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ABSTRACT

State-of-the-art video database management systems (VDBMSs)
often use lightweight proxy models to accelerate object retrieval
and aggregate queries. The key assumption underlying these sys-
tems is that the proxy model is an order of magnitude faster than
the heavyweight oracle model. However, recent advances in com-
puter vision have invalidated this assumption. Inference time of
recently proposed oracle models is on par with or even lower than
the proxy models used in state-of-the-art (SoTA) VDBMSs. This
paper presents Seiden, a VDBMS that leverages this radical shift
in the runtime gap between the oracle and proxy models. Instead
of relying on a proxy model, Seiden directly applies the oracle
model over a subset of frames to build a query-agnostic index, and
samples additional frames to answer the query using an exploration-
exploitation scheme during query processing. By leveraging the
temporal continuity of the video and the output of the oracle model
on the sampled frames, Seiden delivers faster query processing
and better query accuracy than SoTA VDBMSs. Our empirical eval-
uation shows that Seiden is on average 6.6 × faster than SoTA
VDBMSs across diverse queries and datasets.
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1 INTRODUCTION

To extract information embedded in videos, researchers have re-
cently proposed a wide range of video database management sys-
tems (VDBMSs) [3, 9–11, 16, 23, 24, 31, 42, 43]. These systems seek
to reduce query processing time over videos with a tolerable drop
in query accuracy. They primarily support two types of queries:
(1) computing the aggregate distribution of objects in a video, and
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(2) retrieving a subset of frames that contain the target objects of
interest from a video. Consider these illustrative queries:

--- Aggregate Query

SELECT AVG(COUNT(CAR)) FROM UA-DETRAC

WITH CONFIDENCE > 95% AND ERROR < 0.2;

--- Retrieval Query

SELECT frame_id FROM UA-DETRAC

WHERE COUNT(TRUCK) > 0 WITH PRECISION > 0.95;

The aggregate query computes the frame-averaged count of cars
in the given ua-detrac video [41]. The user specifies that the
difference between the actual count and the approximate count
returned by the VDBMS must fall within an error bound of 0.2 with
a confidence score greater than 95%. Such a query may be issued
by a traffic analyst interested in identifying busy intersections for
guiding future lane expansions. In contrast, the retrieval query
seeks to find frames containing a truck with precision greater than
0.95 (i.e., at least 95% of all the frames returned must contain a
truck). Such a query may be issued by a researcher working at an
autonomous car company looking for specific traffic scenarios.
Prior Work. To accelerate these two types of queries, VDBMSs
often leverage a lightweight proxy model that is faster (but less
accurate) than the oracle model. The output of the proxy model,
known as a proxy label, approximates the output of the oracle model
and is cheaper to generate compared to running the oracle model.
The proxy model is typically a compressed deep learning model
(e.g., Resnet-18 [18]). The oracle model is typically a heavyweight,
object detection model (e.g., mask r-cnn [30]). To answer retrieval
queries, SoTA VDBMSs use the lightweight proxy model to quickly
filter out irrelevant frames and only pass a smaller subset of frames
to the heavyweight oracle model [3, 19, 23, 24, 31]. To answer
aggregate queries, these systems use the proxy model to quickly
approximate the aggregate [23].
Limitations of Prior Work. The key assumption underlying
these systems is that the proxy model is significantly faster than the
oracle model. For example, the inference time of the mask r-cnn
oracle model is an order of magnitude higher than the Resnet-18
proxy model. However, with recent advances in computer vision,
this assumption is not valid. For example, Yolov5s [40] is a re-
cently released object detection model that is 11.2 × faster than
mask r-cnn and delivers higher model accuracy (i.e., mAP values)
than mask r-cnn on the COCO dataset [29]. This observation is
important because Mask-RCNN is used as the oracle model in many
SoTA VDBMSs [23, 24, 26].

Yolov5s achieves reduced inference time by improvements in
the box proposal algorithm necessary for detecting objects. The
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Table 1: Qualitative comparison of SoTA VDBMSs – tasti and

tasti-pt use the farthest-point first (FPF) clustering algorithm to

build an index of representative frames.

VDBMS Proxy Model Label Propagation

tasti-pt [26] Resnet-18 FPF Clustering
tasti [26] Custom Resnet-18 FPF Clustering
blazeit [23] Custom Resnet-18 None

Seiden None Temporal Interpolation

inference throughput of Yolov5s and the Resnet-18 proxy model
on 960×540 images is 140 and 170 fps, respectively. Due to this
massive drop in inference time of oracle models, it is no longer
beneficial to pass the frame through a proxy model before sending
it to the oracle model.
Proxy-based VDBMSs.We next provide a brief overview of how
two SoTA proxy-based VDBMSs answer these two types of queries.
1 tasti. tasti [26] is a SoTA VDBMS tailored for answering ag-
gregate and retrieval queries. It trains a custom proxy model that
is based on a pre-trained Resnet-18 feature extractor for the given
video dataset using triplet loss with respect to the mask r-cnn [30]
oracle model. It also supports another mode (tasti-pt) where the
VDBMS directly uses a pre-trained Resnet-18 model without fine-
tuning. In both modes, the VDBMS builds an index of representative
frames using a farthest-point-first (FPF) algorithm on the Resnet-18
features of all the frames in the video. During query processing,
the VDBMS invokes the oracle model (mask r-cnn) only on the
representative frames and propagates the labels to other frames
based on pairwise Resnet-18 feature distance.
2 Blazeit. blazeit [23] trains a custom tiny Resnet model to
directly answer the aggregate query. It applies the trained proxy
model on all the video frames. To generate labeled data for training
the tiny Resnet model, it runs the mask r-cnn oracle model on a
small subset of frames to derive the answer for the aggregate query
(e.g., number of cars).

The key limitation of these systems is that the inference time of
the Resnet-18 and tiny Resnet proxymodels is now comparable to
oraclemodels like Yolov5s. So, running the oracle model (Yolov5s)
on all the frames deliversmore accurate results in a comparable time.
Further, replacing these proxy models with even more lightweight
proxy models leads to a significant accuracy drop.
Our Approach. In this paper, we present Seiden, a VDBMS tai-
lored for lightweight oracle models like Yolov5s. Seiden circum-
vents the limitations of SoTA VDBMSs by directly running the
oracle model on a subset of frames to answer both retrieval and ag-
gregate queries. Table 1 presents a qualitative comparison between
Seiden and SoTA proxy-based VDBMSs.
1 Index Construction Phase.While ingesting a video dataset,
Seiden constructs a query-agnostic index by running the oracle
model over a subset of frames from the video. To lower the overhead
of decoding frames, Seiden simply picks I-frames that are spaced
out across the video during this phase. This sampling scheme lever-
ages the property that the target videos tend to be a collection of
frames with smooth motion of objects. This step is performed only
once when the video is loaded into the VDBMS.

2 Query Execution Phase. During query execution, Seiden
utilizes an exploration-exploitation scheme to sample additional
frames for answering the query. Seiden manages each video as a
collection of segments (i.e., a sequence of contiguous frames). To
explore the video, Seiden samples frames from segments that were
not previously sampled. Frames in these segments are likely to
contain more information than frames that are temporally close to
already sampled frames. Seiden combines this exploration strategy
with an exploitation strategy. Seiden runs the oracle model on the
sampled frames and identifies segments where a label difference
exists between the first and the last frames of the segment. It then
picks more frames in those segments to exploit the label difference.

Unlike SoTA VDBMSs, Seiden employs a simpler approach that
leverages the temporal continuity of the video to assign proxy labels
to the remaining unsampled frames. Once the oracle labels of the
sampled frames are collected using the oracle model, Seiden inter-
polates the labels to the remaining frames in the video to derive
their proxy labels. These proxy labels are then utilized to answer
both aggregate and retrieval type of queries.

We note that Seiden’s query processing technique is only possi-
ble with the advent of lightweight oracle models (like Yolov5s [40]).
Otherwise, the computational cost of running the oracle model on
all the selected frames will dominate the query processing time.
Contributions. The key contributions of this paper are:
• Wemotivate the need for revisiting query processing in VDBMSs

by showing that there is no longer a significant gap in inference
time between the oracle model and the proxy model.
• We present Seiden, a VDBMS that simply leverages the light-
weight oracle model and the temporal continuity of the video
to answer queries faster than the SoTA VDBMSs.
• We propose a novel multi-arm bandit based sampling algo-
rithm to accelerate retrieval and aggregate queries. It uses
a query-dependent reward function to balance the trade-off
between exploiting high-rewarding video regions versus ex-
ploring unexplored regions.
• We present a label propagation algorithm that leverages the

temporal continuity of videos to inexpensively and effectively
assign proxy scores to all unsampled frames.
• We empirically illustrate that Seiden works well across three

queries on four real-world datasets. We conduct ablation stud-
ies to examine the efficacy of Seiden and explain why other
features and proxy models are not effective in practice.

2 BACKGROUND & MOTIVATION

In this section, we provide a brief overview of video compression
and the usage of lightweight proxy models in VDBMSs. We then
describe recent advances in object detection to motivate the need
for revisiting query processing in VDBMSs.

2.1 Video Compression

Video compression codecs leverage the temporal continuity be-
tween the nearby frames [37]. Specifically, they compress the video
as a collection of GOPs (group of frames). Each GOP starts with
a keyframe (also referred to as I-frame) which is independently
decoded. The remaining frames in the GOP referred to as P- and B-
frames store the deltas from neighboring frames and hence are not
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Figure 1: Video Analytics in Proxy-based VDBMSs. Proxy systems

(e.g., tasti [26]) take video data, the oracle model, and a proxymodel

(e.g., Resnet-18) as inputs, whereas Seiden does not require a proxy

model. AQP signifies approximate query processing (e.g., supg [25].)

independently decodable. Seiden exploits the temporal continuity
in videos( §4) to accelerate queries.

2.2 Proxy Models in VDBMSs

In the last five years, researchers have presented several VDBMSs
for accelerating queries over videos using lightweight proxy mod-
els [3, 9, 19, 23, 24, 26, 31]. These systems assume the proxy model
is significantly faster than the oracle model and, as a result, execute
the proxy model on all video frames.

Figure 1 provides an overview of proxy-based VDBMSs. They
take the videos, query, and the oracle model as inputs. Then, us-
ing the proxy model, they assign a proxy score to every frame
in the videos. For a retrieval query, the proxy score is a value be-
tween 0 and 1 (signifying the probability of the frame satisfying
the query predicate). For an aggregate query, a proxy score is a
number that approximates the aggregate for the given frame. These
proxy scores are then used in an Approximate Query Processing
(AQP) algorithm to ensure that the user’s accuracy constraints are
satisfied (e.g., supg [25] for retrieval queries and blazeit [23] for
aggregate query). The output of the AQP algorithm is the final
query result. As discussed earlier §1, the assumption that the proxy
model is much quicker than the oracle model is no longer valid,
and the architecture needs to be reconsidered.

2.3 Object Detection Models

Object detection models are a class of deep learning networks that
localize and classify the objects present in a given frame. They in-
clude mask r-cnn, SSD [30], EfficientDet [39], and Yolov5s [40].
Mask-RCNN. mask r-cnn [17] is an object detection model pro-
posed in 2017 that delivers highly accurate results. The model net-
work consists of two components. The first component extracts
features from the given frame using a series of convolutional layers
(e.g., Resnet-18, vgg, or Resnet-50). The second component uses
the extracted features to propose boxes in the image that are likely
to contain the objects of interest. The region proposal component
is 14.5× slower than the feature extractor. So, while mask r-cnn
returns accurate results, it is significantly slower than Resnet-18.
Yolov5. Recently proposed models, like Yolov5, lower the com-
putational complexity of the object detection task by combining
the two phases of feature extraction and box proposal. Instead of
proposing boxes based on the final feature extraction layer, the
model proposes boxes even on intermediate feature extraction lay-
ers. To improve accuracy, instead of relying on a lot of expensive
convolutional layers, it leverages upsampling layers to generate
robust and accurate features.

Table 2: Accuracy and Inference latency of SoTA object detec-

tion models – Yolov5 and EfficientDet are significantly faster

than mask r-cnn and deliver comparable accuracy on the COCO

dataset [39, 40]

Model Name Image Size mAP
𝑣𝑎𝑙

Latency (ms)

EfficientDet-D1 640 40.2 13.5
Yolov5 m 640 45.4 8.2

EfficientDet-D2 768 43.5 17.7
mask r-cnn 768 44.3 103

EfficientDet-D5 1280 51.3 72.5
mask r-cnn 1280 50.2 234
Yolov5 m6 1280 51.3 11.1

Figure 2: Motivating Experiment – Comparison of time taken to

construct an index using different techniques. This experiment in-

validates the assumption that the oracle model (i.e., Yolov5) is sig-
nificantly slower than the feature extractor (i.e., Resnet-18).

Comparison of Accuracy and Inference Latency.We next
compare the accuracy and inference speed of Yolov5, mask r-cnn,
and EfficientDet [39] family of object detectors on the COCO
dataset [29]. The COCO dataset contains 120 K images and 880 K
object instances. Given the size and diversity of objects in the
dataset, it is widely used for comparing different object detectors.
The results are shown in Table 2. We evaluate the models on a
Titan V100 GPU. Across diverse image sizes, Yolov5 is faster than
EfficientDet models that deliver comparable mean average preci-
sion (mAP) values. These EfficientDet models in turn are faster
than the mask r-cnn model that delivers a comparable mAP value.

Specifically, for 640×640 images, Yolov5 m has 12% higher mAP
and 40% lower latency compared to EfficientDet D1. With an
image size of 768, the mAP value of EfficientDet is 2% lower
than that of mask r-cnn, but the latency is improved by a factor
of 5.8×. With increasing image size, the mAP scores are improved
for all models. However, the mAP scores of EfficientDet and
mask r-cnn for an image size of 768 are still lower than that of
Yolov5 m on an image size of 640. The gap in inference latency
widens on larger images. For an image size of 1280, Yolov5 m6 is
21× faster than mask r-cnn. Given these observations, we contend
that future VDBMSs would use these faster oracle models.

2.4 Motivating Experiment

In this experiment, we compare the time taken to build an index over
a video using five techniques: (1) a feature extractor (Resnet-18),
(2,3) two variants of tasti [26], (4) Yolov5, and (5) Seiden. While
tasti-pt uses a pre-trained Resnet-18 model for feature extraction,
tasti trains a custom Resnet-18 network. Both tasti and tasti-pt
internally run the Resnet-18 feature extractor on all the video
frames. We evaluate these indexing algorithms on a ua-detrac
traffic surveillance video with 84 K 960×540 frames.
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Query Processing Time. The results are shown in Figure 2.
The most notable observation is that Yolov5 is either on par or
faster than the tasti VDBMS that creates lightweight models. This
invalidates the assumption that the oracle model is significantly
slower than the feature extractor. The index construction time with
Yolov5 is 678 s. It is 1.1× and 2.1× faster than tasti-pt and tasti,
respectively. Resnet-18 is slightly faster than Yolov5. It takes 587 s
to build the index. However, since the feature extractor is less accu-
rate than the Yolov5, there is no justification for using Resnet-18
during index construction. This illustrates that the fundamental
assumption in SoTA VDBMSs, like tasti, is not valid.

Another notable observation from this experiment is that Seiden
is 84.8× faster than Yolov5. We defer a detailed description of how
Seiden constructs an index to §3. The key reason why Seiden is
better than tasti is that there is no longer a significant gap in
inference time between the feature extractor (e.g., Resnet-18) and
the object detector (e.g., Yolov5). So, it is not possible to justify
running Resnet-18 on all the frames to derive proxy scores. Seiden
leverages the temporal continuity property of videos to adopt a
simpler sampling scheme that not only reduces query execution
time but also delivers accurate results.
Accuracy.We next compare the accuracy and inference latency
of mask r-cnn and Yolov5 models on the ua-detrac video. While
it takes 1.7 h to run mask r-cnn over the video, Yolov5 only re-
quires 0.15 h (11.2× faster). Resnet-18 takes 0.13 h to complete.
To measure accuracy, we compare the maP scores with an inter-
section over union (IoU) threshold of 0.5. With the car object
category, mask r-cnn and Yolov5 deliver 0.37 and 0.4 mAP scores,
respectively. Thus, Yolov5 is both faster and more accurate than
mask r-cnn which is used in SoTA VDBMSs.

3 SYSTEM OVERVIEW

The objective of Seiden is to minimize the overall time taken for
query processing while meeting the user’s accuracy constraints.
The query processing time (𝑡𝑄𝑃 ) consists of index construction time
(𝑡𝐼𝐶 ) and query execution time (𝑡𝑄𝐸 ) using the constructed index.
The VDBMS takes the videos, query, and oracle model as inputs
and seeks to quickly generate proxy labels with a tolerable drop in
accuracy. Seiden seeks to minimize the query processing time 𝑡𝑄𝑃 :

min 𝑡𝑄𝑃 =
𝑡𝐼𝐶

𝑁
+ 𝑡𝑄𝐸 (1)

Seiden constructs an index only once for a given video dataset and
oracle model. So, the index construction time is amortized across
all the 𝑁 queries over the same video with the same oracle model.
Query execution time consists of the time taken to obtain additional
proxy labels and to confirm whether the result meets the accuracy
constraint using an approximate query processing (AQP) technique.
To ensure that the proxy labels meet the user’s accuracy constraint,
Seiden relies on the AQP techniques presented in blazeit [23] and
supg [25]. The time taken for the AQP technique depends on the
difference between the proxy labels (𝑆𝑝 ) and the oracle labels (𝑆𝑜 ).
Thus, 𝑡𝑄𝑃 is given by:

𝑡𝑄𝑃 ∝ 𝛼 ∗ |𝑆𝑝 − 𝑆𝑜 |2 + (1 − 𝛼) ∗
𝑡𝐼𝐶

𝑁
(2)

Seiden seeks to meet two objectives: (1) minimize the difference
between the proxy labels that it generates and the oracle labels, and
(2) minimize the time taken to generate the proxy labels.

3.1 Architecture

As shown in Figure 3, to meet its objectives, Seiden strategically
performs IndexConstruction and QueryExecution. During the
IndexConstruction phase, Seiden samples a subset of frames
from the video and directly runs the oracle model on them (i.e.,
Yolov5s). Unlike prior VDBMSs that rely on a proxy model during
this phase, Seiden directly uses the oracle model. The index consists
of the oracle labels for these sampled frames.

Seiden later uses these labels in the index during the QueryEx-
ecution phase to answer a given query. During QueryExecu-
tion, Seiden samples additional frames based on the query’s pred-
icate and the contents of the video using MABSampling (§4.2).
It again runs the oracle model on these additional frames. Lastly,
it propagates the oracle labels of all the frames sampled during
the IndexConstruction andQueryExecution phases to derive
the proxy labels of all the other frames in the video. Seiden then
passes on these proxy labels onto the SoTA AQP algorithms such
as blazeit [23] and supg [25].
ApproximateQuery Processing (AQP) Algorithms. The
purpose of the AQP algorithms is to derive statistical guarantees
on meeting the query’s accuracy constraint. These algorithms vary
based on the query being asked.
▶ AggregateQuery. For aggregate queries, the user specifies
the confidence score and error bound.

--- Aggregate Query

SELECT AVG(COUNT(CAR)) FROM UA-DETRAC

WITH CONFIDENCE > 95% AND ERROR < 0.2

Here, the error bound represents the difference between the ag-
gregate reported by the VDBMS and the value of the aggregate
obtained by running the oracle model on all the frames. The ob-
jective is to guarantee that the error bound is lower than 0.2 with
the desired confidence (i.e., 95%). Seiden relies on the aggregate
optimizer in blazeit [23]. blazeit requires the error bound and
confidence level as input parameters along with proxy scores, and
outputs the number of additional samples needed to generate the
query result that satisfies the given accuracy constraint. It utilizes
Empirical Bernstein Stopping (EBS) algorithm to satisfy the bounds.
▶ Retrieval Query. For retrieval queries, the user specifies
the accuracy constraint in terms of either a precision or recall
constraint.

--- Retrieval Query

SELECT frameID FROM UA-DETRAC

WHERE COUNT(TRUCK) > 2 WITH PRECISION > 0.95

Here, the query seeks to retrieve frames that satisfy an arbitrary
predicate (e.g., contains two trucks). The objective is to guaran-
tee that either a subset of the retrieved frames are true positives
(precision constraint) or a subset of all the true positive frames
are retrieved (recall constraint). We consider the oracle model’s
label as ground truth and measure the accuracy of the proxy label
with respect to that. To confirm that the accuracy constraint is
met, Seiden relies on the importance sampling algorithm presented
in supg [25]. This algorithm iteratively computes the appropriate
confidence threshold using the oracle model to satisfy the given
accuracy constraint. If the oracle labels of the sampled frames (i.e.,
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model over them to construct the index. During query execution, Seiden selects additional frames using MABSampling and runs the oracle

model on the selected frames. Lastly, Seiden propagates the oracle labels of all the frames that were sampled during the two phases to assign

proxy labels to all the other frames in the video. These proxy labels are then used by the AQP algorithms to generate query results.

Table 3: Notation

Symbol Description

𝑋𝑠 Input video
𝐵 Number of video segments
𝑟𝑘,𝑡 Expected reward for arm 𝑘 up to time 𝑡
𝑁𝑘,𝑡 Number of draws from arm 𝑘 up to time 𝑡
𝑁 Total number of draws across all arms
𝑋𝑘,𝑖 𝑖th draw from arm 𝑘 arm
𝑓 aggregation expression
𝜎̂𝑘,𝑡 Empirical standard deviation for arm 𝑘 arm up to time 𝑡

proxy scores in supg) are representative of those of the other frames
in the video, then the sampling algorithm terminates early.

4 QUERY PROCESSING

We next present the algorithms that Seiden uses to process a query.
The notation used in the paper is listed in Table 3. Query processing
consists of two phases: IndexConstruction (§4.1) and QueryEx-
ecution (§4.2). The IndexConstruction step is query-agnostic.
Seiden selects a random subset of I-frames from the video, known
as anchor frames. It logically splits the video into a sequence of
segments based on the selected anchors.

In the QueryExecution phase, Seiden uses adaptive sampling
to select additional frames from the video. It prioritizes sampling
from video segments that provide relevant information for the
query. Seiden takes a sampling budget 𝑁 as input. It uses a config-
urable parameter, anchor sampling ratio 𝛼 , to distribute the sam-
pling budget 𝑁 between the two phases. Specifically, Seiden selects
𝛼𝑁 anchor frames (I-frames) in the IndexConstruction phase
and remaining (1 − 𝛼)𝑁 samples using adaptive sampling in the
QueryExecution phase. This approach allows Seiden to strike
a balance between exploration and exploitation (§6.5). We next
describe these two phases in more detail.

4.1 Index Construction

Seiden leverages the intrinsic temporal continuity property of videos
to build the index. Algorithm 1 presents the IndexConstruction
algorithm. It takes the source video 𝑋𝑠 , the sampling budget 𝑁 , the
oracle model𝑀 , and the anchor sampling ratio 𝛼 as inputs. Anchor
sampling ratio, 𝛼 , represents the fraction of the total sampling bud-
get 𝑁 spent during IndexConstruction. First, Seiden selects 𝛼𝑁
frames using random sampling of the video’s I-frames (line 4). If
𝛼𝑁 exceeds the total number of the video’s I-frames, then Seiden
selects all I-frames and defers the remaining sampling budget to
QueryExecution (line 6). It then runs the oracle model𝑀 on all
of the sampled I-frames and computes the inference results (e.g.,

Algorithm 1: Index Construction
Input :Video 𝑋𝑠 , Sampling budget 𝑁 , Oracle model𝑀 ,

Anchor sampling ratio 𝛼
Output :Anchor indices 𝐼𝐴 , Anchor labels 𝐿𝐴

1 Function IndexConstruction (𝑋𝑠 , 𝑁 ,𝑀 , 𝛼):
2 𝐼𝐴 = getIFrames(𝑋𝑠 ) ⊲ Get I-Frames from Video
3 if 𝛼𝑁 < 𝑙𝑒𝑛 (𝐼𝐴 ) then
4 𝐼𝐴 = randomSample(𝐼𝐴 , 𝛼𝑁 ) ⊲ Sample subset of I-Frames
5 else

6 𝐼𝐴 = 𝐼𝐴 ⊲ Select all I-Frames
7 end

8 𝐿𝐴 = M(𝑋𝑠 , 𝐼𝐴 ) ⊲ Get oracle labels of all selected anchors
9 return 𝐼𝐴, 𝐿𝐴

objects detected) (line 8). These inference results are stored in a
key-value index where the key represents the sampled frame id and
the value represents the inference result obtained from the oracle
model on that frame. Seiden leverages the index later during the
QueryExecution phase.

The reason behind using I-frames as anchor frames is twofold.
First, by using I-frames, we save video decoding time as they are
independently decodable. Secondly, utilizing I-frames leverages the
optimizations of the video compression codec. The codec selects
I-frames that are evenly spaced or when a drastic scene change has
happened. With I-frames as the anchor frames, Seiden decreases
the chance of missing out on drastic changes. Seiden constructs
the index only once for a given video 𝑋𝑠 and oracle model𝑀 . The
cost of IndexConstruction is amortized across all queries over
𝑋𝑠 using𝑀 , even for other predicates like 𝐶𝑂𝑈𝑁𝑇 (𝑉𝐴𝑁 ) > 0 or
𝐴𝑉𝐺 (𝐶𝑂𝑈𝑁𝑇 (𝑇𝑅𝑈𝐶𝐾))).

4.2 Query Execution

Algorithm 2 presents theQueryExecution algorithm, duringwhich
Seiden leverages the anchors selected during IndexConstruction.
QueryExecution consists of two steps: (1) MABSampling and (2)
LabelPropagation.
MABSampling. In this phase, Seiden is aware of the predicate (for
retrieval queries) and aggregate expression for aggregate queries.
Seiden utilizes it to adaptively sample additional frames. The objec-
tive is to sample more frames from the video segments that provide
relevant information for the query to get a better estimate. Seiden
models the sampling problem as multi-armed bandit problem.
multi-armed bandit background. A multi-armed bandit
problem [6] is a sequential allocation problem. There are 𝐵 com-
peting arms, and each arm provides a random reward 𝑟𝑘 . A player
repeatedly selects one of the arms and collects the reward. The goal
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Algorithm 2: Query Execution using Constructed Index
Input :Video 𝑋𝑠 , Sampling budget 𝑁 , Oracle model𝑀 ,

Anchor sampling ratio 𝛼 , Anchor indices 𝐼𝐴 ,
Anchor labels 𝐿𝐴

Output :Sample indices 𝐼𝑆 , Sample labels 𝐿𝑆
1 Function QueryExecution (𝑋𝑠 , 𝐿,𝑀, 𝐼𝐴, 𝐿𝐴):
2 𝐵 = generateArms(𝐼𝐴 ) ⊲ MAB Prep – Generate Arms
3 𝑆𝐼 , 𝑆𝐿 = [ ], [ ]
4 for 𝑖 ← 0 to 𝑁 − 𝑙𝑒𝑛 (𝐼𝐴 ) ⊲ Adaptive Sampling Until Budget
5 do

6 𝑏 = selectOptimalArm(𝐵, 𝐿𝐴 ) ⊲ Select Optimal Arm
7 𝑠𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑏 ) ⊲ Random Sample From Arm
8 𝑠𝑙 = Inference(𝑋𝑠 , 𝑠𝑖 , 𝑀 ) ⊲ Get Model Inference Result
9 𝑆𝐼 .append(𝑠𝑖 )

10 𝑆𝐿 .append(𝑠𝑙 )
11 end

12 return 𝑆𝐼 , 𝑆𝐿

is to maximize the accumulated reward after limited draws. It ex-
emplifies the exploitation-exploration tradeoff dilemma. The player
can either exploit the arm with the maximum expected reward or
explore other arms to get better information about the expected
rewards of other arms. The Upper Confidence Bound (UCB) algo-
rithm is a formal way to deal with this problem. At each step 𝑡 , the
algorithm computes the𝑈𝐶𝐵𝑘,𝑡 Equation (3) for each arm 𝑘 .

𝑈𝐶𝐵𝑘,𝑡 = 𝑟𝑘,𝑡−1 + 𝑐
√︄

2 ln𝑁
𝑁𝑘,𝑡−1

(3)

𝑟𝑘,𝑡−1 is the expected reward of arm 𝑘 till step 𝑡 − 1, 𝑁𝑘,𝑡−1 is the
total number of draws from arm 𝑘 up to step 𝑡 − 1, and 𝑁 is the
total number of draws across all arms. This represents a tradeoff
between exploitation and exploration. The first term corresponds to
exploiting the arm with the optimal expected reward. The second
term corresponds to exploration as it prefers selecting the least
explored arm. The algorithm prefers the arm that maximizes UCB.
The 𝑐 parameter controls the trade-off between exploitation and
exploration. Higher values of 𝑐 prefer exploration (§6.6).
Problem Formulation. Seiden models the sample selection
problem as multi-armed bandit problem.

Arms: Using the anchors selected during IndexConstruction,
Seiden logically splits the original video into segments. Each video
segment is considered as an arm for the multi-armed bandit formu-
lation. The objective is to balance the trade-off between exploring
less sampled segments of the video and exploiting the segments that
yield higher rewards. To achieve this, Seiden uses UCB algorithm
to determine the segment to sample next.

Rewards: We explain how Seiden assigns the reward to each
segment. The reward for each video segment is dependent on the
query type.

𝑟𝑘,𝑡−1 = 𝜎̂𝑋𝑘,𝑡−1 where (4a)

Retrieval queries: 𝑋𝑘,𝑡−1 =
{1, if sample satisfies predicate
0, otherwise

(4b)
Aggregate queries: 𝑋𝑘,𝑡−1 = 𝑓 (𝑥𝑘,𝑡−1) (4c)

𝑋𝑘,𝑖 is the 𝑖−th sample drawn from arm 𝑘 . For retrieval queries
with precision or recall constraints, the random variable 𝑋𝑘,𝑡−1 is
1 if it satisfies the predicate and 0 otherwise (Equation (4b)). For
aggregate queries, 𝑋𝑘,𝑡−1 = 𝑓 (𝑥𝑘,𝑡−1) ∈ R, where 𝑓 is aggreagte
expression in the query (Equation (4c)). After 𝑡−1 draws from video
segment 𝑘 , Seiden defines its reward as the empirical standard
deviation 𝜎̂𝑘,𝑡−1 of the random variable 𝑋𝑘,𝑡−1 (Equation (4a)). The
intuition behind the reward is that Seiden must sample more from
the uncertain video segments. The variance of the predicate (for
retrieval queries) and the aggregation expression (for aggregate
queries) in a video segment indicates uncertainty.

As listed in Algorithm 2, Seiden first logically constructs video
segments (arms) using the anchors selected during IndexConstruc-
tion (line 2). Next, Seiden selects the segment with the maximum
UCB Equation 3 score (line 6) and randomly draws a frame from
the segment (line 7). It then runs the oracle model over the sampled
frame (line 8). This sampling process continues until QueryExecu-
tion exhausts the sampling budget.

4.3 Label Propagation

After the MABSampling step, Seiden propagates the labels from
the sampled frames to the remaining frames. To propagate the
label to a frame 𝑞, Seiden need a distance metric 𝑑 to identify the
set of sampled frames closest to 𝑞 with respect to 𝑑 . Seiden uses
the temporal distance between frames as the distance metric. The
reasons for this design decision are twofold. First, it leverages the
temporal contiguity property of the video. Second, it is inexpensive
to compute the temporal distance between frames.
Example. Consider two sampled frames whose frame ids are 10
and 20. The aggregate query results using the oracle model for the
two sampled frames are 5 and 10, respectively. Then, for a non-
sampled frame whose frame-id is 12, the result of the aggregate
query is linearly interpolated to 6. The same interpolation logic ap-
plies to retrieval queries. If sampled frames’ retrieval query results
are 0.3 and 0.4, respectively, then the non-sampled frame whose
frame-id is 12 would have a probability of 0.32.

After the LabelPropagation step, every non-sampled frame
in the video gets an approximate proxy label. For an aggregate
query, Seiden derives an approximate aggregate for all the remain-
ing frames, while for a retrieval query with a precision or recall
constraint, Seiden derives an approximate probability. The proxy
labels of non-sampled frames and oracle labels of sampled frames
are then sent to the AQP modules for further processing.

Since MABSampling adjusts sample selection based on the con-
tents of the video, it priorities selecting samples from regions with
high uncertainty. As a result, the ground truth label of any un-
sampled frame is highly likely to be correlated with the labels
of temporally-nearby, sampled frames. So, Seiden adopts a sim-
ple linear interpolation based on temporal distance to generate
proxy labels. Besides temporal distance, we also consider four more
schemes for label propagation: (1) pixel distance, (2) Resnet-18
feature distance, (3) pixel and temporal distance (hybrid), and (4)
Resnet-18 feature and temporal distance (hybrid). However, as
we show in §6.3, §6.4, and §6.8, temporal linear interpolation is
inexpensive and effective for a wide range of queries and datasets.
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(a) Frame Byte Size (b) Frame Pixel Value (c) Frame Resnet Feature

Figure 4: Correlation between Features and Oracle Model Label Changes – There is no statistically significant correlation between label

changes and differences between features of frames using these three feature functions: (1) frame byte size, (2) frame pixel value, and (3) frame

Resnet-18 value. The Pearson correlation coefficients for these features are 0.014, 0.134, and 0.274, respectively.

5 INEFFECTIVE FEATURES

SoTA VDBMSs [24, 26] leverage image features to quickly generate
proxy labels. In this section, we examine the efficacy of these fea-
tures: (1) frame byte size (examined in this paper), (2) frame pixel
values [24], and (3) deep features of a frame using Resnet-18 [26].
The objective of this analysis is to determine if these features are
viable in the presence of a lightweight oracle model. For any feature
to be considered viable, it needs to meet two constraints. First, the
feature extraction process must be significantly faster than running
the lightweight oracle model on each frame. If the feature extrac-
tion process takes too long, it would be more accurate to simply
run the oracle model on all frames. Second, the feature must be
an accurate proxy signal for changes in the oracle label. This is
crucial for the exploitation strategy used in Seiden, which is based
on the difference between labels. We empirically found that none
of these features meet both constraints, indicating a need to revisit
the design decisions in SoTA VDBMSs.
▶ Frame Byte Size. Since Seiden aims to quickly generate ac-
curate proxy scores, we explore whether frame byte size is suitable
for picking additional samples during query processing. Frame byte
size can be easily accessed without decoding the video data and is
correlated with changes in frame content across nearby frames. B
and P frames have smaller byte sizes than I frames since they only
encode the difference with respect to a nearby frame. We examine
the correlation between label changes and byte size difference on
the Cherry traffic-surveillance dataset [33] that is obtained from
a static camera (Table 4). The query focuses on the existence of a
car (retrieval query). The result in Figure 4a shows a statistically
insignificant correlation (0.014) between byte size and the oracle
model label. The reasons are twofold. The byte size of I-frames does
not capture changes in frame content as they are not encoded as a
difference with respect to a nearby frame. B- and P-frames’ byte
size changes are not directly related to the objects of interest. For
example, changes in environmental conditions lead to higher byte
size even though they do not impact the query label.
▶ FramePixelDifference. Comparing the difference between
pixels in two frames is more expensive than retrieving their byte
size, as it involves decoding the frame. However, computing pixel
difference is still faster than running the oracle model. Further, it
should intuitively capture changes in the frame content, as the
oracle model also operates on these pixels [24]. To validate this
hypothesis, we conduct the same experiment using the frame pixel
difference feature. The result in Figure 4b indicates a correlation
of 0.134 between label change and pixel difference. Although this
correlation is stronger than that of frame byte size, it is still too

low for Seiden to efficiently use this feature to sample additional
frames. The reason for the weak correlation is that the oracle model
performs non-linear transformations on pixel space to derive the
label space. For example, a background change may result in a high
pixel value difference, but it may not affect the label.
▶ Deep Features. To cope with changing environmental condi-
tions, we consider a deep feature extractor (pre-trained Resnet-18).
The rationale for using the feature extractor is that it runs faster
than the oracle models used in prior VDBMSs (like mask r-cnn).
The generated features should be more robust compared to pixel
differences. To test this hypothesis, we conduct the same exper-
iment using the deep features. From Figure 4c, we observe that
the correlation between label change and pixel difference is 0.274.
While it is higher than the pixel difference (0.134), it is still too low
for Seiden to effectively use these features for sampling additional
frames. The reason why the feature space is not strongly correlated
with the oracle label space is that elements of the feature vector
obtained from the pre-trained Resnet-18 model capture informa-
tion about all the objects in the frame (e.g., cars, trucks, vans, e.t.c..).
These elements are not fully relevant for a query focusing on cars.
Faster + Accurate Proxy Model. In our experiments, none
of the features we examined are able to provide both cost-effective
and accurate proxy labels. However, in case a faster and more
precise proxy model is developed in the future, VDBMSs must
make an informed decision on when to use such a proxy model, by
comparing the execution time and accuracy of running the proxy
model on all the frames to that of running the oracle model on the
sampled frames as done in Seiden.

6 EVALUATION

We seek to answer the following questions in our evaluation:
• RQ1. How does Seiden’s index construction time compare to
SoTA VDBMSs?(§6.2)
• RQ2. How does the execution time of Seiden compare against
that of other VDBMSs on aggregate queries?(§6.3)
• RQ3. How does the F1-score of Seiden compare against that
of other VDBMSs on retrieval queries?(§6.4)
• RQ4. How does varying the anchor sampling ratio (𝑟 ) affect
Seiden’s query accuracy? (§6.5)
• RQ5.Howdoes varying the 𝑐 parameter inMAB affect Seiden’s
query accuracy? (§6.6)
• RQ6. How does reusing Seiden’s anchors and samples affect
query accuracy? (§6.7)
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Table 4: Datasets – The key properties of the datasets used in our

evaluation. We list the number of evaluated frames and the percent-

age of frames containing target object (i.e., number of TRUE frames).

Video

Object

Name

Frames

Per

Second

# of Frames

Object

Selectivity

Cherry CAR 24 100k 36%
Cherry BUS 24 100k 2.5%
UA-DETRAC CAR 10 84k 94%
Dashcam CAR 24 75k 60%
Dashcam BUS 24 75k 5.6%
Jackson CAR 30 300k 4%

6.1 Experimental Setup

▶ Baselines.We compare Seiden against the following baselines:
svm. We implement a svm-based model inspired by [31] using the
scikit-learn framework [8]. We train the svm using the oracle
labels on a subset of frames randomly selected from the video.
Resnet-18. We implement a Resnet-18-based model inspired by
BlazeIt [23]. We append a custom fully connected layer onto a pre-
trained Pytorch model based on the type of query. For instance, the
model returns an aggregate in the case of an aggregate query. We
train this model on the oracle labels of a subset of video frames.
tasti-pt. While tasti uses triplet loss to train a custom feature
extractor on labeled video data to generate features, we replace the
custom feature extractor with a pre-trained Resnet-18 model. We
refer to this baseline as tasti-pt as done in the tasti paper [26]. To
determine the set of sampled frames, tasti applies furthest-point-
first (FPF) algorithm [14] and a variant of K nearest neighbors [2]
for propagating the labels to the rest of the video frames. We use
the implementation of tasti-pt by the original author.
▶Datasets.Weevaluate the baselines on four datasets: Cherry [33],
UA-DETRAC [41], Dashcam, and Jackson [26]. The key properties
of these traffic-surveillance datasets are summarized in Table 4.
Cherry. Cherry dataset is a one-hour video with 100 K frames
obtained at an intersection in Seattle during morning time [33]. The
percentage of frames containing CAR in this dataset is 36% and that
of BUS is 2.5%. The resolution of this dataset is 960x540.
UA-DETRAC. UA-DETRAC consists of numerous short traffic
camera videos (each of one-minute duration). We concatenated
these shorter videos to create a longer video. The resolution of
this dataset is 960x540. Many of these shorter videos display dense
traffic settings. So, this dataset has a high object occupancy of 94%.
Dashcam. Dashcam is a traffic video dataset recorded from a dash-
cam footage that is 52 minutes long. Hence, in this video dataset, the
background in addition to the foreground is moving. This video’s
selectivity for CAR is 60% while that of BUS is 5.6%. The resolution
of this dataset is 960x540.
Jackson. Jackson is a dataset used for evaluating SoTAVDBMSs [26].
The duration of this video is 2 hours 46 minutes with 300 K frames
at a resolution of 300×300. Similar to Cherry and UA-DETRAC,
Jackson is obtained from a static camera. However, unlike other
datasets, it is collected at nighttime. The selectivity of CAR is 4%.
▶Queries. Table 5 presents the queries that we use to evaluate
the baselines. We consider three types of queries: (1) aggregate

Table 5: Query Templates

Type Query Template

Q1 -

Aggregate

SELECT COUNT(CAR) FROM $DATASET

WITH CONFIDENCE > $1 AND ERROR < $2;

Q2 -

Precision

SELECT frameID FROM $DATASET

WHERE COUNT($OBJ) > 0 WITH PRECISION > $3;

Q3 -

Recall

SELECT frameID FROM $DATASET

WHERE COUNT(CAR) > 0 WITH RECALL > $4;

query, (2) retrieval query with precision constraint, and (3) retrieval
query with recall constraint.

The first query counts the total number of objects in a video. The
aggregate must meet the confidence and error bound constraints
of the user. The default parameter for $1 is 0.95 and that of $2
is 0.1. The second query retrieves the set of frames that satisfy
the given predicate (i.e., existence of a car). The user specifies a
precision constraint (i.e., a significant subset of frames that contain
a car must be returned). The default parameter for $OBJ is CAR
and that of $3 is 0.95. The third query is a retrieval query with a
recall constraint. In this case, a significant subset of frames that
are returned by the VDBMS must contain a CAR (i.e., they must be
precise). The default parameter for $4 is 0.95.

We evaluate the VDBMSs on a diverse set of queries and datasets
to examine their broader applicability. $DATASET is Cherry, UA-
DETRAC, Dashcam, or Jackson.
▶OracleModel.Weuse Yolov5s [36] as the reference inference
model. We rank all the systems based on how well their labels
compare against those assigned by Yolov5s.
▶ Hardware Environment. We perform the experiments on a
server with these specifications:
• CPU: 16 Intel(R) Xeon(R) Gold 6134 @ 3.20GHz
• GPU: 1 Geforce RTX 2080 Ti
• RAM: 385 GB

For a 960x540 image, YOLOv5 runs at 140 fps on one RTX 2080 Ti
GPU in this server. For a 300x300 image, YOLOv5 runs at 1000 fps.

6.2 RQ1. Index Construction Time

In this experiment, we examine the time taken to build an index
across all the systems on all the video datasets. Index construction
is a one-time cost for a given video that is amortized across all
subsequent queries over that video. We next discuss how each
system constructs the index:
Seiden. During index construction, Seiden selects anchors from
the I-frames set. For each selected frame, Seiden runs the oracle
model on that frame and stores the oracle label in the index. Seiden
spends nearly all the index construction time on inference.
tasti-pt. It first extracts the features of all the frames using the
Resnet-18 model. tasti-pt then selects the anchor frames using
the FPF clustering algorithm over all the extracted features. The
complexity of the FPF algorithm is 𝑂 (𝑛2). tasti-pt uses multi-
threading to accelerate the clustering step. Lastly, it caches the
oracle labels for the chosen anchor frames.
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(a) Index Construction Time with different Sampling Budgets.

(b) Index Construction Time Breakdown.

Figure 5: Index Construction Time for Seiden and baselines.

SVM. It is trained using random subset of frames (1%) in the video.
The oracle model (i.e., Yolov5s) is applied on these frames to get
labels which are then used to train the SVM (e.g., number of cars in
a given frame). After the model training step, the SVM is applied
on all the frames and results are cached. SVM utilizes a quadratic
kernel (radial basis function [7]) for optimization that is slow on
longer videos.
Resnet-18. It is trained in a similar manner to SVM. After the
model training step, the Resnet-18 feature extractor is applied on
all the frames and the features are later used during query execution.
Ratio 𝛼 is set to 0.8 for this experiment.

The results are shown in Figure 5. Figure 5a illustrates the change
in index construction time of Seiden and tasti-pt as we vary the
number of anchor frames (i.e., percentage of all the video frames
selected as anchors). Figure 5b presents the index construction time
of all the systems when we configure the sampling budget (𝑁 ) to
be 10% of the video frames.
Analysis. The most notable observation from the Figure 5a is
that the index construction in Seiden is on average 87X faster than
tasti-pt. This is because tasti-pt applies the feature extractor on
all the frames of the video to derive the anchor frames. As we in-
crease the percentage of anchors, the increase in index construction
time is linear in Seiden. This is because Seiden only needs to run
the oracle model on the additional anchor frames. However, with
tasti-pt, the increase in index construction time is super-linear as
it runs the Resnet model on all the frames regardless of the sam-
pling budget. For example, on Cherry, Seiden is 422× faster than
tasti-pt with 0.1% sampling budget, whereas it is only 13× faster
with 10% budget.

In Figure 5b, we present a breakdown of time spent on differ-
ent tasks during index construction. As Yolov5s is comparable
in latency to Resnet-18 (Figure 2), the time spent on running the
Resnet-18 model on all the frames is 5.7x higher than running the
Yolov5s oracle model on the anchor frames (10% of the frames)
Unlike Seiden and tasti-pt, SVM and Resnet-18 models are not

Figure 6: Query Execution Time – Aggregate Query.

query-agnostic. So, they have a non-trivial model training overhead
(20 seconds on 1 K frames).

SVM is more lightweight than Resnet-18. So, the time taken to
run the ML model on all the frames is 2.7x smaller than that for
the Resnet-18 model. tasti-pt takes more time than Resnet-18
(1.23x) because, in addition to extracting the feature vectors using
Resnet-18, it performs other operations like clustering to build a
query-agnostic index. Seiden is 4× faster than the SVM baseline
on the index construction task.

6.3 RQ2. Aggregate Query Execution

We next examine the time taken by different systems while execut-
ing an aggregate query on different datasets (Table 5). The results
are shown in Figure 6. We configure the confidence score ($1) and
error bound ($2) to 0.95 and 0.1, respectively.

For Seiden and tasti-pt, we breakdown the execution time into
two components: (1) label propagation, and (2) AQP (Approximate
Query Processing) time using the blazeit aggregate optimizer.
Query execution time implicitly captures the accuracy of the proxy
model. This is because the blazeit optimizer converges quickly
when the proxy scores are similar to the oracle scores. Specifically, it
invokes the oracle model on a random subset of frames to determine
if the propagated label meets the user’s accuracy constraints. So,
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proxy functions that result in fewer oracle model invocations lead
to faster query execution.

With SVM and Resnet-18 baselines, there is no label propaga-
tion step. The output of both proxy models is an array of proxy
scores (i.e., aggregates) for all the frames in the video. The blazeit
optimizer confirms whether the approximate aggregate meets the
confidence score and error bound. It keeps invoking the model until
it meets the accuracy constraints. For these two baselines, we use
the model trained during the index construction phase. Since the
proxy scores are already obtained for all the frames during index
construction, the query execution time only captures the time spent
on oracle model invocations with the blazeit optimizer.
Analysis. The most notable observation is that on Cherry, UA-
DETRAC, and Dashcam datasets, Seiden is the fastest system. On
these datasets, Seiden is on average 2.4×, 1.4×, 1.08× faster than
SVM, Resnet-18, and tasti-pt, respectively. The performance gap
between Seiden and SVM is highest on the UA-DETRAC dataset.
This is because correctly computing the aggregate count of cars is
more difficult in this dataset due to its high object selectivity (94%).
Many frames in the video contain more than five cars. So, with the
SVM, the blazeit optimizer makes more oracle invocations.

On all the datasets, Resnet-18 is faster than SVM. Both of these
systems do not require label propagation. We attribute this gap to
fewer oracle invocations by the blazeit optimizer with Resnet-18.
This is because Resnet-18 provides more accurate proxy scores
that better capture the contents of the frame.

Resnet-18 outperforms tasti-pt onCherry and Jackson datasets.
This is because the feature extractor is tailored for this particular
query (i.e., aggregate count of cars). In contrast, tasti-pt’s index
is query agnostic and does not require a training step for each
query. Even though Seiden does not utilize compressed networks
for feature extraction or inference, it is either similar to or slightly
faster than tasti-pt. This shows the efficacy of leveraging temporal
continuity for generating proxy scores.

On the Jackson dataset, SVM and Resnet-18 baselines are faster
than tasti-pt and Seiden. We attribute this to the overhead of
the label propagation step. All of the systems have similar AQP
time with the blazeit optimizer (5× smaller than that on the UA-
DETRAC aggregate query). The label propagation time is more
significant on this dataset due to the size of the video, as it linearly
increases with the total number of frames in the video. On more
difficult datasets, like UA-DETRAC, the label propagation time is
not as significant as the post-processing time.

6.4 RQ3. Retrieval Query Execution

We next examine the F1-score of all the systems on retrieval queries
(i.e., precision and recall queries in Table 5). The results for these
queries are shown in Figure 7a and Figure 7b, respectively. We
configure the precision ($3) and recall bounds ($4) to 0.95.

To ensure that the query result meets the user’s accuracy con-
straints, we use the supg optimizer. With the supg optimizer, the
user must configure the maximum oracle invocation budget. We
configure this budget to 10% of the number of video frames. Within
this oracle invocation constraint, the supg optimizer utilizes the
generated proxy scores to determine the best set of frames to return
to the user. We measure the accuracy of the results relative to the

oracle model. On these queries, all the systems return an array of
proxy scores. For each frame, they return a proxy score that lies
between 0 and 1. For instance, 0.9 signifies that the frame is very
likely to satisfy the query’s predicate (i.e., COUNT(CAR) > 0).
SVM and Resnet-18. We utilize the same model used for aggre-
gate queries. Instead of generating an aggregate label, it returns a
confidence score that is used to derive the proxy score. For example,
if the confidence score for a given frame containing 0 cars is 0.7,
then for the query retrieving frames with at least one car, the proxy
score is 0.3.
tasti-pt and Seiden. Query execution consists of label propa-
gation and using the supg optimizer for AQP. The proxy system
used for aggregate queries is used for retrieval queries as well.
Analysis. As shown in Figure 7a, on the precision query across all
the datasets, Seiden delivers a higher F1-score compared to SVM
and Resnet-18, and slightly higher F1-scores to tasti-pt. The F1-
score of Seiden is on average 95%, 34%, and 3% higher than SVM,
Resnet-18, and tasti-pt, respectively.

Similar to the results on aggregate queries, Resnet-18 delivers
more accurate proxy scores than SVM. The F1-score of all the sys-
tems on UA-DETRAC is high because of the high object selectivity
of the dataset. So, it is possible to easily pick a set of frames that
contain at least one car.

On the Dashcam dataset, SVM has a low F1-score (0.17). This
is because of the complexity of videos collected from a moving
camera. Due to the moving background, the SVM model is unable
to effectively identify the car objects in the foreground. Without
relying on convolutional layers, it is challenging to generate accu-
rate proxy scores on this dataset. On the recall queries, as shown
in Figure 7b, tasti-pt and Seiden deliver the most accurate results.
F1-score of Seiden on recall queries is on average 32%, 52%, and 4%
higher than SVM, Resnet-18, and tasti-pt, respectively.

6.5 RQ4. Impact of Anchor Sampling Ratio (𝛼)

In this experiment, we examine the impact of the anchor sampling
ratio (𝛼) on the F1-score. This hyper-parameter determines how
Seiden utilizes a given anchor budget. Specifically, 𝛼 determines
how many anchors are selected during index construction and
query execution, respectively. We do this analysis with queries Q1
(aggregate query) and Q2 (precision query) on Cherry and Dashcam
datasets, that are representative of other query-dataset pairs. The
results are shown in Figure 8. For each query-dataset pair, we vary
the sampling budget from 1% to 10% of the frames. If the dataset
contains 100 K frames, this maps to a budget from 1 K to 10 K
frames. For each sampling budget, we vary 𝛼 from 20% to 100%. For
example, if the dataset contains 100 K frames, the sampling budget
is 1%, and 𝛼 is 20%, then 200 frames will be selected as anchors
during index construction. The remaining 800 frames will be picked
during query execution. If 𝛼 is 100%, then all the frames within the
budget are picked during the index construction step itself. As the
index construction step primarily picks I-frames spread across the
entire video, it favors exploration. So, a higher value of 𝛼 favors
exploration. Lower values of 𝛼 favor exploitation based on label
difference. In each row in the heat map, the values are normalized
for the given sampling budget. For aggregate query Q1, we measure
query execution time. For precision query Q2, we measure the

2298



(a) Precision Queries. (b) Recall Queries.

Figure 7: Accuracy of VDBMSs on Precision and Recall Queries.

Figure 8: Impact of Anchor Sampling Ratio on Execution Time (Q1)

and F1-score (Q2). Lower values (i.e., lighter colors) are better.

reciprocal of the F1-score. So, lower values (i.e., lighter colors) in
the heat map are better.

In Q1, for both datasets, the optimal value of 𝛼 is greater than
80% across all sampling budgets. This indicates that exploration is
more important than the exploitation of aggregate queries. On Q2,
for a given time constraint, the supg optimizer tries to maximize
the F1-score. Here, the optimal values of 𝛼 are between 40% and
60% which indicates the need for balancing between exploration
and exploitation. This behavior is observed on Cherry | Q2 | 1%
budget and Dashcam | Q2 | 1% and 5%.

On certain dataset-budget combinations, 𝛼 does not have a no-
ticeable impact on accuracy. This behavior is observed on Cherry
| Q2 | 5% budget and Dashcam | Q2 | 10%. We attribute this to the
increased sampling budget.With toomany selected samples, regard-
less of whether the sample was picked during index construction
or query execution, the supg algorithm generates accurate results.

Thus, for aggregate queries (Q1), Seiden tunes 𝛼 to favor ex-
ploration. It allocates a significant sampling budget to the Index-
Construction phase (i.e., 𝛼 = 0.8). For precision queries (Q2), it
strikes a balance between exploration and exploitation by split-
ting the budget evenly across the IndexConstruction and the
QueryExecution phases (i.e., 𝛼 = 0.5).

6.6 RQ5. Impact of MAB Sampling Parameter (𝑐)

The MAB sampling algorithm used in Seiden relies on 𝑐 hyper-
parameter to determine the balance between exploitation and ex-
ploration Equation 3. Specifically, when 𝑐 = 0, the sampling algo-
rithm only performs exploitation. With higher values of 𝑐 , it prefers

Figure 9: Impact of MAB Sampling Parameter on Query Execution

Time (Q1) and F1-Score (Q2). Lower values are better.

exploration over exploitation. We consider the same query-dataset
pairs used in §6.4. Besides varying the budget, we vary 𝑐 from 0 to
4. The results are shown in Figure 9. The optimal configuration of
𝑐 varies based on the query. With Q1, the optimal value of 𝑐 ranges
from 3 to 4. So, the aggregate query benefits from more exploration
(similar to the trend in Figure 8). With Q2, the optimal value of 𝑐
ranges from 2 to 3. So, the precision query benefits from a balance
between exploration and exploitation.

The impact of 𝑐 is not prominent on Cherry | Q2 | 10% and Dash-
cam | Q2 | 10%. This is because, with a high sampling budget (10%),
the supg optimizer is able to return highly accurate results – 0.95
for Cherry | Q2 | 10% and 0.93 for Dashcam | Q2 | 10%, irrespective
of whether the samples were picked using an exploration or ex-
ploitation scheme. This behavior is also observed on Dashcam | Q2
| 1%. In this case, even with a smaller sampling budget, F1-scores
across all values of 𝑐 are low (0.22).

Thus, Seiden picks a high 𝑐 value to favor exploration on ag-
gregate queries (Q1) (i.e., 𝑐 = 4). For precision queries, it balances
exploration and exploitation by setting 𝑐 = 2.

6.7 RQ6. Oracle Label Reuse Across Queries

In this experiment, we examine the ability of Seiden to reuse the re-
sults of the oracle model across multiple queries, similar to tasti-pt.
Consider a sequence of two precision queries based on CAR and
BUS, respectively. To answer the second query, Seiden reuses
all the available oracle labels from the first query (collected dur-
ing both IndexConstruction and QueryExecution phases) and
samples additional frames based on the second query’s predicate
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Table 6: Oracle Label Reuse Across Queries – F1-Scores of tasti-pt

and Seiden with reuse.

Dataset | Query Cherry | Q2 Dashcam | Q2
Object CAR BUS CAR BUS

tasti-pt 0.92 0.63 0.91 0.48
Seiden 0.95 0.68 0.93 0.62

Figure 10: Impact of Label Interpolation Scheme on Execution Time

(Q1) and F1-Score (Q2). Lower values are better.

(i.e., BUS). Note that there is no IndexConstruction phase while
answering the second query on the same video. Seiden samples
additional frames based on label difference with respect to the BUS
predicate and dedicates the entire frame budget to theQueryEx-
ecution phase. Table 6 presents the F1-scores. On the first query
(Q2 | CAR), the F1-score of Seiden is slightly higher than that of
tasti-pt as it picks a better set of samples. On the second query
(Q2 | BUS), Seiden ’s F1-score is 8% and 29% higher than tasti-pt
on the Cherry and Dashcam datasets, respectively. The accuracy
gap is more prominent because Seiden reuses all the oracle labels
from the first query to guide the sampling for second query.

6.8 RQ7. Impact of Label Interpolation Scheme

We next investigate the impact of other label interpolation schemes
on query execution time and accuracy. We consider four schemes:
(1) pixel distance, (2) Resnet-18 feature distance, (3) pixel and tem-
poral distance (hybrid), and (4) Resnet-18 feature and temporal
distance (hybrid). Pixel distance metric (Seiden-P) computes the
L2 norm between the pixel values of the unlabeled frame and the
two temporally closest sampled frames. It then interpolates the
unlabeled frame’s label using the labels of two sampled frames
weighted by the L2 norm. Resnet-18 metric (Seiden-R) is based
on L2 norm between the Resnet-18 features. Pixel and temporal
distance (Seiden-PT) normalizes the pixel and temporal distances
respectively, and equally weighs and combines these distance met-
rics. Similarly, Seiden-RT is based on Resnet-18 feature and tem-
poral distance. For Seiden-P and -PT, we downsample the frames
to 100×100 resolution to limit computation time. For Seiden-R and
-RT, we downsample the frames to 100×100 before using Resnet-18
to extract features.We consider the query-dataset pairs used in §6.4.

The results are shown in Figure 10. For label propagation and
AQP, all interpolation techniques require comparable times on
Cherry | Q1 and Dashcam | Q1. However, Seiden-P and -PT require

substantial time (60 s for Cherry and 45 s for Dashcam) to compute
the L2 distance, while Seiden-R and Seiden-RT require significant
time (34 s for Cherry and 25 s for Dashcam) to extract Resnet-18
features. Unlike these schemes, interpolation based on temporal
distance in Seiden does not require expensive computation for
label propagation. Another notable observation is that the impact
of the label interpolation scheme is not significant on the F1-score,
with the maximum difference in F1-score being less than 0.02. Thus,
temporal linear interpolation is both fast and accurate for a broad
range of queries and datasets.

7 RELATEDWORK

Video DBMSs. Researchers have presented several techniques
for accelerating retrieval queries over videos based on: lightweight
proxy models like SVM [31], model cascades [3, 24], and special-
ized models [21]. Seiden challenges the assumption made in these
systems that the oracle model is significantly slower than the proxy
model, and presents a simpler and efficient architecture for lever-
aging the temporal continuity of videos.
Indexes in Visual DBMSs. Systems for multimedia content
retrieval [4, 12, 28] have long studied the problem of indexing vi-
sual data. They construct indexes on the high-dimensional feature
space to accelerate nearest-neighbor and similarity-based retrieval
queries. AmongVDBMSs, Voodoo [18], Tasti [22], and Panorama [44]
use general-purpose feature embeddings to index similar video
frames and leverage the index to answer queries. Seiden shows
that for videos, general-purpose feature embeddings do not offer a
significant advantage over leveraging temporal continuity.
AQP. AQP techniques fall under two categories: offline and online
methods [27]. Offline methods use synopses like pre-computed
samples [1], histograms [34], sketches [5], wavelets [15] or recent
ML-driven methods [13, 32, 38] to approximately answer queries.
Online methods [20, 35] do not assume apriori knowledge of the
workload. They compute the query statistics on the fly using sam-
pling techniques. In VDBMSs, AQP cannot precompute synopses
because, unlike structural data, which aggregates available records,
VDBMSs aggregate the output of UDFs, which are expensive to
compute. So, VDBMSs primarily rely on techniques similar to online
sampling methods.

8 CONCLUSION

In this paper, we revisited query processing in VDBMSs given
the radical shift in the performance gap between oracle and proxy
models over the last few years. We presented Seiden, a VDBMS that
simply leverages the lightweight oracle model and the temporal
continuity of the video to support faster query processing than
SoTA VDBMSs. Our empirical evaluation shows that Seiden works
well across three types of queries on five real-world datasets, and
is on average 6.6× faster than SoTA VDBMSs while delivering
comparable query accuracy.
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