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ABSTRACT

Many recent works on Entity Resolution (ER) leverage Deep Learn-

ing techniques involving language models to improve effectiveness.

This is applied to both main steps of ER, i.e., blocking and match-

ing. Several pre-trained embeddings have been tested, with the

most popular ones being fastText and variants of the BERT model.

However, there is no detailed analysis of their pros and cons. To

cover this gap, we perform a thorough experimental analysis of 12

popular language models over 17 established benchmark datasets.

First, we assess their vectorization overhead for converting all input

entities into dense embeddings vectors. Second, we investigate their

blocking performance, performing a detailed scalability analysis,

and comparing them with the state-of-the-art deep learning-based

blocking method. Third, we conclude with their relative perfor-

mance for both supervised and unsupervised matching. Our ex-

perimental results provide novel insights into the strengths and

weaknesses of the main language models, facilitating researchers

and practitioners to select the most suitable ones in practice.
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1 INTRODUCTION

Entity Resolution (ER) is a crucial and challenging task for data

integration [10], aiming to detect the different entity profiles that

pertain to the same real-world object [9]. By deduplicating entity

collections, ER facilitates a wide range of applications, from com-

mon data analytics tasks to advanced question answering [12].
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Typically, ER solutions operate in two steps [7, 15]. First, block-

ing restricts the search space to the most likely matches, called

candidate pairs, through a coarse-grained approach [44]. This is

necessary in order to tame the inherently quadratic complexity of

ER and allow it to scale to large volumes of data. Then, matching

performs a fine-grained processing that examines each candidate

pair to decide whether it constitutes a match [43].

Embedding text into numeric vectors has become a very com-

mon approach in NLP and related tasks [48]. Earlier models adopted

sparse representations, based on bag-of-words or tf-idf [30]. How-

ever, these can only capture syntactic and not semantic similarity.

This limitation is addressed by pre-trained embeddings models.

Motivated and inspired by this, the latest breakthroughs in ER

leverage language models for both blocking [56] and matching

[3, 33]. The following steps are typically involved in this process

[13]. First, every given entity is transformed into a dense embed-

dings vector. To perform blocking, the resulting vectors are indexed

and a 𝐾-nearest neighbor query is issued for each entity to identify

candidate pairs. These are then processed by a matching algorithm,

which may operate in an unsupervised or a supervised mode. In

the former case, the similarity between the embeddings vectors is

computed and used as edge weights in a bipartite graph, where the

nodes correspond to entities and the edges connect the candidate

pairs. The graph is then split into disjoint sets of nodes, such that

each of them contains all entities describing the same real-world

object. In supervised matching, the embeddings vectors of the can-

didate pairs are fed as input to a binary classifier, typically a deep

neural network, that decides whether each of them is a duplicate.

Over the years, numerous language models have been used in

both ER steps. Blocking with GloVe [13] and FastText [56, 67] and

matching with GloVe [13, 33], FastText [14, 23, 33, 35, 61, 64, 66]

as well as BERT [46] and its main variants, i.e., XLNet, DistilBERT,

RoBERTa and AlBERT [3, 5, 25, 38]. However, there is no systematic

analysis of their relative performance in these ER tasks. We cover

this gap, answering the following research questions:

(Q1) How large is their vectorization overhead?

(Q2) What is their relative performance in blocking?

(Q3) What is their relative performance in matching? How is it

affected by fine-tuning in supervised matching?

(Q4) Can we build high performing end-to-end ER pipelines using

pre-trained language models without labelled instances?
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To answer these questions, we perform a thorough experimental

analysis, involving 12 established language models: Word2Vec [31,

32] , GloVe [47], FastText [2], BERT [11], AlBERT [22], RoBERTa

[28], DistilBERT [52], XLNet [63] as well as S-MPNet [53], S-GTR-

T5 [49], S-DistilRoBERTa and S-MiniLM [60]. Some of them are

applied to ER for the first time. We apply them to 10 established real-

world and 7 synthetic datasets, making the following contributions:

• We organize them into a taxonomy that facilitates the under-

standing of their relative performance and we discuss their core

aspects like their dimensionality and context awareness.

• We examine the vectorization cost per model.

• We assess their blocking effectiveness, efficiency and scalability.

• We compare their relative performance for both supervised and

unsupervised matching.

• We demonstrate that high performance can be achieved by an

end-to-end solution that leverages the best language model both

for blocking and matching in many datasets with either long or

short textual attributes.

2 RELATED WORK

Blocking. The first approach to leverage embeddings vectors for

blocking is DeepER [13], which uses GloVe for the vectorization of

entities and hyperplane LSH for indexing and querying. AutoBlock

[67] goes beyond DeepER by leveraging FastText embeddings in

combination with cross-polytope LSH. Yet, it treats blocking as a

classification task, requiring a large number of labelled instances to

train its bidirectional-LSTM. DeepBlocker [56] is a generic frame-

work for synthesizing deep learning-based blocking methods that

support any language model. Most of the examined approaches,

including the top-performing Auto-Encoder, leverage FastText em-

beddings, but support Word2Vec and GloVe too. It also considers

two transformer-based models, which leverage Byte Pair Encoding,

achieving slightly higher recall at the cost of much higher run-times.

Given that efficiency is crucial for blocking, DeepBlocker with Auto-

Encoder and FastText is the state of the art among these methods.

Matching. Language models are typically used by supervised deep

learning-based techniques. The first one is again DeepER [13],

which leverages GloVe. Its generalization, DeepMatcher [33], is

a framework for deep learning-based matching algorithms that sup-

ports the main pre-trained static models, i.e., GloVe and FastText,

with the last one being the predefined option. Similarly, GraphER

[23], Seq2SeqMatcher [35], CorDEL [61], MCAN [66], HierMatcher

[14] and HIF-KAT [64] constitute individual approaches that also

leverage FastText embeddings.

More recent works focus on BERT-based models, due to their

dynamic, context-aware nature. The first such work is EMTrans-

former [3], which considered BERT and its three main variants:

XLNet, RoBERTa and DistilBERT. The same models are used by

GNEM [5], which extends EMTransformer through a graph that

captures the relations between all candidate pairs that are given as

input to matching. GNEM also applies this idea to DeepMatcher, in

combination with FastText embeddings. DITTO [25] extends EM-

Transformer by combining the BERT-based language models with

external, domain-specific information (e.g., POS tagging) and data

augmentation, which provides more (synthetic) training instances.

JointBERT [46] goes beyond the classic binary classification

definition of matching, by also supporting multi-class classification.

The problem of automatically tuning the configuration parameters

of deep learning-based matching algorithms is examined in [38],

considering all BERT-based models in Section 3.2.

Gaps. We observe that none of these works considers the main

SentenceBERT models (cf. Section 3.3). Moreover, no work has

examined the performance of BERT models (cf. Section 3.2) on

blocking. To the best of our knowledge, no work investigates the

relative ER performance of the main language models in a system-

atic way. Closest to our work is an in depth analysis of how BERT

works in the context of matching [37], but it disregards all other

models as well as the task of blocking. Surveys [27], books [48] and

tutorials [57] about language models are too generic, without any

emphasis on ER, and thus, are orthogonal to our work. Our goal in

this work is to cover these important gaps in the literature.

Sentence-similarity tasks in NLP. Semantic Textual Similarity

(STS) is an important NLP task, that is mostly evaluated in Trans-

former Models with the STS-B task [4] via the GLUE Benchmark

[59]. Since in schema-agnostic ER all attributes in a record are

concatenated into a łsentencež, these tasks are related. However,

the characteristics of the input data differ. For instance, popular

STS benchmarks contain sentences like image captions or news

headlines, whereas typical ER benchmarks like the datasets con-

sidered here contain attributes such as person or product names,

movie titles, addresses, etc. Concatenating such attributes does not

form actual sentences, even if they are treated as such. Moreover,

the task in STS is to predict a similarity score that indicates how

similar the meaning of two sentences is, whereas ER aims to decide

whether two entity instances refer to the same real-world entity

or not. Hence, it is not safe to assume that language models will

exhibit the same performance in ER as in STS.

3 EVALUATED LANGUAGE MODELS

We have used three categories of language models in our evaluation:

(1) Static models, which associate every token with a fixed embed-

dings vector; (2) BERT-based models, which vectorize every token

based on its context; (3) Sentence-BERT models, which associate

every sequence of tokens with a context-aware embeddings vector.

For each category, we selected a representative set of language

models based on the following criteria: (i) popularity in the ER and

NLP literature, (ii) support for the English language, and (iii) avail-

ability of open-source implementation. Thus, our experimental anal-

ysis relies on out-of-the-box, open-source implementations of the

main language models that can be easily used by any practitioner

that is not necessarily an expert in the field and are implemented

in the same language so as to facilitate run-time comparisons.

All static pre-trained and BERT-based models that are mentioned

in Section 2 satisfy these criteria and, thus, are included. Given that

none of these ER works considers an established SentenceBERT

model, we selected the top four ones from the SBERT library1,

based on their scores and overall need of resources. The technical

characteristics of the selected models are summarized in Table 1. For

each model, we indicate the vector dimensionality, the maximum

sequence length, the number of parameters, and the ER works that

1https://www.sbert.net/docs/pretrained_models.html
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have used it for blocking or matching. Below, we briefly describe the

selected models per category in chronological order. Most models

have several versions (e.g., base, large) that differ in the number

of learned parameters. To ensure a fair comparison, we consider

the base version of each model. We also conducted some tests with

larger versions, without observing notable differences in the results.

3.1 Static pre-trained models

These models were introduced to capture semantic similarity in

text, encapsulating knowledge from large corpora. They replace the

traditional high-dimensional sparse vectors with low-dimensional

dense ones of fixed size, which define a mathematical space, where

semantically similar words tend to have low distance.

Word2Vec [31, 32] is a shallow two-layer neural network that

receives a corpus as input and produces the corresponding vectors

per word. It employs a local context window, as a continuous bag-

of-word (order-agnostic) or a continuous skip-gram (order-aware).

The latter can link words that behave similarly in a sentence, but

fails to utilize the statistics of a corpus.

GloVe [47] combines the global co-occurrence counts with a local

context window. It is trained on large corpora, such as Wikipedia,

to provide pre-trained vectors for general use. Since it operates on

a global dictionary, it identifies words with a specific writing and

fails to detect slight modifications.

FastText [2] conceives each word as a group of n-grams instead of

a single string. It is trained to vectorize n-grams. It then represents

each word as the sum of its underlying n-grams.

3.2 BERT-based models

In static models, each word has a single representation. This is re-

strictive, since words often have multiple meanings based on their

context. Context-awareness was introduced by the transformer

models [58], which are a natural evolution of Encoders-Decoders

[55]. The latter have many advantages, such as handling larger

areas of text around a given word. Nonetheless, they cannot en-

capsulate any significant relationships between words. This has

been fixed with the introduction of Attention [1], which facilitates

the communication between each encoder / decoder, by sharing

all of the corresponding hidden states and not just the last one.

An extra optimization, suggested by the Transformer model, is the

Multi-Head attention, which led each encoder to run in parallel.

Another useful approach is the use of Positional Encoding for each

token, which addresses polysemy, i.e., the fact that the same word

has different meanings in different sentences.

BERT [11] was the next major step in the evolution of the trans-

former models. Its main contribution is the use of multiple trans-

formers ś only the encoder part, since it is a language represen-

tation model ś to pre-train vectors for general use. These vectors

can be further fine-tuned by adding an output layer for a wide

variety of tasks. BERT is trained on two tasks: masked language

modeling (MLM) and next sentence prediction (NSP). The former

is token-based, since it tries to predict a masked token based on

the unmasked tokens of a sentence. NSP is sentence-based, since

it receives a first sentence as input and tries to predict whether a

second sentence can follow it.

Table 1: The language models used in our experiments.

Model Dim. |𝑆𝑒𝑞. | Param. Blocking Matching

Word2Vec (WC) 300 - - [56] [33]

FastText (FT) 300
- -

[56, 67]
[23, 33, 35],

[14, 61, 64, 66]

GloVe (GE) 300 - - [13, 56] [13, 33]

BERT (BT) 768 100 110M - [3, 5, 25, 38, 46]

AlBERT (AT) 768 100 12M - [38]

RoBERTa (RA) 768 100 125M - [3, 5, 25, 38]

DistilBERT (DT) 768 100 66M - [3, 5, 25, 38]

XLNet (XT) 768 100 110M - [3, 5, 25, 38]

S-MPNet (ST) 768 384 110M - -

S-GTR-T5 (S5) 768 512 110M - -

S-DistilRoBERTa (SA) 768 512 - - -

S-MiniLM (SM) 384 256 22M - -

AlBERT [22] is a lighter version of BERT. BERT-base comprises

12 encoders and 110M parameters with 768 hidden and equal em-

bedding layers (cf. Table 1). AlBERT trains only the first encoder

and then shares all its weights with the rest of the encoders. It also

reduces the embedding layer by factorization to 128 layers. These

reduce the total number of parameters to 12M.

RoBERTa [28], compared to BERT: (1) is trained with more data

and more and bigger batches; (2) removes the next sentence predic-

tion objective; (3) changes the masked tokens per epoch to make

the model more robust.

DistilBERT [52] is a lighter version of BERT that uses distillation

[16, 51]. A second version of the original model is built, where only

half of the attention layers are used ś every second layer is omitted

ś and a special loss function is used in the training that compares

the teacher (original BERT) with the student (DistilBERT).

XLNet [63] tries to overcome a certain drawback of BERT: the fact

that it cannot utilize the knowledge of a predicted masked token

as input for a second masked token, thus making each prediction

independent and possibly false. XLNet introduces a variation of

the MLM task, called permutation language modeling (PLM). The

goal of the new task is to permute the tokens of one sentence in all

possible matters without using any masked tokens.

3.3 SentenceBERT models

BERT-based models are mostly built to support token-based tasks.

Supervised tasks that need a sentence representation may utilize

the special token [CLS], but in regression or unsupervised tasks this

produces a computational overhead, as all pair-wise combinations

need to be fed into the model. Using [CLS] or averaging the last

output layer is often worse than GloVe embeddings [50]. SBERT

[50] fixes this problem by suggesting a Siamese architecture, i.e.

two identical models, with each one taking as input one of the

sentences. This architecture produces the corresponding vectors

and then evaluates the combination of the two vectors, based on

the defined task, e.g., the cosine similarity of two sentences. Note

that this architecture is orthogonal to the underlying BERT model.

S-MPNet extends MPNet [53], which overcomes the drawbacks

of BERT and XLNet in the MLM and PLM tasks, respectively. For

the former, it solves the dependency between masked tokens pre-

dictions by permuting the tokens in a sentence. For the latter, it

utilizes position information to reduce position discrepancy.
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Table 2: (a) The real datasets for Clean-Clean ER, and (b) the synthetic datasets for Dirty ER, in increasing total size, showing

the number of entities (|𝑉𝑥 |), attributes (|𝐴𝑥 |), and duplicates (|𝐷 |), and the average sentence length in characters ( ¯|𝑆 |).

(a) Clean-Clean ER (b) Dirty ER

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Ds1
Ds2

Ds3
Ds4

Ds5
Ds6

Ds7

Dat1 Rest1 Abt Amz DBLP IMDb IMDb TMDb Wmt DBLP IMDb
𝐷10𝐾 𝐷50𝐾 𝐷100𝐾 𝐷200𝐾 𝐷300𝐾 𝐷1 𝐷2𝑀Dat2 Rest2 Buy GPr. ACM TMDb TVDB TVDB Amz Scholar DBP

|𝑉1 | 339 1,076 1,354 2,616 5,118 5,118 6,056 2,554 2,516 27,615
10K 50K 100K 200K 300K 1M 2M

|𝑉2 | 2,256 1,076 3,039 2,294 6,056 7,810 7,810 22,074 61,353 23,182

|𝐴1 | 7 3 4 4 13 13 30 6 4 4
12 12 12 12 12 12 12

|𝐴2 | 7 3 4 4 30 9 9 6 4 7

|𝐷 | 89 1,076 1,104 2,224 1,968 1,072 1,095 853 2,308 22,863 8,705 43,071 85,497 172,403 257,034 857,538 1,716,102
¯|𝑆 | 18.67 198.64 792.43 133.29 81,49 71.48 104.16 103.35 115.57 54.04 84.32 84.21 84.34 84.30 84.30 84.31 84.32

Table 3: The datasets used in the Supervised Matching task.

Dataset 1 Dataset 2
Total Testing

Duplicates
Attri-

Pairs Pairs butes

𝐷𝑆𝑀1 Abt Buy 9,575 1,917 1,028 3

𝐷𝑆𝑀2 iTunes Amazon 539 110 132 8

𝐷𝑆𝑀3 DBLP ACM 12,363 2,474 2,220 4

𝐷𝑆𝑀4 DBLP Scholar 28,707 5,743 5,347 4

𝐷𝑆𝑀5 Walmart Amazon 10,242 2,050 962 5

S-GTR-T5 extends GTR [34], which is a dual encoder that en-

codes two pieces of text into two dense vectors respectively. This

is typically used to encode a query and a document to compute

their similarity for dense retrieval. GTR models are built on top

of T5 [49], an encoder-decoder model that aims to unify all NLP

tasks under a single model. Instead of introducing a new model, it

uses existing techniques. The text-to-text transfer transformer (T5)

is an encoder-decoder model, where each transformer has been

structured in the same way as in BERT. The rationale is that while

BERT is an encoder model, the encoder-decoder model produces

good results too and can be used for other tasks that an encoder

cannot perform (e.g., text generation). T5 is trained on a dataset

called łColossal Clean Crawled Corpusž, containing hundreds of

gigabytes of clean English text from the Web.

S-DistilRoBERTa applies distillation to the RoBERTa model to

produce a student, lighter model. This model is coupled with the

Siamese architecture to produce the final model.

S-MiniLM extends MiniLM [60], which distills BERT to produce

a much lighter student. Unlike DistilBERT and other distillation

strategies [17, 54], which are bound to the architecture of the teacher

layers, it mimics only the self-attentionmodules, which are themost

important ones in the architecture. Thus, it can define the number

of layers in each transformer, reducing the total number of required

parameters. The distillation occurs in the pre-trainedmodel to avoid

the computationally expensive fine-tuning of the teacher.

4 EXPERIMENTAL SETUP

Main Datasets.Most experiments were conducted using the fol-

lowing ten real-world, established datasets for ER: 𝐷1, which is

offerred by OAEI 20102, contains descriptions of restaurants. 𝐷2

contains products extracted from two online retailers, Abt.com and

Buy.com [20]. 𝐷3 comes from the same domain, matching products

from Amazon.com and the Google Base data API (Google Pr.)[20].

2http://oaei.ontologymatching.org/2010/im

𝐷4 involves bibliographic data from two publication repositories,

DBLP and the ACM digital library [20]. 𝐷5, 𝐷6 and 𝐷7 consist of

three individual data sources, which comprise movie descriptions

from imdb.com (IMDb) and themoviedb.org (TMDb) as well as TV

shows from TheTVDB.com (TVDB) [36].𝐷8 is another dataset from

the product matching domain, involving descriptions from Wal-

mart and Amazon [33]. Similar to 𝐷4, 𝐷9 contains bibliographic

data from DBLP and Google Scholar [20]. Finally, 𝐷10 matches

movies from IMDb and DBpedia [42], but has no overlap with the

IMDb data source of 𝐷5 and 𝐷6.

All these datasets are publicly available in CSV format [39]. Their

detailed characteristics are shown in Table 2(a). Note that all of

them correspond to the Clean-Clean ER task, also known as Record

Linkage, where the input comprises two individually duplicate-free,

but possibly overlapping data sources and the goal is to detect the

matching entities they share [10, 43].

Datasets for Blocking Scalability. To evaluate blocking scalabil-

ity, we employ the datasets shown in Table 2(b), which are widely

used in the literature for this purpose [8, 19, 45]. These correspond

to Dirty ER, a.k.a., Deduplication, where a single data source con-

taining duplicates is given as input [10, 43]. They were artificially

generated by Febrl [6], in the following way: clean entities were

initially created by extracting real names and addresses from real

census data. Next, duplicate entities were randomly generated ac-

cording to realistic error rates and types (e.g., by inserting, deleting

or replacing characters or words). Finally, 40% of all entities are

matching with at least another one.

Datasets for Supervised Matching. For this task, we used the

same five datasets as in [3], which are widely used in the litera-

ture [25, 33]. Their technical characteristics are reported in Table 3;

60% of all pairs form the training set, while the rest are equally split

between the validation and test set. Most of them stem from the

datasets in Table 2(a): 𝐷𝑆𝑀1 is part of 𝐷2, 𝐷𝑆𝑀3 of 𝐷4, 𝐷𝑆𝑀4 of 𝐷9

and𝐷𝑆𝑀5 of𝐷8. The only exception is𝐷𝑆𝑀2, which is not included

in Table 2(a), due to the lack of its complete groundtruth. Note also

that 𝐷𝑆𝑀2-𝐷𝑆𝑀5 are dirty datasets with artificially missing and

misplaced attribute values so as to increase their difficulty [25].

4.1 Settings

In all experiments, we consider all attribute values per entity, i.e.,

each entity is represented by the concatenation of all its attribute

values. These schema-agnostic settings inherently addressmisplaced

attribute values (e.g., cases where person names are associated with
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their profession), while exhibiting high effectiveness both in block-

ing [40, 45] and matching [3]. Schema-based experiments, which

exclusively consider the values of one or two specific attributes per

dataset that combine high coverage with high distinctiveness, are

reported in the extended version of our work [65].

All our code and datasets are also publicly available in the above

repository. For the language models, we used the implementations

provided by two highly popular Python packages: Gensim3 and

Hugging Face4. The former offers Word-2Vec and FastText, while

the latter provides all other models.

All experiments were executed on a server with Ubuntu 20.04,

AMD Ryzen Threadripper 3960X 24-Core processor, 256 GB RAM

and an RTX 2080Ti GPU. The GPU is used where possible, i.e., for

vectorization of the dynamic models, similarity score calculation in

matching and blocking, nearest neighbor search in blocking, and

fine-tuning of the dynamic models in supervised matching.

4.2 Evaluated Tasks and Methodology

We evaluate the language models in the following four tasks.

Vectorization. This converts every given textual entity into its

embeddings vector. We consider schema-agnostic ER, where each

entity is represented by a łsentencež that is formed by concate-

nating all its textual attributes. For Word2Vec and GloVe, which

only support word embeddings, we tokenize this sentence into

words and average their vectors to obtain a single one. FastText

internally splits the sentence into smaller n-grams and aggregates

their embeddings into a single vector. The other models generate an

embedding per entire sentence. This task compares the execution

time per model.

Blocking. Given the vectorized entities of the input datasets, block-

ing produces a set of candidate pairs. For each input entity, we

perform a nearest neighbor search (NNS) to find the 𝑘 most simi-

lar vectors to it. For the datasets for Clean-Clean ER in Table 2(a),

we perform exact NNS. For each entity in the smallest of the two

datasets, we compute all similarity scores and return the 𝑘 nearest

neighbors. For the datasets for Dirty ER in Table 2(b), which are

significantly larger, we perform approximate NNS. According to

the state of the art, we follow [24], leveraging an HNSW [29] in-

dex. This is a graph-based index, serving as an approximation to a

Delaunay graph, but with long-range links as well, to support the

small-world navigation property. To avoid the connectivity issues

raised by high-degree nodes in the original NSW, HNSW introduces

a multi-layer separation of links based on their degree as well as on

an advanced heuristic for better selecting the neighbors per node.

The resulting index offers very good querying times with the trade-

off of a large overhead in building the index. In our experiments,

we used the implementation provided by FAISS5. First, we vectorize

and index all input entities. Then, we query the index with every

entity 𝑒 to retrieve its 𝑘 approximate nearest neighbors in terms of

Euclidean distance.

Unsupervised Matching. This is considered a clustering task,

where each cluster of entities corresponds to a different real-world

object. For two datasets in Clean-Clean ER, we model the task as

3https://radimrehurek.com/gensim
4https://huggingface.co
5https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexHNSW.html

bipartite graph matching, where each entity from the one dataset

is matched with at most one entity from the other. To solve this,

we apply Unique Mapping Clustering (UMC) [21], which achieves

both high effectiveness and time efficiency [41].

The entire process is as follows. First, we calculate the similar-

ity score between all pairs of entities using the following formula:

𝑠𝑖𝑚(𝑒𝑖 , 𝑒 𝑗 ) = 1/(1 + 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 )), where 𝑑𝑖𝑠𝑡 denotes the Euclidean

distance between the embedding vectors 𝑣𝑖 and 𝑣 𝑗 of the entities

𝑒𝑖 and 𝑒 𝑗 , respectively. We do not perform blocking here to avoid

its impact on the effectiveness of UMC. As execution time here we

measure exclusively the run-time of UMC, i.e., assuming that all

similarity scores have been computed already. UMC iterates over all

pairs in descending order of similarity score, until all entities from

the smallest dataset have been matched, or there are no more pairs

that exceed a given similarity threshold 𝛿 . This threshold is the

only configuration parameter of UMC. To fine-tune it, we consider

all values in [0.05, 0.95] with a step of 0.05 and select as optimal the

one maximizing F-measure. In this way, our experimental analysis

considers the maximum effectiveness per language model, com-

paring their potential. In practical settings, though, specifying the

optimal similarity threshold for UMC is a non-trivial task.

To ensure generality of our results, besides UMC we also tested

two other highly-performing algorithms from [41]: Exact Clustering,

which matches two entities if they are mutually the best matches,

and Kiraly Clustering, which provides a linear time approximation

to the maximum stable marriage problem. In both cases, the results

exhibited very high (>0.9) Pearson correlation with those of UMC.

Please refer to the extended version of our work for details [65].

Supervised Matching. This is considered a binary classification

task, classifying each candidate pair as match or non-match. Typ-

ically, a training, validation and testing set are used to learn the

classification model, choose its optimal configuration, and assess

its performance on new instances, respectively.

To examine the performance of BERT and SentenceBERT mod-

els, we combine them with EMTransformer [3]. We selected this

approach among the open-source deep learning-based matching

algorithms, because it achieves state-of-the-art performance, while

relying exclusively on the embedding models. This is in contrast

to DITTO [25], which leverages external information, such as POS

tagging. However, EMTransformer is incompatible with the static

models. To address this issue, we combine them with the state-of-

the-art approach for this type of models, namely DeepMatcher [33].

Note that this analysis includes models that are supported by

EMTransformer or DeepMatcher with minor adjustments to the

code. S-GTR-T5 and Word2Vec are thus excluded, since the existing

implementations could not support them. Note also that the original

implementation of EMTransformer disregards the validation set

and evaluates each model directly on the testing set. However, this

results in overfitting, as noted in [26]. We modified the code so that

it follows the standard approach in the literature: for each trained

model, the validation set is used to check whether it maximizes F1

and this model is then applied to the testing set [25, 33]. For this

analysis, we used the five datasets shown in Table 3.
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Figure 1: Blocking recall per model across all datasets in Table 2(a) for 𝑘 = 10.

5 COMPARISON ON EFFECTIVENESS

5.1 Blocking

We measure the recall of the resulting candidate pairs, which is

also known as pairs completeness [8, 19, 40]. Recall is the most

critical evaluation measure for blocking, as it typically sets the

upper bound for the subsequent matching step, i.e., a low blocking

recall usually yields even lower matching recall, unless complex

and time-consuming iterative algorithms are employed [7, 15]. In

contrast, precision is typically low after blocking, due to the large

number of false positives, but significantly raises after matching.

Thus, in terms of precision, all models have the same denominator

(i.e. total number of candidates) and precision can be omitted, since

recall and precision behave the same.

The experimental outcomes are shown in Figure 1 for each cate-

gory of models, for 𝑘 = 10. In static models, GloVe is the top per-

former in the vast majority of cases, leaving FastText andWord2Vec

in the second and third place, respectively. On average, GloVe out-

performs FastText by 19%, except for𝐷1,𝐷8 and𝐷9, where FastText

takes the lead. Compared to Word2Vec, GloVe’s recall is higher by

12.5%, on average, except for 𝐷7, 𝐷8 and the noisy 𝐷10.

Among the BERT models, we can see that XLNet and AlBERT

have very poor performance on almost all datasets. XLNet relies on

permuted language modeling (PLM), which tries to model depen-

dencies between words and phrases, instead of masked language

modeling (MLM), which is adopted in BERT. This proves to be

less effective in our task, where the input text is constructed by

concatenating several different attributes, thus not constituting a

coherent sentence. AlBERT trains only one encoder to produce a

lighter version of BERT and shares its weights with the remaining

encoders. This also turns out to perform poorly here. As a result,

both models suffer from poor discriminativeness, i.e., they assign

low similarity scores to both matching and non-matching pairs of

entities. For the same reason, albeit to a lesser extent, the same

applies to the remaining BERT models, which have a mediocre

performance, with DistilBERT being the best one in all datasets.

Finally, all SentenceBERT models achieve very high recall across

all datasets, but the extremely noisy and sparse𝐷10. The best model

in this category is S-GTR-T5. This has to do with the base model that

each SentenceBERT model relies to. For example, GTR-T5 trains in

a dataset with more than 2B pairs, while all three other base models

train on a collection of datasets that amount to 1B+ pairs.

Finally, between groups, we can see that the point made in [50]

holds in our task as well. BERT models, if not fine-tuned, behave

worse in terms of recall than static models (GloVe) and Sentence-

BERT have overall the best performance. There are two main rea-

sons for the latter: they are designed for sentence rather than word

embeddings and they are trained on wider corpora.

Summary. The above patterns are summarized in Figure 2, which

reports the ranking of each model per dataset with respect to recall

for 𝑘=10, with the rightmost column indicating the average position

per model. We observe that the first four places are occupied by

the SentenceBERT models, with S-GTR-T5 ranking first in most

datasets. None of these models falls below the fourth place. There

are two reasons for the superiority of SentenceBERT models: (a)

They are inherently capable of transforming a sentence into an

embedding vector, unlike the other two types, which are crafted

for vectorizing individual tokens. (b) They encapsulate knowledge

from wider corpora, while their final layer comes with reasonable

weights already in its pre-trained form (unlike the BERT models).

The next three ranking positions mostly correspond to the static

models, with Glove having the highest average one. Yet, FastText is

the most stable one, fluctuating between positions 5 and 7, unlike

the other two models, which fall up to the 10𝑡ℎ place. Finally, BERT-

based models are mapped to the last five positions. DistilBERT is

the best one, ranked 8𝑡ℎ on average, while AlBERT and XLNet are

constantly ranked 11𝑡ℎ and 12𝑡ℎ , respectively. The BERT models

underperform the static ones, because they suffer from poor dis-

criminativeness, due to the lack of fine-tuning, which guarantees

their context-aware functionality. The predetermined weights in

their final layer yield very low scores to most pairs of entities, re-

gardless of whether they are matching or not. This is not true for

the static models, despite their context-agnostic functionality and

their lower dimensionality. Please refer to [65] for more details.

These patterns suggest a high correlation in terms of effective-

ness between the models that belong to the same category. Indeed,

the Pearson correlation with respect to recall for 𝑘=10 between the

models of each category is quite high (≥ 0.9), as shown in Figure 3.

The correlation is equally high between the pre-trained static mod-

els and the SentenceBERT ones, due to the high performance of

both categories. In contrast, the correlation between BERT-based

and the other two categories is significantly lower: it fluctuates

between 0.58 and 0.85 for the SentenceBERT models and between
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Figure 3: Pearson correlation of models wrt blocking recall.

0.69 and 0.86 for the static ones. In the latter case, DistilBERT is

an exception, fluctuating between 0.84 and and 0.94, since it is the

best-performing BERTmodel and, thus, it is closer to the static ones.

Comparison to SotA. The rightmost column in Figure 1 com-

pares the best model, S-GTR-T5, with the best blocking approach

based on deep learning and embeddings vectors: DeepBlocker’s

Auto-Encoder with FastText embeddings. S-GTR-T5 consistently

outperforms DeepBlocker’s recall to a significant extent. The only

exceptions are 𝐷1 and 𝐷4, where both methods achieve practically

perfect recall. 𝐷1 involves very few duplicates in relation to the size

of each data source, while 𝐷4 contains relatively clean entities with

long textual descriptions that are easy to match. In the remaining 8

datasets, S-GTR-T5’s recall is 15% higher than DeepBlocker.

Seemingly, this can be attributed to the FastText embeddings

used by DeepBlocker. However, DeepBlocker is a comprehensive

blocking method that uses FastText in a more complex way than the

mere nearest neighbour search of S-GTR-T5. For example, a crucial

component of DeepBlocker is self-supervision, which automatically

labels a random sample of the candidate pairs in order to train

its classification model. As a result, DeepBlocker is a stochastic

approach, unlike S-GTR-T5, which exclusively performs nearest

neighbor search. The ablation analysis in [56] indicates that all

DeepBlocker’s components have a significant contribution to the

final outcome. For this reason, the role of the language models is

restricted and, thus, the performance of DeepBlocker exhibits a low

correlation with that of FastText+NNS.
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Figure 4: Scalability effectiveness over the synthetic datasets

in Table 2(b). The horizontal axis indicates the number of

input entities.

Scalability. Blocking must scale to large data volumes in order to

restrict the input of matching to manageable levels, even in cases

with millions of entities. Therefore, we need to assess how well

the selected language models scale as the size of the input data

increases. To this end, we conduct an analysis using the seven

datasets in Table 2(b). The results appear in Figure 4.

Figure 4(a) shows that recall consistently decreases for all models

as we move from 𝐷10𝐾 to 𝐷2𝑀 . This is expected, given that the

number of candidates increases quadratically with the size of the

input data. The best performance clearly corresponds to S-GTR-T5:

its recall over 𝐷2𝑀 is quite satisfactory both in absolute terms (0.8)

and just 17% lower than the initial one over 𝐷10𝐾 .

S-GTR-T5 has been trained on a much larger and richer corpus.

The advantage that this offers to S-GTR-T5 becomes much more

evident when testing it on the synthetic datasets, which are more

challenging due to the much larger number of candidate pairs. The

second best approach in most datasets is FastText, whose recall

is reduced by 54%, from 0.901 to 0.415. On the other extreme lie

AlBERT and XLNet: their recall is lower than 0.18 across all datasets

(even for 𝐷10𝐾 ) and is reduced by 2/3 over 𝐷2𝑀 . The rest of the

models fluctuate between these two extremes and can be arranged

into three groups according to their performance. The best group

comprises S-DistilRoberta and S-MiniLM, which start from ∼0.75

over the smallest dataset and end up ∼40% lower at 0.45. The worst

group includes Word2Vec, DistilBERT, BERT and RoBERTa, whose

recall drops by 56%-66%, falling far below 0.2 over 𝐷2𝑀 . GloVe and

S-MPNet lie in the middle of the first two extremes: their recall is

reduced by less than 50% and exceeds 0.32 over 𝐷2𝑀 .

We observe almost the same patterns with respect to precision

in Figure 4(b). This is due to the linear relation between the two

measures, as explained earlier. Only minor variations occur in the

context of Dirty ER, due to the different number of redundant

candidate pairs, which are counted once (a candidate pair <𝑒𝑖 , 𝑒 𝑗>

is redundant if 𝑒 𝑗 is included in the nearest neighbors of 𝑒𝑖 and vice

versa). Hence, there is a gradual decrease in precision for all models

as the input size increases. This is larger than the decrease in recall

by 2-3% in most cases, because the denominator of recall (i.e., the

number of existing duplicates) increases at a slower pace than the

denominator of precision (i.e., number of distinct candidate pairs).
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Figure 5: Unsupervised Matching F-Measure per model across all datasets in Table 2(a).
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Figure 7: Pearson correlation of languagemodelswith respect

to Unsupervised Matching F1.

5.2 Unsupervised Matching

Figure 5 reports the performance of all models in this task.

In static models, based on the average distance from the max-

imum F-measure (F1), GloVe is the best one (31.9%) followed by

FastText (37.4%) and Word2Vec (39.4%). In absolute terms, their

F1 remains rather low in all datasets except for the bibliographic

ones: in 𝐷4, it exceeds 0.9, lying very close to the SentenceBERT

models, but in 𝐷9, only FastText and Glove manage to surpass 0.7.

The reason is that the entities from the Google Scholar are much

more noisy and involve many more terminologies than 𝐷4. In all

other cases, their F1 falls (far) below 0.57.

In the BERT-based models, the worst performance is consistently

exhibited by XLNet and AlBERT, as their F1 does not exceed 0.37 in

any dataset. On average, their F1 is almost an order of magnitude

(∼87%) lower than the top one. The reason is the same as in Blocking:

both were trained for a different task and cannot perform well in

the task of Matching, without further fine-tuning. In the other

extreme lie DistilBERT and RoBERTa, with an average distance of

∼55%. Finally, BERT fluctuates between these two extremes, with

an average distance from the top equal to 62%. These three models

score an acceptable F1 (∼0.9) in the clean and easy 𝐷4, but remain

(far) below 0.54 in all other cases.

In the SentenceBERTmodels, the best one is S-GTR-T5, achieving

the highest F1 in 7 out of the 10 datasets. In the remaining datasets,

it is ranked second or third, lying very close to the top performer.

On average, its distance from the maximum F1 is just 0.7%, being

the lowest among all models. The worst case corresponds to 𝐷6,

where it lies 4.9% lower than the best method. The second best

model is S-MiniLM, having the highest F1 in three datasets and the

second lowest average distance from the maximum F1 (6.5%). The

two next best models are S-MPNet and S-DistilRoBERTa, whose

average distance from the top is 10.5%.

In absolute terms, their best performance corresponds to the

bibliographic datasets, 𝐷4 and 𝐷9, where their F1 remains well over

0.9. The reason is that the long titles and list of authors facilitate the

distinction between matching and non-matching entities. Also high

(∼0.8) is their F1 over 𝐷2, which combines long textual descriptions

with a 1-1 matching between the two data sources (i.e., every entity

from the one source matches with one entity from the other). In all

other datasets, their F1 ranges from 0.35 (𝐷10) to 0.77 (𝐷7), due to

the high levels of noise they contain.

Finally, it is worth stressing that as in Blocking, S-GTR-T5 out-

performs the best models of the other two types, since all other

models do not surpass 0.5 in F1 ś except for the relatively clean and

easy 𝐷4. In contrast with Blocking, though, in Matching we can

perform fine-tuning to check whether BERT models can perform

better than other two types. See Section 5.3 for more details.
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Figure 8: Supervised Matching F-Measure per model across all datasets in Table 3.

Summary. Figure 6 summarizes the ranking position of each model

per dataset. The SentenceBERT models typically fluctuate between

positions 1 and 4, the static ones between 5 and 7 and the BERT-

based ones between 8 and 12. Moreover, the Pearson correlation of

their F1 in Figure 7 shows an almost perfect dependency between

the SentenceBERT models and a very high one inside the group

of static and BERT-based ones. The latter are weakly correlated

with the SentenceBERT models. The static models have moderate

correlation (0.7 − 0.9) with the other two groups.

Overall, the relative performance of the three model types fol-

lows the same patterns as in Blocking, due to the same root causes.

The SentenceBERT models outperform all others, as they are in-

herently crafted for vectorizing entire łsentencesž, while they have

been trained on much larger corpora. At the other extreme lie the

BERT models, which lack fine-tuning, with the predefined weights

in their final layer yielding low similarities for matching and non-

matching pairs alike. The static models lie in the middle of these

extremes, due to their context-agnostic, word-level embeddings.

Comparison to SotA. The state-of-the art in Unsupevised Match-

ing is ZeroER [62], which converts every pair of entities into a

feature vector whose dimensions correspond to similarity func-

tions. At its core lies the assumption that the resulting feature vec-

tors are generated by a Gaussian Mixture Model with two mixture

components (one for each matching category). Adaptive feature

regularization is leveraged to avoid overfitting, while transitivity

improves its accuracy. ZeroER uses Magellan’s overlap blocking to

reduce the search space to a small set of candidate pairs.

We compare ZeroER with an end-to-end framework based on

the best language model for Blocking and Matching, i.e. S-GTR-T5.

We actually use the above matching algorithm with the similarity

threshold set to 0.5 by default, but instead of utilizing all pairs of

entities, every entity of the smallest entity collection is allowed

only 𝑘=10 candidates, produced by Blocking with exact NNS.

The relative performance of the two approaches appears in

Figure 5(d). ZeroER lacks an estimated performance for half the

datasets, because it did not terminate after 6 hours ś unlike S-GTR-

T5, which consistently takes less than 1 minute, as shown in Table

5(b). In 𝐷4, both methods have the same, almost perfect perfor-

mance, due to the rather clean data and the relatively easy task. In

𝐷1 and 𝐷2, S-GTR-T5 outperforms ZeroER to a significant extent.

ZeroER actually yields 𝐹1=0 on 𝐷1, because𝐷1 contains many miss-

ing and misplaced values, which cannot be supported by ZeroER’s

schema-based functionality (unlike the schema-agnostic settings of

S-GTR-T5). 𝐷2 conveys large textual values, which are also barely

suitable for most similarity measures employed by ZeroER. In con-

trast, 𝐷5 and 𝐷7 contain short attribute values that describe movies

(e.g., actor names). These are ideal for the features of ZeroER, which

thus achieves much higher effectiveness than S-GTR-T5, which is

not crafted for rare, domain-specific (terminological) textual values.

Overall, S-GTR-T5 performs significantly better than or at least

equally well as ZeroER in most datasets, despite its parameter-free

functionality, while being orders of magnitude faster (cf. Sec. 6.3).

5.3 Supervised Matching

Figures 8(a)-(c) show the F1 of all models in this task over the

datasets in Table 3. We observe that the language models can be

distinguished into two groups according to their context awareness.

The dynamic models consistently exhibit the highest performance.

RoBERTa is actually the most robust model in terms of effectiveness.

It achieves the highest F1 in most datasets, ranking first on average.

In fact, its mean distance from the top F1 across all datasets amounts

to just 0.5%. It is followed in close distance by the second best

model, S-MPNet, which is top performer in one dataset (𝐷𝑆𝑀3)

and its average distance from the top F1 is 0.7%. The rest of the

models are sorted in the following order according to their average

distance from the maximum 𝐹1 per dataset: BERT, AlBERT, XLNet,

S-DistilRoBERTa, S-MiniLM.

Even the least effective dynamic model, though, is just 5% worse

than the best one, on average. The reason for this is the strong

correlation between all considered models: high effectiveness for

one model on a specific dataset implies similarly high effectiveness

for the rest of the models. This pattern should be partially attributed

to the 𝐷𝑆𝑀3 and 𝐷𝑆𝑀4 datasets, where the difference between the

maximum and the minimum F1 is less than 1.3%. These datasets

convey relatively clean values, even though in both cases artifi-

cial noise has been inserted in the form of misplaced values. This

means that the duplicate entities share multiple common tokens in

the schema-agnostic settings we are considering. As a result, even

classic machine learning classifiers that use string similarity mea-

sures as features achieve very high F1 (>0.9) in these datasets (see

Magellan in [25, 33]). The rest of the datasets are more challenging,

due to the terminologies they involve (e.g., product names). As a

result, the difference between the maximum and minimum F1 of

dynamic models ranges from 4.9% (𝐷𝑆𝑀1) to 17% (𝐷𝑆𝑀2).
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The second group of models includes the static, context-agnostic

ones, which perform relatively poorly, even though they are com-

bined with the best configuration of DeepMatcher, i.e., the state-

of-the-art algorithm for this task and type of models. GloVe and

FastText are actually combined with a two layer fully connected

ReLU HighwayNet classifier followed by a softmax layer in the

classification module in combination with a hybrid model for the

attribute similarity vector module. On average, GloVe and FastText

underperform the top model per dataset by 22% and 37%, respec-

tively. Only in 𝐷𝑆𝑀3 and 𝐷𝑆𝑀4, where all dynamic models exceed

0.95, the two static models exhibit high performance, with their F1

within 5% of the maximum one (this is another indication about

the straightforward matching task posed by the bibliographic data

of these two datasets). Note that FastText consistently outperforms

GloVe across all datasets, since its character-level functionality is

capable of addressing the out-of-vocabulary tokens that arise, due

to the domain-specific terminology of each dataset, unlike GloVe.

Overall, the static models underperform the dynamic ones in most

cases, as reported in [25], while the BERT-based models match the

SentenceBERT ones, unlike the previous ER tasks, due to the fine-tuning

of their last layer. SentenceBERT models also benefit from fine-tuning,

but to a lesser extent, probably because the sentence representing each

entity is constructed in an ad-hoc manner, lacking any cohesiveness.

Comparison to SotA. Figure 8(d) depicts the performance of the

state-of-the-art supervised matching algorithms that leverage static

and dynamic models, DeepMatcher+ [18] and DITTO [25]. We

actually consider their optimized F1 that is reported in [25].

Comparing DITTO to the dynamic models, we observe that its

F1 is directly comparable to the best performing language model

in each dataset. In 𝐷𝑆𝑀2, 𝐷𝑆𝑀3 and 𝐷𝑆𝑀4, DITTO’s F1 is lower

by just ≤0.5%. In 𝐷𝑆𝑀1 and 𝐷𝑆𝑀5, though, DITTO outperforms

all language models by 3% and 1.5%, respectively. This should be

attributed to the external knowledge and the data augmentation,

whose effect is more clear when comparing DITTO to the language

model at its core, i.e., RoBERTa. On average, across all datasets, the

latter underperforms DITTO by 1.3%.

Comparing the static models to DeepMatcher+, we observe that

its performance is almost identical with FastText in most datasets,

because it leverages the same language model. Only in 𝐷𝑆𝑀2 and

𝐷𝑆𝑀5, DeepMatcher+ performs substantially better, by 9% and 23%,

respectively. This should be attributed to its advantage over the orig-

inal DeepMatcher algorithm, which DeepMatcher+ combines with

transfer and active learning. Note that DeepMatcher+ consistently

outperforms GloVe by 28%, on average.

DeepMatcher+ underperforms the dynamic models in practically

all cases, especially in 𝐷𝑆𝑀1 and 𝐷𝑆𝑀5, where it underperforms

DistilBERT by∼20%. This verifies the superiority of dynamicmodels

over the static ones in supervised matching, due to their fine-tuning,

which optimizes the weights of their last layer to the data at hand.

6 COMPARISON ON EFFICIENCY

6.1 Vectorization

Initialization. The initialization time of eachmodel is shown in the

first line of Table 4. It refers to the time taken to load the necessary

data structures in main memory (e.g., a dictionary for the static

models and a learned neural network for the dynamic ones), and is

Table 4: Vectorization time in seconds per model and dataset.

WC FT GE BT AT RA DT XT ST S5 SA SM

Init 32.4 159.7 5.87 4.72 3.99 5.28 4.3 4.73 9.19 9.84 9.33 8.36

D1 0.0 0.2 1.9 2.6 2.4 2.3 1.3 4.0 1.1 1.1 0.7 0.5

D2 0.1 1.6 0.2 3.1 2.4 2.3 2.2 3.3 3.4 3.4 1.8 0.9

D3 0.9 9.6 0.4 10.1 6.7 6.3 8.6 8.3 10.3 12.4 5.8 2.3

D4 0.2 2.5 0.3 5.9 5.2 5.3 4.2 7.8 5.1 5.4 2.8 1.4

D5 0.4 3.8 0.4 13.6 13.0 12.9 8.7 20.3 10.7 12.1 6.0 3.2

D6 0.6 5.5 0.5 15.4 14.3 13.8 10.4 21.3 14.9 17.2 8.2 3.9

D7 0.4 3.6 0.4 11.9 11.2 11.4 8.0 17.7 9.7 10.4 5.3 2.8

D8 1.0 10.0 0.8 28.8 25.0 24.2 19.5 38.9 28.5 27.3 14.9 6.7

D9 2.4 27.7 1.9 73.4 66.0 65.5 49.9 99.9 58.0 61.5 31.4 16.0

D10 1.1 10.6 1.2 51.1 49.1 47.9 31.6 78.9 28.9 30.2 16.5 10.3

independent of the dataset used. The static models are inefficient

due to the hash table they need to load into main memory to map

tokens (or character n-grams) to embedding vectors. Regarding the

dynamic models, we observe that the BERT-based ones are much

faster than the SentenceBERT ones, as their average run-time is

4.7±0.8 and 8.9±0.6 seconds, respectively. This is due to the larger

and more complex neural models that are used by the latter.

Transformation. The rest of Table 4 shows the total time required

by each model to convert the entities of each dataset into dense

embeddings vectors (after the initialization). Word2Vec and Glove

are the fastest models by far, exhibiting the lowest processing run-

times in practically all cases. Word2Vec is an order of magnitude

faster than the third most efficient model per dataset, which inter-

changeably corresponds to FastText and S-MiniLM. Except for 𝐷1,

GloVe outperforms these two models by at least 6 times. In abso-

lute terms, both Word2Vec and GloVe process the eight smallest

datasets, 𝐷1-𝐷8, in much less than 1 second, while requiring less

than 2.5 seconds for the two larger ones.

Among the BERT-basedmodels, DistilBERT is significantly faster

than BERT, as expected, with its processing time being lower by

33%, on average. Note, though, that it is slower than FastText by

>50%, on average, except for 𝐷3. The next most efficient models of

this category are ALBERT and RoBERTa, which outperform BERT

by 11% and 13%, on average, respectively. XLNet is the most time

consuming BERT-based model, being slower than BERT by ∼30%,

on average across all datasets but 𝐷3. This can be explained by the

fact that 𝐷3 has larger sentences, as shown in Table 2.

Among the SentenceBERT models, the lowest time is achieved

by S-MiniLM, which, as mentioned above, is the third fastest model

together with FastText. The second best model in this category is

S-DistilRoBERTa, which is slower by 30%, on average. Both models

are faster than BERT by 63% and 53%, respectively, on average. In

contrast, the quite complex learned model of S-GTR-T5 yields the

highest processing time among all models in all datasets but the

smallest one. S-MPNet lies between these two extremes.

Summary. The static models excel in processing time, but suffer

from very high initialization time. FastText is the slowest model

in all datasets, but 𝐷9. Its high initialization cost does not pay off

in datasets with few thousand entities like those in Table 2(a). On

average, FastText requires 2 minutes per dataset. All other models

vectorize all datasets in less than 1minute, with very few exceptions:

BERT over 𝐷9, XLNet over 𝐷9-𝐷10 and S-GTR-T5 over 𝐷8-𝐷10.
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Table 5: Comparison of S-GTR-T5 with (a) DeepBlocker in

Blocking, and (b) ZeroER in Unsupervised Matching. All

columns are in seconds, but the rightmost onewhich is inmil-

liseconds. 𝑡𝑝 (𝑡𝑚) stands for preprocessing (matching) time.

(a) Blocking (b) Unsup. Matching

DeepBlocker S-GTR-T5 ZeroER S-GTR-T5

𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑡𝑝 𝑡𝑚 𝑡𝑝 𝑡𝑚

D1 8 8 17 11 11 11 2 1 13 1

D2 9 9 17 13 13 13 1,728 71 14 3

D3 19 19 36 22 22 23 - - 23 4

D4 13 13 28 15 15 16 9,595 113 16 9

D5 24 25 63 22 22 23 1,291 10 23 12

D6 28 28 68 27 27 28 - - 28 16

D7 22 22 49 20 22 21 1,599 338 21 13

D8 46 46 46 37 38 39 - - 38 8

D9 111 111 270 72 74 77 - - 72 10

D10 154 150 371 41 41 42 - - 46 96

6.2 Blocking

The execution time of blocking is very low for all models, not

exceeding 0.5 seconds in most cases. The only exceptions are the

two largest datasets, 𝐷9 and 𝐷10, which still require less than 2

seconds in all cases. The differences between the various models

are rather insignificant. In most cases, the lower end in these ranges

corresponds to the language models with the lowest dimensionality,

namely the static ones (300) as well as S-MiniLM (385), and the

higher end to the rest of the models, which involve 768-dimensional

vectors (see Table 1). In more detail, fastText and S-GTR-T5 are

consistently the fastest and slowest models, respectively. However,

this overhead time is negligible in comparison to the vectorization

time in Table 4. Please refer to the extended version of our work

for a detailed report of run-times per model and dataset [65].

Comparison to SotA. Table 5(a) reports the run-times correspond-

ing to the rightmost column in Figure 1. We observe that Deep-

Blocker is consistently faster than S-GTR-T5 for 𝑘=1 and 𝑘=5 in

all datasets but 𝐷10. S-GTR-T5 has high vectorization cost, which

accounts for ∼99% of the overall blocking time. Thus, its run-time is

practically stable per dataset across all values of 𝑘 . This is expected,

given that S-GTR-T5 leverages 768-dimensional embeddings vec-

tors, compared to 300-dimensional FastText vectors of DeepBlocker.

Yet, for 𝑘=10, DeepBlocker is faster than S-GTR-T5 only in 𝐷2 and

𝐷3 (by 14.4% and 26%, respectively). The situation is reversed in

𝐷1 and 𝐷4-𝐷8, where S-GTR-T5 is faster by 14.1%, on average. The

reason is that DeepBlocker does not scale well as the number of can-

didates per query entity increases, due to the high complexity of the

deep neural network that lies at its core. Most importantly, Deep-

Blocker scale poorly as the size of the input data increases: in 𝐷10,

S-GTR-T5 is faster by 1.5 times for 𝑘∈{1, 5} and 3.7 times for 𝑘=10.

Scalability. Figure 9(a) shows that the blocking time of all models

scales superlinearly, but subquadratically: as the number of input

entities increases by 200 times from 𝐷10𝐾 to 𝐷2𝑀 , the run-times

increase by up to 1,435 times. With the exception of the two most

efficient models,Word2Vec (742 times) and S-GTR-T5 (873 times), all

other models fluctuate between 1,053 (SMPNet) and 1,435 (XLNet)

times. This is mainly attributed to the fact that FAISS(HNSW) trades

high indexing time for significantly lower querying time. During
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Figure 9: Scalability over the synthetic datasets in Table 2(b).

The horizontal axis indicates the number of input entities.

indexing, it requires complex graph-based operations that involve

long paths. The larger the input size, the longer these paths get,

increasing the cost of their traversal and processing superlinearly.

Figure 9(b) reports the evolution of vectorization time, which

increases sublinearly with the size of the input data for all models.

The increase fluctuates between 127 (DistilBERT) and 165 (XLNet)

times for all BERT-based models, thus remaining far below the raise

in the input size (i.e., 200 from 𝐷10𝐾 to 𝐷2𝑀 ). A similar behavior is

exhibited by S-GTR-T5, but the rest of the SentenceBERT models

achieve even better scalability, as their increase is reduced to 59 (S-

MiniLM), 94 (S-MPNet) and 62 (XLNet). This should be attributed to

the initialization of each model, which is independent of the input

size and accounts for a large portion of the overall vectorization

time of each model, as shown in Table 4. The larger the relative

cost of initialization is, the lower is the increase in vectorization

time as size of the input increase. As a result, Word2Vec and GloVe,

which raise their run-times by just 2.5 and 4 times, respectively.

The former actually remains practically stable up to 𝐷300𝐾 , because

its vectorization time is dominated by its high initialization time

across the five smallest datasets. On the other extreme lies FastText,

which is the only model that scales linearly with the size of the

input data (by 205 times), due to its character-level functionality.

In absolute terms, GloVe is consistently the fastest model in all

datasets, but 𝐷10𝐾 , with Word2Vec ranking second from 𝐷200𝐾 on.

They vectorize 𝐷2𝑀 within 0.8 and 1.3 minutes, respectively. Fast-

Text is the second fastest model for the three smallest datasets, but

converges to the fastest dynamic model, S-MiniLM, for the larger

ones. They both need ∼11 minutes to process 𝐷2𝑀 . On the other

extreme lies S-GTR-T5, which consistently exhibits the slowest

vectorization, with XLNet being the second worst model across all

datasets. For 𝐷2𝑀 , they take 90.3 and 50.6 minutes, respectively.

6.3 Unsupervised Matching

We define as matching time of a model the time that is required for

applying the UMC algorithm to all pairwise similarities using the

optimal pruning threshold. For the most effective model, S-GTR-T5,

the matching time is typically much lower than half a second, ex-

cept the largest dataset, 𝐷10, where it raises to almost two seconds.

This high efficiency in the context of a large number of candidate

pairs should be attributed to its rather high similarity threshold,

which fluctuates between 0.55 and 0.70, with a median (mean) of
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Figure 10: Tradeoff between Effectiveness and Time Efficiency on average, across all datasets in Table 2(a) for (a) Blocking with

𝑘=10 and (b) Unsupervised Matching (wrt best attainable F1) and all datasets in Table 3 for (c) Supervised Matching.

Table 6: Training (𝑡𝑡 ) and testing (𝑡𝑒 ) times in seconds of all

models in Supervised Matching over the datasets in Table 3.

DSM1 DSM2 DSM3 DSM4 DSM5

𝑡𝑡 𝑡𝑒 𝑡𝑡 𝑡𝑒 𝑡𝑡 𝑡𝑒 𝑡𝑡 𝑡𝑒 𝑡𝑡 𝑡𝑒

FT 851.9 4.8 100.9 0.6 1,155.0 6.9 2,527.3 14.8 882.1 4.7

GE 847.0 4.8 101.4 0.6 1,157.2 6.9 2,534.3 14.7 876.9 4.7

BT 1,811.2 11.2 66.3 0.4 1,525.9 9.6 2,615.9 15.8 1,093.8 6.8

AT 1,700.5 12.0 62.8 0.5 1,448.4 10.4 2,422.1 17.0 1,026.6 7.4

RA 1,810.8 11.2 66.2 0.4 1,548.7 9.6 2,666.9 15.8 1,111.3 6.9

DT 915.2 5.5 34.0 0.2 779.2 4.8 1,341.9 7.9 559.1 3.4

XT 2,920.7 24.2 92.2 0.7 2,120.5 15.9 3,196.5 21.0 1,423.2 10.1

ST 1,667.5 10.5 63.4 0.4 1,475.8 8.8 2,549.9 14.4 1,076.8 6.3

SA 828.2 5.0 31.4 0.2 716.9 4.3 1,253.7 7.1 518.1 3.1

SM 406.6 2.1 13.4 0.1 299.2 1.7 521.6 2.7 216.6 1.2

0.625 (0.615), thus pruning the vast majority of pairs. Similar be-

havior is exhibited by the rest of the SentenceBERT models. The

static models also apply UMC within few seconds in most datasets,

depending on their similarity threshold. This is less frequently true

for the BERT-based models, which suffer from low discriminative-

ness, thus yielding lower thresholds and significantly more pairs

to be processed. As a result, one of the BERT-based models is the

slowest one in most datasets ś typically AlBERT or XLNet. Please

refer to the extended version of our work for a detailed report of

matching time per model and dataset [65].

Comparison to SotA. Table 5(b) demonstrates that ZeroER’s run-

time is dominated by its blocking time, which is higher larger than

the total execution time of S-GTR-T5 in most datasets. Due to its

simple functionality, the end-to-end S-GTR-T5 approach is two

orders of magnitude faster than ZeroER in all datasets, but 𝐷1. Its

run-time is dominated by the vectorization and the indexing of

the input entities, with the matching time accounting for a few

milliseconds even for the largest dataset, due to blocking.

6.4 Supervised Matching

Table 6 demonstrates that S-MPNet constitutes the best choice for

applications that emphasize time efficiency at the cost of slightly

lower effectiveness: its training and prediction time are consistently

lower than that the top-performing model, RoBERTa, by 9% and 7%,

respectively, on average. More significant gains in efficiency are

achieved by the rest of the SentenceBERT models, S-DistilRoBERTa

and S-MiniLM: they reduce RoBERTa’s training and testing times

by more than 50% in all cases, while their F1 is lower by just 5%, on

average. Similarly, DistilBERT reduces RoBERTa’s run-times to a

half for a 7% reduction in F1. XLNet underperforms RoBERTa in all

respects. XLNet is consistently the slowest by far model among all

datasets, thus underperforming RoBERTa in all respects. The same

applies to BERT, albeit to a minor extent, i.e., <2% with respect to

all measures. ALBERT achieves slightly lower training times (by

7%) than RoBERTa at the cost of higher prediction times (by 8%),

while its F1 is lower by just 2%, on average. Regarding the static

models, on average, they are just 10% and 17% faster than RoBERTa

with respect to training and testing time, respectively, despite their

very low F1. Overall, we can conclude that the SentenceBERT models

are significantly faster than the BERT-base ones, thus achieving a

better trade-off between effectiveness and time efficiency.

7 DISCUSSION & CONCLUSIONS

Figure 10 summarizes our experimental results on the three ER tasks.

The horizontal axis in each diagram corresponds to the effectiveness

measure of the respective task, while the vertical one corresponds to

the normalized run-time, which is computed by dividing the overall

run-time of a model with that of the fastest one (i.e., 1 is assigned

to the fastest model). The space formed by these axes illustrates

the trade-off between effectiveness and time efficiency, with the

top performing model lying closer to (1,1), i.e., the lower right

corner. Note that for each model, we have computed its average

effectiveness and normalized time across all datasets in Table 2.

In Blocking and UnsupervisedMatching, the SentenceBERTmod-

els consistently outperform the other two model types to a signifi-

cant extent, because they distinguish between matching and non-

matching entities without fine-tuning their top attention layers.

Among them, the differences are minor, on average. In Supervised

Matching, all BERT-based models excel in effectiveness. The static

models are less accurate than all dynamic models, while offering no

advantage in terms of run-time. Therefore, they should be avoided

in this task. Instead, any of the dynamic models can be selected,

depending on requirements of the application at hand.

In the future, we will enhance our end-to-end, parameter- and

learning-free approach to ER with SentenceBERT models, whose

performance in Figure 5(d) is remarkable.
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