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ABSTRACT
Real-world graphs, such as social networks, �nancial transactions,
and recommendation systems, often demonstrate dynamic behavior.
This phenomenon, known as graph stream, involves the dynamic
changes of nodes and the emergence and disappearance of edges.
To e�ectively capture both the structural and temporal aspects
of these dynamic graphs, dynamic graph neural networks have
been developed. However, existing methods are usually tailored to
process either continuous-time or discrete-time dynamic graphs,
and cannot be generalized from one to the other. In this paper,
we propose a decoupled graph neural network for large dynamic
graphs, including a uni�ed dynamic propagation that supports
e�cient computation for both continuous and discrete dynamic
graphs. Since graph structure-related computations are only per-
formed during the propagation process, the prediction process for
the downstream task can be trained separately without expensive
graph computations, and therefore any sequence model can be
plugged-in and used. As a result, our algorithm achieves excep-
tional scalability and expressiveness. We evaluate our algorithm
on seven real-world datasets of both continuous-time and discrete-
time dynamic graphs. The experimental results demonstrate that
our algorithm achieves state-of-the-art performance in both kinds
of dynamic graphs. Most notably, the scalability of our algorithm is
well illustrated by its successful application to large graphs with up
to over a billion temporal edges and over a hundred million nodes.
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1 INTRODUCTION
There are several complex networks in the real world, including so-
cial networks, transportation networks, biological networks, etc. In
these networks, interactions between nodes include a great deal of
valuable information, and graphs are regarded as good information
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carriers for these complicated networks. As a result, a number of
graph analysis problems arise, such as link prediction and anomaly
identi�cation. Due to their exceptional performance, Graph Neural
Networks (GNNs) are recognized as e�ective tools for resolving
these problems. However, most GNNs are designed for static graphs,
while networks are constantly evolving over time. Focusing only on
static graph information can result in missing crucial details, such
as the patterns of network evolution. For example, social networks
are characterized by continuous membership changes and shifts in
following and unfollowing among users. By analyzing the temporal
patterns of dynamic graphs, we can provide recommendations on
potential friendships.

In recent years, various works have been developed to address
the challenges ofmodeling and analyzing dynamic graphs. However,
these algorithms are often designed for speci�c types of data. For ex-
ample, it is challenging to adapt TGAT [40], which was established
for Continuous-Time Dynamic Graphs (CTDGs), to Discrete-Time
Dynamic Graphs (DTDGs) [47]. Similarly, methods developed for
DTDGs, such as DySAT [28] and STGCN [41], cannot be directly
applied to CTDGs. Although we could transform a CTDG into a se-
quence of snapshots taken at extremely short intervals and then use
DTDG methods, the computational expense would be prohibitive.
Motivation. GNNs are important algorithms for solving graph-
structured problems. The typical GNN layer consists of two mod-
ules, feature propagation and prediction, where feature propagation
is the primary element impacting performance [39]. This has led
to the development of decoupled GNNs. Several works, such as
APPNP [16] and GBP [4], separate the feature propagation and non-
linear transformation operations, achieving signi�cant improve-
ments and scalability. By pre-calculating feature propagation, the
need for complex computation during model training can be elimi-
nated, saving time and e�ort. In addition, e�ective feature propaga-
tion can further improve the performance of GNNs. However, most
of the existing decoupled models are tailored for learning static
graphs, and their adaptation to dynamic graphs is challenging.
Contribution. Inspired by the decoupled static GNN, we propose a
decoupled dynamic GNN method. The propagation progress takes
dynamic graphs as input and generates temporal representations
of all nodes in the graph. The model then trains for downstream
tasks using the results of dynamic propagation, which no longer
requires complicated graph computing at this stage and enables
the utilization of arbitrary neural network models. Therefore, the
computation for graph-structured data in dynamic graphs exists
only in the propagation process, allowing for the construction of
generic propagationmethods for both continuous-time and discrete-
time dynamic graphs.

We observe that CTDG methods, such as TGN [27], keep track
of nodes a�ected by each graph event and adjust their embeddings,
avoiding relearning the embeddings of all nodes and conserving
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Figure 1: Two types of dynamic graphs.

computing resources. Since each snapshot is treated as a static graph
in DTDG methods, edge deletion and the simultaneous occurrence
of multiple graph events are naturally handled. Our objective is to
develop a novel dynamic graph neural network that combines the
strengths of both CTDG and DTDG methods. To achieve this, we
introduce incremental node embedding update strategies specif-
ically designed for handling batch graph events. This allows our
model to process batch events similar to DTDG methods, while
also keeping track of embedding changes akin to CTDG methods.
Notably, our update strategy is not limited to adding new edges but
also works seamlessly for removing edges. The main contributions
can be summarized as follows:
• We propose a decoupled graph neural network for large dynamic

graphs, which decouples the temporal propagation and predic-
tion processes on dynamic graphs, enabling us to achieve great
scalability and generate e�ective representation.

• We support the processing of continuous-time and discrete-time
dynamic graphs by designing the generalized dynamic feature
propagation. On the other hand, the model can �t various high-
pass or low-pass graph �lters to obtain a comprehensive temporal
representation, by con�guring various propagation formulas.

• Extensive experiments on seven benchmark datasets demon-
strate the e�ectiveness of our method. Experimental results show
that our model outperforms existing state-of-the-art methods. In
addition, we evaluate our method on two large-scale graphs to
show its excellent scalability.

2 NOTATIONS AND PRELIMINARY
In this section, we �rst introduce the necessary notations. Then we
provide a concise overview of the classi�cation of dynamic graphs
and the common learning tasks associated with them.
Notations. A static graph is denoted as ⌧ = (+ , ⇢), where + is the
set of = nodes, and ⇢ represents the set of< edges. Let A 2R=⇥=
represent the adjacency matrix of⌧ , with entry A(8, 9) = F (8, 9 ) > 0
being the weight of the edge between node 8 and 9 , and A(8, 9) =
F (8, 9 ) =0 indicates non-adjacency. The degree matrix D2R=⇥= is a
diagonal matrix de�ned by D(8, 8)=3 (8)=Õ92+ F (8, 9 ) . Each node
8 2+ has a 3-dimensional features vector x8 , and all feature vectors
form the feature matrix X 2 R=⇥3 .
Dynamic Graphs. Dynamic Graphs can be summarized into two
categories, CTDGs and DTDGs, depending on whether the entire
timestamp is saved [12]. A CTDG is composed of an initial graph
and a sequence of events, denoted as (⌧, (), where ⌧ is the initial
state of the dynamic graph at time C0 and ( is a set of observed

events on the graph. Each event consists of a triplet of (event type,
event, timestamp), where the event type can be edge additions, edge
deletions, node additions, node deletions, node feature modi�ca-
tions, and so on. Therefore, ⌧C is the new graph generated from
the initial graph⌧ by sequentially completing the graph events of
{C1 ⇠ C}. Figure 1(a) shows an example of updating from an empty
graph with only �ve nodes to the graph ⌧5 at time C5, where the
graph events involved are:

( = {(�33⇢364, (E1, E5), C1), (�33⇢364, (E2, E4), C1),
(�33⇢364, (E1, E4), C2), (�33⇢364, (E3, E4), C2),
(�33⇢364, (E3, E5), C3), (⇡4;4C4⇢364, (E3, E4), C4),
(�33⇢364, (E1, E3), C5)} .

ADTDG is represented as a sequence of snapshots, {⌧0, . . . ,⌧) },
which are sampled at regular time intervals. Figure 1(b) illustrates
that the second snapshot, ⌧1, of the DTDG can be considered as
the graph snapshot captured by the CTDG in Figure 1(a) at time C5.
However, it is important to note that the events occurring between
C1 and C5 and their respective order are disregarded. Consequently,
the DTDG fails to recognize the existence of the previous edge
(E3, E4) in the graph.
Graph Learning Tasks. Node classi�cation and link prediction
are traditional learning tasks for static graphs. We assume that
each node is tagged with a label Y(8) from the label matrix Y, but
only the labels on a subset + 0 ⇢ + are known. The objective of
the node classi�cation problem is to infer the unknown labels on
+ \ + 0. In community detection, for instance, the label assigned
to each node represents the community to which it belongs. Link
prediction is the classical task of graph learning. It predicts whether
an edge exists between two nodes that were not initially connected,
inferring missing edges in ⇢. In social networks, link prediction is
also known as the friend recommendation task, predicting whether
a user is interested in another.

Similarly, there are node-level and edge-level prediction tasks
for dynamic graphs. Based on the historical information observed
so far, we are able to accomplish dynamic node classi�cation and
future link prediction de�ned as follows.

D��������� 1 (D������ N��� C�������������). For a given
graph ⌧C = (+C , ⇢C ) and the incomplete label matrix Y0C , where ⌧C
can be regarded as the graph at timestamp C in a CTDG or the C-th
snapshot in a DTDG, and Y0C associates a subset +

0
C ⇢ +C with known

class labels at timestamp/snapshot C , dynamic node classi�cation is
to classify the remaining nodes with unknown labels and estimate the
label matrix YC .

D��������� 2 (F����� L��� P���������). For a given times-
tamp/snapshot C and two nodes 8, 9 2 +C , future link prediction aims
to predict whether edge (8, 9) will be generated in the next times-
tamp/snapshot or not, based on observations learned from all nodes
and their links before timestamp C , i.e. observations of {⌧0, . . . ,⌧C }.

3 RELATEDWORKS
The Encoder-Decoder framework is a commonly used model in
machine learning, which has been applied to various tasks such
as unsupervised auto-encoder [9] and neural network machine
translation models [31]. Recently, researchers have demonstrated
that the Encoder-Decoder framework can generalize most high-
performing dynamic graph learning algorithms [12, 47].
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3.1 CTDGs Learning Methods
It is important to capture the changes in node embedding caused
by every graph event when learning CTDGs. Most methods follow
the training strategy that the encoder receives a sequence of graph
events as input and re�ects their in�uence in node embeddings.
The decoder can therefore be a sequence learning model or a static
network such as Multilayer Perceptron (MLP) or Support Vector
Machine (SVM).

CTDNE [21] uses the temporal random walk as an encoder and
designs three strategies for selecting the next-hop node in dynamic
graphs. The introduction of temporal information reduces the uncer-
tainty of embedding, resulting in better performance. The temporal
point process is utilized by DyREP [32] to capture temporal changes
at the node and graph levels. DyREP [32] builds embeddings of tar-
get nodes by aggregating information from neighboring nodes,
where neighbors are limited by biasing the hop count selection of
the temporal point process. These methods inherit the de�ciencies
of conventional graph representation learning methods, such as
their inability to include node properties.

More prevalent CTDG learning encoders are based on Recur-
rent Neural Networks (RNNs), where the RNN generates memories
from observed events associated with the target node via a memory
function. The representative model TGN [27] comprises a memory
component and an embedding component, where the memory com-
ponent stores the historical memory of the given node. JODIE [19],
DyREP [32], and TGAT [40] can be viewed as variants of TGN [27],
and they di�er in how they update embeddings and memories.
Utilizing an asynchronous mail propagator, APAN [37] enforces
that graph events are submitted to the model in timestamped order.
Wang et al. [38] builds node representations using Causal Anony-
mous Walks (CAWs), which anonymize the node information on
sampled temporal causal routes and apply attention learning to the
sampled motifs. The resulting motifs are fed to RNNs to encode
each walk as a representation vector. Subsequently, the representa-
tions of multiple walks are aggregated into a single vector using a
self-attention process for downstream tasks.

Generally, methods speci�c to CTDGs e�ciently learn node em-
beddings by tracking the impacted nodes for each graph event and
updating their embeddings accordingly. However, these methods
typically focus on considering the immediate neighbors linked with
a graph event, such as the endpoints of an inserted edge, and few
consider the impact on second-order neighbors [6]. Furthermore,
the e�ect on higher-order neighbors or the overall graph is rarely
evaluated, and there is limited discussion regarding edge deletions
and simultaneous arrivals of multiple events.

3.2 DTDGs Learning Methods
In the DTDGs learning process, temporal patterns are measured
by the sequential relationships between snapshots. Some works
apply Kalman �ltering [13, 29] or stacked spatial-temporal graph
convolution networks (STGCN) [41] to create dynamic graph em-
beddings, and then use simple MLPs as decoders to perform the
prediction task. More commonly, static methods, such as GAE and
VGAE [14], are used to generate node embeddings of each snapshot.
The embeddings are then sorted by time and treated as sequential
data, and a sequential decoder is applied to extract the temporal
patterns from them.

To obtain embeddings of each snapshot, GraRep [3], HOPE [22],
and M-NMF [36] construct encoders using matrix decomposition,
while DeepWalk [26] and node2vec [8] transform the graph struc-
ture into node-level embeddings using random walk. These algo-
rithms, however, are shallow embedding methods, meaning that
they do not consider the attribute information of the graph. Also,
there is no parameter sharing between nodes, which makes these
methods computationally ine�cient. Graph neural networks are
e�cient ways for learning both the structure and attribute informa-
tion of a graph. GNNs follow the message-passing framework, in
which each node generates embeddings by aggregating information
of neighbors [7]. To improve the e�ciency, Graph Convolutional
Network (GCN) [15] derives the layer-by-layer propagation for-
mula from the �rst-order approximation of the localized spectral
�lters on the graph:

H(✓+1) = f
⇣
D�

1
2AD�

1
2H(✓ )W(✓ )

⌘
(1)

where A and D are the adjacency matrix and degree matrix, re-
spectively. W(✓ ) is the learnable parameter of layer ✓ , and f is a
nonlinear activation function such as ReLU. H(✓ ) is the learnt node
representation at the ✓-th layer, and H(0) = X. AddGraph [44] em-
ploys GCN as the encoder to analyze the structural information
of each snapshot, while a sequence decoder is used to determine
the relationships between snapshots. Graph Attention Network
(GAT) [34] is an attention mechanism based on GCN that assigns
various weights to the features of neighbors via weighted summa-
tion. DyGAT [28] employs GAT as an encoder for DTDGs learning,
and node embeddings are generated by jointly computing self-
attentions of neighborhood structure and time dimensions.

Long Short-TermMemory (LSTM) [10] is a widely used sequence
model, known for its ability to e�ectively capture long-term tem-
poral dependencies and correlations. Therefore, Seo et al. [30] and
Manessi et al. [20] use LSTM as decoders, and their encoders are
GCNs or their di�erent versions. The combination structure of
GNNs and LSTMs has demonstrated its e�cacy in object detec-
tion [43] and pandemic forecasting [23] areas. EvolveGCN [25]
uses LSTM and Gate Recurrent Unit (GRU) to update the GCN’s
parameters at each snapshot since it focuses on the evolution of the
GCN’s parameters rather than the node representation at each snap-
shot. These DTDG-speci�c methods typically treat each snapshot
as a static graph, making it easy for them to address edge deletion
and many simultaneous edges. However, they are unable to track
the particular impact of each graph event on node embedding, and
the recomputation of each snapshot is computationally expensive.

4 DECOUPLED GRAPH NEURAL NETWORK
Overview. As previously indicated, we aim to design a decoupled
GNN with high scalability for dynamic graphs. In addition, we
also require the model to operate multi-event arrivals simultane-
ously and support edge deletion while keeping tracking changes in
node embedding, which incorporates the bene�ts of the CTDGs-
speci�c and DTDGs-speci�c models. Therefore, inspired by the
scalable static GNN framework [2, 39], we develop a decoupled
GNN for large dynamic graphs, in which the dynamic propagation
of the graph is decoupled from the prediction process. To enable
e�cient computation on large-scale dynamic graphs, we employ
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Algorithm 1: G������P����������
Input :Graph ⌧ , weight coe�cients W: , convolutional

coe�cients V , threshold A<0G , initialized (0̂ , r)
1 while exist 8 2 + with |r (8) | > A<0G · 3 (8)1�V do
2 0̂ (8)  0̂ (8) + W0 · r (8);
3 for each 9 2 # (8) do
4 r ( 9)  r ( 9) + W ·F(8,9 ) ·r (8 )

3 (8 )1�V3 ( 9 )V ;

5 r (8)  0;
6 return (0̂ , r);

dynamic propagation with strict error guarantees (as described in
Section 4.1). This approach eliminates learning parameters in the
propagation process, facilitating independent graph propagation
for generating temporal representations of all nodes. The prediction
process focuses on learning the underlying graph dynamics from
the representations of nodes, which does not contain expensive
graph computations, enabling the use of arbitrary learning models,
as described in Section 4.2.
Scalable GNNs. In order to improve the scalability of GNN models,
a line of research tries to decouple the propagation and prediction
of conventional GNN layers. The idea behind them is to apply MLPs
to batches of nodes simply without taking the graph structure into
account, which is proposed by SGC [39] �rst. For implementation,
the representation matrix Z is generated �rst following this general
formulation propagation:

Z =
1’
:=0

W: (D�0AD�1 ):X , (2)

where X denotes the input feature matrix, 0 and 1 are convolu-
tion coe�cient, W: (: = 0, 1, 2, . . . ) is the weight of the :-th step
convolution. When 0 = 1 = 1

2 and W: = 1, Equation 2 can be
considered a GCN with an in�nite number of layers, i.e., a stack
of in�nite layers of Equation 1. However, the parameters of each
layer are discarded for better scalability. Therefore, MLPs take the
representation matrix Z as input and trains for downstream tasks.
Mini-batch training can be easily accomplished since node repre-
sentations can be viewed as distinct input samples for the neural
network. Numerous models, including APPNP [16], SGC [39], and
GBP [4], can be regarded as versions of Equation 2 constructed by
choosing di�erent values for 0, 1, and W: . By varying W: , Equation 2
can approximate any form of graph �lter. For instance, Equation 2
corresponds to a low-pass graph �lter when all W: (: = 0, 1, 2, . . . )
satisfy W: � 0, and Equation 2 relates to a high-pass �lter when W:
is of the form (�U): with U 2 (0, 1). For simplicity, we assume that
0 = V , 1 = 1 � V , and the sequence of W: is a geometric progression
with a common ratio W =

W:+1
W:

and 0 < |W | < 1 in this paper.
We aim to extend the previous concept to dynamic graphs. Firstly,

we derive temporal representations for all nodes in the graph based
on dynamic approximate propagation, which can be e�ciently pre-
computed. Next, we batch the structurally enhanced temporal rep-
resentations of nodes and feed them into the learning model. This
decoupling framework, derived from scalable static GNNs, permits
the use of any sequence model while preserving high scalability.

Approximate propagation. The summation in Equation 2 goes
to in�nity, which makes it computationally infeasible. Following
PPRGo [2] and AGP [35], we consider its approximate version.
By representing each dimension of the feature matrix as an =-
dimensional vector x , the feature matrix can be turned into a se-
quence of {x0, ..., x3�1}, where the propagation of each vector is
conducted independently. Equation 2 can therefore be expressed
in a equivalent vector form: 0 =

Õ1
:=0 W: (D

�VADV�1):x . As illus-
trated in Algorithm 1, we generalize the propagation algorithm [45]
to a weighted version to support weighted graph neural networks
and relax the requirement for positive weight coe�cients. We de-
note the approximate solution as 0̂ , and the cumulative error of all
steps is denoted as r . For initialization, we set 0̂ = 0 and r = x . The
propagation starts from the node whose residual exceeds the error
tolerance A<0G . Then, the node distributes an equal portion of its
residual to its neighboring nodes, and the remainder is transformed
into its estimate to record the amount of information already prop-
agated by that node. The feature propagation concludes when the
residuals of all graph nodes satisfy the error bound.

The neural network model receives the structurally improved
feature matrix Ẑ = (0̂0, ..., 0̂3�1) as input and is trained to get
the �nal representation of the nodes based on the subsequent task.
For instance, the multi-label node classi�cation task typically uses
Y = B> 5 C<0G ("!% (Ẑ)). By decoupling propagation and predic-
tion, the model training complexity is independent of the graph
topology, which enhances training e�ciency and enables the use
of sophisticated prediction networks simultaneously.

4.1 Dynamic Propagation
We consider a dynamic graph G = {⌧0,⌧1, ...,⌧) }, where each
⌧C (C 2 [0,) ]) is the graph derived from the initial graph in a CTDG
after �nishing the graph events before timestamp C , or the C-th snap-
shot in a DTDG. That is,⌧C refers to the C-th observed status of the
dynamic graph. We are not concerned with how ⌧C is obtained, i.e.
how the dynamic graph G is stored. The overall update procedure
is summarized in Algorithm 2. We obtain the feature propagation
matrix for each ⌧C , and ZC is derived iteratively from ZC�1, as in
lines 9-19. The estimated vector 0̂ and residual vector r inherit
the propagation results from the previous time step and make the
necessary updates based on the current graph structure.

To construct sequential representations for all nodes in the dy-
namic graph, it is necessary to comprehend how to quantify the
impact that changes to the network have on every node. Therefore,
each node should have its individual observation perspective, with
a unique comprehension of each graph modi�cation. To improve
the computational e�ciency, we propose to incrementally compute
the node representation when the graph changes. We start with the
following theorem on invariant properties. Due to the page limit,
we defer the proof to the technical report [1].

T������ 1 (T�� I�������� P�������). Suppose 0̂ (8) is the
estimate of node 8 , r (8) is its residual, and x (8) is its input feature, for
each node 8 2 + , we notice that 0̂ (8) and r (8) satisfy the invariant
property as follow:

0̂ (8) + W0 r (8) = W0x (8) +
’

92# (8 )

W ·F (8, 9 ) · 0̂ ( 9)
3 (8)V3 ( 9)1�V

. (3)
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Algorithm 2: D������P����������
Input :Dynamic graph G, weight coe�cients W: ,

convolutional coe�cients V , threshold A<0G , feature
matrix X=⇥3

1 parallel for each column x 2 X do
/* Step 1. Generate estimated and residual

vector 0̂, r for the initial graph ⌧ */
2 0̂  0, r  x ;
3 0̂ , r  G������P����������(⌧ , W: , V , A<0G , 0̂ , r ) ;
4 for each time step C 2 [1,) ] do
5 Updating ⌧ with graph events at time C ;
6 Collect the a�ected nodes at time C as +� ;

/* Step 2. Maintain the estimated and
residual vector 0̂, r in accordance with
the invariant property. */

7 parallel for each D 2 +� do

8 0̂ (D)  0̂ (D) · 3 (D )
1�V
C

3 (D )1�VC�1
;

9 r (D)  r (D) + 0̂ (D) · 3 (D )
1�V
C�1 �3 (D )

1�V
C

W0 ·3 (D )
1�V
C

;

10 parallel for each D 2 +� do

11 �r (D) (0̂ (D)+W0 r (D)�W0x (D))·
3 (D )VC�1�3 (D )

V
C

3 (D )VC
;

12 for each E 2 #033,C (D) do
13 �r (D)  �r (D) + W 0̂ (E)

3 (D )VC 3 (E)
1�V
C

;

14 for each E 2 #34;4C4,C (D) do
15 �r (D)  �r (D) � W 0̂ (E)

3 (D )VC 3 (E)
1�V
C

;

16 �r (D)  �r (D)/W0 ;
17 r (D)  r (D) + �r (D) ;

/* Step 3. Propagation on the graph at
time C. */

18 0̂ , r  G������P����������(⌧ , W: , V , A<0G , 0̂ , r ) ;

19 return Embedding matrix Ẑ=⇥3 = (0̂0, . . . , 0̂3�1) ;

Generalized update rules. Without loss of generality, we assume
that an edge (D, E) with weightF (D,E) is inserted to the graph. Ac-
cording to Equation 3, the set of a�ected nodes is +� = {D,F |F 2
# (D)}. For node D, the increment caused by the insertion can

be quanti�ed as (0̂ (D) + W0 r (D) � W0x (D))
3 (D )V� (3 (D )+F(D,E) )V

W0 · (3 (D )+F(D,E) )V
+

WF(D,E) 0̂ (E)
W0 (3 (D )+F(D,E) )V3 (E)1�V

, since the degree is updated to 3 (D) +F (D,E)
and a new neighbor E appears. According to the meaning of esti-
mate and residual, we add this increment to the residual of node
D. Similarly, for each nodeF 2 # (D), 0̂ (D )

3 (D )1�V in its equation will

be updated to 0̂ (D )
(3 (D )+F(D,E) )1�V

as a result of the change of node
D’s degree. To guarantee that the update time complexity of each
insertion is $ (1), the following updates are performed to prevent
alterations to node D’s neighbors:

• 0̂ (D) = 3 (D )1�V
(3 (D )+F(D,E) )1�V · 0̂ (D);

• r (D) = r (D) + 0̂ (D )
W0

· ( 3 (D )1�V
(3 (D )+F(D,E) )1�V

� 1).
The detailed calculation process of the update and its batched ver-
sion can also be found in the technical report [1]. Since none of
variables involved in the equation of other nodes have changed,
the increment induced by the insertion of the edge (D, E) is zero
from the perspective of node 8 2+ , 8<D and 8 8# (D). Algorithm 1 is
then used to propagate this increment from node D to its neighbors,
informing other nodes of the change in the graph.

The preceding procedure can be easily generalized to the case
of deleting the edge (D, E) with weightF (D,E) by simply replacing
(3 (D) +F (D,E) ) with (3 (D) �F (D,E) ). Therefore, it is unnecessary
to recalculate the feature propagation when the graph changes, but
rather obtain the current propagation matrix incrementally based
on the past calculation result. In addition, we have Theorem 2 to
guarantee the error of propagation on each ⌧C .

T������ 2 (E���� A�������). Suppose 0̂C (8) is the estimate of
node 8 at time C , 0C (8) is its ground-truth estimate at time C , 3 (8)C is its
degree at time C , and A<0G is the error threshold, for each node 8 2 + ,
we have |0C (8) � 0̂C (8) |  A<0G ·3 (8)1�VC holds for 8C 2 {0, 1, . . . ,) }.

Handle CTDGs.We can utilize the aforementioned update strategy
to handle incoming graph events accompanied by either inserting
or removing edges. For each arriving edge (D, E), we can ensure
that Equation 3 holds at all nodes by updating only the estimate
and residual at node D, and the time complexity of the update is
$ (1). Therefore, the above update strategy can be well adapted to
sequences of frequently arriving graph events in CTDGs.
Handle DTDGs. For two successive snapshots ⌧C�1 and ⌧C in
a DTDG, we regard the changes between the two snapshots as
graph events arrived simultaneously, and it is easy to statistically
extract +� . We can then compute exactly the increment between
the two snapshots by substitutingF (D,E) with the degree change
�3 (D) = 3 (D)C � 3 (D)C�1 for each a�ected node D 2+� . Similarly,
Algorithm 1 transmits information about the changes in the graph
to other nodes. Therefore, when a new snapshot ⌧C arrives, we
incrementally update the feature propagation matrix based on the
feature propagation results of snapshot⌧C�1. Since batches of graph
updates can be e�ciently processed, our method naturally supports
DTDGs and maintains tracking for underlying node embeddings.
Remark. In comparison to CTDG-speci�c methods, our approach
updates the dynamic graph based on timestamps rather than re-
lying solely on the order of each edge. Since it is common for
multiple graph events to occur simultaneously at a single time step
in real-world scenarios, handling each event individually would
be suboptimal. In contrast to DTDG-speci�c methods, where each
graph snapshot is treated as a static graph, we adopt an incremental
update approach, which allows us to update the graph incremen-
tally based on the di�erences between two successive snapshots.
Based on this strategy, we avoid recalculating the underlying node
embeddings for each snapshot and disregarding changes to them.

4.2 Prediction
In this section, we provide illustrations of the prediction phase by
considering dynamic node classi�cation and future link prediction
as examples. These two tasks are de�ned in detail in Section 2.
Dynamic node classi�cation.We can incrementally obtain the
feature propagation matrix at each time C using Algorithm 2. Each
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row of the feature propagationmatrix ẐC , denoted as a3-dimensional
vector zC ,8 , is the structural-enhanced node representation vector
of node 8 2 + at time C . Therefore, zC,8 is the representation vector
of node 8 under the error tolerance control described in Theorem 2.
Since the aggregation of node features based on graph structure has
been completed during the propagation process, the node represen-
tation vector zC,8 (C =1, . . . ,) ) for each node 8 2+ can be regarded
as the standard input vector of neural networks at this stage. For
instance, we use a two-layer MLP to predict the label of node 8 at
time C as: YC (8) = B> 5 C<0G ("!% (zC ,8 )).
Future link prediction. In this task, we aim to learn the temporal
pattern of each node to forecast if the two given nodes would be
linked at the given time. The changes in the node representation
over time can be regarded as a time series, and the temporal infor-
mation contained within it can be captured by a common temporal
model such as LSTM. Notice that utilizing sequence {z1,8 , . . . , z) ,8 }
to describe the dynamic network will provide a very subjective im-
pression from node 8 . As a result, when changes in the graph have
a large in�uence on node 8 , the representation vector zC,8 changes
signi�cantly with respect to the previous moment zC�1,8 . The vector
changes little from that of the previous state zC�1,8 when changes
in the graph have little in�uence on node 8 . Note that the degree of
in�uence is related to the �nal feature propagation matrix gener-
ated by Algorithm 2. Therefore, node 8’s perception of the degree
of graph change is in�uenced by the descriptions of its neighbor-
ing nodes through the propagation process. The completion of the
future link prediction task involves the following three steps.

• Firstly, we calculate the di�erence between each node’s state
in two consecutive graph states as %C ,8 = 6(zC ,8 , zC�1,8 ), where
6(·) is distance measure function. We implement 6(·) as a simple
�rst-order distance, although it could also be a ✓2-norm, cosine
similarity, or other complicated design. Based on the above, we
interpret %C,8 (B) as the score of graph changes from the perspec-
tive of node 8 at the B-th feature dimension.

• Secondly, sequence models, such as LSTM, directly take the
sequence {%1,8 , . . . , %C,8 } as input to capture the temporal pat-
terns for node 8 . Since the graph structure information is already
included in zC,8 and %C,8 , the sequence model can be employed
more e�ectively by focusing solely on temporal patterns. The
predicted state at time C is denoted as hC = M(hC�1, %C ), where
M is the chosen sequence learning model, %C is the current input
vector, and hC�1 is the learned prior state. The standard LSTM
cell is de�ned by the following formula:

iC = f (WihC�1 + Ui%C + bi),
fC = f (Wf hC�1 + Uf %C + bf ),
oC = f (WohC�1 + Uo%C + bo), (4)
c̃C = tanh(WchC�1 + Uc%C + bc ),
cC = fC � CC�1 + iC � c̃C ,

hC = oC � tanh(cC ),

where f is the sigmoid activation function, � denotes the matrix
product operation, iC , fC and oC represent the degree parameters
of the input gate, forgetting gate and output gate of the LSTM
cell at time C . {Wi,Ui, bi}, {Wf ,Uf , bf }, {Wo,Uo, bo} are their
corresponding network parameters, respectively. c̃C denotes the

candidate states used to update the cell states. {Wc ,Uc , bc } are
the parameters of the network for generating candidate mem-
ories. cC is formed as the output vector hC at the current time C
after the output gate has discarded some information. Note that
the LSTM cell could be replaced by a GRU cell or a Transformer
cell, asM is free from graph-related computations.

• Finally, we combine the pair of hidden states of node 8 and 9 as
>C (8, 9) = 5 (hC ,8 ,hC, 9 ), where 5 (·) is the combine function, and
we experiment on concatenation following previous work [27,
42]. Then the probability score of edge (8, 9)’s existence at time C
is given by YC (8, 9) = f ("!% (>C (8, 9))).

5 EXPERIMENTS
In this section, we evaluate the e�ectiveness of our method against
state-of-the-art methods on two representative tasks, future link
prediction and dynamic node classi�cation, on both CTDGs and
DTDGs. Furthermore, we conduct experiments on two large-scale
dynamic graphs to demonstrate the scalability of our method.
Datasets.We conducted experiments on seven real-world datasets,
includingWikipedia [19], Reddit [19], UCI-MSG [24], Bitcoin-OTC [17,
18], Bitcoin-Alpha [17, 18], GDELT [46] and MAG [11, 46]. The sta-
tistics of datasets are presented in Table 1. In all graphs, the weight
of an edge is determined by its frequency of occurrence. More
details about the datasets can be found in the technical report [1].
Baseline methods.We compare our method to state-of-the-art dy-
namic graph neural networks, including TGN [27], CAW-Ns [38] for
CTDGs and ROLAND [42] for DTDGs. In the two CTDG datasets,
Wikipedia and Reddit, we strictly inherit the baseline results from
their papers and follow the experimental setting of TGN [27].
In the three DTDG datasets, UCI-Message, Bitcoin-Alpha, and
Bitcoin-OTC, our experimental setting is closely related to those
of EvolveGCN [25] and ROLAND [42], and we adopt the original
paper’s stated results. To provide a fair comparison, we employ the
same data processing and partitioning techniques as TGN [27] and
ROLAND [42]. For the two large-scale datasets GDELT and MAG,
we utilize the results reported by TGL [46]. Other baseline methods
are described in Section 3.

5.1 Experiments on CTDGs
Experimental Setting. We conduct experiments on Wikipedia
and Reddit dataset in both transductive and inductive settings,
following [27]. In both settings, the �rst 70% of edges are used as
the training set, 15% are used as the validation set, and the remaining
15% are used as the test set. In the transductive setting, we predict
future links for observed nodes in the training set. In the inductive
setting, the future linking status of nodes that do not present in
the training set is predicted. We formulate the prediction of future
links between two nodes as a binary classi�cation problem. More
speci�cally, we assign a label of 1 to indicate that the two nodes
will be connected in the future, while a label of 0 signi�es that there
will be no link between them. The time span of the prediction is
one time step. The popular classi�cation metric Average Precision
(AP) is employed to evaluate the algorithm’s performance on both
future link prediction and dynamic node classi�cation tasks. In
order to maintain the balance of the data, we generate one negative
sample for each test edge or node when computing AP, following
the experimental setting in TGN [27] and TGL [46]. For our method,
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Table 1: Statistics of the datasets.

#nodes #edges max(C ) #classes #node features #edge features
Wikipedia 9,227 157,474 152,757 2 172 (random) 172
Reddit 11,000 672,447 669,065 2 172 (random) 172
UCI-Message 1,899 59,835 87 - 128 (random) -
Bitcoin-OTC 5,881 35,592 138 - 128 (random) 1
Bitcoin-Alpha 3,783 24,186 138 - 128 (random) 1
GDELT 16,682 191,290,882 170,522 81 413 186
MAG 121,751,665 1,297,748,926 120 152 768 -

Table 2: Future link prediction on CTDGs. AP (%) ± standard
deviations computed of 10 random seeds are exhibited.

Wikipedia Reddit
Transductive Inductive Transductive Inductive

GAE 91.44 ± 0.1 - 93.23 ± 0.3 -
VGAE 91.34 ± 0.3 - 92.92 ± 0.2 -

DeepWalk 90.71 ± 0.6 - 83.10 ± 0.5 -
Node2Vec 91.48 ± 0.3 - 84.58 ± 0.5 -

GAT 94.73 ± 0.2 91.27 ± 0.4 97.33 ± 0.2 95.37 ± 1.1
GraphSAGE 93.56 ± 0.2 91.09 ± 0.3 97.65 ± 0.2 96.27 ± 0.2
CTDNE 92.17 ± 0.5 - 91.41 ± 0.3 -
Jodie 94.62 ± 0.5 93.11 ± 0.4 97.11 ± 0.3 94.36 ± 1.1
TGAT 95.34 ± 0.1 93.99 ± 0.3 98.12 ± 0.2 96.62 ± 0.3
DyRep 94.59 ± 0.2 92.05 ± 0.3 97.98 ± 0.1 95.68 ± 0.2
TGN 98.46 ± 0.1 97.81 ± 0.1 98.70 ± 0.1 97.55 ± 0.1

CAW-N-mean 98.82 ± 0.1 98.28 ± 0.1 98.72 ± 0.1 98.74 ± 0.1
CAW-N-attn 98.84 ± 0.1 98.31 ± 0.1 98.80 ± 0.1 98.77 ± 0.1

ours 99.16 ± 0.3 98.54 ± 0.2 99.51 ± 0.5 98.81 ± 0.6

Table 3: Dynamic node classi�cation on CTDGs. ROC AUCs
(%) are exhibited.

Wikipedia Reddit
Jodie 81.37 70.91
DySAT 86.30 61.70
TGAT 85.18 60.61
TGN 88.33 63.78
APAN 82.54 62.00
ours 89.81 67.53

we set the weight coe�cients W: = U (1 � U): , which is known as
the Personalized PageRank weights with a hyperparameter U 2
(0, 1). The standard LSTM is utilized as the sequence model to
learn the temporal patterns present in the node representation.
Since no node features are provided, we use a randomly generated
172-dimensional vector as the initial node feature vector.
Results. The results of future link prediction in both transduc-
tive and inductive settings are shown in Table 2. The presented
results are the average of 10 runs. Our method performs better than
baseline methods in both transductive and inductive settings. The
interesting thing is that we did not use the provided edge features
and achieve comparable or even better performance. This may be
strongly related to the experimental setting and dataset. For the
current future link prediction, we simply need to forecast whether
a connection will be created between two given nodes in the future.

The speci�cs of that link are practically of no concern. The pub-
licly accessible edge features of Wikipedia and Reddit are derived
from the textual content of each edit or post on the respective web
page and sub-reddit. The learning objective is to detect whether
a user would edit a certain page or post on a given sub-reddit in
the future, without predicting the edit or post content. It is possible
that semantic information of textual material is super�uous. The
historical interaction data already contains su�cient information
to reveal users’ preferences for particular pages and sub-reddits.
Our hypothesis is also supported by the results of our method on
graphs that lack semantic information.

Table 3 shows the experimental results for the dynamic node
classi�cation. For node classi�cation, we always use the most recent
node representation based on the history observed so far. The three-
layer MLP is employed as the classi�er. The results in Table 3 show
that our method e�ectively captures the temporal changes of the
nodes in time, thus enabling the correct classi�cation of the nodes.

5.2 Experiments on DTDGs
Experimental Setting.We use three datasets in this experiment:
Bitcoin-OTC, Bitcoin-Alpha and UCI-Message. To ensure a fair com-
parison, we partition the dataset and calculate evaluation measures
in the same manner as ROLAND [42]. Since node features and edge
features are not provided in these three datasets, we generate the
128-dimensional random vector to serve as the initial node feature.
The ranking metric, Mean Reciprocal Rank (MRR), is employed to
evaluate performance. We collect 1000 negative samples for each
positive sample and then record the ranking of positive samples ac-
cording to predicted probabilities. MRR is calculated independently
for each snapshot in the test set, and the average of all snapshots is
reported. For our method, we combine the node temporal represen-
tations obtained under settings W: = U (1�U): and W: = U (U�1): to
approximate the low-pass and high-pass �lters on the graph and
introduce low-frequency and high-frequency information, respec-
tively. Three traditional sequence models, LSTM [10], GRU [5] and
Transformer [33], are used to �nish the future link prediction task.
Results. The results in Table 4 demonstrate the state-of-the-art per-
formances of our method. In the Bitcoin-OTC dataset, our method
outperforms the second-best method ROLAND by 41%. The re-
sults show that the LSTM model consistently outperforms the GRU
model, which is possibly due to the LSTM having more parameters.
The Transformer model tends to achieve a higher MRR, which could
be attributed to its holistic approach to the temporal sequence of
nodes and reduced reliance on previous hidden states. Addition-
ally, we conducted an ablation study in the technical report [1] to
validate the necessity of introducing high-frequency information.
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Table 4: Future link prediction on DTDGs. MRR ± standard deviations computed of 3 random seeds are exhibited.

UCI-Message Bitcoin-Alpha Bitcoin-OTC
GCN 0.1141 0.0031 0.0025

DynGEM 0.1055 0.1287 0.0921
dyngraph2vecAE 0.0540 0.1478 0.0916

dyngraph2vecAERNN 0.0713 0.1945 0.1268
EvolveGCN-H 0.0899 0.1104 0.0690
EvolveGCN-O 0.1379 0.1185 0.0968

ROLAND Moving Average 0.0649 ± 0.0049 0.1399 ± 0.0107 0.0468 ± 0.0022
ROLAND MLP 0.0875 ± 0.0110 0.1561 ± 0.0114 0.0778 ± 0.0024
ROLAND GRU 0.2289 ± 0.0618 0.2885 ± 0.0123 0.2203 ± 0.0167

ours
GRU 0.2024 ± 0.0010 0.3289 ± 0.0070 0.2985 ± 0.0121
LSTM 0.2140 ± 0.0034 0.3405 ± 0.0133 0.3102 ± 0.0046

Transformer 0.2314 ± 0.0048 0.3173 ± 0.0135 0.3110 ± 0.0049

Table 5: Dynamic node classi�cation on large graphs. F1-
Micros (%) are exhibited.

GDELT MAG
Jodie 11.25 43.94
DySAT 10.05 50.42
TGAT 10.04 51.72
TGN 11.89 49.20
APAN 10.03 -
ours 25.49 61.40

5.3 Experiments on Large Graphs
Experimental Setting.To demonstrate the scalability of ourmethod,
we conduct experiments on two large-scale real-world graphs,
GDELT and MAG. We exclude EvolveGCN [25], ROLAND [42]
and CAW-Ns [38] from experiments on GDELT and MAG datasets,
since they met out-of-memory issues on both datasets. Note that
the scalability of the baseline methods JODIE [19], DySAT [28],
TGAT [40], TGN [27], and APAN [37] was not taken into account
in their original papers, and their original versions cannot be trained
on these two large-scale dynamic graphs. TGL [46] has success-
fully applied these methods to large-scale graphs by developing
a distributed dynamic graph neural network training framework.
In contrast, our method can learn large-scale graphs directly. Our
method exhibits greater scalability due to the elimination of param-
eters in the propagation process, allowing the training on these two
large-scale graphs to be completed on a single machine. We validate
the performance of all methods on the dynamic node classi�cation
task and compare their performance using the multiple-class classi-
�cation metric F1-Micro. To guarantee a fair comparison, we ensure
that the training, validation and test sets are consistent with the
settings in TGL. For our method, we set W: = U (1 � U): to obtain
the temporal representation of each node, and a three-layer MLP is
utilized to complete the training for the classi�cation task.
Results. Table 5 shows the dynamic node classi�cation results.
Compared to baseline methods, we achieve signi�cant performance
improvement in both datasets. Speci�cally, our method improves
F1-Micro by 13.6 on the GDELT dataset and 9.68 on the MAG
dataset. This indicates that our method can e�ectively capture the
dynamic changes in node representations by precisely locating the
directly a�ected nodes via Equation 3 and quantifying the degree

of graph change. The following propagation process that immedi-
ately follows broadcasts the change from the a�ected node to its
surroundings, so that higher-order neighbors can also naturally
perceive the change on the graph. However, from a practical appli-
cation standpoint, the performance of all methods in GDELT is not
adequate. We note that this is due to the presence of much noise in
the labeled data of GDELT. Participants can participate in events
held around the world via remote means such as online, resulting
in some nodes may simultaneously belong to many classes.

6 CONCLUSION
This paper proposes a universal general graph neural network
for dynamic graphs that can extract the structural and attribute
information of the graph, as well as the temporal information. Our
algorithm is based on the framework of decoupled GNNs, which
can pre-compute temporal propagation in dynamic graphs and then
train them for downstream tasks depending on the nodes’ temporal
representation. We devised a uni�ed dynamic propagation method
to support the learning on both continuous-time and discrete-time
dynamic graphs. Empirical studies on continuous-time and discrete-
time dynamic graphs at various scales demonstrate the scalability
and state-of-the-art performance of our algorithm.
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