, plugUsage, ROUND)}.

Based on 𝑇𝑔 ,𝑀𝑔 , 𝑡1 is compatible with 𝑃𝐾 because the 𝜏 and plu-
gUsage of its potential successors satisfy 𝑃𝐾 (and the diff of its potential
successors can take any value). This leads to the explanation (𝑡1, F3),
which indicates that F3 could be responsible for the absence of the ex-
pected alert. Tuple 𝑡2 is not compatible with 𝑃𝐾 because its potential
successors have 𝜏 = 18:59:14, which does not satisfy 𝑃𝐾 .

Predicate submission Explanations observation

 Predicate 1 (α = C)

Event time

Buffered event-time past at Event-time future at 

Unavailable event-time past at Event-time future at 

 Predicate 2 (α = I) 

 Predicate 3 (α = R) 

Predicate 4 (α = E)

Figure 2: Examples of the four possible explanation markers
for an operator𝑂 and predicateswith different time intervals.

When the input data is not maintained persistently, to provide
explanations for 𝑃𝐾 whose boundaries are before𝑊𝜔1

𝑂
, it is neces-

sary to temporarily buffer pruned data in the past, and retroactively
evaluate 𝑃𝐾 on that data after 𝑃𝐾 is submitted. Supposing that 𝐵
past event-time units are buffered, explanations at time 𝜔2 will be
in event times (︀𝑊𝜔1

𝑂
−𝐵,𝑊𝜔2

𝑂
⌋︀, as shown in Figure 2. Depending on

𝑃𝐾 ’s boundaries and/or the values of𝑊𝜔1
𝑂

and 𝐵, it is possible that
1) some compatible tuples in the past have left the buffer and will
not be considered and 2) some future tuples have not yet been eval-
uated. We put explanations into a predicate-query time alignment
perspective, by defining explanation markers, as follows:

Definition 3.8 (ExplanationMarker). An explanationmarker
of operator 𝑂 at time 𝜔2, for a predicate activated at time 𝜔1 < 𝜔2
is a pair (𝑂,𝛼), where 𝛼 ∈ {R,C, I, E} characterizes the explanations
associated with 𝑂 at 𝜔2: R (running) if explanations are still being
produced at 𝑂 ; C (complete) if 𝑂’s explanations are finished and
complete; I (incomplete) if 𝑂’s explanations are finished but more
might have been produced given a larger buffer; E (empty) if𝑂 has no
explanations because no (available) tuple could satisfy the predicate.

Figure 2 shows the time intervals of four example predicates
(Predicates 1−4) submitted at time𝜔1, along with their explanation
markers at time 𝜔2. The x-axis is the event time, marking the time
of predicate submission𝑊𝜔1

𝑂
and observation of explanations𝑊𝜔2

𝑂
.

Predicate 1’s explanationmarker is C because it has finished produc-
ing explanations and was evaluated for all tuples in its boundaries.
Predicate 2’s marker is I as it has finished producing explanations
and, when it was submitted, 𝑙 <𝑊𝜔1

𝑂
− 𝐵 thus, some explanations

may have not been possible to observe. Predicate 3’s marker is R
because𝑊𝜔2

𝑂
< 𝑟 . Finally, Predicate 4’s marker is E because all its

explanations refer to the non-buffered event-time past.

Problem Statement. Given a user-defined predicate 𝑃𝐾 for a Sink
of query Q, we want to produce explanations and their markers
in a streaming manner without replaying the data or requiring
manual user intervention. To achieve this, we need to 1) develop a
translation technique to identify tuples compatible with 𝑃𝐾 at the
operators of Q, 2) intercept pruned tuples and result tuples, and
3) handle the buffering of past tuples. In the following, we develop
the theoretical methodology to translate predicates, analytically
proving its correctness (§4) and describe the algorithmic implemen-
tation of our framework, Erebus, which includes tuple interception
and buffering (§5), showing how it satisfies the goals defined above.
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4 PREDICATE TRANSLATION
To produce explanations without manual user intervention, we
want to define amethod to automatically translate 𝑃𝐾 for each prun-
ing operator 𝑂 to a new predicate 𝑃𝑂 , which can decide whether a
pruned tuple is compatible with 𝑃𝐾 . The desired characteristics of
this translation are formalized below:

Theorem 4.1. Given predicate 𝑃𝐾 for Sink 𝐾 of query Q, for each
operator𝑂 of Q there exists a translation 𝑃𝑂 of 𝑃𝐾 , such that, for any
tuple 𝑡𝑜 in the input stream3of 𝑂 it holds:

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑜 , 𝑃𝐾)⇒ 𝑡𝑜 ⊧ 𝑃𝑂 (4.1)

The translation 𝑃𝑂 can be computed statically based only on the set
M of timestamp and attribute mappings 𝑇𝑔 and 𝑀𝑔 for all paths 𝑔
from 𝑂 to 𝐾 . If all attributes of 𝑃𝐾 are mapped inM it also holds:

𝑡𝑜 ⊧ 𝑃𝑂 ⇒ 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑜 , 𝑃𝐾) (4.2)

The theorem states that the translation identifies all compatible
tuples and that if all attributes used by 𝑃𝐾 are mapped in M the
translation also returns no false positives, i.e., tuples 𝑡𝑜 that satisfy
𝑃𝑂 but have no potential successor 𝑡𝑘 compatible with 𝑃𝐾 . Next,
we develop such a translation of 𝑃𝐾 in two steps, starting with the
timestamp and continuing with the rest of the tuple attributes used
by 𝑃𝐾 , combining the two translations to prove Theorem 4.1.

Translating Timestamp Conditions. For 𝑃𝐾 ’s timestamp condition
𝑐0(𝜏) = 𝑙 ≤ 𝜏 < 𝑟 and path 𝑔 connecting 𝑂 to 𝐾 , we want to define
a translation 𝑐𝑔0 that satisfies Theorem 4.1 in the time dimension.
We will construct 𝑐𝑔0 by applying a pair of functions 𝜙𝑙 , 𝜙𝑟 on the
boundaries 𝑙 , 𝑟 of 𝑐0 as follows: 𝑐

𝑔
0(𝜏) = 𝜙𝑙(𝑙, 𝑟 ,𝑔) ≤ 𝜏 < 𝜙𝑟 (𝑙, 𝑟 ,𝑔).

We will build a recursive algorithm that computes 𝜙𝑙 , 𝜙𝑟 , starting
from the base case of 𝑔 = (︀𝑂,𝐾⌋︀, i.e., operator𝑂 directly connected
to Sink𝐾 . Stateless operators do not require a timestamp translation
(since they do not alter the timestamps), so we study stateful 𝑂
with window size𝑊𝑆 and advance𝑊𝐴 and include the stateless
case in the relevant equations. From the operator definitions in
§2, we observe that the outputs of 𝑂 (i.e., the inputs 𝑡𝑘 of 𝐾) have
timestamps that only depend on the window that caused their
generation. Thus, to translate 𝑐0, we need to find the first and the
last window of𝑂 whose output timestamps fall into 𝑐0’s range (︀𝑙, 𝑟).
Being 𝑙 ′ the left boundary of the first and 𝑟 ′ the right boundary of
the last such windows, it holds for each input tuple 𝑡𝑜 of 𝑂 :

(∃𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐
𝑔(𝑡𝑜) ∶ (𝑙 ≤ 𝑡𝑘 .𝜏 < 𝑟))⇔ (𝑙

′ ≤ 𝑡𝑜 .𝜏 < 𝑟 ′) (4.3)

From §2, we know that the left window boundaries of𝑂 are at event
times 𝐿 = 𝑛𝑊𝐴, its right boundaries at 𝑅 = 𝑛𝑊𝐴 +𝑊𝑆 and output
timestamps at 𝜏 = 𝑛𝑊𝐴 +𝑊𝑆 − 𝜖 , where 𝑛 ∈ N and 0 ≤ 𝜖 ≤𝑊𝑆 .

Being 𝐿1 the left boundary of𝑂 ’s first window having an output
timestamp 𝜏 ≥ 𝑙 , it holds that 𝜏 = 𝑛𝑊𝐴 +𝑊𝑆 − 𝜖 ≥ 𝑙 and (𝑛 −
1)𝑊𝐴 +𝑊𝑆 − 𝜖 < 𝑙 , which gives 𝑙−𝑊𝑆+𝜖

𝑊𝐴
≤ 𝑛 < 𝑙−𝑊𝑆+𝜖

𝑊𝐴
+ 1. The

latter is the definition of ceil and thus, the desired left boundary is:

𝐿1(𝑙,𝑊𝑆,𝑊𝐴) = [︂ 𝑙 −𝑊𝑆 + 𝜖
𝑊𝐴

⌉︂𝑊𝐴 (4.4)

3Note that Joins, which have two input streams with potentially different 𝑡𝑦𝑝𝑒s, have
two such 𝑃𝑂 s. This is taken into account in our implementation. For simplicity, and
without loss of generality, in this section, we discuss only one translated predicate.

Tuples in the window starting at 𝐿1 are compatible with 𝑐0 only if
the window’s output timestamp falls in (︀𝑙, 𝑟). Denoting 𝑐0’s interval
length as 𝐼 = 𝑟 − 𝑙 (useful for the recursive algorithm below), this
constraint is expressed as 𝜏 = 𝐿1(𝑙) +𝑊𝑆 − 𝜖 < 𝑙 + 𝐼 (we omit 𝐿1’s
arguments𝑊𝑆 ,𝑊𝐴 when clear from the context). Putting it all
together, the translation 𝑙 ′ for 𝑐0’s left boundary 𝑙 through 𝑂 is:

𝑙
′(𝑙, 𝐼 ,𝑊𝑆,𝑊𝐴) =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑙 , if𝑊𝑆 = 0 (stateless)
𝐿1(𝑙) , if 𝐿1(𝑙) +𝑊𝑆 − 𝜖 < 𝑙 + 𝐼
null , otherwise

(4.5)

Being 𝑅2 the right boundary of𝑂 ’s last window having an output
timestamp 𝜏 < 𝑟 , it holds 𝜏 = 𝑛𝑊𝐴+𝑊𝑆−𝜖 ≤ 𝑟 −𝛿 and (𝑛+1)𝑊𝐴+
𝑊𝑆 −𝜖 > 𝑟 −𝛿 (subtracting time step 𝛿 to force the strict inequality),
which are combined into 𝑟−𝑊𝑆+𝜖−𝛿

𝑊𝐴
− 1 < 𝑛 ≤ 𝑟−𝑊𝑆+𝜖−𝛿

𝑊𝐴
. The

latter is the definition of floor, and thus4:

𝑅2(𝑟,𝑊𝑆,𝑊𝐴) = ⟨︀𝑟 −𝑊𝑆 + 𝜖 − 𝛿
𝑊𝐴

⧹︀𝑊𝐴 +𝑊𝑆 (4.6)

As before, compatibility with 𝑐0, requires the output timestamp
𝜏 ≥ 𝑙 = 𝑟 − 𝐼 . Thus the translation 𝑟 ′ for 𝑐0’s right boundary 𝑟 is:

𝑟
′(𝑟, 𝐼 ,𝑊𝑆,𝑊𝐴) =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑟 , if𝑊𝑆 = 0 (stateless)
𝑅2(𝑟) , if 𝑅2(𝑟) − 𝜖 ≥ 𝑟 − 𝐼
null , otherwise

(4.7)

We can utilize 𝑙 ′, 𝑟 ′ to translate 𝑃𝐾 ’s timestamp condition for
any operator 𝑂 and any path 𝑔 from 𝑂 to 𝐾 , as follows:

Definition 4.1 (Timestamp Translation). For path 𝑔 from𝑂 to
𝐾 , the timestamp condition 𝑐0(𝜏) of 𝑃𝐾 can be translated for operator
𝑂 into a new condition 𝑐𝑔0(𝜏) = 𝜙𝑙(𝑙, 𝑟 ,𝑔) ≤ 𝜏 < 𝜙𝑟 (𝑙, 𝑟 ,𝑔) where:

𝜙𝑙(𝑙, 𝑟 ,𝑔) = Translate(𝑔, ⋃︀𝑔⋃︀, 𝑙 , 𝑟 − 𝑙 , “LEFT”)
𝜙𝑟 (𝑙, 𝑟 ,𝑔) = Translate(𝑔, ⋃︀𝑔⋃︀, 𝑟 , 𝑟 − 𝑙 , “RIGHT”)

Translate() is defined in Algorithm 1. It recursively applies 𝑙 ′/𝑟 ′

upstream through 𝑔, from 𝐾 = 𝑔(︀⋃︀𝑔⋃︀⌋︀ to𝑂 = 𝑔(︀1⌋︀. It takes advantage
of timestamp condition intervals having the same form as operator
windows and eventually returns either the translated boundary or
null if no successor of 𝑂’s inputs can fall into the given interval
through 𝑔. It computes a new boundary 𝑏′ using 𝑙 ′ (𝑟 ′) on L5-6 and
loops trying to find an interval length 𝐼 starting (ending) at 𝑏′ that
aligns with the upstream windows (L4-16). If it has reached 𝑂 it
returns (L7). Otherwise, if it has found a valid 𝑏′ for curr (L8), it
calls itself on the upstream of curr in 𝑔, with 𝐼 = curr.WS if curr is
stateful, or with the same 𝐼 otherwise (L9-12). Then, it checks if the
upstream 𝑏

′ is valid. If it is (or if curr is stateless, and thus retrying
is not an option) it returns (L13). Otherwise, it increases (decreases)
the input boundary 𝑏 and reduces 𝐼 by curr.WA (L14-16) until it has
found a valid upstream 𝑏

′ or 𝐼 ≤ 0 (L4).

Lemma 4.1. Given a path 𝑔 in query Q from 𝑂 to 𝐾 , a timestamp
condition 𝑐0, and 𝑐0’s timestamp translation 𝑐𝑔0 (using Definition 4.1)
it holds for any 𝑡𝑜 that is an input of 𝑂 :

(∃𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐
𝑔(𝑡𝑜) ∶ 𝑐0(𝑡𝐾))⇔ 𝑐

𝑔
0(𝑡𝑜)

4When the equations give𝑛 < 0, i.e., 𝑙 <𝑊𝑆 −𝜖 or 𝑟 ≤𝑊𝑆 −𝜖 , 𝐿1 and 𝑅2 must return
0 and null respectively, but we omit this edge case from the equations for simplicity.
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Algorithm 1: Time boundary translation.
1 Function Translate(Path 𝑔, Int 𝑗 , Time 𝑏, Time 𝐼 , String 𝑑)

Data: A path g = (︀𝑂, . . . , 𝐾⌋︀, the operator index j ∈ (︀1, ⋃︀𝑔⋃︀⌋︀, the current
boundary b, the interval length I and string d (“LEFT”/“RIGHT”)

Result: The translated boundary 𝑏′ or null if no translation exists.
/* Recursive function called by 𝜙𝑙 , 𝜙𝑟 in Definition 4.1 */

2 𝑏
′ ← null // Initialize returned boundary

3 curr← 𝑔(︀𝑗⌋︀ // Operator in current path position

4 while 𝐼 > 0 do // Repeatedly try upstream combinations
5 if 𝑑 = “LEFT” then 𝑏

′ ← 𝑙
′(𝑏, 𝐼 , curr.WS, curr.WA)

6 else if 𝑑 = “RIGHT” then 𝑏
′ ← 𝑟

′(𝑏, 𝐼 , curr.WS, curr.WA)
7 if 𝑗 = 1 then break // Reached 𝑂, return computed 𝑏′

8 if 𝑏′ ≠ null then // Found curr’s boundary, go upstream
9 if curr.WS > 0 then // Pass WS as upstream I
10 𝑏

′ ← Translate (𝑔, 𝑗 − 1, 𝑏′ , curr.WS, 𝑑)
11 else // Pass same interval 𝐼 upstream
12 𝑏

′ ← Translate (𝑔, 𝑗 − 1, 𝑏′ , 𝐼 , 𝑑)
// Stop if 𝑏′ found or cannot shift 𝑏 (i.e., stateless)

13 if 𝑏′ ≠ null or curr.WS = 0 then break
// Shift 𝑏 by WA, reduce 𝐼 by WA and retry

14 if 𝑑 = “LEFT” then 𝑏 ← 𝑏 + curr.WA
15 else if 𝑑 = “RIGHT” then 𝑏 ← 𝑏 − curr.WA
16 𝐼 ← 𝐼 − curr.WA
17 return 𝑏′

The lemma is a specialization of Theorem 4.1 for attribute 𝜏
and path 𝑔. It states that 𝑡𝑜 is (timestamp) compatible with 𝑃𝐾 (left
side, from Definition 3.6) if and only if 𝑡𝑜 satisfies the timestamp
translation 𝑐𝑔0 , thus indicating that 𝑐

𝑔
0 returns no false positives.

Proof Sketch. By induction. Because 𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐𝑔(𝑡𝑜), it holds
that (𝑡𝑜 .𝜏, 𝑡𝑘 .𝜏) ∈ 𝑇𝑔 . If all operators in 𝑔 are stateless, ∀(𝜏𝑜 , 𝜏𝑘) ∈
𝑇
𝑔 ∶ 𝜏𝑜 = 𝜏𝑘 . Since Algorithm 1 does not alter 𝑙 or 𝑟 for stateless

operators, the lemma holds. If there is at least one stateful operator
in 𝑔: the base case is handled by Equation 4.3; for the inductive
step, if operator 𝑛 + 1 is stateless, neither the operator nor the
algorithm changes the boundary; if operator 𝑛 + 1 is stateful, then
the translation is identical to the base case. □

Figure 3 shows a path 𝑔 of the query of Figure 1 and the operator
windows in 𝑔. Supposing a 𝑃𝐾 with 𝑐0 = 125 ≤ 𝜏 < 230, i.e., time
interval (︀125, 230) of length 𝐼 = 105 (shown next to K), we want to
find 𝑐𝑔0 for operator F2. For the windows of J1 and AG2, assuming
𝜖 = 1 (i.e., the output timestamp of window (︀𝐿, 𝑅) is 𝑅 − 1), any
inputs of F2 whose successors fall into (︀125, 230) must be in AG2’s
window (︀120, 180) and thus J1’s window (︀165, 180). The gray area
shows howAlgorithm 1 arrives at this solution. It tests J1’s windows
ending at 135, 150, and 165 but each upstream call at L8-12 returns
null from AG2, as no output of AG2 falls in those intervals. Thus,
the algorithm repeatedly sets𝑏 ← 𝑏+15 and 𝐼 ← 𝐼−15 (L14-16) until
reaching J1’s window (︀165, 180) in which the output timestamp
of AG2’s window (︀120, 180) falls into. The left boundary of the
latter (120) is the translated left boundary eventually returned by 𝜙𝑙 .
Similarly,𝜙𝑟 eventually returns 180 as the translated right boundary.

Translating Remaining Conditions. For the remaining conditions
𝑐𝑖 , 𝑖 > 0, which use attributes from 𝑡𝑦𝑝𝑒(𝑆𝐾), we utilize the at-
tribute mappings𝑀𝑔 to develop a translation for each path 𝑔 con-
necting 𝑂 to 𝐾 . Our translation is defined as follows:

Interval length: 

F2 Filter

J1 Join 

F3 Filter

K

AG2  
Aggregate 

F4 Filter

120 180

135 150 165

240
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Interval of timestamp condition 

Interval of  
using Algorithm 1
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Event Time (s)

Algorithm
 1 

Backtracking

Figure 3: Timestamp translation for an operator path of the
query presented in Figure 1.

Definition 4.2 (Attribute Translation). For path 𝑔 connect-
ing 𝑂 to 𝐾 , each condition 𝑐𝑖(A𝑖), 𝑖 > 0 of 𝑃𝐾 can be translated into
a condition 𝑐𝑔𝑖 at operator 𝑂 as follows:

𝑐
𝑔
𝑖 (A

𝑔
𝑖 ) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑐𝑖(A
𝑔
𝑖 ) , if ∀𝐴 ∈ A𝑖 ∶ ∃(𝐴′,𝐴, 𝑓 ) ∈ 𝑀𝑔

1 , otherwise

where A𝑖 ⊆ 𝑡𝑦𝑝𝑒(𝑆𝐾), A
𝑔
𝑖 ⊆ 𝑡𝑦𝑝𝑒(𝑆𝑂) and:

A
𝑔
𝑖 = 𝑓 (𝐴

′) ⋃︀ (𝐴′,𝐴, 𝑓 ) ∈ 𝑀𝑔 , 𝐴 ∈ A𝑖

Intuitively, conditions 𝑐𝑖 , 𝑖 > 0 have their every attribute 𝐴 re-
placed by the respective 𝐴′ from 𝑀

𝑔 wrapped by function 𝑓 , or
they become 1, if they use attributes not mapped in𝑀𝑔 . The second
rule is necessary because𝑀𝑔 cannot always describe all attribute
translations in a query (see §3). As described in the lemma below,
each translated condition satisfies the requirements of Theorem 4.1.

Lemma 4.2. Given a path 𝑔 in query Q from 𝑂 to 𝐾 , mapping𝑀𝑔

and 𝑃𝐾 ’s condition 𝑐𝑖 , 𝑖 > 0, it holds for 𝑐𝑖 ’s attribute translation 𝑐
𝑔
𝑖

(using Definition 4.2) that for any 𝑡𝑜 that is an input of 𝑂 :

(∃𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐
𝑔(𝑡𝑜) ∶ 𝑐𝑖(𝑡𝑘))⇒ 𝑐

𝑔
𝑖 (𝑡𝑜)

Additionally, if all attributes in 𝑐𝑖 are in𝑀𝑔 , it holds:

𝑐
𝑔
𝑖 (𝑡𝑜)⇒ ∀𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐

𝑔(𝑡𝑜) ∶ 𝑐𝑖(𝑡𝑘)

Proof. We prove the first part by contradiction. Suppose, for
some 𝑡𝑜 , ∃𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐𝑔(𝑡𝑜) ∶ 𝑐𝑖(𝑡𝑘) but ¬𝑐

𝑔
𝑖 (𝑡𝑜). From this, 𝑐𝑔𝑖 can-

not be one that was set to 1 by the second rule of Definition 4.2.
Thus, looking at the first translation rule there must exist attributes
𝐴 ∈ 𝑡𝑦𝑝𝑒(𝑆𝐾), 𝐴′ ∈ 𝑡𝑦𝑝𝑒(𝑆𝑂) so that 𝑓 (𝑡𝑜 .𝐴′) ≠ 𝑡𝑘 .𝐴. But from
Definition 3.5, we have 𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐𝑔(𝑡𝑜) ⇒ 𝑓 (𝑡𝑜 .𝐴′) = 𝑡𝑘 .𝐴,∀𝐴 ∈
A𝑖 ∶ (𝐴′,𝐴, 𝑓 ) ∈ 𝑀𝑔 , leading to a contradiction. Thus, the first part
of the lemma holds. The above analysis highlights that, for the first
rule of Definition 4.2, it holds ∀𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐𝑔(𝑡𝑜) ∶ 𝑐

𝑔
𝑖 (𝑡𝑜) = 𝑐𝑖(𝑡𝑘).

When all attributes of 𝑐𝑖 are in𝑀𝑔 , this is the only translation rule
applied, proving the second part of the lemma. □

Translating the Whole Predicate. Having shown correct translations
for any condition over a single path, we can define the full transla-
tion of 𝑃𝐾 for operator 𝑂 over all paths from 𝑂 to 𝐾 , by creating a
translated sub-predicate for each path and taking the disjunction
of all sub-predicates, as described below.
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Corollary 4.1 (Predicate Translation). For the set of paths
G connecting 𝐾 to 𝑂 in Q, predicate 𝑃𝐾 can be statically translated
using mappingsM to a new predicate 𝑃𝑂 that satisfies Theorem 4.1:

𝑃𝑂 = ⋁
𝑔∈G
(𝑐𝑔0(𝜏) ∧ 𝑐

𝑔
1(A

𝑔
1) ∧ ⋅ ⋅ ⋅ ∧ 𝑐

𝑔
𝑚(A

𝑔
𝑚))

with 𝑐𝑔0 from Definition 4.1 and 𝑐𝑔𝑖 (A
𝑔
𝑖 ), 𝑖 > 0 from Definition 4.2.

Below, we prove Theorem 4.1 by showing how the translation
described in Corollary 4.1 satisfies both parts of the theorem.

Proof of Theorem 4.1. We will show that Corollary 4.1 satis-
fies Equations 4.1 and 4.2. To prove Equation 4.1, assume that the
left side holds, i.e., 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑡𝑜 , 𝑃𝐾), and thus (see Definition 3.6):
∃𝑔 ∈ G, 𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐𝑔(𝑡𝑜) ∶ 𝑡𝑘 ⊧ 𝑃𝐾 . It follows directly from Lemmas
4.1, 4.2 that the sub-predicate(s) for any path𝑔 that gave such 𝑡𝑘 will
return true for 𝑡𝑜 , and thus 𝑡𝑜 ⊧ 𝑃𝑂 (𝑃𝑂 being a disjunction of all
sub-predicates). To prove the second part of the theorem, i.e., Equa-
tion 4.2, assume all attributes of 𝑃𝐾 are inM and that 𝑡𝑜 ⊧ 𝑃𝑂 . First,
from Lemma 4.1 it holds that 𝑐𝑔0(𝑡0) ⇒ ∃𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐𝑔(𝑡𝑜) ∶ 𝑐0(𝑡𝑘).
Furthermore, from Lemma 4.2, it holds, for all 𝑐𝑖 ⋃︀ 𝑖 > 0 and any 𝑡𝑜 ,
𝑐
𝑔
𝑖 (𝑡0)⇒ ∀𝑡𝑘 ∈ 𝑝𝑠𝑢𝑐𝑐𝑔(𝑡𝑜) ∶ 𝑐𝑖(𝑡𝑘). From the above two relations,
there is at least one 𝑡𝑘 (the one given from Lemma 4.1) that satisfies
all 𝑐𝑖 , and thus leads to 𝑡𝑘 ⊧ 𝑃𝐾 . □

Example - Part 4

Continuing our running example from §3, the analyst’s Sink predicate:

𝑃𝐾 = (22:00:00 ≤ 𝜏 < 00:20:01) ∧ (diff > 4) ∧ (plugUsage < 30)

can be translated for F3, using Corollary 4.1 (with 𝜖 = 1), to the predicate:

𝑃𝐹 3 = (22:00:00 ≤ 𝜏 < 00:20:00) ∧ 1 ∧ (round(usage) < 30)

𝑃𝐹 3 can be applied to the inputs 𝑡1, 𝑡2 of 𝐹3 from Example - Part 3 giving
𝑡1 ⊧ 𝑃𝐹 3 and 𝑡2 ⇑⊧ 𝑃𝐹 3, as expected from our previous analysis.

5 SYSTEM DESIGN AND IMPLEMENTATION
Here, we detail how Erebus addresses the challenges described in
§3, leveraging the predicate translations presented in §4.

5.1 Architecture
Figure 4 outlines the architecture of Erebus. For a query Q, users
can specify which Sinks, Filters, and Joins are of interest for expla-
nations and Erebus instruments them and evaluates predicates on
their tuples. While all such operators can be instrumented, Erebus

offers the flexibility of instrumenting only some of them, based on
domain knowledge about Q’s semantics. In this way, we avoid com-
puting uninteresting explanations for the user while also reducing
the performance impact of Erebus (see §6). The instrumentation,
without any changes to the SPE, adds tuple interception logic, a
past buffer, as well as functionality for receiving, translating, and
evaluating predicates on intercepted tuples. All of Q’s tuples are
also instrumented with metadata necessary for Erebus.

Erebus intercepts 1) all input tuples of the Sink and 2) all pruned
tuples of the instrumented Filters and Joins and sends them to
the past buffer and to the predicate (if a predicate is active at that
time). The size of the past buffer 𝐵 is a user-defined parameter.
Predicates do not need to be compiled together with Q and can be
submitted at any point during Q’s runtime from a (possibly remote)
channel outside the SPE. When a new predicate is submitted, an
instrumented Sink activates it directly, whereas instrumented Filters
and Joins first translate it as described in Corollary 4.1. Afterward,
all intercepted tuples are checked using the predicate. At the same
time, the new predicate is (asynchronously) evaluated on the tuples
of the past buffer. Tuples satisfying the predicate are transmitted,
together with the operator’s identifier, as explanations back to the
user. Based on the progress of instrumented operators’ event time,
Erebus emits explanation markers. Explanations and their markers,
together with watermarks that track their event-time progress, are
transmitted as an out-of-band stream, outside the SPE’s control.

5.2 Operator Instrumentation
Algorithm 2 outlines the main operator instrumentation logic of
Erebus. The operator is extended with additional state. SQ (Send
Queue) and WQ (Work Queue) are bounded queues, the former
containing references to explanations and watermarks and the lat-
ter “work orders”, i.e., function pointers, together with their inputs.
These queues are consumed by separate helper threads (not shown)
that serialize and transmit the data (SQ) and execute the work or-
ders (WQ). The pastBuffer of event-time size 𝐵 maintains a sliding
window of the intercepted tuples of the operator, ordered by their
timestamp. The overlap is a set used to remove duplicate explana-
tions which might be produced during concurrent evaluations of
tuples from the pastBuffer and from the present. The previous𝑃𝑂
is the previous predicate evaluated on the tuples of the pastBuffer.

Procedure OnIntercepted handles intercepted tuples of instru-
mented Filters, Joins, and Sinks. It adds the intercepted tuple to the
pastBuffer (L3) and, if the predicate is new (L2) it also adds it to the
overlap, in order to prevent duplicate explanations in the case of
a concurrent pastBuffer evaluation. Then, if the tuple satisfies the
predicate (L4), an explanation is placed in SQ to be asynchronously
emitted. We call such explanations present explanations, differen-
tiating from past explanations coming from the pastBuffer. The
instrumented Sink intercepts all its input tuples. Instrumented Fil-
ters intercept the tuples for which the Filter’s condition returns
false. Instrumented Joins, being stateful operators, intercept a tuple
when such a tuple is no longer part of any window maintained by
the Join if the tuple was not joined with any other tuple.

OnWatermark runswhen thewatermark of an instrumented op-
erator increases, handling new predicates (L6, L12-20), past explana-
tions (L19-23), explanation markers (L14-18, 24-29), and explanation
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Algorithm 2: Instrumentation of Filter/Join/Sink.
State: SQ, WQ Bounded queues of explanations/watermarks and tasks

pastBuffer Sliding window of past intercepted tuples of size 𝐵
overlap Set of tuples that might be evaluated twice
previous𝑃𝑂 Previously evaluated predicate

1 Procedure OnIntercepted(Tuple t, Predicate 𝑃𝑂 )
2 if 𝑃𝑂 ≠ previous𝑃𝑂 then overlap.Add(t) // Prevent duplicates

3 pastBuffer.Add(t)
4 if 𝑃𝑂 .Enabled and 𝑃𝑂 .Evaluate(t) then SQ.Add((t,O))
5 Procedure OnWatermark(Time𝑊𝜔

𝑂 , Predicate 𝑃𝑂 )
6 if 𝑃𝑂 ≠ previous𝑃𝑂 then OnNewPredicate(𝑊𝜔

𝑂 , 𝑃𝑂 )
7 WQ.Add( _→ ExplanationMarker(𝑊𝜔

𝑂 , 𝑃𝑂 ))
8 pastBuffer.RemoveBefore (𝑊𝜔

𝑂 − 𝐵) // Shift pastBuffer

9 if pastBuffer.Empty() then wm← max(0,𝑊𝜔
𝑂 − 𝐵)

10 else wm← min(𝑊𝜔
𝑂 , pastBuffer[0].timestamp)

11 WQ.Add( _→ SQ.Add((wm, O))) // Asynchronously

12 Procedure OnNewPredicate(Time𝑊𝜔
𝑂 , Predicate 𝑃𝑂 )

13 previous𝑃𝑂 ← 𝑃𝑂

14 if 𝑃𝑂 .𝑙 = null or 𝑃𝑂 .𝑟 = null or 𝑃𝑂 .𝑟 <𝑊𝜔
𝑂 − 𝐵 then

15 𝑃𝑂 .marker← E // Unsatisfiable predicate

16 else
17 if 𝑃𝑂 .𝑙 <𝑊𝜔

𝑂 − 𝐵 then 𝑃𝑂 .marker← I // Incomplete

18 else 𝑃𝑂 .marker← C // Eventually complete

19 Buffer buffer← pastBuffer.Copy(𝑃𝑂 .𝑙, 𝑃𝑂 .𝑟 )
20 WQ.Add( _→ EvaluatePast(𝑃𝑂 , buffer)) // Asynchronously

21 Procedure EvaluatePast(Predicate 𝑃𝑂 , Buffer buffer)
22 for t ∈ (buffer ∖ overlap) do // Executed in helper thread
23 if 𝑃𝑂 .Evaluate(t) then SQ.Add((t,O))
24 Function ExplanationMarker(Time𝑊𝜔

𝑂 , Predicate 𝑃𝑂 )
25 if ¬ 𝑃𝑂 .Enabled then return null // Ignore disabled predicate

26 if𝑊𝜔
𝑂 > 𝑃𝑂 .𝑟 or 𝑃𝑂 .marker = E then

27 𝑃𝑂 .Disable()
28 SQ.Add((𝑂, 𝑃𝑂 .marker)) // Predicate finished

29 else return SQ.Add((𝑂, R)) // Predicate still running

watermarks (L9-11). It first checks if 𝑃𝑂 was evaluated before (L6)
and, if not, it calls OnNewPredicate. The latter sets previous𝑃𝑂
to 𝑃𝑂 , and then checks if 𝑃𝑂 ’s time condition can be satisfied (L14).
If not, 𝑃𝑂 ’s marker attribute is set to E (empty). If 𝑃𝑂 is satisfiable,
OnNewPredicate checks if the leftmost boundary of 𝑃𝑂 is less
than the minimum available timestamp (L17), in which case the
marker of 𝑃𝑂 is set to I (incomplete). Otherwise 𝑃𝑂 ’s marker is set
to C (complete). Then EvaluatePast is executed asynchronously,
passing a view of the pastBuffer so that all tuples between𝑊𝜔

𝑂 − 𝐵
and𝑊𝜔

𝑂 are eventually evaluated while the main operator thread
concurrently alters the pastBuffer’s contents (L19-23). It ignores
tuples in overlap, as these have been already processed by OnIn-
tercepted. Afterward, 𝑂 produces an explanation marker for the
predicate, using WQ to ensure the marker is sent after the results of
the past evaluation (L7). More specifically, ExplanationMarker
checks if the watermark of 𝑂 is higher than the 𝑃𝑂 ’s rightmost
boundary or if 𝑃𝑂 has no explanations to give and, if so, it signals
that the explanations are finished (L26-28), returning the marker
set by OnNewPredicate. Otherwise, it indicates that 𝑃𝑂 is still
producing explanations, returning R (L29). Finally, the contents of
pastBuffer are shifted (L8) and a new explanation watermark is
emitted through a task in WQ (L9-11), ensuring correct ordering.

Extensions. Our discussion focuses on Filters and Joins but can be
extended to other pruning operators, provided they follow the se-
mantics of our model (§2) and Erebus can access their input streams
and instrument their UDFs. With these (realistic) assumptions, Ere-
bus can alter the UDFs to mark all tuples with a successor and then

intercept (as pruned) all input tuples of the operator that have no
successor after the operator has finished processing them. This
approach is used to instrument Joins in Erebus’ implementation.

5.3 Performance Considerations
To quantify Erebus’ overheads, we define, for each instrumented
operator 𝑂 and predicate 𝑃 1) the interception ratio 𝑖𝑂 : the number
of intercepted tuples per processed tuple based on 𝑂’s semantics
(equal to 1 for Sinks and between 0 and 1 for Filters/Joins), 2) the
explanation ratio 𝑒𝑃𝑂 : the number of explanations per intercepted
tuple based on 𝑃 ’s semantics, 3) 𝑃 ’s cost 𝑐𝑃𝑂 : the evaluation time
of 𝑃 per intercepted tuple at 𝑂 , 4) the average explanation size
𝑠𝑂 : proportional to the tuple size, and 5) the rate of 𝑂 𝑟𝑂 : the
number of tuples it processes per time unit. Being ℐ the set of
instrumented operators of Q, the main overheads added to Q by
Erebus are described below and evaluated quantitatively in §6:

(1) The predicate evaluation overhead captures the computational
cost of evaluating the predicate on each intercepted tuple and
can be expressed as∑𝑂∈ℐ 𝑟𝑂 × 𝑖𝑂 × 𝑐𝑃𝑂 .

(2) The explanation overhead describes the computational andmem-
ory cost of serializing and sending explanations for compatible
intercepted tuples, expressed as∑𝑂∈ℐ 𝑟𝑂 × 𝑖𝑂 × 𝑒𝑃𝑂 × 𝑠𝑂 .

(3) The computational and memory cost of maintaining the past
buffer is proportional to the size 𝐵 of the buffer.

(4) The metadata overhead 𝐷 is the (mostly) computational cost of
adding necessary Erebus metadata to all tuples of Q.

The metadata overhead depends on how Erebus adds such meta-
data to Q’s tuples and on the number of tuples serialized between
Q’s operators. Our implementation uses an encapsulation approach
for Erebus’ metadata, allowing transparent instrumentation of Q
by enclosing each tuple 𝑡𝑦𝑝𝑒 into an Erebus tuple. This has a low
but observable overhead, caused by the extra layer added to the
SPE’s serialization. 𝐷 can be reduced if the user manually adds
Erebus-related metadata to their tuple 𝑡𝑦𝑝𝑒s, as shown in §6.3.

6 EVALUATION
We evaluate Erebus for queries running in both low- and higher-
end devices. §6.1 covers our setup. §6.2 studies the behavior of
the example from §1 and explores the average performance of
four real-world queries and eight custom predicates, also showing
how Erebus performs when why-provenance is included in the
explanations. §6.3 analyzes the overheads discussed in §5.3 using
synthetic benchmarks and discusses strategies to mitigate them.

6.1 Evaluation Setup
Hardware/Software. We use Odroid-XU4 [21] devices (or simply
Odroid) representative of edge devices [18], with Exynos5422 Cortex-
A15 2Ghz and Cortex-A7 Octa-core CPUs, 2 GB RAM, and Ubuntu
18.04.6, and a single-socket Intel Xeon-Phi server with 72 1.5GHz
cores (4-way hyper-threading, 32KB L1, 1MB L2 cache), 102 GB
RAM, and CentOS 7.9.2009. Erebus is implemented using Flink 1.14.0
(artifacts at [27]). Unless otherwise stated, experiments run for at
least seven minutes and are repeated at least ten times. Plots show
the resulting average and the 95% confidence interval (shaded area).
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Figure 5: Queries used in the evaluation (along with SGA, presented in Figure 1).

Queries. To evaluate Erebus with different native operators and
query graphs, we use four real-world queries (Figures 1 and 5), and
a synthetic one. The figures show the queries’ operators (marking
instrumented ones) and describe operator functions and tuple 𝑡𝑦𝑝𝑒s.
● SGA, introduced in our running example, detects anomalies in a

Smart Grid, on a per-household basis, comparing, every minute,
the average power consumption (AG1) with that reported by
each plug at the beginning of the same minute (F2-AG2-F3-J1). It
uses real-world data from the DEBS Grand Challenge 2014 [25].

● LR is a query from the Linear Road benchmark [6], detecting
accidents by identifying vehicles stopped at the same position.

● MOV examines movie rating data from the MovieLens [26]
dataset to find higher-than-average movies for specific users.
It focuses on users with 3 to 100 daily ratings (AG1-F1-J1), out-
putting ratings from such users, for movies between 1940 and
2005 (F2), if the rating is higher than their daily average (F3).

● CAR is an object annotation query [30] that annotates objects
for an in-vehicle computer vision system, using the Argoverse
Tracking dataset [11], to detect bicycles (M1-F1-AG1-F2) and
pedestrians (M2-F3-J1) transiting in front of the vehicle.

● SYN is a synthetic query comprised of a Source, Sink, and a
synthetic Filter with controllable 𝑖𝑂 and 𝑒𝑃𝑂 to study the perfor-
mance overheads discussed in §5.3.

We evaluate SGA, LR on the Odroids and CAR, MOV, SYN on the
Server. We evaluate the original, non-instrumented query (NI) and
the query running Erebus (EB). In §6.2.2, we also evaluate Erebus as a
holistic why- and why-not provenance solution (EB+W), including
why-provenance in its explanations using the technique from [30].

Predicates and Explanations. To study the whole range of predi-
cate behaviors, each query is evaluated with four predicates with
different explanation ratios 𝑒𝑃𝑂 : two custom ones denoted as P1,
P2, and two synthetic ones, F (always false) and T (always true).
Table 1 shows the custom predicates, example explanations from
our experiments, and the percentage of overall explanations from
each operator over the execution. The predicates are also marked
in Figures 7-10, where each line of EB(+W) has four points of in-
creasing 𝑒𝑃𝑂 , corresponding to predicates F, P1, P2, and T, along

with annotations showing the main differences of P1, P2 from NI.
To reduce clutter, predicate names are only shown for EB in the
first plot of Figure 7. Erebus writes the explanations to Apache
Kafka [5] (3.1.0) and a secondary query added by Erebus (in the
same machine) pulls them from Kafka and persists them to disk.

PerformanceMetrics. We evaluate the throughput, i.e., the number of
tuples a query ingests per unit of time, the latency, i.e., the delay in
the production of a sink tuple after all its contributing source tuples
have arrived at the query, and the CPU utilization and memory
consumption of the SPE. We also measure the query’s interception
rate (intercepted in the plots), i.e., ∑ 𝑟𝑂 × 𝑖𝑂 and explanation rate
(explanations in the plots), i.e.,∑ 𝑟𝑂 × 𝑖𝑂 × 𝑒𝑃𝑂 (§5.3).

6.2 Real-World Query Evaluation
6.2.1 How Does Erebus Perform Over Time? Figure 6 compares
NI’s and EB’s performance for the predicate defined in the running
example (instrumented operators are marked by a crosshatch pat-
tern in Figure 1). We assume that the analyst (based on domain
knowledge about possible issues with the query) is not interested
in explanations involving F1 and F2, thus we do not instrument
them. For EB, the predicate (SGA-P1 in Table 1) is submitted at
𝜔 = 180𝑠 , approximately at event time 23:30. No predicate is active
before that, and 𝐵 = 1 hour. For 𝜔 < 180𝑠 (left of the vertical line),
EB’s and NI’s performance is close: approximately -10% through-
put, +7% latency, and +15% CPU. Around 350𝑡⇑𝑠 are intercepted. At
𝜔 = 180𝑠 , the emission of past/present explanations starts, with a
transient performance drop (mostly due to past explanations). The
CPU jump has a delay, indicating the secondary query converting
the (mostly past) explanations to plain text and persisting them.
Present explanations are emitted until event time 00:20:01 (when
all operator predicates are disabled, see Algorithm 2) with EB’s
performance being similar to that observed for 𝜔 < 180𝑠 .

6.2.2 What Is Erebus’ Average Performance During an Execution?
We now study the average query performance of NI, EB, EB+W
when the predicate is active since 𝜔 = 0 for SGA, LR, MOV, and
CAR. The x-axes in Figures 7-10 show the average explanation
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Table 1: Predicates defined in Erebus for our evaluation, with example explanations and execution statistics.

Predicate Predicate Definition Example Explanation Overall Explanations

SGA-P1 (22:00 ≤ 𝜏 ≤ 00:20) ∧ (diff > 4) ∧ (plugUsage < 30) F3: (𝜏=22:49:59, usage=0.0, plug=7, household=0,
house=2)

F3: 89.1%, J1: 5.3%, K: 5.0%,
F4: 0.6%

SGA-P2
((22:10 ≤ 𝜏 ≤ 02:40) ∧ (diff > 1) ∧ (household mod 2 = 0))

∨((22:05 ≤ 𝜏 ≤ 23:40) ∧ (diff > 1) ∧ (0 < plug < 8))
F4: (𝜏=22:05:59, house=34, household=1, plug=1,
plugUsage=4, householdUsage=2.1, diff=2.0)

F3: 84.5%, K: 7.4%, J1: 5.2%,
F4: 2.8%

LR-P1 (00:10 ≤ 𝜏 < 04:00) ∧ (pos.lane ∈ {0, 4}) ∧ (pos.seg > 30) ∧ (count > 1) F1: (𝜏=00:08:30, type=0, vid=9930, speed=40,
pos=(xWay=0, lane=0, dir=0, seg=94, p=501418))

F2: 100%

LR-P2 (00:00 ≤ 𝜏 < 01:40) ∧ (∀𝑣 ∈ vids ∶ 𝑣 mod 2 = 0) F2: (𝜏=01:39:00, vid=8704, lastPos=(0, 1, 0, 19,
100530), nReports=1, uniquePos=1)

F2 > 99.9%, F3 < 0.1%, K <
0.1%

MOV-P1 (1996-01-09 ≤ 𝜏 ≤ 2002-01-07) ∧ (1900 < year < 1990) ∧ (rating > 1.5) J1: (𝜏=2000-08-25, user=260662, rating=4.0,
movie=2551, year=1988)

J1: 56.3%, K: 22.0%, F3:
15.5%, F1: 4.2%, F2: 2.0%

MOV-P2
(1995-01-09 ≤ 𝜏 ≤ 2012-01-05) ∧ (nRatings × rating > 33)

∧(nRatings > 12) ∧ (movie < 5000)
K: (𝜏=1996-06-03, user=227882, movie=364,
rating=5.0, averageRating=3.5, nRatings=64)

J1: 55.9%, K: 23.4%, F3:
19.8%, F2: 0.6%, F1: 0.3%

CAR-P1
((00:00 ≤ 𝜏 < 02:40) ∧ (label = BICYC.) ∧ (minZ > 1) ∧ (count ∈ (︀2, 50⌋︀)

∨((00:15 ≤ 𝜏 < 02:20) ∧ (label = PEDEST.) ∧ (minX > 0.25 ×minY))
J1: (𝜏=00:56:48, target=PEDEST., type=L,
key=c4a0.., label=PEDEST., x=378, y=661, z=26)

J1: 45.0%, F1: 44.0%, F3:
6.0%, K: 5.0%

CAR-P2
((00:20 ≤ 𝜏 < 02:00) ∧ (target = BICYC.) ∧ (label = VEHIC.))

∨((00:00 ≤ 𝜏 < 02:00) ∧ (label = PDEDEST.))
F1: (𝜏=01:02:32, target=BICYC., type=∅,
key=742.., label=VEHIC., x=0.2, y=3.2, z=0.6)

F1: 86.9%, J1: 10.9%, K: 2.1%

Attributes and predicate conditions are simplified due to space constraints. The attributes of example explanations that match the predicate are underlined.
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Figure 6: Performance of SGA over time.

ratio 𝑒𝑃𝑂 of all query operators, the main factor distinguishing the
performance of different predicates (§5.3).

For SGA (Figure 7), EB is up to 21% more costly than NI for P1,
P2. The metadata overhead 𝐷 (see §5.3) has a higher performance
impact than the explanation ratio 𝑒𝑃𝑂 , because SGA’s source sends
a large number of tuples downstream, whose added metadata needs
to be serialized, as discussed in §6.3, slowing down the source and
lowering the query’s performance. EB+W increases the overheads
further, due to the additional work of maintaining and transmit-
ting why-provenance metadata and the increased tuple (and thus
explanation) size, observable when no explanations are produced
(explanation ratio 0). For EB+W, each explanation of Erebus con-
tains 130 source tuples as why-provenance (on average), leading to
a stronger correlation between 𝑒𝑃𝑂

5 and the performance: 41-43%
lower throughput and 3.3-3.5x higher latency for P1-P2, compared

5Because EB+W has a lower throughput than EB, it processes earlier event times during
the experiment’s execution and thus has higher 𝑒𝑃𝑂 than EB for the same predicates.

to NI. The memory increases by up to 2x because of the increased
volume of data maintained and the CPU increases due to the higher
processing requirements of why-provenance [30].

LR (Figure 8) differs from SGA in that it filters early most (99.9%)
of its inputs. Complementing §6.2.1, this implies that 1) the volume
of tuples serialized inside the query is very small, 2) the metadata
overhead is minimal, as evident by the almost identical performance
of NI and EB/EB+W when no explanations are produced, and that
3) the interception rate is now close to the query’s throughput (i.e.,
almost all the input data can be explanations of F2).

For MOV (Figure 9), the metadata overhead 𝐷 is significant since
MOV does minimal filtering and aggregation, serializing a large
volume of encapsulated tuples between its operators. For P1 and
P2, EB results in up to -34% throughput and +21% latency, with
the memory and CPU increasing with the explanation ratio, by
up to +14% and +3x, respectively. EB+W, includes on average 30
provenance tuples per explanation, leading to a higher performance
impact than EB, with the throughput and latency degrading by up
to -37% and +33% respectively (for P1 and P2).

Finally, CAR (Figure 10) behaves similarly to LR, because much of
the input data is pruned by F1 and F2 before it is serialized between
operators. This, combined with a lower volume of intercepted tuples
than MOV, leads EB to have a very small impact on performance
for P1, P2: 3% decrease in throughput, 2-3% increase in latency, up
to 78% higher CPU, and 66% higher memory. EB+W only slightly
differs from EB since the size of its why-provenance is one tuple.

6.3 Analysis of Erebus’ Overheads
Here, we use synthetic loads on the Server to analyze parameters
𝑐𝑃𝑂 , 𝑖𝑂 , 𝑒𝑃𝑂 , 𝐷 , and 𝐵, which affect Erebus’ overheads (see §5.3).

6.3.1 What Affects a Predicate’s Evaluation Cost? In Figure 11, we
measure 𝑐𝑃𝑂 , i.e., the time to evaluate a synthetic predicate 𝑃𝑂
based on its complexity. We use a micro-benchmark implemented
in JMH [28], with 3 forks, 10 warm-up iterations, and 25 iterations of
10 seconds. The predicate has varying numbers of conditions 𝑛 and
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(unique) variables ⋃︀⋃𝑛𝑖=1A𝑖 ⋃︀. The x-axis is the number of unique
variables and the y-axis is 𝑐𝑃𝑂 , in microseconds. Each line is a
predicate with a different number of conditions. The 99% confidence
interval reported by JMH is shown as a (small) shaded interval. The
left part of the plot shows the worst case where all 𝑐𝑖 need to be
evaluated by the predicate. However, Erebus’ predicates support
short-circuit evaluation and can return early if they deem their result
final, based on their conditions. This is illustrated in the right part of
the plot, where 𝑃𝑂 can terminate early after the first condition (best
case). As seen in the figure, the predicate evaluation is fast, ranging
from 0.3 - 3.4 us. Without early termination (left), 𝑐𝑃𝑂 increases
with 𝑃𝑂 ’s complexity, with the biggest factor being the number of
conditions. With early termination (right), 𝑐𝑃𝑂 is almost constant
at approximately 0.3 us, regardless of 𝑃𝑂 ’s complexity.

6.3.2 How do Erebus’ Data Costs Affect Query Performance? In
Figure 12, we use a synthetic predicate 𝑃𝑂 and the SYN query to
measure the impact of the 𝑖𝑂 , 𝑒𝑃𝑂 , and 𝐷 (§5.3). In the green lines
(Encapsulated) Erebus uses encapsulation for its metadata whereas
in the orange ones (Custom) Erebus relies on tuples with custom
𝑡𝑦𝑝𝑒s that include its metadata. Each marker represents a different
𝑖𝑜 (25%, 75%, 99%) for the Filter of the query. The x-axis is 𝑒𝑃𝑂 and
the y-axis is the value of the performance metric. The behavior
matches §5.3, with higher 𝑖𝑂 and 𝑒𝑃𝑂 decreasing query performance.
Furthermore, encapsulation causes 𝐷 to have a measurable impact
on performance, especially for low 𝑖𝑂 and 𝑒𝑃𝑂 .

Figure 13 evaluates the effect of the buffer size 𝐵 on SYN’s perfor-
mance. To isolate 𝐵’s effect, we set 𝑖𝑜 = 99% and 𝑒𝑃𝑂 = 1%, i.e., most
tuples are pruned and stored in the buffer but few are evaluated
by 𝑃𝑂 . As expected, the performance drops for increasing buffer
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sizes, but the overheads remain low: up to 9% (throughput) and 16%
(latency) for 40 million buffered tuples. The memory plot highlights
the difference between the total memory used by the JVM (shown
in all previous experiments) and the (approximate) size of the buffer:
depending on the JVM’s configuration, small increases in the buffer
size can lead to large jumps in the process memory.

6.3.3 Best Practices for Erebus. The evaluation results indicate
some best practices for using Erebus. First, the different perfor-
mance of SGA and LR shows it is best to only instrument necessary
operators to reduce the number of (irrelevant) explanations. Second,

1 2 4 8 16
# Unique Variables

0
1
2
3

us

All Conditions Evaluated

1 2 4 8 16
# Unique Variables

 Early Termination

# Conditions
2 4 8 16

Figure 11: Time to run a single evaluation of the predicate.
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as illustrated by Figure 11 the user should place the strictest con-
ditions first, to take advantage of early termination and minimize
the predicate’s cost 𝑐𝑃𝑂 . Third, if the interception and explanation
ratios 𝑖𝑂 , 𝑒𝑃𝑂 are low, it might be beneficial to alter the tuple 𝑡𝑦𝑝𝑒s
and avoid encapsulation, to reduce the metadata overhead 𝐷 , as
highlighted by Figure 12. The last practice, which we have already
used in §6.2 is to scale-up bottleneck operatorswhen needed. Modern
SPEs can deal with such bottlenecks by increasing operator paral-
lelism, and because Erebus keeps all instrumentation logic local in
each operator task, instrumented operators can be parallelized with-
out complications. An example of this possibility is illustrated in
Figure 14. In this experiment, we run the MOV query with predicate
P2 with different levels of parallelism for all operators except the
source. As seen in the figure, the query instrumented with Erebus
scales almost identically to the non-instrumented query.

Evaluation Summary. We evaluated Erebus on real-world and syn-
thetic workloads and showed that it can produce expectation expla-
nations with low to moderate overheads over the original query, for
a variety of custom predicates, both in low-powered devices and a
higher-end server. For the custom predicates we defined, Erebus led
to 3-35% lower throughput and 2-82% higher latency while deliver-
ing tens of thousands of compatible tuples per second. Given that
explaining missing answers is generally a heavy task with potential
slowdowns of more than one order of magnitude [7, 17], Erebus
offers an acceptable trade-off for the provided functionalities.

7 RELATEDWORK
Why-provenance has been studied extensively in databases [13, 15,
23]. Streaming approaches such as Ariadne [20] and GeneaLog [29]
collect backward why-provenance using tuple metadata and instru-
mented operators. Ananke [30] extends such tools to deliver a live
graph of forward provenance. Such techniques, orthogonal to our
work, can be combined with Erebus to include why-provenance in
the explanations of produced and missing answers.

Provenance of missing answers has been studied for relational
queries, for (reverse) top-k [19, 22], skyline queries [14, 24], and
more general systems [33]. Explanations can be identified in the
data (instance-based), the query (query-based) or both (hybrid),
or expressed as query modifications (modification-based) [23]. We
discuss here works closest to Erebus, i.e., query-based explanations
referring the reader to the survey [23] for more details. In “Why
Not?” [12], the authors explain missing answers in workflows, as-
suming the user cannot alter the query and/or inspect the input data.
They search for compatible input tuples not part of the lineage [15]
of any result, replaying the query and returning the manipulations
closest to the data sources responsible for pruning the last suc-
cessors of such tuples. NedExplain [9] adopts a similar technique,
focusing on SPJUA database queries, proposing an algorithm that

1 2 4 8
Parallelism

2.5

5.0

1e4 Throughput (t/s)

1 2 4 8
Parallelism

0.3
0.4
0.5

Latency (s)

1 2 4 8
Parallelism

3

4

1e4 Intercepted (t/s)

NI EB EB+W

Figure 14: Scalability of MOV query.

returns more detailed and correct answers by more precisely iden-
tifying the source data to trace. Similarly to Erebus, in NedExplain
compatible tuples are allowed to belong to the lineage of some
query results. Ted and Ted++ [7, 8] focus on returning the same, and
complete missing answer explanations regardless of the query plan,
presenting such explanations in the form of why-not polynomials.
The work in [17] uses reparameterizations of query operators to
compute query-based explanations in complex analytical queries,
focusing on nested data and operators that modify the schema (e.g.,
projections). In contrast to the above, Erebus focuses on streaming
and produces explanations without replaying the query or requiring
persistent storage of the inputs.

To the best of our knowledge, Erebus is the first work explaining
missing answers in streaming. In Complex Event Processing (CEP),
Song et al. [31], use temporal networks [16] to find approximate
missing-answer explanations based on event time with respect to
the query or the data. Their solution studies only time constraints
and focuses on a subset of CEP operators, whereas Erebus targets
general-purpose queries and query-based explanations based on
all tuple attributes, not just the timestamps.

8 CONCLUSIONS
We formally defined the problem of explaining missing answers in
streaming and presented Erebus, a framework that allows users
to validate and debug streaming queries by defining boolean ex-
pectation predicates on the query outputs. Erebus verifies whether
expected results are produced and explains the absence of expected
results (missing answers). Erebus’ predicates can be submitted at
any point during the query runtime and can refer to any attribute
of the results. Erebus produces query-based explanations compris-
ing pruned compatible tuples that could have contributed to an
expected — but missing — result along with their eliminating oper-
ator. We evaluated Erebus in real and synthetic workloads, showing
it can run alongside queries with small overheads. Future work
directions include computing why-not polynomials [7] for query-
plan-independent explanations, and instance-based explanations
to identify problems in the input streams [23].
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