
FlexChain: An Elastic Disaggregated Blockchain
Chenyuan Wu

University of Pennsylvania
wucy@seas.upenn.edu

Mohammad Javad Amiri
University of Pennsylvania
mjamiri@seas.upenn.edu

Jared Asch
University of Pennsylvania
jasch16@seas.upenn.edu

Heena Nagda
University of Pennsylvania
hnagda@seas.upenn.edu

Qizhen Zhang
University of Pennsylvania
qizhen@seas.upenn.edu

Boon Thau Loo
University of Pennsylvania
boonloo@seas.upenn.edu

ABSTRACT
While permissioned blockchains enable a family of data center ap-
plications, existing systems suffer from imbalanced loads across
compute and memory, exacerbating the underutilization of cloud
resources. This paper presents FlexChain, a novel permissioned
blockchain system that addresses this challenge by physically dis-
aggregating CPUs, DRAM, and storage devices to process different
blockchain workloads efficiently. Disaggregation allows blockchain
service providers to upgrade and expand hardware resources inde-
pendently to support a wide range of smart contracts with diverse
CPU and memory demands. Moreover, it ensures efficient resource
utilization and hence prevents resource fragmentation in a data
center. We have explored the design of XOV blockchain systems
in a disaggregated fashion and developed a tiered key-value store
that can elastically scale its memory and storage. Our design sig-
nificantly speeds up the execution stage. We have also leveraged
several techniques to parallelize the validation stage in FlexChain
to further improve the overall blockchain performance. Our evalua-
tion results show that FlexChain can provide independent compute
and memory scalability, while incurring at most 12.8% disaggre-
gation overhead. FlexChain achieves almost identical throughput
as the state-of-the-art distributed approaches with significantly
lower memory and CPU consumption for compute-intensive and
memory-intensive workloads respectively.

PVLDB Reference Format:
Chenyuan Wu, Mohammad Javad Amiri, Jared Asch, Heena Nagda, Qizhen
Zhang, and Boon Thau Loo. FlexChain: An Elastic Disaggregated
Blockchain. PVLDB, 16(1): 23 - 36, 2022.
doi:10.14778/3561261.3561264

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/chenyuanwu/FlexChain.

1 INTRODUCTION
Blockchain systems, in particular, permissioned blockchain sys-
tems, have enabled a new class of data center applications, ranging
from contact tracing [42], crowdworking [14], supply chain assur-
ance [15, 53], and federated learning [43]. The popularity of these

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:10.14778/3561261.3561264

services has motivated the cloud providers, e.g., Amazon [6], IBM
[7], Oracle [8] and Alibaba [5], to provide Blockchains-as-a-Service
(BaaS) [21].

BaaS providers need to guarantee high-throughput services over
various transaction workloads. While auto-scaling can improve
throughput, the heterogeneity of resource requirements is still a
challenge. In the blockchain domain, smart contracts have been
traditionally used to perform memory-intensive operations such as
retrieving customer profiles stored in large databases [22]. However,
recent applications of blockchains in food dissemination [9, 39, 60],
carbon pricing [20] and communication security [28] require smart
contracts to have the ability of performing classification and re-
gression. These tasks, usually accomplished by machine learning
algorithms, demonstrate the need for supporting compute-intensive
workloads in blockchains. Moreover, a smart contract can inter-
changeably be compute- and memory-intensive at different times
and execution stages. Deploying smart contracts with diverse hard-
ware demands in a BaaS setting requires rethinking existing system
architectures to enable the flexibility of scaling compute and mem-
ory resources independently and elastically.

Data center resources have been traditionally arranged in mono-
lithic servers. These servers contain limited compute, memory, and
storage resources for processing independent jobs or partitions of
jobs. Resource disaggregation is a recent trend in data center de-
sign [31, 46, 61, 62]. In a disaggregated data center (DDC), resources
are reorganized from servers to physically distinct pools that are
dedicated to processing, memory or storage. All nodes, regardless
of type, might include a small amount of ancillary processing and
memory resources to run simple control software. As a result of
disaggregation, processing nodes will continually “page” memory
from remote nodes into and out of its small on-board working set,
write chunks to remote disks, or farm out tasks to remote CPUs.
To each program running in this environment, the system provides
the illusion of a near-infinite pool of any resource [29].

Resource disaggregation is an ideal solution to the diverse re-
source requirements of BaaS workloads. DDCs allow operators to
upgrade and expand each resource independently. For instance,
if a new processor technology becomes available or if compute-
intensive smart contracts require additional CPUs, the operator
can deploy additional compute nodes without upgrading memory
nodes or worrying about compatibility between different compo-
nents. Likewise, memory-intensive smart contracts can scale up
by adding more memory nodes. Moreover, DDCs promote efficient
resource utilization and prevent fragmentation because they can al-
locate different resources separately from the corresponding pools.

23

https://doi.org/10.14778/3561261.3561264
https://github.com/chenyuanwu/FlexChain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3561261.3561264
https://www.acm.org/publications/policies/artifact-review-and-badging-current

This feature can improve the resource consumption of BaaS work-
loads. For example, suppose a customer’s blockchain application
requires more memory. Instead of rigidly allocating or migrating
to a VM with a fixed CPU count and memory, a DDC-enabled
blockchain service can simply provide more memory resources to
the application on the fly from the memory pool.

In this paper, we present FlexChain, a novel disaggregated per-
missioned blockchain service that leverages recent innovations in
DDCs. FlexChain’s design is based on a few key insights. We ob-
serve that the XOV architecture used in Hyperledger Fabric [16]
and several other permissioned blockchain systems [33, 45, 47]
lends itself naturally to disaggregation. First, the simulation (X) and
most of the validation (V) stages are inherently parallelizable, lead-
ing to a design where we can auto-scale these stages to arbitrary
numbers of CPU cores in the compute pool. Second, most of the
blockchain state resides in key-value stores, which can be hosted
in the memory pool. This design will reduce the need of storing
and retrieving data to and from the disk because there is sufficient
memory for buffering the working sets of transactions.

Hence, FlexChain designs a tiered key-value store and leverages
auto-scaling to achieve both memory and compute elasticity. Re-
mote memory connected by a high-speed network is used as a cache
for data stored on disk. Read/write and buffer eviction protocols all
need careful designs to ensure correctness. As smart contract execu-
tions are amenable to parallelization in a DDC, sequential conflict
check and world state update in the validation stage of XOV would
become the bottleneck. We further adopt a concurrency control
mechanism to parallelize the validation stage.

We experimentally evaluate both the operational and perfor-
mance benefits of disaggregation. Our comparison between Flex-
Chain and traditional distributed architectures demonstrates that
disaggregating complex distributed systems like blockchains is not
only feasible (achieving comparable or even better performance),
but also preferable (achieving independent elasticity for hosting
diverse workloads and better resource utilization).

The key contributions of this paper are:
• Blockchains on DDCs. For the first time, we explore how

different components in a permissioned blockchain system
should be redesigned for resource disaggregation.

• Tiered world state. We design a tiered key-value store
based on disaggregated memory and storage that provides
elasticity for scaling the blockchain world state.

• Parallel validation stage. We leverage a dependency-
graph-based concurrency control mechanism to fully par-
allelize the validation stage.

• Prototype and evaluation. We implement a prototype
of FlexChain and evaluate its benefits with realistic bench-
marks. Our results demonstrate that FlexChain achieves
optimal resource utilization for diverse blockchain work-
loads with minimal performance overhead.

The rest of this paper is organized as follows. Section 2 briefly
discusses the background and motivation behind FlexChain. The
FlexChain architecture is introduced in Section 3. Sections 4 and
5 present disggregated world state and parallel validation in de-
tails. Section 6 evaluates the performance of FlexChain. Section 7
discusses related work, and Section 8 concludes the paper.

K-Means Prediction YCSB Key-Value Store
0

20

40

60

80

100 91

10Av
er
ag
e
CP

U
Ut
ili
za
tio

n
(%
)

K-Means Prediction YCSB Key-Value Store
0

2

4

6

8

10

1

10

M
ax
im

um
M
em

or
y
Ut
ili
za
tio

n
(G
B)

Figure 1: Profiling results of compute-intensive andmemory-
intensive smart contracts (on anUbuntu server with a 20-core
Intel(R) Xeon(R) Silver 4114 CPU and 64 GB of RAM).

2 MOTIVATION AND BACKGROUND
We provide a brief background on emerging smart contracts, DDCs,
and blockchain’s XOV architecture.

2.1 Emerging Smart Contracts
In data-intensive smart contracts, as shown in BlockBench [22],
increasing the number of users/records stored on the blockchain
as well as processing large records (common in government data,
medical data, etc.) level up disk activities significantly. Disk paging,
however, should be avoided in order to maintain performance at a
high level, which can be made possible by enlarging the memory
to accommodate the working sets of transactions (as shown in
Figure 7). This leads to the memory-intensive characteristic of
many smart contacts. This section mainly focuses on outlining an
emerging class of compute-intensive smart contracts.

The World Food Program (WFP) has put together a pilot pro-
gram in the Azraq refugee camp in Jordan where refugees have
their identities stored on a blockchain [9, 39, 60]. The blockchain is
used not only for food dissemination but also for detecting possible
corruption and food siphoning. The blockchain defines computer
vision and image recognition functions in its smart contracts for
various purposes. In particular, the blockchain uses retina scans
for identifying refugees, K-Means clustering for image segmenta-
tion, and k-nearest neighbor (KNN) calculations to determine food
distribution strategies in a decentralized fashion.

Image segmentation (commonly accomplished with K-Means
clustering and its variants) and its applications such as face detec-
tion, fingerprint detection, iris recognition [37], pedestrian detec-
tion, and locating tumors in medical imaging [57] have also been
used in many smart contracts [40]. In general, machine learning and
artificial intelligence in smart contracts have been proposed for a
wide range of applications, including carpooling [20] (to match pas-
sengers and drivers [25]), countermeasure against DDoS attacks in
5G [28], games [20], and carbon pricing [20]. AI-driven blockchains
have also received some commercial traction [10].

Finally, as an appealing application, consider a healthcare use
case where the data is stored on a blockchain [12, 38] to provide
stronger security properties. Machine learning is useful for classify-
ing medical documents or other forms of healthcare data (e.g., EEG
and ECG) while blockchains safeguard the integrity of the data.

2.2 Profiling Smart Contracts
To motivate a disaggregated design in the blockchain domain, we
have characterized two smart contracts running on Hyperledger

24

Figure 2: An illustration of resource disaggregation. Same
type of resources are centralized in a resource pool. Resource
pools are disaggregated and connected by a fast network.

Fabric [16]. Figure 1 depicts the results where the Fabric is config-
ured with two peers (deployed on separate docker containers), one
orderer, and uses LevelDB [1] as its underlying database.
• Compute-intensive K-Means prediction contract. The K-

Means prediction contract starts off with 20 randomly seeded
clusters for 10000-dimension data. Prediction queries are is-
sued at a rate of 10 per second, and each query represents a
user submitting a request with a new vector. The contract finds
and returns the nearest cluster from the pre-trained clusters.
The CPU utilization and memory utilization are 91% and 1
GB respectively. In this experiment, the K-Means training is
done off-chain. If this were done on-chain, the CPU utilization
would be even higher.
• Memory-intensive key-value storage contract. In the sec-

ond smart contract, each transaction interchangeably initiates
80% reads, 10% insertions, and 10% updates on records of size
80 KB at a rate of 1500 transactions per second. CPU and
memory utilization are 10% and 10 GB respectively.

The input parameters (i.e., the high dimensionality for K-Means
and large records for KV-store) that are used in the above experi-
ments are consistent with the emerging use cases of smart contracts
described in Section 2.1. We observe extreme variation in the uti-
lization of CPU and memory resources. These results demonstrate
the need for a more efficient solution for scaling smart contracts in
a BaaS environment — one that can scale CPU and memory resources
flexibly and independently.

2.3 Resource Disaggregation
Resource disaggregation is an architectural style where the re-
sources of a data center, traditionally spread across every server,
are partitioned into physically distinct pools of resources connected
with a fast network fabric such as RDMA over InfiniBand, as illus-
trated in Figure 2. While today’s data centers commonly support
storage disaggregation, a defining feature of DDCs is the full-scale
disaggregation of resources includingmemory. The operational ben-
efits of DDCs are vast, such as independent expansion, independent
allocation, and independent failures [17, 31, 46, 48, 55, 62].

Pools hosting each type of resource typically contain a small
amount of other resources, e.g., low-frequency CPUs in the mem-
ory/storage pools that manage local resources and process accesses,
or a modest amount of DRAM in the compute pool that caches data.
However, coordination across pools spanning different resource
types is needed.

Figure 3: FlexChain architecture. For simplicity, we only
present the workflow of logical peer 𝑝1.

In exchange for those benefits, DDCs convert a subset of what
used to be local memory and device accesses to remote accesses.
While the latest InfiniBand networks are undoubtedly very fast (sub-
600 ns latency at 200 Gb/s [11]) and some proposals have advocated
for new network substrates [48], both are, nevertheless, slower
than accessing resources on the same motherboard. However, these
performance penalties are offset by the substantial operational
benefits one can achieve using DDCs.

3 FLEXCHAIN ARCHITECTURE
Figure 3 shows the overall architecture of FlexChain, the first dis-
aggregated permissioned blockchain system. In this section, we
first introduce the key differences between FlexChain and a generic
XOV blockchain system running onmonolithic servers, and then de-
scribe the transaction flow of FlexChain, followed by the cross-data
center deployment of FlexChain.

3.1 Comparing FlexChain with Generic XOV
Traditional XOV blockchains, e.g., HyperLedger Fabric [16], oper-
ate at the level of peers, where each peer runs on a single monolithic
machine. XOV blockchains maintain the world state in a versioned
local key-value store that is replicated on every peer. Theworld state
stores all the information needed by blockchain users, e.g., medi-
cal records or bank accounts. Each peer retrieves and updates its
own copy of the world state in the execution (X) and validation (V)
phases without any synchronization with other peers. These inter-
actions are the major data-intensive operations in XOV blockchains,
and might become the bottleneck when memory is insufficient (Sec-
tion 6.3). Data that is more transient in nature (e.g. read/write set,
received blocks, intermediate data during computation) is unlikely
to be reused across transactions and is maintained in the main mem-
ory instead of the key-value store. In traditional XOV blockchains,
a separate set of nodes, called ordering service nodes (OSNs), are
used to establish consensus on the order of transactions. These
OSNs also run on monolithic servers.

Similar to generic XOV blockchains, FlexChain operates at the
level of virtual peers, or logical peers1. However, there are two key
differences between FlexChain and generic XOV:
• Peer disaggregation. In FlexChain, a logical peer runs in a dis-

aggregated setup on multiple compute nodes (cNode), memory
nodes (mNode), and storage nodes (sNode). Each hardware com-
ponent (i.e., compute, memory, or storage) can also provision

1In the rest of the paper, we use "peer" to denote a server node in generic XOV, as well
as a logical peer in FlexChain.

25

resources for more than one logical peer. FlexChain users interact
with a peer in the XOV paradigm, but they do not know which
physical components their smart contracts run on. In FlexChain,
ordering service nodes continue to run on traditional monolithic
server machines, since they are bottlenecked by the consensus
protocol that is bandwidth-intensive. Disaggregating ordering
service nodes would overburden the network.

• World state disaggregation. Instead of using a local key-value
store, FlexChain disaggregates world state using a three-tier
architecture that combines compute-local memory, remote mem-
ory, and remote storage. In particular, temporary data is kept
in local memory, because such data is small and unlikely to be
reused across transactions. Spilling temporary data to remote
memory can only complicate memory management.

3.2 Transaction Lifecycle in FlexChain
We now describe Figure 3 in detail, by tracing through the lifecycle
of a FlexChain transaction. FlexChain consists of a load balancer, a
compute pool, a memory pool, a storage pool, and ordering service
nodes. The load balancer is responsible for dispatching client re-
quests to different cNodes in the compute pool. The cNodes perform
smart contract execution (X), endorsement policy evaluation (𝑉1,
i.e., the first stage in validation), conflict check (𝑉2), and world state
update (𝑉3) tasks as assigned by the load balancer and OSNs. The
mNodes, on the other hand, are responsible for storing each peer’s
own copy of world state. The sNodes store the blockchain ledger
and the world state evicted from mNodes. OSNs are responsible for
ordering transactions and optionally constructing a dependency
graph for each block.
Step ❶: To initiate a transaction, a client sends a message <req,
𝑝1> to the load balancer where req is the request content and 𝑝1 is
the receiver peer determined by the endorsement policy. The load
balancer is a fault-tolerant component that serves as the monitoring
and management plane in the BaaS. It keeps track of the utilization
and status of all resource nodes, i.e., cNodes, mNodes, and sNodes,
as well as the mapping from resource nodes to logical peers. The
utilization and status are updated via heartbeats, and the mapping
is updated when the user provisions/destroys a new logical peer
and when a peer scales up/down its resources.
Step ❷: FlexChain allows multiple cNodes for a peer. In our ex-
ample, cNodes 𝑐1, 𝑐2, 𝑐4 are provisioned for peer 𝑝1, so they can
perform computation stages (X, 𝑉1, 𝑉2, and 𝑉3) belonging to 𝑝1.
When processing compute-intensive workloads, FlexChain can al-
locate even more cNodes via elastic scaling. The load balancer
dispatches the received request to the least loaded cNode belong-
ing to 𝑝1. For the transaction in the example, cNode 𝑐1 is selected.
The set of provisioned CPU cores on cNode 𝑐1 then perform the
execution phase of req for 𝑝1, by interacting with 𝑝1’s copy of the
world state that is primarily stored in the remote memory pool. At
this stage, cNode 𝑐1 only reads from the world state and computes
the resulting read set and write set. It does not update its world
state. When the execution is over, cNode 𝑐1 sends the endorsement,
i.e., the signed read and write sets, back to the client.
Step ❸: Upon receiving enough endorsements for req (as speci-
fied by the endorsement policy), the client assembles a transaction
and submits it to the OSNs. The transaction contains the set of en-
dorsements, the smart contract operation that includes parameters,

and other metadata. The ordering service totally orders transac-
tions and generates a transaction block. Optionally, it constructs a
dependency graph for each block.
Step ❹:Once a transaction block 𝐵𝑖 has been generated, OSNs send
the block to every logical peer for validation and commitment. For
example, in order to send block 𝐵𝑖 to 𝑝1, OSNs send block 𝐵𝑖 to the
currentmost spare cNode (cNode 𝑐4 in our example) belonging to 𝑝1,
so that the cNode can perform endorsement policy evaluation (𝑉1)
on the transactions within the block in parallel. Endorsement policy
evaluation is a compute-intensive task as pointed out by [52, 56].
The complexity of the endorsement policy, which is defined by the
application, affects the time and resources taken to verify signatures
and evaluate the policy.
Step ❺: Upon finishing the endorsement policy evaluation, cNode
𝑐4 sends a message <𝐵𝑖 , 𝐵𝑖𝑡𝑚𝑎𝑠𝑘𝑖> to the primary cNode for 𝑝1 (cN-
ode 𝑐2 in our example), where 𝐵𝑖𝑡𝑚𝑎𝑠𝑘𝑖 is the consequent validity
bit mask of block 𝐵𝑖 . Every peer in FlexChain has a primary cNode,
which is the first provisioned cNode for this peer and selected by
the load balancer when the user launches the peer.

The load balancer can detect the primary failure, select a new
primary for the affected peer, and immediately inform the OSNs
of the update. Since FlexChain uses a write-through design for the
local data cache, as described in Section 4, the new primary can
seamlessly utilize the world state stored in the remote memory pool
as it is guaranteed to be up-to-date.
Steps ❻ and ❼: There is a centralized validation manager run-
ning on the primary cNode 𝑐2, which is responsible for perform-
ing/coordinating the last two stages of validation: conflict check
(𝑉2) and world state update (𝑉3). During conflict check of a trans-
action, the versions of the keys recorded in the read set field are
compared to those in the current world state in the remote memory
pool. If the versions do not match, the transaction is marked as
invalid. The world state update only happens for a transaction if it
is marked as valid in both𝑉1 and𝑉2. If so, its write set is applied to
the current world state. After 𝑉1, 𝑉2, and 𝑉3 are performed for all
transactions in block 𝐵𝑖 , the primary cNode 𝑐2 writes 𝐵𝑖 with its
updated validity bit mask into remote storage.
Parallel validation2. FlexChain supports both sequential and par-
allel validation. Sequential validation has already been used in XOV
blockchains while parallel validation is an optimization we develop
for FlexChain (Section 5 describes the details).

In sequential validation, the validation manager itself validates
(𝑉2 and 𝑉3) transactions within each block sequentially. However,
in parallel validation, in addition to sending block 𝐵𝑖 to cNode 𝑐4
in step ❹, OSNs also send a dependency graph 𝐺𝑖 that captures
the data dependencies between the transactions in block 𝐵𝑖 to the
primary cNode 𝑐2. The validation manager then uses the depen-
dency graph 𝐺𝑖 to spawn multiple validation workers. Different
workers perform𝑉2 and𝑉3 for different transactions in parallel. The
validation manager monitors the load and, if necessary, dispatches
validation workers to other cNodes provisioned for this peer.

The disaggregated design of FlexChain enables elastic scaling
when processing workloads of various resource demands. For ex-
ample, when 𝑝1 is serving a compute-intensive workload, the load
2We refer to the second and third stages of validation, namely conflict check and state
update (𝑉2 and𝑉3 in Figure 3). The first stage of validation (𝑉1) is already parallelized.

26

balancer monitors the average utilization of all provisioned cores
for 𝑝1. If the utilization rises above a certain threshold, the load
balancer launches an idle compute node for 𝑝1. Similarly, when 𝑝1
is serving a memory-intensive workload, the space manager on the
memory controller monitors the memory pressure and allocates
more slabs for 𝑝1 in the memory pool if necessary.

3.3 Cross-Data Center Deployment
A permissioned blockchain system often involves several parties,
such as enterprise users (which we call peers) typically located
on multiple data center infrastructures. In that spirit, we demon-
strate a cross-data center deployment of FlexChain where peers
are distributed in different data centers. For instance, a logical peer
𝑝1 can be hosted in data center 𝐷𝐶1, 𝑝2 in 𝐷𝐶2, and 𝑝3 in 𝐷𝐶3,
etc., where each data center is still organized in the form of three
RDMA-connected local resource pools. This approach is made pos-
sible by the design choice of disaggregating peers: while a single
logical peer can not span multiple data centers due to the strin-
gent network requirement between resource pools, different logical
peers can be freely hosted in different data centers. This way, Flex-
Chain still maintains its elasticity and high resource utilization.
Specifically, in BaaS, there are a large number of blockchain in-
stances running simultaneously, where peers of each instance may
span across multiple data centers, e.g., 𝑏1𝑝1 (representing peer 𝑝1
in blockchain instance 𝑏1), 𝑏2𝑝1, 𝑏3𝑝2 are running in 𝐷𝐶1 while
𝑏1𝑝2, 𝑏2𝑝2, 𝑏2𝑝3, 𝑏3𝑝1 are running in 𝐷𝐶2. Using FlexChain, each
data center can still flexibly scale up/down resources for each peer
according to the workload that it processes to improve performance
and avoid wasting resources.

Each data center has its own load balancer in a multi-data center
deployment. These load balancers periodically exchange resource
utilization statistics within each data center and peer allocation
information (which data center hosts which peers). The statistics
help to decide where to launch a new peer/blockchain instance,
as a higher level of load balancing across data centers. With the
peer allocation information, clients can submit their requests to the
nearest data center (or a cached target known to host the endorsing
peer). The receiver data center will forward the request to whoever
hosts the peer if needed.

It is also possible to deploy OSNs over multiple data centers.
However, the consensus protocol that FlexChain currently uses, i.e.,
Raft [41], is not designed for Geo-distributed deployment. Separat-
ing theOSNswould require the implementation of high-performance
global-scale consensus protocols such as GeoBFT [36], which we
leave for future work.

4 DISGGREGATINGWORLD STATE
This section discusses how FlexChain disaggregates its world state.
The blockchain world state has been implemented using a key-
value store in the XOV architecture. In FlexChain, each peer’s
copy of the world state might span the local cache on compute
nodes, the remote memory pool, and the remote storage pool. In
addition to serving as a regular application-level buffer, the local
cache on a compute node is also pre-registered to the NIC as an
RDMA memory region. This arrangement avoids extra memory
copy when performing RDMA operations to remote memory, and
thus can speed up world state accesses. The world state is primarily

stored in remote memory, which is slower than the local cache
but much faster than remote storage. Although users can scale up
remote memory regardless of compute resources, the expense of
using DRAM is significantly higher than that of using secondary
storage such as disks. For that reason, FlexChain allows its users
to set a limit on the remote memory size according to their own
budget. Once approaching the limit, some cold world state will be
evicted from remote memory to remote storage to make room for
the hot state that is newly written. More importantly, it is necessary
to store the world state in remote persistent storage in order to
achieve fast recovery when a memory node fails.

In the remainder of this section, we first describe each com-
ponent in the disaggregated world state of FlexChain in greater
detail, followed by the read/write procedure, and then the buffer
eviction. Our discussions are with respect to one logical peer,
𝑝1 in our example. All peers follow the same steps to work with
the disaggregated world state.

4.1 Overview
Figure 4 shows 𝑝1’s view of the disaggregated world state span-
ning remote memory, remote storage, and the local memory on its
compute nodes.

4.1.1 Remote Memory. We manage remote memory by dividing it
into control and data planes as follows.
Data plane. On the data plane, remote memory is managed in
the unit of slab (1GB each in our implementation). To reduce the
overhead of memory registration that requires pinning physical
RAM, these slabs are registered to RDMA NICs when memory
nodes boot up. Within a slab, different versions of a record form a
linked chain. This helps compute nodes to get the latest value by
walking the chain, without the need of consulting the control plane
every time. Doing so avoids overburdening the memory controller
that has limited CPUs.
Control plane. The control plane includes a hash table that maps
a record to its latest address on the data plane (also called remote
address), the address manager, the space manager, the bookkeep-
ing agent, and the eviction manager. The latter four modules are
running as different threads on the memory controller. Sections 4.2
and 4.3 describe them in detail.

4.1.2 Remote Storage. Remote persistent storage maintains the
blockchain ledger and the world state.
Blockchain ledger. For the sake of stability, each peer in FlexChain
appends its latest block in the blockchain ledger to the block store
in remote storage.
World state. Unlike generic XOV where each peer maintains its
world state on a persistent disk, FlexChain maintains the major
part of the world state on volatile remote memory. Consequently,
when the remote memory fails, a peer needs to replay the entire
chain of blocks stored on remote storage to recover the world
state. FlexChain avoids this by offloading block materialization to
remote storage, using the multi-layer structure and compaction
of SSTables [19] (an efficient on-disk representation of key-value
pairs). Specifically, the block store keeps a savepoint, which is the
id of the latest block that has been materialized into level 0 of the
world state. In the materialization process, the write sets of all valid
transactions in a block (as indicated by the validity bitmask) will

27

Figure 4: 𝑝1’s view of the disaggregated world state. For simplicity, we only show the data flow related to cNode1.

be added to an SSTable in sequence. With this design, the peer
recovers by materializing only subsequent blocks in its blockchain
ledger whose id is larger than the savepoint into level 0. After
materializing its own ledger, the recovering peer asks other peers in
its organization about the current block height and fetches missing
blocks. The fetched blocks are verified, appended to the peer’s own
blockchain ledger, and then materialized similarly.

The materialized SSTables on level 0 have overlaps, i.e., multiple
versions of a record are all kept on disk and can spread across
different SSTables. As a result, when reading a record from remote
storage, we need to iterate through all SSTables on level 0 in the
worst case. If we can reduce data overlap, the number of SSTables on
level 0 will decrease, which facilitates reading a record from remote
storage after a peer recovers from memory failures. To that end,
the storage nodes perform major compaction in the background.
The major compaction process clears every SSTable in level 0 and
combines them into new SSTables in level 1, where there are no
overlaps. The multi-level structure and compaction algorithms we
use here are similar to LevelDB [1]. The key difference is that
when a failure occurs, our offloaded materialization process avoids
replaying from the beginning of the log.

4.1.3 Local Memory. Each compute node has a metadata cache
and a local data cache.
Metadata cache. In the compute-local memory, themetadata cache
maps a key, e.g., 𝑘𝑒𝑦1, to its remote address on the chain. If 𝑘𝑒𝑦1
has a cache hit, this prevents the compute node from contacting
the address manager on the control plane of remote memory when
reading the record. The mapping for 𝑘𝑒𝑦1 is updated when the
compute node either writes a new record for 𝑘𝑒𝑦1, or observes an
updatemade by other compute nodes (when it performs a chainwalk
to read the latest version). The metadata cache also keeps an LRU
list to keep track of LRU keys on this compute node.
Local data cache. The local data cache contains a contiguous mem-
ory region that is registered to the RDMA NIC in advance, in order
to perform RDMA transfers. It also serves as a cache for smart con-
tracts to accelerate world state lookups. FlexChain uses an address
hash table and an LRU list to manage the local data cache. The
address hash table maps a remote address to an iterator that points
to an entry in the LRU list. The entry contains the remote address,
the corresponding local address in the registered memory region,
and other control information. With this design, when FlexChain
wants to read a record stored in remote memory, it first looks up

its local data cache to see if that buffer has already been cached
locally.

4.2 Read/Write Procedure
RDMA supports one-sided and two-sided communication patterns.
One-sided RDMA operations allow one node to directly access
the memory on another node without involving the latter’s CPUs.
Two-sided RDMA operations involve both sender’s and receiver’s
CPUs, where both sides need to either poll the completion queue or
use the slower event-driven notifications. Thus, one-sided RDMA
usually has better performance and consumes fewer CPU resources
on the receiver node. In our read/write procedure, we use one-sided
RDMA (to a feasible extent) to optimize performance and minimize
the burden of CPUs on remote memory controllers.
Read procedure. The compute node first looks up the metadata
cache to see if the remote address of the key it wants to read is
already known. If not, it issues a two-sided RDMA request to ask
the address manager on the control plane. If the remote address
is not found on the control plane either, the compute node asks
the storage node to search for this key on SSTables. If the record
is in remote memory and hence its remote address is known, the
compute node looks it up in the local data cache. If there is no local
cache of this record, the compute node will allocate a buffer in the
local data cache and perform a one-sided RDMA read to fetch the
record from the remote buffer. The compute node next checks the
validity flag stored in the header field (which is set to False during
buffer eviction). If it is invalid, the compute node will retry the read
procedure after a backoff time. Once a valid record has been cached
in the local data cache, the compute node checks if the header is
NULL (which means this is the latest version); if not, it performs a
chainwalk by repeatedly fetching the next remote address specified
by the header, until finding the latest version. Finally, both local
metadata cache and data cache are updated.
Write procedure. FlexChain performs out-of-space updates as fol-
lows. When updating a record, FlexChain writes it into a newly
allocated remote buffer, and then links it to the old records on the
chain of this record. This design allows FlexChain to deal with
variable-length key-value records easily and ensures writes do not
block reads on the data path. Concurrent reads and writes to the
same key are common in both generic XOV blockchains and Flex-
Chain, due to their optimistic concurrency control mechanism.

The compute node first issues a two-sided RDMA request to
the space manager on the control plane, asking for a free buffer to
write the new record in remote memory. It then allocates a buffer in

28

the local data cache in order to perform the RDMA transfer. After
writing the record in the local data cache and updating the metadata
cache, the compute node issues a one-sided RDMA write request
(with immediate value) to write the record into remote memory.

The bookkeeping agent on the control plane will be notified with
the immediate value, which embeds the buffer offset and length. The
agent then locks the written key in the control plane and checks if
this key already exists (as it might have been evicted) in the control
plane. If so, the record is linked to the previous version, and the
hash table on the control plane is updated. If this key does not exist,
a new entry will be added to the hash table. The agent then releases
the lock and sends a reply to the compute node. Once the compute
node gets a reply from the bookkeeping agent, it invalidates other
compute nodes provisioned for the same peer, by notifying them
of the updated key and new remote address. Upon receiving an
invalidation request, a compute node checks if its local data cache
has a cached record for this key. If it has and the header is NULL, the
compute node will update the header in the cached record to point
to the new remote address. A record is considered as committed
only if the compute node has received all invalidation responses.
This mechanism ensures that every committed record will be seen
by other compute nodes, preventing them from reading outdated
cached records. Optionally, under an update-heavy and skewed
workload, in-memory garbage collection can be enabled to recycle
old-version records in the background.

4.3 Buffer Eviction
The buffer eviction for remote memory is an expensive operation
because it needs to write dirty records to SSTables in the remote
storage pool, which involves both disk flushing and network round
trips. However, this is an inevitable operation when the amount
of memory used has reached the upper bound specified by the
user. To alleviate its negative performance impact on the critical
read/write path, FlexChain appoints a background eviction manager
to periodically perform buffer eviction. The eviction manager is
triggered if the number of free addresses drops below a certain
threshold.

Due to the use of one-sided RDMA operations, the control plane
is not able to keep an LRU list of keys to evict. To resolve this,
once the eviction manager is triggered, it first asks the compute
nodes provisioned for the peer for the locally recorded cold keys,
and then unions them to derive the keys to evict. The eviction
manager next locks the keys to evict on the control plane and
sets the validity flag in the record headers to False. This ensures
atomicity during the eviction process by preventing the evicted
records from being updated or read. Otherwise, there might be
inconsistencies among compute nodes, memory nodes, and storage
nodes, e.g., a newly written record is considered as evicted on
the control plane, but it has not been flushed to remote storage.
The eviction manager then sends the latest version of the evicted
records to remote storage and writes them into SSTables on level 0.
Once the persistence to SSTables completes, the eviction manager
deletes these keys from the control plane and invalidates them
on the compute nodes provisioned for the peer. Specifically, the
manager notifies the compute nodes to mark their locally cached
remote addresses and records as outdated. The evicted buffers are

now marked as free and can be re-allocated by the space manager.
Finally, the locks are released, and the validity flags are set to True.

The eviction procedure implicitly interacts with the block mate-
rialization process, since both of them write to SSTables in remote
storage. To save disk space and improve eviction performance, when
adding a record to SSTables during eviction, FlexChain compares
the version of the record (represented by the block id and transac-
tion id) with the savepoint. If the block is older than the savepoint,
FlexChain skips the record since it has already been persisted. More
importantly, to avoid stale versions overwriting the latest version,
FlexChain keeps track of the evicted keys along with their versions.
During block materialization, FlexChain checks the current block id
and its keys. If there is a newer version of the key that has already
been evicted, FlexChain skips the materialization of the key. This
is necessary since during the compaction, records newly added to
SSTables will overwrite previous records of the same key.

5 PARALLELIZING VALIDATION
As discussed in Section 3, the validation phase consists of three
main steps: endorsement policy evaluation (𝑉1), conflict check (𝑉2),
and world state update (𝑉3). FlexChain can dynamically scale up
CPU cores and remote RAM according to the workload. As a result,
the execution phase (X) and endorsement policy evaluation (𝑉1) are
no longer the bottleneck. However, unlike the execution phase that
processes transaction proposals in parallel, the traditional design
of the validation manager processes transactions within a block
sequentially: it picks transaction 𝑡𝑖 , performs conflict check (𝑉2) and,
if valid, updates the world state (𝑉3); then picks the next transaction
𝑡𝑖+1 and repeats until all transactions are validated.

This sequential approach bottlenecks the performance of Flex-
Chain due to the high latency in fetching/committing to the world
state, as incurred by the read/write procedure. Hence, to maximize
the end-to-end throughput of FlexChain, we leverage dependency
graph-based techniques to fully parallelize validation: for transac-
tions with no data dependencies, FlexChain will validate them (𝑉2
and 𝑉3) in parallel. The next sections detail our techniques.

5.1 Dependency Graph Construction
Dependency graph-based concurrency control has been shown
to be effective in database management systems [26, 27, 59] and
blockchains [13]. In FlexChain, by capturing dependencies between
transactions, conflict check (𝑉2) and world state update (𝑉3) steps
can be performed for a transaction as soon as all its predecessors
in the dependency graph have been committed or aborted. Given a
transaction block 𝐵, dependency graph 𝐺 (𝐵) = (𝑇, 𝐸) is a directed
acyclic graph where𝑇 denotes the set of transactions within 𝐵 that
are marked as valid in the Validation System Chaincode (VSCC)
step (𝑉1), and (𝑡𝑖 , 𝑡 𝑗) ∈ 𝐸 if and only if 𝑡𝑖 is ordered before 𝑡 𝑗 , 𝑡𝑖
and 𝑡 𝑗 are conflicted, and there is no transaction 𝑡𝑘 between 𝑡𝑖 and
𝑡 𝑗 in 𝐵 such that 𝑡𝑘 conflicts with both 𝑡𝑖 and 𝑡 𝑗 . The dependency
graph, therefore, captures write-read (WR), read-write (RW) and
write-write (WW) conflicts.

We illustrate three types of conflicts using an example. Suppose
the validation manager on peer 𝑝1 receives a block 𝐵 = [𝑡1, 𝑡2, ..., 𝑡𝑛]
from the ordering service nodes. First, if there isWR conflict be-
tween 𝑡1 and 𝑡2, i.e., 𝑡1 updated 𝑘𝑒𝑦𝐴 to 𝑣𝑖 and 𝑡2 reads 𝑘𝑒𝑦𝐴 with a
version older than 𝑣𝑖 (this is because 𝑡2 is simulated before 𝑡1 enters

29

Algorithm 1 Parallel Validation (𝑉2 and 𝑉3)
Input: A block 𝐵 and its dependency graph𝐺 (𝐵) = (𝑇, 𝐸)

1: Initialize Set𝑊 ← 𝑇 and Set𝐶 ← 𝑒𝑚𝑝𝑡𝑦

2: while𝑊 is not empty do
3: for Transaction 𝑡 in𝑊 do
4: if all Predecessor(𝑡) in𝐶 then
5: Remove 𝑡 from𝑊

6: Trigger ValidationWorker(𝑡)
7: end if
8: end for
9: end while

10: Thread ValidationWorker(𝑡):
11: if CheckConflict(𝑡) is false then
12: UpdateState(𝑡)
13: end if
14: Add 𝑡 to𝐶

the validation phase), then 𝑡2 must be marked as invalid during
validation since it reads a stale version. Thus, we need an edge
(𝑡1, 𝑡2) to ensure 𝑡2 will be validated after 𝑡1. Otherwise, some peer
𝑝2 may validate 𝑡2 before 𝑡1 due to scheduling, possibly marking 𝑡2
as valid, which is inconsistent with peer 𝑝1. If there is RW conflict
between 𝑡1 and 𝑡2, similarly an edge (𝑡1, 𝑡2) is needed. Finally, if
there isWW conflict between 𝑡1 and 𝑡2, i.e., 𝑡1 updates 𝑘𝑒𝑦𝐴 to 𝑣𝑖
while 𝑡2 updates 𝑘𝑒𝑦𝐴 to 𝑣𝑖′ , an edge (𝑡1, 𝑡2) is needed to ensure
eventual consistency of 𝑘𝑒𝑦𝐴 across all peers. Note that since the
dependency graph is acyclic, i.e., edges are added from older trans-
actions to newer ones, the resulting schedule is conflict serializable
where an equivalent serial schedule can be given by the topological
sort of the dependency graph.

FlexChain constructs the dependency graph in the ordering stage.
The ordering service nodes of FlexChain, similar to Hyperledger
Fabric, use the crash fault-tolerant protocol Raft [41] to establish
consensus on the order of transactions. Since we assume order-
ing service nodes are honest, i.e., they might crash but they do
not behave maliciously, it is sufficient to construct the graph only
on a single node, e.g., the leader. Specifically, apart from the cur-
rently running Raft instances, the leader embodies a block formation
thread. Once a transaction 𝑡𝑛 is committed (i.e., the leader receives
confirmation from the majority that the entry has been replicated
and applies the entry to its log), the block formation thread checks
conflicts between 𝑡𝑛 and any transaction 𝑡 𝑗 (1 ≤ 𝑗 < 𝑛), resulting
in incremental graph construction. This approach minimizes the
sequential validation bottleneck because (1) the block formation
thread operates on a monolithic server and uses local data, and (2)
the graph construction, which is sequential, is integrated into the
block formation, which is inevitably sequential.

5.2 Concurrency Control
The primary cNode of each peer has a centralized validation man-
ager that launches validation workers from a local thread pool. The
validation manager assigns transactions within a block to validation
workers based on the dependency graph of the block. Algorithm 1
demonstrates the parallel validation of transactions. Specifically,
the validation manager maintains a set𝑊 as transactions to be
validated and a set𝐶 as transactions completed by validation work-
ers. The validation manager repeatedly checks each transaction
𝑡 in𝑊 . If all 𝑡 ’s predecessors have been validated, the manager
assigns 𝑡 to the least-loaded validation worker, which adds 𝑡 to 𝐶
upon finishing the validation. FlexChain also allows the validation

manager to dispatch validation workers to other cNodes to further
benefit from the elastic compute resources.

6 EVALUATION
Our evaluation aims to answer the following questions:

(1) How well does the elasticity of FlexChain handle different
blockchain workloads? What operational benefits does it
provide for the users? (Section 6.2)

(2) How well does FlexChain perform when compared to ex-
isting XOV blockchains that are deployed as traditional
distributed systems? (Section 6.3)

(3) How does the extent of disaggregation (e.g., the cache size
in the compute pool and the CPU clock speed in thememory
pool) affect the performance of FlexChain? (Section 6.4)

(4) Does FlexChain retain its performance improvements when
it is deployed across multiple data centers? (Section 6.5)

6.1 Experimental Setup
We have implemented a prototype of FlexChain in C++. We use
libibverbs [2] for all RDMA communications that are specific to a
disaggregated system. libibverbs enables user-space processes to
utilize RDMA and provides fine-grained control over hardware to
achieve optimal performance. In FlexChain, RDMA is used for com-
munications between compute and memory nodes, and between
different compute nodes. In addition to RDMA for disaggregation,
we use gRPC over regular Ethernet for other communications in
an XOV blockchain, such as messages between orderers and peers.
For the disaggregated storage in FlexChain, we use LevelDB [1] for
its highly optimized compaction performance.

Although we cannot directly use Hyperledger Fabric [3] due to
the lack of RDMA support in Go (the language that implements
Fabric), we have implemented an XOV blockchain that is consis-
tent with the design of Fabric in C++, which achieves even better
performance than Fabric as we show shortly.
Testbed. Our testbed consists of 20 c6220 bare-metal machines on
CloudLab [24], each with two Xeon E5-2650v2 processors (8 cores
each, 2.6Ghz) and two 1TB SATA 3.5” 7.2K rpm hard drives. These
machines are connected by two networks, each with one interface:
(1) an Infiniband network that achieves 56 Gbps bandwidth, using
Mellanox FDR CX3 NIC and Mellanox SX6036G switches; (2) a
10 Gbps Ethernet commodity network. This testbed allows us to
emulate a compute pool with 192 cores, a memory pool with 192
GB RAM, and a storage pool with 4TB HDDs.

In our experiments, unless otherwise specified, we run a single
blockchain channel that consists of 3 peers and uses Raft [41] as
the consensus protocol, with 3 orderers and a batch size of 200. To
minimize the end-to-end latency, we use the smallest block size
that maximizes throughput for each experiment. To measure the
highest throughput, we increase the number of clients in the system
until the rate of committed transactions per second (tps) reaches
its maximum value. All numbers are the average over three runs.
Workloads. In our experiments, we use three types of workloads:
YCSB, Smallbank, and a machine learning workload. In the YCSB
benchmark, we preload the blockchain with a number of records
and issue frequent requests to the key-value store with different
ratios of read and write operations. In Smallbank, we implement a
smart contract that transfers money between bank accounts. The

30

2 4 8 16 32 48

1,000

2,000

3,000

4,000

(a) Number of Cores

Sequential Parallel

1 5 10 20 30 40 50

2,000

4,000

6,000

8,000

(b) Available Remote RAM (GB)
Figure 5: (a) Compute and (b) Memory scaling throughput.

smart contract preloads the blockchain with a number of users,
each with a checking account and a savings account. In each run,
we randomly pick one of the five modifying transactions with
probability 𝑃𝑤 and the reading transactions with probability 1−𝑃𝑤 .

Both YCSB and Smallbank mirror the macro benchmarks de-
scribed in Blockbench[22]. These benchmarks arememory-intensive
and do not truly stretch compute resources. In our third bench-
mark, we utilize a smart contract that performs the same compute-
intensive operations as in the World Food Program [9, 39, 60]:
here, we interchangeably run two transactions: (1) updateProfile(),
which is write-only and emulates refugee profile updates to the
world state, and (2) getFood(), which performs K-Means computa-
tion to conduct image classification and determine food distribution.
The getFood() transaction requires reading data points from the
blockchain world state, performing K-Means computation, and
finally, writing the result back to the world state.

We describe the specific parameters we use for each workload
in each experiment in the following sections.

6.2 The Elasticity of Disaggregation
Compute scaling.Our first set of experiments aims to demonstrate
that given a compute-intensive smart contract, FlexChain can scale
up compute resources to achieve better performance while leaving the
amount of provisioned RAM unchanged. This is a key operational
benefit of DDCs that is not easily achievable in a traditional setup.
We use the food distribution smart contract as a representative
workload. The smart contract runs the updateProfile() transac-
tion with 5% probability, and the getFood() transaction with 95%
probability. In each transaction, we access the world state based on
a uniform distribution. We set 𝐾 = 20 in K-Means, epoch= 2000,
data dimensions = 100, and the convergence threshold 𝜏 = 0.01.
For each peer, we fix the local cache size on the compute nodes of
this peer as 200MB and its remote memory size as 8GB. We vary
the number of CPU cores each peer uses in the compute pool and
measure the throughput.

Figure 5(a) shows that when we raise the CPU cores per peer
from 2 to 16 (within a compute node), the throughput of FlexChain
with sequential validation increases from 566 tps to 3196 tps. Scal-
ing a FlexChain peer out from one compute node (16 cores) to
three nodes (48 cores) further boosts its throughput to 3995 tps.
Our results demonstrate the capability of FlexChain at handling
compute-intensive smart contracts—when the workload requires
higher throughput, FlexChain simply provisions more CPU cores
within a single compute node first and, if needed, scales out by
including additional compute nodes. Moreover, due to resource

0 0.3 0.6 0.9 1.2 1.5
·104

Monolithic
(3 channels)
FlexChain
(3 channels)
Monolithic
(3 instances)
FlexChain
(3 instances)

Throughput [tps]

Compute-intensive Memory-intensive Both-intensive

Figure 6: Running multiple contracts simultaneously.

pooling, FlexChain can utilize an arbitrary amount of compute re-
sources, an elastic benefit that is hard to achieve in the traditional
generic XOV architecture.
Parallel validation.Aswe increase the number of CPU cores avail-
able for the simulation (𝑋) phase, we observe that the bottleneck on
overall performance shifts to the sequential validation phase, i.e.,
conflict check (𝑉2) and commit (𝑉3), the overhead of which comes
from accessing remote memory. To further optimize FlexChain’s
performance, we apply the parallel validation techniques described
in Section 5 and run the validation workers on 16 additional cores.
Again, this elasticity is made possible by FlexChain’s disaggregated
architecture. Figure 5(a) shows that parallel validation indeed re-
sults in better performance: compared to sequential validation on
three compute nodes (48 cores), the throughput of FlexChain now
increases from 3995 tps to 4541 tps, thereby achieving better scala-
bility. This evaluation shows that parallelizing the validation phase
is necessary when FlexChain executes the simulation phase at scale.
Memory scaling. Our next experiment focuses on another op-
erational benefit of DDCs: by scaling memory nodes in the pres-
ence of data-intensive workloads, remote memory can be used in
lieu of more expensive disk swapping operations. We created a data-
intensive workload using YCSB workload A (50%write) with a total
of 4, 000, 000 records and 10 KB record size, resulting in 40 GB of
prepopulated data store. Note that the record number and size are
common in blockchain-enabled healthcare applications. In each
transaction, we choose a record according to the uniform distribu-
tion. We fix the local data cache as 500MB and scale up the amount
of remote memory available for each peer from 1 GB to 50 GB.
The remote storage pool has 2 TB capacity. Each peer has a fully
provisioned compute node with 16 cores.

Figure 5(b) depicts the results of memory scaling. As remote
memory increases from 1 GB to 50 GB, FlexChain achieves a 140×
speedup, saturating at 8623 tps. Data-intensive smart contracts
perform poorly when remote memory is as limited as 1GB, The
root cause is that the remote storage nodes must perform expensive
disk-intensive operations for compaction and random reads. As
remote memory increases, most requests that access the world state
are served purely in memory, and thus, there are fewer evictions to
remote storage, resulting in higher throughput. This also justifies
our tiered key-value store design: disaggregating only the storage
is not sufficient to achieve high performance.
Benefits of decoupling resources. One of the key operational
benefits of DDC is decoupling compute and memory resources,
thereby promoting efficient resource utilization. We conducted an

31

YCSB-A YCSB-B

2,000

4,000

6,000

8,000

(a) YCSB Workload (4GB)

L=500 MB& R=4GB M=4 GB M=4 MB

𝑃𝑤 = 5% 𝑃𝑤 = 50% 𝑃𝑤 = 95%

2,000

4,000

6,000

(b) SmallBank

L=50 MB& R=400MB M=400 MB

YCSB-A YCSB-B

2,000

4,000

6,000

8,000

(c) YCSB Workload (8GB)

L=4 GB& R=10GB M=4 GB

Seq. Valid. (16X+1V) Par. Valid. (16X+16V)

1,000

2,000

3,000

(d) K-Means Workload

FlexChain (C=16) Fabric (C=16)

Figure 7: Comparing FlexChain () throughput [tps] with generic XOV (). Here L stands for local data cache per peer in
FlexChain, R stands for available remote memory per peer in FlexChain, and M stands for memtable in generic XOV. In each
transaction, we choose a record/user according to the uniform distribution. (a): prepopulated with 400, 000 x 10 KB = 4 GB
records. (b): prepopulated with 2, 000, 000 users, each with 100 B for checking/savings account. (c): prepopulated with 800, 000 x
10 KB = 8 GB records. (d): C stands for CPU cores per peer, X for simulation thread count, and V for validation thread count.

experiment to show when serving a mixture of workloads, Flex-
Chain saves a significant amount of resources while achieving
similar performance to that of monolithic BaaS. We run three smart
contracts simultaneously in three blockchain channels/instances:
one compute-intensive contract (the same as in Figure 5(a)), one
memory-intensive contract (the same as in Figure 5(b)), and one
contract that is both compute-intensive and memory-intensive, gen-
erated by increasing the size of the prepopulated data store in the
K-Means workload. Each channel/instance consists of three peers
and runs one distinct type of contract.

Figure 6 shows when running three contracts simultaneously in
three channels, FlexChain saves 48 cores and 192GB RAM (1/3 re-
sources) compared to monolithic BaaS, and achieves approximately
the same aggregated throughput. We observe that when running
multiple contracts together sharing the same OSNs, the bottleneck
shifts to the consensus protocol and the Ethernet network between
orderers, which limits the throughput of memory-intensive peers
in monolithic BaaS (6517 tps). To show FlexChain’s performance
without OSNs being the bottleneck, we run three contracts simul-
taneously in three blockchain instances, where each instance has
its own OSNs. As a result, the throughput of a memory-intensive
peer in monolithic BaaS increases to 8007 tps. In total, FlexChain
incurs only 9.93% performance degradation compared to monolithic
BaaS, but still saves 48 cores and 192GB RAM. FlexChain saves even
more resources when the number of peers in a blockchain increases,
which is usually the case in real-world large-scale BaaS.

6.3 Comparisons with Generic XOV
Our next set of experiments compares FlexChain with an XOV
blockchain deployed on three monolithic servers (peers) commu-
nicating with three OSNs. Each peer uses local LevelDB for its
world state. In the rest of this section, we refer to this distributed
strawman as generic XOV. This is in contrast to FlexChain, where
each peer node is disaggregated across compute and memory nodes
rather than on a single monolithic server.
YCSB at 4GB.We first run YCSB benchmark on a modest dataset of
4 GB preloaded records. Our performance results are summarized
in Figure 7(a). The left bar shows FlexChain running with a 500MB
local data cache (L) and 4GB remote memory (R) per peer. The
middle and right bars show generic XOV with memtable (M) sizes

of 4 GB and 4MB respectively. The latter 4MB is the default setting
in Fabric. The memtable serves as a temporary in-memory database
for serving read requests and storing write updates before being
evicted to the local disk. We repeat our experiments for YCSB-A
(50% reads/50% writes) and YCSB-B (95% reads/5% writes).

We observe that FlexChain has 12.8% performance degradation
on YSCB-A and 9.5% degradation on YCSB-B compared to generic
XOV (M=4GB). This is an acceptable and expected performance
overhead of disaggregation, causes by remote memory accesses.
However, generic XOV (M=4MB) performs poorly (only 120 tps)
due to excessive disk paging. Our results suggest that even when
running blockchains in a traditional non-DDC setting, maintaining
sufficient local memory that caches the working set of updates is
critical. This is more important when deploying blockchain ser-
vices in the cloud, where dynamic workloads are typical. Unlike
FlexChain, in order to keep good performance in serving dynamic
workloads, the traditional BaaS requires error-prone cross-node
live migrations, which result in resource fragmentation.

Given the poor performance of generic XOV with the default
memtable setting (M=4MB), in the next two experiments, we focus
on comparing FlexChain to generic XOV with a large memtable.
SmallBank. We next run Smallbank workload with three different
𝑃𝑤 ratios. The results are demonstrated in Figure 7(b). Interest-
ingly, FlexChain consistently outperforms generic XOV, and its
advantage is more significant in write-intensive workloads: +0.5%
when 𝑃𝑤 = 5%, +11% when 𝑃𝑤 = 50%, and +29% when 𝑃𝑤 = 95%.
The reason is, although accessing remote memory in FlexChain
incurs some overhead, LevelDB adopted in generic XOV has its own
inefficiencies: it waits until the entire memtable is full before mi-
nor compaction takes place. For large memtables, this compaction
operation blocks all future write requests and prevents further
updates. FlexChain addresses this problem by evicting buffers in re-
mote memory periodically in the background without blocking the
critical data path (as described in Section 4). Consequently, the over-
head of disaggregation in FlexChain is outweighed by LevelDB’s
limitations in generic XOV.
YCSB at 8GB. We next revisit YCSB, but this time with doubled
number of records (8GB), while increasing remotememory to 10GB
and keeping local memory at 4 GB. Figure 7(c) shows that Flex-
Chain outperforms generic XOV: +18.9% for YCSB-A and +44.9%

32

R=4GB & s=0 R=2GB & s=0 R=4GB & s=2

2,000

4,000

6,000

8,000

(a) Configurations

L= 50 MB L= 500 MB L= 2 GB

10% 50% 100% 200% 400% 800%

2,000

4,000

6,000

8,000

(b) CPU Time

YCSB-A (50% W) YCSB-B (5% W)

Figure 8: Impact of local cache/remote CPU on throughput.

Workloads Single-DC Multi-DC 50ms 100ms 250ms
Compute-intensive 3995 | 4541 1Gbps 4000 | 4530 3997 | 4529 3136 | 3130

Seq. Valid. | Par. Valid. 500Mbps 3998 | 4521 3990 | 4540 3127 | 3131

Memory-intensive 8623 1Gbps 8649 5155 1687
500Mbps 6106 2993 290

Table 1: Throughput [tps] over multiple data centers. We also
report the corresponding performance in a single data center
deployment for comparison.

for YCSB-B. These results suggest that with extra remote memory
(10GB remote memory vs. 4GB local RAM), FlexChain significantly
outperforms generic XOV. Due to memory pooling, allocating extra
remote memory for a peer is straightforward in FlexChain.
K-Means.We further run the same compute-intensive workload
as Figure 5(a) in generic XOV. We set the amount of resources, i.e.,
both CPUs and memory, to be the same as the “16 cores” bar (one
compute node) in Figure 5(a). As Figure 7(d) shows, using sequential
validation, FlexChain incurs only a 6.7% performance degradation
compared to generic XOV, and with parallel validation, FlexChain
achieves almost the same performance as generic XOV. This result
shows that FlexChain minimizes the performance penalty caused
by fetching data from the remote memory. An interesting finding in
Figure 7(d) is that parallel validation improves the performance of
FlexChain by 126 tps, but reduces the performance of generic XOV
by 98 tps. This is because validation phase is not a bottleneck in
generic XOV, so applying Algorithm 1 backfires as it requires syn-
chronization. The improvement of parallel validation on FlexChain
is more obvious when the simulation phase further scales up as in
Figure 5(a). This is also consistent with the XOX fabric [32] where
parallel validation is only beneficial when validation is expensive:
in XOX, it is due to the transaction re-execution embedded in the
validation phase; in FlexChain, it is due to memory disaggregation
and the large number of keys accessed in the K-Means workload.

The main takeaways of our evaluation results are as follows.
Despite expensive remote memory accesses, the overhead of dis-
aggregation in FlexChain is kept as low as 6.7%. In addition to the
operational benefits of DDCs on scaling up compute and memory
separately, there are scenarios where FlexChain actually outper-
forms generic XOV, due to better eviction mechanism and more
elastic remote memory. In some cases, these benefits can increase
throughput by more than 2000 tps (44.9%).

6.4 Varying the Extent of Disaggregation
A disaggregated architecture comes with some limitations. For
example, there is less memory on compute nodes compared to

monolithic servers. The CPU clock speed of remote memory con-
trollers may also be lower. Thus, it is crucial to study how sensitive
FlexChain is to the extent of disaggregation, i.e., the size of the data
cache left on compute nodes and the CPU clock speed of memory
controllers.
Impact of local data cache size. Figure 8(a) shows the experimen-
tal results for running YCSB-A (50% reads/50%writes) on FlexChain.
In this experiment, we initialize FlexChain with 4 GB records. We
vary the amount of local data cache (L) under different remote mem-
ory size (R) and Zipfian s-value (s). The Zipfian distribution is used
to choose a key for a certain transaction. Note that an s-value of 0
corresponds to the uniform distribution and hence less contention,
while a larger s-value reflects skewness in accessed keys and thus
more contention. We observe that when FlexChain has abundant
remote memory and little contention (𝑅 = 4 GB, 𝑠 = 0), as we
increase local data cache from 50MB to 2 GB, the cache hit ratio
increases from 50% to 73% for read operations. FlexChain achieves a
high cache hit ratio even with only 50MB local memory, due to the
fact that for each key it accessed and cached in the simulation phase,
FlexChain reads the key again in the validation phase. For write
operations, since we use a write-through design, the performance
of FlexChain is not affected by the amount of local data cache but is
limited by RDMA communications and the write agents on remote
memory controllers instead. Thus, this slight increase in the cache
hit ratio does not boost the performance.

When FlexChain has insufficient remote memory and little con-
tention (𝑅 = 2 GB, 𝑠 = 0), we observe similar insensitivity across
different local cache sizes. However, remote storage becomes the
bottleneck in this case: 50.1% of read requests are served by search-
ing SSTables on the persistent storage. This results in poor perfor-
mance due to increased disk activities: the throughput drops from
8000 tps to 2000 tps, a 75% reduction. A larger remote memory
would prevent such frequent disk activities from happening and
hence improve the performance.

When FlexChain has sufficient remote memory and increased
contention (𝑅 = 4 GB, 𝑠 = 2), we again observe similar insensitivity
in local cache sizes. In this case, no matter we have a 50MB local
cache or a 2GB one, FlexChain consistently achieves 99.9% cache
hit ratio and only 0.002% of requests go to SSTables, because of the
small hot record set. However, more than 50% of transactions are
aborted due to conflicts, which limits the end-to-end throughput
severely. Introducing reordering and early aborts [45, 47] can boost
XOV-style blockchains’ performance under contention.

We repeated our experiments on SmallBank and K-Means work-
loads and found similar observations.
Impact of remote CPU clock speed. In FlexChain, some tasks
residing on the remote memory controllers need CPU involvement,
e.g., the main dispatcher thread, address manager, space alloca-
tor, bookkeeping agent, eviction manager and garbage collector.
We now study the impact of weak memory controller CPUs on
FlexChain’s performance.

Figure 8(b) depicts the performance of FlexChain under YCSB
workloads (400K records with 10KB size). Here, we use cgroups
to limit the CPU time the remote memory controller can use per
period (0.1 ms). This has the same effect as limiting the CPU clock
speed. Our experiments vary the available CPU time from 10% (0.1
cores) to 800% (8 cores). In both YCSB-A and YCSB-B benchmarks,

33

FlexChain achieves good performance with only two 2.6 Ghz cores,
and there are diminishing returns as more CPU cycles are made
available. If the remote memory controller only has one 1.3 Ghz
core (a reasonable configuration for disaggregation), FlexChain
experiences 1308 tps (16.4%) and 741 tps (10.3%) throughput degra-
dation for YCSB-A and YCSB-B respectively, relative to the 8 cores
(800% CPU time) setting. Performance degradation is larger for
write-heavy workloads like YCSB-A, since every write involves
more operations on the remote memory controller than reads. In
contrast, reads benefit more from local metadata and data caches.

6.5 Cross-Data Center Deployment
Our final set of experiments evaluates FlexChain in a cross-data
center deployment to investigate the impact of wide area network
performance. We use both the compute- and memory-intensive
workloads in Figure 5(a) and 5(b) in an emulated multi-data cen-
ter environment. Specifically, we scale up resources to the largest
extent as the rightmost bars in Figure 5(a) and 5(b), and measure
FlexChain’s throughput under different network environments. Our
setup consists of four data centers connected by a wide area net-
work. We place all OSNs in 𝐷𝐶1 as well as 3 logical peers in 𝐷𝐶2
to 𝐷𝐶4 respectively, and vary the network bandwidth and RTT
latency between different data centers using Linux netem [30].

Table 1 summarizes the results. As reported in [4], 1 Gbps band-
width with 50 ms RTT is a common network condition between
two data centers. Under this condition, the cross-data center de-
ployment achieves comparable throughput with the single-data
center deployment on both compute- and memory-intensive work-
loads. FlexChain retains much of its performance improvements
derived via elastic scaling even when the latency (bandwidth) of
the network doubles (halves) to 100ms (500Mbps). Like any other
distributed system, the performance of FlexChain inevitably drops
under extreme network conditions, e.g., with 250ms latency, bot-
tlenecked by the transaction transfer between peers and orderers.
Such conditions only affect memory-intensive workloads, as the
amount of data transferred across data centers is insignificant in
compute-intensive workloads. These conditions are uncommon as
the Internet speed is getting increasingly higher [4].

7 RELATEDWORK
In this section, we briefly survey several related research lines.
OS abstractions for disaggregated memory. Building operating
systems suitable for DDCs has been proposed in LegoOS [46] that
maintains a POSIX API for system calls, and in Infiniswap [35]
that provides a page-oriented abstraction for paging to remote
memory. LegoOS is designed for general purpose applications, but
by itself cannot be a drop-in replacement for database systems
given its poor performance [61–63]. LegoOS does not satisfy our
needs either since it does not support writable shared memory
across different processors. Infiniswap cannot be directly used by
FlexChain to support the remote key-value store, since it forces
every access to go through a time-consuming kernel data path.
Further, FlexChain is optimized at a record level, and a page-level
eviction approach backfires with poor performance [64]. It may be
possible to use middleware such as Infiniswap for paging transient
smart contract data currently maintained in local memory.

Disaggregated databases.Given the poor performance of running
databases on LegoOS and Infiniswap, there are also new proposals
on rethinking the design of relational databases [18, 63, 64] that
are optimized for the DDC setting. PolarDB Serverless [18] and
Legobase [64] also study how independent hardware failures in
DDCs accelerate the failure recovery. There is a significant architec-
tural difference between relational databases and XOV blockchains.
As a result, the design principles and performance implications of
these studies are not applicable to disaggregated XOV blockchains.
Apart from relational databases, disaggregating key-value store
using RDMA and remote memory has been studied [23, 54]. None
of these studies utilize a tiered design that includes remote stable
storage and local cache. Consequently, they are not suitable to be
used in disaggregated blockchains that require data durability and
affordable budgets for users.
Optimizing XOV blockchains. Several studies have improved
the performance of Hyperledger Fabric [16] while still following
its XOV architecture [32, 34, 44, 45, 47, 49–51, 58]. FastFabric [34]
targets conflict-free transaction workloads and improves Fabric’s
throughput by using different data structures and caching tech-
niques for gRPC, and pipelining the transaction validation. How-
ever, FastFabric assumes the entire blockchain world state fits in its
in-memory hashtable. Fabric++ [47] employs concurrency control
techniques to early abort transactions or reorder them after the
order phase to reconcile the potential conflicts. FabricSharp [45]
goes one step further and presents an algorithm to early filter out
transactions that can never be reordered and also presents a reorder-
ing technique that eliminates unnecessary aborts. All such conflict
resolution techniques can be employed in the ordering phase of
FlexChain.

8 CONCLUSION
This paper presents FlexChain, the first XOV blockchain system that
is designed following the disaggregation paradigm. FlexChain uses
a tiered key-value store to scale its memory and storage indepen-
dently and elastically. FlexChain also presents a parallel validation
process that removes a bottleneck in disaggregated XOV systems.
Our experimental results demonstrate that FlexChain provides in-
dependent compute and memory scalability while incurring at most
12.8% performance overhead of disaggregation.

Our work is the first step towards a longer-term research agenda
on distributed systems in an exciting new hardware paradigm based
on DDCs. As the next steps, we are exploring optimizing other as-
pects of blockchain systems, e.g., the consensus component to take
advantage of the new DDC hardware. Handling heterogeneous and
correlated failures induced by DDCs gracefully is also a challenging
next step. We also plan to explore a mix of hardware resources,
e.g., combining CPUs, GPUs and FPGAs in compute pools. Finally,
FlexChain is a demonstration that a complex distributed system
can be made to run efficiently in DDCs. In the long term, we plan
to work towards an automated tool that seamlessly migrates legacy
distributed systems to run efficiently in DDCs.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback
and suggestions. This work is funded by NSF grants CNS-2104882,
and CNS-2107147 and by ONR grant N00014-18-1-2021.

34

REFERENCES
[1] [n.d.]. https://github.com/google/leveldb
[2] [n.d.]. https://github.com/linux-rdma/rdma-core
[3] [n.d.]. https://github.com/hyperledger/fabric
[4] [n.d.]. https://www.cloudping.co/grid
[5] [n.d.]. Alibaba Cloud Blockchain as a Service.

https://www.alibabacloud.com/product/baas.
[6] [n.d.]. Blockchain on AWS Enterprise blockchain made real.

https://aws.amazon.com/blockchain/.
[7] [n.d.]. IBM Blockchain Platform. https://www.ibm.com/cloud/blockchain-

platform.
[8] [n.d.]. Oracle Blockchain. https://www.oracle.com/blockchain/.
[9] 2017. Blockchain Against Hunger: Harnessing Technology In Support Of Syrian

Refugees | World Food Programme — wfp.org. https://www.wfp.org/news/
blockchain-against-hunger-harnessing-technology-support-syrian-refugees.
[Accessed 27-Mar-2022].

[10] 2018. Cortex Labs Pte. Ltd., Singapore. https://www.cortexlabs.ai/
[11] 2020. ConnectX-6 Single/Dual-Port Adapter supporting 200Gb/s with VPI. https:

//www.mellanox.com/products/infiniband-adapters/connectx-6.
[12] Cornelius C. Agbo, Qusay H. Mahmoud, and J. Mikael Eklund. 2019. Blockchain

Technology in Healthcare: A Systematic Review. Healthcare 7, 2 (2019). https:
//doi.org/10.3390/healthcare7020056

[13] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Par-
Blockchain: Leveraging Transaction Parallelism in Permissioned Blockchain
Systems. In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 1337–
1347.

[14] Mohammad Javad Amiri, Joris Duguépéroux, Tristan Allard, Divyakant Agrawal,
and Amr El Abbadi. 2021. SEPAR: Separ: Towards Regulating Future of Work
Multi-Platform Crowdworking Environments with Privacy Guarantees. In Pro-
ceedings of The Web Conf. (WWW). 1891–1903.

[15] Mohammad Javad Amiri, Boon Thau Loo, Divyakant Agrawal, and Amr El Ab-
badi. 2022. Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System
with Confidentiality Guarantees. Proc. of the VLDB Endowment 15, 11 (2022), 1.

[16] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.
Hyperledger Fabric: a distributed operating system for permissioned blockchains.
In European Conf. on Computer Systems (EuroSys). ACM, 30.

[17] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Disaggregation and
the Application. In 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20).

[18] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021. ACM, 2477–2489. https://doi.org/10.1145/3448016.3457560

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[20] CortexFoundation. 2019. tech-doc/cortex-details.md at master ·
CortexFoundation/tech-doc — github.com. https://github.com/
CortexFoundation/tech-doc/blob/master/cortex-details.md. [Accessed
27-Mar-2022].

[21] Sam Daley. 2021. 18 Blockchain-as-a-Service Companies Making the DLT More
Accessible. https://builtin.com/blockchain/blockchain-as-a-service-companies.

[22] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-
Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In
SIGMOD Int. Conf. on Management of Data. ACM, 1085–1100.

[23] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. {FaRM}: Fast Remote Memory. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). 401–414.

[24] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[25] Subhieh El Salhi, Fairouz Farouq, Randa Obeidallah, Yousef Kilani, et al. [n.d.].
Real-Time Carpooling Application based on k-NN Algorithm: A Case Study in
Hashemite University. ([n. d.]).

[26] Jose M Faleiro and Daniel J Abadi. 2015. Rethinking serializable multiversion
concurrency control. Proceedings of the VLDB Endowment 8, 11 (2015), 1190–1201.

[27] Jose M Faleiro, Daniel J Abadi, and Joseph MHellerstein. 2017. High performance
transactions via early write visibility. Proc. of the VLDB Endowment 10, 5 (2017),
613–624.

[28] Liming Fang, Bo Zhao, Yang Li, Zhe Liu, Chunpeng Ge, and Weizhi Meng. 2020.
Countermeasure Based on Smart Contracts and AI against DoS/DDoS Attack in
5G Circumstances. IEEE Network 34, 6 (2020), 54–61. https://doi.org/10.1109/
MNET.021.1900614

[29] Ethan Frey and Christopher Goes. [n.d.]. Cosmos Inter-Blockchain Communica-
tion (IBC) Protocol. https://cosmos.network. 2018.

[30] The Linux Fundation. 2021. netem. Retrieved July 4, 2022 from https://wiki.
linuxfoundation.org/networking/netem

[31] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Require-
ments for Resource Disaggregation.

[32] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2020. XOX Fabric:
A hybrid approach to transaction execution. In Int. Conf. on Blockchain and
Cryptocurrency (ICBC). IEEE, 1–9.

[33] Christian Gorenflo, Stephen Lee, Lukasz Golab, and S. Keshav. 2019. FastFabric:
Scaling Hyperledger Fabric to 20,000 Transactions per Second. arXiv preprint
arXiv:1901.00910 (2019).

[34] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
Fastfabric: Scaling hyperledger fabric to 20,000 transactions per second. In Int.
Conf. on Blockchain and Cryptocurrency (ICBC). IEEE, 455–463.

[35] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with INFINISWAP.

[36] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13, 6
(feb 2020), 868–883. https://doi.org/10.14778/3380750.3380757

[37] Zhaofeng He, Tieniu Tan, Zhenan Sun, and Xianchao Qiu. 2008. Toward accurate
and fast iris segmentation for iris biometrics. IEEE transactions on pattern analysis
and machine intelligence 31, 9 (2008), 1670–1684.

[38] Marco D. Huesch and Timothy J. Mosher. 2017. Using It or Losing It? The Case
for Data Scientists Inside Health Care. https://catalyst.nejm.org/doi/full/10.
1056/CAT.17.0493 [Accessed 27-Mar-2022].

[39] Nir Kshetri and Jeffrey Voas. 2018. Blockchain in developing countries. It
Professional 20, 2 (2018), 11–14.

[40] Rajesh Kumar, WenYong Wang, Jay Kumar, Ting Yang, Abdullah Khan, Wazir
Ali, and Ikram Ali. 2021. An integration of blockchain and AI for secure data
sharing and detection of CT images for the hospitals. Computerized Medical
Imaging and Graphics 87 (2021), 101812.

[41] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). USENIX Association, Philadelphia, PA, 305–319. https://www.usenix.
org/conference/atc14/technical-sessions/presentation/ongaro

[42] Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen
Chu. 2021. P2B-Trace: Privacy-Preserving Blockchain-based Contact Tracing to
Combat Pandemics. In SIGMOD Int. Conf. on Management of Data. 2389–2393.

[43] Zhe Peng, Jianliang Xu, Xiaowen Chu, Shang Gao, Yuan Yao, Rong Gu, and
Yuzhe Tang. 2021. Vfchain: Enabling verifiable and auditable federated learning
via blockchain systems. IEEE Transactions on Network Science and Engineering
(2021).

[44] Ravi Kiran Raman, Roman Vaculin, Michael Hind, Sekou L Remy, Eleftheria K Pis-
sadaki, Nelson Kibichii Bore, Roozbeh Daneshvar, Biplav Srivastava, and Kush R
Varshney. 2018. Trusted Multi-Party Computation and Verifiable Simulations: A
Scalable Blockchain Approach. arXiv preprint arXiv:1809.08438 (2018).

[45] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate
Blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 543–557.

[46] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation, Andrea C.
Arpaci-Dusseau and Geoff Voelker (Eds.).

[47] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case of
hyperledger fabric. In SIGMOD Int. Conf. on Management of Data. ACM, 105–122.

[48] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee,
Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A network
architecture for disaggregated racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 255–270.

[49] Joao Sousa, Alysson Bessani, andMarko Vukolic. 2018. A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform. In Int. Conf. on
Dependable Systems and Networks (DSN). IEEE, 51–58.

[50] Parth Thakkar and Senthil Nathan. 2020. Scaling Hyperledger Fabric Using
Pipelined Execution and Sparse Peers. arXiv preprint arXiv:2003.05113 (2020).

[51] Parth Thakkar, Senthil Nathan, and Balaji Vishwanathan. 2018. Performance
Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform. arXiv
preprint arXiv:1805.11390 (2018).

[52] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. 2018. Performance
Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform. In 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). 264–276. https://doi.org/
10.1109/MASCOTS.2018.00034

35

https://github.com/google/leveldb
https://github.com/linux-rdma/rdma-core
https://github.com/hyperledger/fabric
https://www.cloudping.co/grid
https://www.wfp.org/news/blockchain-against-hunger-harnessing-technology-support-syrian-refugees
https://www.wfp.org/news/blockchain-against-hunger-harnessing-technology-support-syrian-refugees
https://www.cortexlabs.ai/
https://www.mellanox.com/products/infiniband-adapters/connectx-6
https://www.mellanox.com/products/infiniband-adapters/connectx-6
https://doi.org/10.3390/healthcare7020056
https://doi.org/10.3390/healthcare7020056
https://doi.org/10.1145/3448016.3457560
https://github.com/CortexFoundation/tech-doc/blob/master/cortex-details.md
https://github.com/CortexFoundation/tech-doc/blob/master/cortex-details.md
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1109/MNET.021.1900614
https://doi.org/10.1109/MNET.021.1900614
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://doi.org/10.14778/3380750.3380757
https://catalyst.nejm.org/doi/full/10.1056/CAT.17.0493
https://catalyst.nejm.org/doi/full/10.1056/CAT.17.0493
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1109/MASCOTS.2018.00034
https://doi.org/10.1109/MASCOTS.2018.00034

[53] Feng Tian. 2017. A supply chain traceability system for food safety based on
HACCP, blockchain & Internet of things. In Int. Conf. on service systems and
service management (ICSSSM). IEEE, 1–6.

[54] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating Persistent
Memory and Controlling Them Remotely: An Exploration of Passive Disaggre-
gated {Key-Value} Stores. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). 33–48.

[55] AminVahdat. 2020. ComingOf Age In The Fifth EpochOfDistributed Computing:
The Power Of Sustained Exponential Growth. SIGCOMM 2020 Keynote.

[56] Canhui Wang and Xiaowen Chu. 2020. Performance Characterization and
Bottleneck Analysis of Hyperledger Fabric. In 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). 1281–1286. https:
//doi.org/10.1109/ICDCS47774.2020.00165

[57] Wikipedia. 2022. Image segmentation — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Image%20segmentation&oldid=
1078773313. [Online; accessed 27-March-2022].

[58] Lu Xu, Wei Chen, Zhixu Li, Jiajie Xu, An Liu, and Lei Zhao. 2020. Locking
Mechanism for Concurrency Conflicts on Hyperledger Fabric. In Int. Conf. on
Web Information Systems Engineering. Springer, 32–47.

[59] Chang Yao, Divyakant Agrawal, Pengfei Chang, Gang Chen, Beng Chin Ooi,
Weng-Fai Wong, and Meihui Zhang. 2015. Dgcc: A new dependency graph based

concurrency control protocol for multicore database systems. arXiv preprint
arXiv:1503.03642 (2015).

[60] Raul Zambrano, Andrew Young, and Stefaan Verhulst. 2018. Connecting refugees
to aid through blockchain-enabled ID management: world food programme’s
building blocks. GovLab October (2018).

[61] Qizhen Zhang, Yifan Cai, Sebastian Angel, Ang Chen, Vincent Liu, and
Boon Thau Loo. 2020. Rethinking Data Management Systems for Disaggre-
gated Data Centers.

[62] Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang Chen, Vincent Liu,
and Boon Thau Loo. 2020. Understanding the Effect of Data Center Resource
Disaggregation on Production DBMSs. Proceedings of the VLDB Endowment 13,
9 (May 2020), 1568–1581.

[63] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian
Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. 2022. Optimizing Data-
intensive Systems in Disaggregated Data Centers with TELEPORT. In SIGMOD.

[64] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Jimmy Yang, Wei Cao, Feifei Li, Bo
Wang, Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. 2021. Towards Cost-
Effective and Elastic Cloud Database Deployment via Memory Disaggregation.
Proc. VLDB Endow. 14, 10 (2021), 1900–1912. http://www.vldb.org/pvldb/vol14/
p1900-zhang.pdf

36

https://doi.org/10.1109/ICDCS47774.2020.00165
https://doi.org/10.1109/ICDCS47774.2020.00165
http://en.wikipedia.org/w/index.php?title=Image%20segmentation&oldid=1078773313
http://en.wikipedia.org/w/index.php?title=Image%20segmentation&oldid=1078773313
http://www.vldb.org/pvldb/vol14/p1900-zhang.pdf
http://www.vldb.org/pvldb/vol14/p1900-zhang.pdf

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Emerging Smart Contracts
	2.2 Profiling Smart Contracts
	2.3 Resource Disaggregation

	3 FlexChain Architecture
	3.1 Comparing FlexChain with Generic XOV
	3.2 Transaction Lifecycle in FlexChain
	3.3 Cross-Data Center Deployment

	4 Disggregating World State
	4.1 Overview
	4.2 Read/Write Procedure
	4.3 Buffer Eviction

	5 Parallelizing Validation
	5.1 Dependency Graph Construction
	5.2 Concurrency Control

	6 Evaluation
	6.1 Experimental Setup
	6.2 The Elasticity of Disaggregation
	6.3 Comparisons with Generic XOV
	6.4 Varying the Extent of Disaggregation
	6.5 Cross-Data Center Deployment

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

