
DILI: A Distribution-Driven Learned Index
Pengfei Li

Alibaba Group, China

lpf367135@alibaba-inc.com

Hua Lu

Roskilde University, Denmark

luhua@ruc.dk

Rong Zhu

Alibaba Group, China

red.zr@alibaba-inc.com

Bolin Ding

Alibaba Group, China

bolin.ding@alibaba-inc.com

Long Yang

Peking University, China

yanglong001@pku.edu.cn

Gang Pan

Zhejiang University, China

gpan@zju.edu.cn

ABSTRACT
Targeting in-memory one-dimensional search keys, we propose

a novel DIstribution-driven Learned Index tree (DILI), where a

concise and computation-efficient linear regression model is used

for each node. An internal node’s key range is equally divided by its

child nodes such that a key search enjoys perfect model prediction

accuracy to find the relevant leaf node. A leaf node uses machine

learning models to generate searchable data layout and thus accu-

rately predicts the data record position for a key. To construct DILI,

we first build a bottom-up tree with linear regression models accord-

ing to global and local key distributions. Using the bottom-up tree,

we build DILI in a top-down manner, individualizing the fanouts

for internal nodes according to local distributions. DILI strikes a

good balance between the number of leaf nodes and the height

of the tree, two critical factors of key search time. Moreover, we

design flexible algorithms for DILI to efficiently insert and delete

keys and automatically adjust the tree structure when necessary.

Extensive experimental results show that DILI outperforms the

state-of-the-art alternatives on different kinds of workloads.

PVLDB Reference Format:
Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan. DILI:

A Distribution-Driven Learned Index. PVLDB, 16(9): 2212 - 2224, 2023.

doi:10.14778/3598581.3598593

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/pfl-cs/DILI.

1 INTRODUCTION
Recently, the learned index [29] is proposed to replace B+Tree [15]

in database search. It stages machine learning models into a hierar-

chy called Recursive Model Index (RMI). Given a search key 𝑥 , RMI

predicts, with some error bound, where 𝑥 ’s data is positioned in a

memory-resident dense array. Compared to B+Tree, RMI achieves

comparable and even better search performance. However, the lay-

out of RMI, i.e., the number of stages and the number of models at

each stage, must be fixed before the models are created. Also, RMI

fails to support key insertions and deletions.

Hua Lu and Gang Pan are the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.

doi:10.14778/3598581.3598593

To support data updates, ALEX [18] extends RMI by using a

gapped array layout for the leaf level models. Moreover, ALEX uses

cost models to initiate the RMI structure and to dynamically adapt

the structure to updates. However, the stage layout of ALEX is not

flexible enough as its fanout, i.e., the number of a node’s child mod-

els, is stipulated to a power of 2. This renders ALEX’s internal nodes’

key ranges relatively static, which may result in node layout not

good for particular key distributions, e.g., lognormal distribution.

Also, ALEX’s leaf level learned models do not guarantee accurate

predictions. Thus, extra local search is needed to locate the required

data, which downgrades the search performance. More recently,

LIPP [44] trains learned models for the whole dataset and places

data at the predicted positions. When multiple data records are

assigned to the same position, a new node is created at the position

to hold them. However, this simple strategy ignores the data distri-

bution and often results in long traversal paths. Also, compared to

B+Tree and ALEX, LIPP consumes much more memory.

In this paper, we design a novel index tree—DIstribution-driven

Learned Index (DILI). Its each node features an individualized fanout

and a model created for a data portion whose key sequence is cov-

ered by the node’s range. For an internal node, its child nodes

equally divide its range. Thus, the cost is minimized to locate the

relevant leaf node in a key search. In a leaf node, an entry array

𝑽 holds the keys in the node’s range and the pointers to the cor-

responding data records. In addition, a leaf node uses an efficient

linear regression model to map its keys to the positions in 𝑽 .
A critical issue for constructing DILI is to determine its node

layout that is able to achieve good search performance. We design a

sophisticated approach aware of data distributions and search costs.

A key search in DILI involves two steps: 1) finding the leaf node

covering the given key and 2) local search inside the leaf node. Ac-

cordingly, the general search performance depends on two factors:

leaf nodes’ depths and linear regression models’ accuracy in the

leaf nodes. Both factors should be considered in DILI construction.

To this end, we propose a two-phase bulk loading approach. The

first phase creates a distribution-driven bottom-up tree (BU-Tree),

whose node layout is determined by a greedy merging algorithm

that considers both aforementioned factors. The merging creates

linear regression models, starting at the bottom level to fully utilize

the known key distribution. As a result, the models in the BU-Tree’s

leaf nodes guarantee good accuracy. Basically, we build DILI by

making its node layout overall similar to that of the BU-Tree. How-

ever, a BU internal node’s range is not necessarily equally divided

by its child nodes. Therefore, search in the BU-Tree’s internal nodes

can incur extra time to decide which child node to visit. To this end,

the second phase converts the BU-Tree to a DILI by redistributing

2212

https://doi.org/10.14778/3598581.3598593
https://github.com/pfl-cs/DILI
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598593
https://www.acm.org/publications/policies/artifact-review-and-badging-current

...

...

 : the entry array

...

1 = .[.()]

. = 4

. = 0.05

. = 3

. = 80

. = 4

: , the linear regression model

 = 101

 ...

 : pair

 leaf node

 pointer
 :

 : NULL

101

Leaf

Node

Internal

 Node

. = 160

2

Search key

Params

Internal Node

: the children

 nodes array

: , the linear regression

model with parameters a and b

Important Components

Internal Node Example

Leaf Node

 = .[.()] with

with

Important Components

Root node Input

Step-1

Step-2

Step-3

Search step

Symbol

meanings
Step-1

.() = 1

 = .[1]

Step-2

.() = 1

1 = .[1]

Step-3

1 .() = 1

2 =

1 .[1]

Leaf Node

Example

Step-4

Step-4

2 .() = 0

 =
2 .0

Output record pointer

102

...

Step-i

1 . = 0.1,

1 . = 9

Params

1

. = 0, . = 240

1

1

1 .[

1 .()]

2 =

2

1 . = 100,

1 . = 120

 = .

Pair

Figure 1: The Structure of DILI

keys among sibling nodes. When doing so, we carefully set different

fanouts for DILI’s different internal nodes according to their local

key distributions, such that each internal node is equally divided by

its child nodes. Meanwhile, we retain good model accuracy in DILI’s

leaf nodes and keep them at the same level as the counterparts in

the BU-Tree. As a result, we obtain a DILI that is efficient at finding

leaf nodes and have linear regression models of high accuracy in

leaf nodes. In other words, we first create a mirror model (BU-Tree)

that exhibits a good node layout but cannot guarantee perfect accu-

racy, and then we create another similar model (DILI) that avoids

the mirror model’s drawbacks but maintains its advantages.

It is noteworthy that we build the BU-Tree and DILI according

to detailed analyses of search costs, which consider caching effects

in the main-memory context. Though DILI and ALEX share some

structural similarities, they are constructed according to different

perspectives. ALEX is built top down, while the BU-Tree is bot-

tom up and initially deals with all the keys. Thus, the BU-Tree

understands the key distribution better and partitions them into

leaf nodes more reasonably. This make the ‘mirrored’ DILI achieve

good local search performance. Also, our proposed cost function

makes the BU-Tree (and DILI) have a suitable height. As a result,

finding leaf nodes in DILI consumes less time.

Our bulk loading approach makes the linear regression models

in DILI’s leaf nodes have high but not 100% accuracy. We find that

the ‘last-mile’ local search in the leaf nodes is often the bottleneck of

an entire query. To this end, we conduct a local optimization at each

leaf node after the bulk loading, forcibly making the key-to-position

mapping precise. If multiple keys aremapped into the same position,

a new child node is created to hold them. Experimental results show

that local optimizations improve the query performance of DILI by

avoiding the local search inside the leaf nodes.

Our local optimization is inspired by LIPP [44] and LISA [31].

However, unlike LIPP, DILI’s local optimization applies to leaf nodes

only. Also, the two phase bulk loading approach makes DILI rea-

sonably partitions data such that the keys covered by leaf nodes

are almost linearly distributed. Compared to LIPP, the linear re-

gression models in DILI’s leaf nodes assign fewer keys the same

slots. Thus, DILI encounters less conflicts and achieves better search

performance and lower memory consumption.

Furthermore, DILI supports data updates. When an inserted key

conflicts with an existing key at a data slot of DILI’s leaf node, our

insertion algorithm creates a new leaf node to cover the conflict-

ing data. Also, DILI redistributes data covered by a leaf node in

a balanced way, when insertions generate too many nodes and

degrades the query performance. Meanwhile, it allocates more data

slots for those leaf nodes that encounter more frequent conflicts.

In this way, DILI’s height is bounded and the query performance

downgrades slightly even for many insertions. In addition, when a

leaf node covers only one key after some deletions, this node will be

trimmed to improve performance and save memory consumption.

We make the following major contributions in this paper.

• Wedesign a distribution-driven learned indexDILI for in-memory

1D keys, together with algorithms and cost analysis.

• Accordingly, we design a distribution-driven BU-Tree as a node

layout reference for DILI, and after more specific cost analyses

we devise an algorithm to construct DILI based on BU-Tree.

• We propose a local optimization on DILI’s leaf nodes to avoid

the local search and improve query performance.

• To update DILI for key insertions and deletions, we devise effi-

cient algorithms that retain search performance.

• We experimentally validate DILI’s performance advantage over

state-of-the-art alternatives on synthetic and real datasets.

The rest of the paper is organized as follows. Section 2 gives an

overview of DILI. Section 3 analyses its search cost. Sections 4, 5

and 6 elaborate on DILI’s construction, local optimization and up-

dates, respectively. Section 7 reports on the experimental studies.

Section 8 reviews the related work. Section 9 concludes the paper.

2 OVERVIEW OF DILI
Table 1 lists the important notations used in the paper.

Definition 1 (Pair). A pair is a 2-tuple 𝑝 = (𝑘𝑒𝑦, 𝑝𝑡𝑟), where
𝑝𝑡𝑟 is a pointer to the data record identified by 𝑘𝑒𝑦.

Let 𝑷 = [𝑝0, 𝑝1, · · · , 𝑝 |𝑷 |−1] be an array of pairs, and keys(𝑷) =
[𝑝0 .𝑘𝑒𝑦, 𝑝1 .𝑘𝑒𝑦, · · · , 𝑝 |𝑷 |−1 .𝑘𝑒𝑦] the key sequence from 𝑷 .

Definition 2 (Least square estimator). Given 𝐼 ⊆ [�̃�] =

{0, 1, · · · , 𝑛 − 1}, two sequences 𝑿 = [𝑥0, · · · , 𝑥𝑛−1] and 𝒀 =

[𝑦0, · · · , 𝑦𝑛−1], the least square estimator restricted to 𝐼 is the linear

2213

Table 1: Notations
N.fo Fanout of the node N. N can be an internal or a leaf node.

N.LR Linear regression model of the node N
NT .𝑪 The child node array of the internal node NT
ND .𝑽 The entry array of the leaf node ND
Ts (𝑥) Search cost of key 𝑥 in DILI without local optimization.

TB
ns (N, 𝑥, ℎ) Search cost of key 𝑥 w.r.t. a BU node N at height ℎ

TB
ea (𝑿ℎ,𝑿)

Estimated accumulated search cost of the break points list

𝑿ℎ for the key set 𝑿 in the BU-Tree

function that minimizes

∑︁
𝑖∈𝐼 (𝑦𝑖 − 𝑓 (𝑥𝑖))2 over any linear function

𝑓 . We use leastSqares(𝑿 , 𝒀 , 𝐼) to denote an algorithm that finds

the least square estimator for the data points restricted to 𝐼 . When

𝐼 = [�̃�], we simplify leastSqares(𝑿 , 𝒀 , 𝐼) to leastSqares(𝑿 , 𝒀).

Fig. 1 illustrates the structure of DILI. The depths of its leaf

nodes may be different, i.e., DILI is an unbalanced tree. Instead

of having key-pointer pairs, a node in DILI contains a model for

indexing purpose. Specifically, a node N keeps two numbers N.lb
and N.ub such that [N.lb,N.ub) forms N’s range, i.e., the key

sequence covered by N. A node N, be internal or not, also stores

a linear regression model N.LR parameterized by its intercept 𝑎

and slope 𝑏, i.e., N.LR(𝑥) = 𝑎 + 𝑏𝑥 . Such models serve different

purposes in internal and leaf nodes.

Internal Nodes. DILI’s internal nodes are represented as red dot-

ted boxes in the bottom-middle part of Fig. 1. An internal node NT
stores a linear regression modelNT .LR and an arrayNT .𝑪 of point-

ers to NT’s child nodes. Note that NT .𝑪 ’s each element is a simple

pointer, without any keys. In Fig. 1, an internal node’s child nodes

are represented as small equal sized rectangles. This is because

NT’s child nodes equally divide NT’s range. Unlike B+Tree, we im-

pose no constraints on NT’s fanout, i.e., the length of NT .𝑪 . Also,
an internal node NT in DILI does not need to store an additional

ordered set of elements to describe the children’s ranges, because

they are clearly described by the linear regression model. Given a

key 𝑥 , we can easily know which child node covers 𝑥 with a few

simple calculations. When a search goes downward in the tree, NT
uses NT .LR to ‘compute’ the location (in NT .𝑪) of the pointer to
the next child node to visit. Let NT .fo denote the fanout of NT. The

intercept 𝑎 and the slope 𝑏 of NT .LR are calculated as follows:

𝑏 = NT .fo/(NT .ub − NT .lb), 𝑎 = −𝑏 × NT .lb (1)

Accordingly,NT’s 𝑖th child node’s range is [NT .lb+ 𝑖
𝑏
,NT .lb+ 𝑖+1

𝑏

)︁
,

i.e., [NT .LR−1 (𝑖),NT .LR−1 (𝑖 + 1)
)︁
. All NT’s child nodes’ ranges

are of equal length. For example, in Fig. 1, the internal node NT has

four children and its range is [80, 160). NT’s second child node N1
D

is assigned a range of [NT .lb + 1

NT .𝑏
,NT .lb + 2

NT .𝑏

)︁
= [100, 120).

Leaf Nodes. The leaf nodes in DILI are represented by circles in

Fig. 1, where the ellipse in the bottom-middle part gives the details.

A leaf node ND stores an entry array 𝑽 and a linear regression

model LR. Each entry is a pair, a pointer to another leaf node

or a NULL flag indicating the corresponding slot of 𝑽 is empty.

ND .𝑽 may cover leaf node pointers or NULL flags due to the local
optimization strategy applied to the leaf nodes, which will be in-

troduced later in this section and Section 5. The learned model LR
maps a key to a position in 𝑽 . Unlike those models in internal nodes,

LR is the solver to the mean squared error minimization problem,

whose input is the keys of 𝑷𝐿 , i.e., the pairs covered by ND’s range,

and ground truth is the corresponding indices in 𝑷𝐿 . Specifically,
ND .LR ≜ leastSqaures(keys(𝑷𝐿), [|𝑷𝐿 |]˜). At present, we sim-

ply assume ND .𝑽 = 𝑷𝐿 . In other words, 𝑽 tightly stores the key-

pointer pairs only. Note that each internal or leaf node only needs

to store two parameters 𝑎 and 𝑏 for its linear model.

Search without Optimization. To search for a key 𝑥 , we first

find the leaf node whose range covers 𝑥 , using the function locate-

LeafNode (lines 5–8 in Algorithm 1). This function starts at DILI’s

root, iteratively uses the linear regression model in the current

internal node to ‘compute’ a location in the node’s pointer array

𝑪 . It follows the pointers to child nodes iteratively until reaching a

leaf node ND. As the internal nodes’ linear regression models have

perfect accuracy, i.e., they always choose the child nodes covering

𝑥 . Thus, no local search is needed inside an internal node.

Algorithm 1 Search(Root, 𝑥)

1: ND ← locateLeafNode(Root, 𝑥)
2: 𝑝𝑜𝑠′ ← ⌊ND .LR(𝑥) ⌋
3: 𝑝 ← ND .𝑽 [𝑝𝑜𝑠], 𝑝𝑜𝑠 ← exponentialSearch(ND .𝑽 , 𝑥, 𝑝𝑜𝑠′)
4: return (𝑝.𝑘𝑒𝑦 = 𝑥 ? 𝑝.𝑝𝑡𝑟 : NULL)

5: function locateLeafNode(Root, 𝑥)
6: while N points to an internal node do
7: 𝑝𝑜𝑠 ← ⌊N.LR(𝑥) ⌋; N← N.𝑪 [𝑝𝑜𝑠]
8: return N

After finding the leaf node ND, we search the pair array ND .𝑽
for the pair whose key is 𝑥 (lines 2–4). Suppose the pair 𝑝 ∈ ND .𝑽
is the least upper bound1 of 𝑥 in ND .𝑽 . We use the model ND .LR
to estimate 𝑝’s position 𝑝𝑜𝑠 ′ in ND .𝑽 (line 2). From the position

𝑝𝑜𝑠 ′, an exponential search (line 3) is performed to find the actual

position of 𝑝 . At the returned position 𝑝𝑜𝑠 is the pair 𝑝 (line 3). If

𝑝.𝑘𝑒𝑦 is not 𝑥 , we return NULL as no data record contains the key

𝑥 . Otherwise, we return 𝑝.𝑝𝑡𝑟 that points to 𝑥 ’s data (line 5).

Construction. DILI is built by considering the keys’ distribution

to reduce the expected lookup time of queries. We propose a novel

bulk loading algorithm to build DILI in Section 4. The algorithm

‘learns’ a good node layout for DILI from a given pair set 𝑷 .
Local Optimization strategy. In the experiments, we find that the

‘last-mile search’ in the leaf nodes (line 3 in Algorithm 1) is usually

a bottleneck of the entire query. While our bulk loading algorithm

make keys covered by a leaf node ND almost linearly distributed,

ND .LR cannot guarantee perfect accuracy. To address this issue,

we put a local optimization on each leaf node after its range and

linear regression model is determined. Inspired by the novel idea

of LISA [31] that uses ML models to directly determine keys’
storage positions instead of approximating them, the local

optimization makes DILI avoid local search by forcibly placing

pairs at the returned position by the linear regression model. If

𝑝𝑜𝑠 = ND .LR(𝑝.𝑘𝑒𝑦), the pair 𝑝 will be put at ND .𝑽 [𝑝𝑜𝑠]. If the
predictions of multiple pairs by ND .LR are the same, i.e., they
conflict, a new leaf node will be created to deal with them. In this

case, the original leaf node itself will have its own child node.

It is noteworthy that Algorithm 1 is only used in DILI’s bulk load-

ing stage. In practice, a search algorithm with the local optimization

will be adopted. The details of the local optimization as well as the

optimized search algorithm are to be introduced in Section 5.

1
In a pair array 𝑷 , a key 𝑥 ’s least upper bound (LUB) is a pair 𝑝 ∈ 𝑷 satisfying two

conditions: 1) 𝑝.𝑘𝑒𝑦 ≥ 𝑥 and 2) If ∃𝑝′ ∈ 𝑷 s.t. 𝑝′.𝑘𝑒𝑦 ≥ 𝑥 , then 𝑝′.𝑘𝑒𝑦 ≥ 𝑝.𝑘𝑒𝑦.

2214

Updates. DILI supports data updates. Our insertion algorithm will

create new leaf nodes to cover conflicting pairs if insertions in-

cur conflicts. Meanwhile, pairs covered by a leaf node will be re-

distributed when too many node creations degrades the search

performance. The details are to be given in Section 6.

Discussion. As described above and illustrated in Fig. 1, DILI’s

internal and leaf nodes feature different structures. Their local

arrays keep different types of elements, due to their different roles

in search. Internal nodes’ role in the search process is to efficiently

locate the leaf node covering the search key. To fulfill this, an

internal node NT’s children nodes are assigned equal-size ranges

through its model NT.LR. Thus, NT .𝑽 arranges NT’s child nodes

tightly. In contrast, the search process needs to find the pair from

a leaf node ND’s entry array. However, ND .LR may predict for

multiple keys the same position in ND .𝑽 . To process the conflicts,

the local optimization is adopted to create new leaf nodes to store

the conflicting keys. Since multiple keys may conflict at the same

predicted position and at least one slot is preserved for each pair, it

is possible that some slots in ND .𝑽 have no contents. Thus, unlike

NT .𝑪 , ND .𝑽 accommodates different kinds of elements.

3 SEARCH COST ANALYSIS
This section is a preparation for the bulk loading algorithm in

Section 4. We make a detailed cache-aware cost analysis of Algo-

rithm 1. Note that no local optimization is assumed at present. In

other words, given any leaf node ND, ND .𝑽 contains no leaf node

pointer andND .LR does not guarantee perfect prediction accuracy.

Cost Analysis. Algorithm 1 consists of two steps: 1) finding the

leaf node covering the search key and 2) local search inside the

leaf node. Given a pair 𝑝 with key 𝑥 , suppose ND (with depth 𝐷)

is the leaf node covering 𝑥 . Let ND .LR’s prediction error for 𝑥 be

𝜖𝑥 = |ND .LR(𝑥) − 𝑝𝑜𝑠 | where 𝑝𝑜𝑠 is 𝑝’s position in ND .𝑽 . The
estimated search cost of key 𝑥 is denoted by Ts (𝑥) as follows.

Ts (𝑥) ≈
(︁
(𝐷 − 1) × Tis (𝑥)

)︁
+ Tds (ND, 𝑥) (2)

Tis (𝑥) = (𝜃N + 𝜂 + 𝜃C),Tds (ND, 𝑥) = 𝜃N + 𝜂 + tE (ND, 𝑥)

where Tis (𝑥) and Tds (ND, 𝑥) denote the time spent in an internal

node and the leaf node ND covering 𝑥 respectively; 𝜃N and 𝜂 are

the estimated time of executing a linear function (lines 2 and 8 in

Algorithm 1) and loading a DILI’s node from the main memory

respectively; 𝜃C is the estimated time of accessing the address of

an internal node N’s child node. In particular, after calculating

𝑝𝑜𝑠 = ⌊N.LR(𝑥)⌋ (line 2 in Algorithm 1), we need to get the 𝑝𝑜𝑠-th

element from N.𝑪 , and 𝜃C is the time of getting the corresponding

pointer. Usually, both 𝜃N and 𝜃C equal the time of loading a cache

line sized block from the main memory to the cache.

An exponential search needs about 2 log
2
𝜖𝑥 iterations. Each

iteration consists of the calculation of the middle position, an oper-

ation of pair addressing and a comparison of two keys. Thus, the

estimated time of the local search in ND is tE (ND, 𝑥) = 2 log
2
𝜖𝑥 ×

(𝜇E + 𝜃E), where 𝜃E and 𝜇E are the average time of accessing a pair

and executing the other operations in one iteration, respectively.

An exponential search fetches pairs mostly stored separately.

Discussion. In practice, pair access is much slower than other

operations. Due to limited cache size, a new node or pair often trig-

gers a cache miss, which entails addressing in the heap. Addressing

takes two steps: finding the leaf node and local search inside the

node. However, less local search time in a leaf node often means the

node stores fewer pairs, which tends to increase the number of leaf

nodes. All this means more and deeper leaf nodes, which in turn

incurs more time cost for finding the correct leaf node. To strike a

trade-off between DILI’s leaf node depth and number of leaf nodes,

we proceed to design a bulk loading method to construct DILI by

taking into account the time cost of both steps together.

4 CONSTRUCTION OF DILI
For a pair array 𝑷 sorted on all keys, we want to build DILI with a

good node layout having fast lookups for arbitrary search keys.

4.1 Motivation and Overall Idea of BU-Tree
As described in Section 2, DILI’s linear regression model in an

internal node NT has perfect accuracy because its children equally

divide its range by design. This design gives rise to a unique critical

problem in constructing DILI: deciding the suitable fanout for NT.

One idea is to follow the top-down construction of ALEX [18],

using a power of 2 for a internal node’s fanout. If the whole key

range is [0, 1), the length of a leaf node’s range must be
1

2
𝑘 for some

integer 𝑘 . For a complex key distribution (e.g., a long-tail type), 𝑘
must be large in order to ensure high accuracy of the linear model

in the leaf node. This tends to result in many leaf nodes and thus a

high tree, making it slow to find the leaf node for a given key.

Another idea comes from the bottom-up bulk loading of B+Tree.

First, we partition all pairs in 𝑷 into pieces and store each piece in a

leaf nodeND. In eachND, we build a linear model to mapND’s keys

to their positions in ND’s piece. With an appropriate algorithm, we

can ensure a relatively low total loss of all linear models in all leaf

nodes. Then, we partition the boundaries of the leaf nodes using

the same algorithm. We create internal nodes at height level 1 to

save the boundaries, use the boundaries as the separation values

to group the leaf nodes, and make each group of leaf nodes the

children of their corresponding parent node at level 1. Likewise, we

create internal nodes at height level 𝑖 based on those at level 𝑖 − 1,
and repeat the process until we reach a level with only one node.

This approach reduces the local search time in the leaf nodes but

it does not guarantee that child nodes equally divide their parent

node’s range, and thus the parent node’s linear regression model

fail to give perfect prediction accuracy. Rather, from the predicted

position, extra operations must be performed to find the child node

covering a given key, making the overall lookup time longer.

To build DILI that incurs low overall lookup time for arbitrary

keys, we combine both ideas in a two-phase bulk loading algorithm.

First, we create a bottom-up tree (BU-Tree), starting from leaf nodes

and growing the tree upwards. Second, we reuse the BU-Tree’s

node layout to build DILI, and improve the latter’s internal linear

models such that they also obtain perfect prediction accuracy. The

built DILI is able to find the leaf node covering a search key with

only a few calculations of linear functions. Also, the local search

time cost in the leaf nodes is small as DILI has a leaf node layout

similar to the BU-Tree. Thus, DILI is built in a novel paradigm—we

first design a mirror model that finds leaf nodes efficiently, and then

create a similar model that further optimizes local search in a leaf

node. Fig. 2 illustrates the procedure of our bulk loading algorithm.

2215

BU leaf

nodes

 BU internal

 nodes
BU root BU internal

 nodes

DILI leaf

nodes

DILI internal

nodes

DILI

root

DILI internal

nodes

g-m
 Input:

... ...

...

Determine the fanout of DILI

nodes based on the BU nodes

(= 1) (= 1)

(=) (= 1)

(=)

(= 1)

...g-m g-m g-m

g-m: greedy merging

Figure 2: Framework of the bulk loading algorithm

We use BU internal node or BU leaf node to refer to an internal or

leaf node in the BU-tree. A BU internal node NT is structurally the

same as that in DILI, except that NT stores an additional array 𝑩 to

record the ranges of all its child nodes. Specifically,NT .𝑪 [𝑖−1] .ub =

NT .𝑪 [𝑖] .lb = NT .𝑩[𝑖]. Note that the child nodes may not equally

divide NT’s range. All BU leaf nodes are at the same height level

and they are reused as the basis of the leaf nodes in DILI.

Key search in a BU-Tree is different from DILI. Finding the child

node covering key 𝑥 in a BU internal node NT involves two steps.

The first step computes 𝑗 = NT .LR(𝑥) and the second step searches
NT .𝑩 from position 𝑗 to find the index 𝑖 such that NT .𝑩[𝑖] ≤ 𝑥 <

NT .𝑩[𝑖 + 1]. As a result, NT .C[𝑖] points to the correct child node.

4.2 Building BU-Tree
For a given 𝑷 , BU-Tree is built by Algorithm 2. After initialization

(line 1), it calls the function greedyMerging (Algorithm 3 to be

detailed in Section 4.2.2) to generate all leaf nodes (line 2). Subse-

quently, Algorithm 2 creates all BU internal nodes (lines 3–11) in a

bottom-up way, until an appropriate root node is found (lines 7–9).

At each height ℎ, we independently decide if the nodes at the cur-

rent height should be the children of an immediate root node or not.

For both cases (lines 5 and 6), we calculate the average estimated
accumulated search cost (to be detailed in Section 4.2.2). It is an

estimate of the lookup time of the corresponding DILI from its root

node to the node at height ℎ that covers the search key. If having

an immediate root node implies a smaller cost, we create a root

node and set its child nodes to be Nℎ
, the BU nodes at height ℎ

(lines 7–9). Otherwise, the BU-Tree grows to height ℎ + 1 (line 10).

Algorithm 2 BuildBUTree(𝑷)

1: 𝑁 ← |𝑷 |,𝑿 ← [𝑥0, · · · , 𝑥𝑁−1] where 𝑥𝑖 = 𝑷 [𝑖] .𝑘𝑒𝑦
⊲ Generate BU leaf nodes

2: 𝑛0,𝑿 0,N0, Y1 ← greedyMerging(NULL, 𝑿)

3: ℎ ← 0

4: while 𝑛ℎ > 1 do
5: N𝑟 , Y0 ← generateRoot(Nℎ,𝑿ℎ,𝑿)

6: 𝑛ℎ+1,𝑿ℎ+1,Nℎ+1, Y1 ← greedyMerging(Nℎ,𝑿ℎ)

7: if Y0 < Y1 then ⊲ Growing DILI will result in larger cost

8: Set N𝑟
to be the root node of the BU-Tree

9: break
10: else ℎ ← ℎ + 1
11: return the root node

12: function generateRoot(Nℎ−1,𝑿ℎ−1,𝑿)

13: 𝒀ℎ−1 ← 𝐼 , 𝐼 ← [𝑛ℎ−1]˜ , 𝑛ℎ−1 ← |𝑿ℎ−1 |
14: F ← leastSqares(𝑿ℎ−1,𝒀ℎ−1, 𝐼)
15: R← an empty BU internal node

16: R.LR ← F, R.fo← 𝑛ℎ−1, R.𝑪 ← Nℎ−1

17: Y ← 1

𝑁

∑︁𝑁−1
𝑖=0 TB

ns (N, 𝑥𝑖) ⊲ Calculate the search cost

18: return R, Y

4.2.1 Bottom-up Node andModel Creation. Given the pair set 𝑷 , we
have 𝑿 = keys(𝑷) = [𝑥0, · · · , 𝑥𝑁−1] and 𝒀 = [𝑁]˜ = [0, · · · , 𝑁 − 1]
where 𝑥𝑖 = 𝑷 [𝑖] .𝑘𝑒𝑦. We first find a suitable integer 𝑛0 and 𝑛0 − 1

break points [𝛽0
1
, · · · , 𝛽0

𝑛0−1] to partition the key space keys(𝑷) into
𝑛0 pieces. The 𝑖th piece’s range is equal to [𝛽0

𝑖
, 𝛽0

𝑖+1) where 𝛽
0

0
=

inf keys(𝑷) and 𝛽0𝑛0

= sup keys(𝑷). For the 𝑖th piece, supposing

𝛽0
𝑖
≤ 𝑥𝑙 < · · · < 𝑥𝑟 < 𝛽0

𝑖+1, we train a linear regression model F 0

𝑖
with input [𝑥𝑙 , · · · , 𝑥𝑟] and [𝑙, · · · , 𝑟]. Then, 𝑛0 BU leaf nodes are

created. The 𝑖th node N0

𝑖
is described as follows.

N0

𝑖 .lb = 𝛽0𝑖 ,N
0

𝑖 .ub = 𝛽0𝑖+1,N
0

𝑖 .LR(𝑥) = F
0

𝑖 (𝑥) − 𝑙,N
0

𝑖 .𝑽 = 𝑷 [𝑙 : 𝑟] (3)

Suppose that the BU nodes at height ℎ − 1 have been created.

We define two lists 𝑿ℎ−1 = [Nℎ−1
0

.lb · · · ,Nℎ−1
𝑛ℎ−1−1 .lb] and 𝒀ℎ−1 =

[0, · · · , 𝑛ℎ−1 − 1], where Nℎ−1
𝑖

is the 𝑖th node at height ℎ − 1 and
𝑛ℎ−1 is the number of the nodes at height ℎ − 1. Similarly, we

generate 𝑛ℎ − 1 break points [𝛽ℎ
1
, · · · , 𝛽ℎ

𝑛ℎ−1], partition the space

into 𝑛ℎ pieces, and build 𝑛ℎ linear regression models. Given a key 𝑥 ,

suppose Nℎ−1
𝑙

.lb ≤ 𝑥 < Nℎ−1
𝑙

.ub. We define a function 𝜁ℎ−1 (𝑥) = 𝑙 .

The 𝑖th node Nℎ
𝑖
at height ℎ is described as follows.

Nℎ
𝑖 .lb = 𝛽ℎ𝑖 ,N

ℎ
𝑖 .ub = 𝛽ℎ𝑖+1,N

ℎ
𝑖 .fo = 𝑛ℎ, (4)

Nℎ
𝑖 .LR(𝑥) = F

ℎ
𝑖 (𝑥) − Z

ℎ−1 (𝑥),Nℎ
𝑖 .C[𝑗] = Nℎ−1

𝑞 ,

Nℎ
𝑖 .𝑩 [𝑗] = Nℎ−1

𝑞 .lb,where 𝑞 = Zℎ−1 (𝛽ℎ𝑖) + 𝑗

A key challenge here is to decide 𝑛ℎ (the number of nodes at

height ℎ) and [𝛽ℎ
1
, · · · , 𝛽ℎ

𝑛ℎ−1] (the break points for these 𝑛ℎ nodes),

as they determine the node layout at height ℎ.

4.2.2 Determining Node Layout at A Height. We want to have a

suitable BU node layout such that the corresponding DILI will

have a good node layout to minimize the average search time. As

the DILI has a similar node layout with the BU-Tree, we simulate

the DILI’s querying process in the BU-Tree. To search for a key in

the BU-Tree, we observe which nodes are accessed as well as the

losses of their linear regressionmodels. Based on those observations,

we estimate the cost of searching for a key in the DILI.

Given a key 𝑥 , we define the estimated search cost TBns (N, 𝑥, ℎ)
w.r.t. a BU node N and a height ℎ as follows.

TBns (N, 𝑥, ℎ) = \N + [+ 𝜌ℎ × tBE (N, 𝑥),where 𝜌 ∈ (0, 1)

tBE (N, 𝑥) = log
2
|N.LR(𝑥) − 𝑖 | × (𝜇E + \E) (5)

𝑖 =

{︄
N.𝑩 [𝑖] ≤ 𝑥 < N.𝑩 [𝑖 + 1], N is a BU internal node

N.𝑽 [𝑖] .𝑘𝑒𝑦 ≤ 𝑥 < N.𝑽 [𝑖 + 1] .𝑘𝑒𝑦, otherwise.

Here, 𝜃N, 𝜂, 𝜇E and 𝜃E carry the same meanings as those in Eq. 2;

tBE is a simple extension of tE on BU nodes. If the node height is

irrelevant, we simplify TBns (N, 𝑥, ℎ) to TBns (N, 𝑥).
Given a key 𝑥 , suppose the search in BU-Tree visits the complete

node path N𝑘 , N𝑘−1, · · · , N0, where N𝑘 is the root node and N0 is

the leaf node covering 𝑥 . We define the accumulated search cost till
height ℎ TBal (ℎ, 𝑥) and the complete search cost TBs (𝑥) as follows.

TBal (ℎ, 𝑥) =
𝑘∑︂
𝑗=ℎ

TBns (N𝑗 , 𝑥),TBs (𝑥) = TBal (0, 𝑥) =
𝑘∑︂
𝑖=0

TBns (N𝑖 , 𝑥)

To minimize the average lookup time of the search key, we try

to minimize
1

𝑁

∑︁𝑁−1
𝑖=0 TBs (𝑥𝑖), i.e., the average complete search cost

2216

[0, 180)

0 36 144

0 9 27 36 60 102 144 16472

[0, 36) [36, 144) [144, 180)

[0, 9) [9, 27) [27, 36) [36, 60) [60, 72) [72, 102) [144, 164) [164, 180)[102, 144)

[0, 180)

[0, 60) [60, 120)
[120, 180)

[0, 15) [15, 30) [30, 45) [45, 60) [60, 80) [80, 100) [120, 150) [150, 180)[100, 120)

[l, r) A BU leaf node

with range [l, r)

[l, r) A BU internal node

with range [l, r)

The boundary array B

of a BU internal node

[l, r) A DILI internal node

with range [l, r)
[l, r) A DILI leaf node

with range [l, r)

Figure 3: Building DILI based on the BU-Tree

for all keys. If the nodes under height ℎ have been created, minimiz-

ing
1

𝑁

∑︁𝑁−1
𝑖=0 TBs (𝑥𝑖) is equivalent to minimizing

1

𝑁

∑︁𝑁−1
𝑖=0 TBal (ℎ, 𝑥𝑖).

However, as a BU-Tree is grown upwards, we do not even know the

height of the BU-Tree when creating nodes at height ℎ, let alone

estimating the search cost of a key in a node above height ℎ. To this

end, we introduce the estimated accumulated search cost of the break
points list 𝑿ℎ for the key set 𝑿 , termed as TBea (𝑿ℎ,𝑿). It measures

the quality of the node layout generated from the break points list

𝑿ℎ . For simplicity, we assume that each BU internal node has the

same number of child nodes, and define TBea (𝑿ℎ,𝑿) as follows.

TBea (𝑿ℎ,𝑿) =
1

𝑁

𝑁−1∑︂
𝑖=0

⌈𝛿⌉∑︂
ℎ′=ℎ

min(1, 𝛿 + 1 − ℎ′) × TBns (Nℎ
𝑡𝑖
, 𝑥𝑖 , ℎ

′)

where 𝑡𝑖 = Zℎ (𝑥𝑖), 𝛿 = log𝑛ℎ−1
𝑛ℎ

𝑛ℎ−1, 𝑛−1 = 𝑁

Above, Nℎ
𝑡𝑖
is the node at height ℎ whose range covers 𝑥𝑖 . In other

words, 𝑿ℎ [𝑡𝑖] ≤ 𝑥 < 𝑿ℎ [𝑡𝑖 + 1]. Moreover, 𝛿 is the estimated depth

of the nodes at height ℎ. We explain 𝛿 by an example. Suppose

𝑛ℎ−1 = 1000 and 𝑛ℎ = 100, i.e., the number of nodes at height ℎ − 1
and ℎ are 1000 and 100, respectively. A node at height ℎ has

1000

100
=

10 child nodes on average. The estimated 𝑛ℎ+1 =
100

10
= 10, 𝑛ℎ+2 = 1

and thus the root node’s height is ℎ + 2. Because 𝛿 is the estimated

depth of the nodes at height ℎ, 𝛿 = (ℎ + 2) −ℎ + 1 = 3 = log 1000

100

1000.

As 𝛿 may not exactly be an integer, we add a multiplication factor

𝛿 + 1 − ℎ′ = 𝛿 − ⌊𝛿⌋ before TBns (Nℎ
𝑡𝑖
, 𝑥𝑖 , ℎ

′) when ℎ′ = ⌈𝛿⌉. Here,
TBns (Nℎ

𝑡𝑖
, 𝑥𝑖 , ℎ

′) is an estimate of TBns (Nℎ′
𝑡𝑖
, 𝑥𝑖).

Given 𝑿ℎ−1 and 𝒀ℎ−1, to find the best 𝑛ℎ and 𝑿ℎ , a straightfor-

ward approach is to set 𝑛ℎ to be different values. For each specific

𝑛ℎ , we solve a 𝑛ℎ-piecewise linear regression problem with input

𝑿ℎ−1 and 𝒀ℎ−1, and compute the estimated accumulated search cost

of this configuration. Then, we choose the configuration with the

smallest accumulated search cost. However, it is costly to directly

solve a number of 𝑘-piecewise linear regression problems.

Instead, we adapt an efficient greedy merging algorithm [11] to

iteratively solve a series of 𝑘-piecewise linear regression problems

with input 𝑿ℎ−1 and 𝒀ℎ−1. At each iteration, we generate 𝑘 − 1

break points and calculate the estimated accumulated search cost

for them. Those break points induce the smallest cost form 𝑿ℎ ,

the basis for creating the nodes at height ℎ. Algorithm 3 finds the

suitable 𝑛ℎ and𝑿ℎ and generates the nodes at height ℎ. In lines 6–7,

𝜔 is a pre-defined average maximum fanout for DILI’s nodes. In

our implementation, we set 𝜔 to 4096 as a DILI with good search

performance cannot have too many nodes.

The value of 𝑘 is decided as follows. Initially, 𝑘 is set to be
𝑛ℎ−1
2

and the list 𝑿ℎ−1 is partitioned into 𝑘 pieces (lines 1-2). At each

iteration (lines 7–15), we merge two continuous pieces that result in

the most linear loss increase and decrease the value of𝑘 by 1 (lines 8-

12). We do not need to calculate the linear loss w.r.t. every piece.

Algorithm 3 greedyMerging(Nℎ−1,𝑿ℎ−1)

1: 𝑘 ← 𝑛ℎ−1
2

, 𝒀ℎ−1 ← [𝑛ℎ−1]˜
, 𝑛ℎ−1 ← |𝑿ℎ−1 |

⊲ The last set may contain 3 elements

2: I𝑘 ← {{0, 1}, {2, 3}, · · · , {2𝑘 − 2, (2𝑘 − 1), 𝑛ℎ−1 − 1}}
3: ∀𝑘 and 0 ≤ 𝑖 < 𝑘 , let 𝐼𝑘

𝑖
denote the 𝑖th element of I𝑘

4: For any indices set 𝐼 , let 𝛾 (𝐼) ← rmse(𝑿ℎ−1,𝒀ℎ−1, 𝐼)
5: ∀𝑘, 𝑖, let 𝑠𝑘

𝑖
← 𝛾 (𝐼𝑘

𝑖
),𝑚𝑘

𝑖
← 𝛾 (𝐼𝑘

𝑖

⋃︁
𝐼𝑘
𝑖+1)

6: Set 𝜔 to be a large number and 𝑘𝑚𝑖𝑛 ←
𝑛ℎ
𝜔

⊲ In practice, we set 𝜔 = 2, 048.

7: while 𝑘 ≥ 𝑘𝑚𝑖𝑛 do ⊲ Iterative greedy merging

⊲𝑚𝑘
𝑖
= 𝛾 (𝐼𝑘

𝑗

⋃︁
𝐼𝑘
𝑗+1), 𝑠𝑘𝑖 = 𝛾 (𝐼𝑘

𝑗
), 𝑠𝑘

𝑖+1 = 𝛾 (𝐼𝑘
𝑗+1)

8: 𝑢 = argmin𝑖 𝑚
𝑘
𝑖
− 𝑠𝑘

𝑖
− 𝑠𝑘

𝑖+1
9: I𝑘−1 ← {𝐼𝑘

0
, 𝐼𝑘
1
, · · · , 𝐼𝑘𝑢

⋃︁
𝐼𝑘
𝑢+1, 𝐼

𝑘
𝑢+2, · · · , 𝐼𝑘𝑘−1 }

10: 𝑠𝑘−1𝑢 ←𝑚𝑘
𝑢 and calculate𝑚𝑘−1

𝑢−1 and𝑚
𝑘−1
𝑢

11: ∀𝑢 < 𝑖 < 𝑘 − 1, 𝑠𝑘−1
𝑖
← 𝑠𝑘

𝑖+1,𝑚
𝑘−1
𝑖
←𝑚𝑘

𝑖+1
12: 𝑘 ← 𝑘 − 1

⊲ Generate new break points

13: ∀0 ≤ 𝑖 < 𝑘,𝑞𝑖 ← inf 𝐼𝑘
𝑖

14: 𝑩𝑘 = [𝑿ℎ−1 [𝑞0],𝑿ℎ−1 [𝑞1], · · · ,𝑿ℎ−1 [𝑞𝑘−1]]
15: Y𝑘 ← TB

ea (𝑩𝑘 ,𝑿) ⊲ Get 𝑩𝑘 ’s estimated accumulated search cost

16: 𝑛ℎ ← argmin𝑘 Y𝑘
17: 𝑿ℎ ← 𝑩𝑛ℎ

18: ∀0 ≤ 𝑖 < 𝑛ℎ, Fℎ𝑖 ← leastSqares(𝑿ℎ−1,𝒀ℎ−1, 𝐼
𝑛ℎ
𝑖

)

19: Nℎ ← the BU nodes at height ℎ described in Eq. 3 or Eq. 4

20: return 𝑛ℎ , 𝑿ℎ , Nℎ
, Y

Instead, we maintain two number 𝑠𝑘
𝑖
and𝑚𝑘

𝑖
for the 𝑖th piece 𝐼𝑘

𝑖
.

They equal the linear loss w.r.t. 𝐼𝑘
𝑖
and 𝐼𝑘

𝑖

⋃︁
𝐼𝑘
𝑖+1, respectively. Each

iteration involves the change of one piece only. Thus, after deciding

merging 𝐼𝑘𝑢 and 𝐼𝑘
𝑢+1, we only need to update the values of 𝑠

𝑘−1
𝑢 and

𝑚𝑘−1
𝑢 w.r.t. 𝐼𝑘−1𝑢 (i.e., 𝐼𝑘𝑢

⋃︁
𝐼𝑘
𝑢+1) and𝑚

𝑘−1
𝑢−1 w.r.t. 𝐼

𝑘−1
𝑢−1 . Clearly, 𝑠

𝑘−1
𝑢 =

𝑚𝑘
𝑢 and thus only two calculations of𝑚𝑘−1

𝑢−1 and𝑚
𝑘−1
𝑢 are needed.

Meanwhile, the break points of the 𝑘-piecewise linear function

𝑩𝑘 are generated (lines 13-14). We compute TBea (𝑩𝑘 ,𝑿) for each
𝑘 (line 13). After the iterations, we set 𝑿ℎ to 𝑩𝑛ℎ and 𝑛ℎ to the 𝑘

with the smallest TBea (𝑩𝑘 ,𝑿) (lines 16-17). The nodes at height ℎ
are then created (lines 18–19) according to Eq. 3 and Eq. 4.

At each iteration, we calculate𝑚𝑘−1
𝑢−1 and𝑚

𝑘−1
𝑢 to estimate the

linear losses w.r.t. two pieces. In implementation, we make the

number of items in each piece smaller than a pre-defined threshold

of 2𝜔 . Thus, both calculations run in time 𝑂 (1). We use a priority

queue to store𝑑𝑘𝑢 =𝑚𝑘
𝑖
−𝑠𝑘

𝑖
−𝑠𝑘

𝑖+1 for all 𝑖 . Thus, the time complexity

of selecting 𝑢 (line 9) is 𝑂 (𝑘) = 𝑂 (𝑛ℎ). Besides, the calculation of

the estimated accumulated search cost of 𝑩𝑘 runs in time 𝑂 (1). In
summary, the time complexity of Algorithm 3 is 𝑂 (𝑛ℎ log2 𝑛ℎ).

4.3 BU-Tree based Bulk Loading for DILI
Algorithm 4 formalizes bulk loading for DILI. In line 1, the BU-Tree

is created by buildBUTree (Algorithm 2). Let 𝐻 be the BU-Tree’s

height. At any height ℎ ≤ 𝐻 , DILI and the BU-Tree have the same

number of nodes, but the node layouts may be different. Based

2217

on the BU-Tree, we grow DILI top down (lines 3–7). The range

of DILI’s root node Root is set to the counterpart in the BU-Tree.

Root is created by the recursive function createInternal (line 7).

Algorithm 4 BulkLoading(𝑷)

1: BURoot← buildBUTree(𝑷)
2: 𝐻 ← the height of BURoot
3: Get N0,N1, · · · ,N𝐻−1

from N′

4: for 𝑖 ∈ {0, 1, · · · , 𝐻 − 1} do
5: 𝜽 𝑖 = [N𝑖 [0] .lb,N𝑖 [1] .lb, · · · ,N𝑖 [|N𝑖 | − 1] .lb]
6: 𝚯← [𝑷 , 𝜽 0, 𝜽 1, · · · , 𝜽𝐻−1]
7: Root← createInternal(BURoot.lb,BURoot.ub, 𝐻,𝚯)

8: return Root
9: function createInternal(lb, ub, ℎ,𝚯)

10: NT ← an empty DILI internal node

11: NT .lb← lb,NT .ub← ub
12: NT .fo← #{𝑥 |𝑥 ∈ 𝜽 , lb ≤ 𝑥 < ub}, 𝜽 ← 𝚯[ℎ − 1]
13: NT .LR(𝑥) = 𝑎 + 𝑏𝑥 , 𝑎 ← −𝑏 × lb, 𝑏 ← NT .fo

ub−lb
14: for 𝑖 ∈ {0, 1, · · · ,NT .fo − 1} do
15: 𝑙 ← lb + 𝑖

𝑏
, 𝑢 ← lb + 𝑖+1

𝑏
⊲ The lower/upper bound

16: if ℎ is 1 then ⊲ Child nodes are leaf nodes

17: NT .𝑪 (𝑖) = createLeafNode(𝑙,𝑢,𝚯[0]) ⊲ 𝚯[0] is 𝑷
18: else NT .𝑪 (𝑖) = createInternal(𝑙,𝑢,ℎ − 1,𝚯)

19: return NT

20: function createLeafNode(lb, ub, 𝑷)
21: 𝑙 ← argmin𝑖 𝑷 [𝑖] .𝑘𝑒𝑦 ≥ lb, 𝑢 ← argmin𝑖 𝑷 [𝑖] .𝑘𝑒𝑦 ≥ ub
22: 𝑀 ← |𝑷D |, 𝑷D ← 𝑷 [𝑙 : 𝑢]
23: ND ← an empty DILI leaf node, ND .Ω ← 𝑀

24: ND .LR ← leastSqares(keys(𝑷D), [𝑀]˜)

25: LocalOpt(ND, 𝑷D)

26: return ND

To create an internal node NT (lines 9–19), we set its range

according to the input bounds (line 11), its fanout to the number

of BU nodes at height ℎ − 1 whose range is covered by NT’s range

(line 12), and its linear regression model accordingly (line 13). We

recursively create NT .fo nodes and make them equally divide NT’s

range (lines 14–18). These nodes compose NT .𝑪 .
When creating a leaf nodeND (lines 20–26), we include in 𝑷D the

pairs with keys fromND’s range (lines 21–22). The modelND .LR is

trained with the input keys(𝑷D) (lines 24). The function LocalOpt

distributes the pairs to the entry array ND .𝑽 (line 25), performing

a local optimization on ND. The details will be given in Section 5.

Fig. 3 exemplifies building DILI. The 𝑖th internal nodes of BU-

Tree and DILI at height ℎ may have different fanouts. For exam-

ple, when ℎ = 1, node NB
T (in the BU-Tree) has 3 child nodes but

the DILI node ND
T ’s fanout is 4, because N

D
T ’s range [0, 60) covers

the left boundaries of the first four BU leaf nodes’ ranges.

4.4 Remarks
In Section 4.2.2, TBns (Ni, 𝑥) estimates Tis (𝑥) or Tds (Ni, 𝑥) in Eq. 2,

depending on if Ni is internal or not. If Ni is a BU leaf node (i.e.,
ℎ = 0), TBns (Ni, 𝑥) and Tds (Ni, 𝑥) are the same as long as Ni .ifL is

true. Otherwise, TBns (Ni, 𝑥) is not the same as Tis (𝑥). Our DILI bulk
loading (Algorithm 4) makes the leaf node layouts of the BU-Tree

and DILI as alike as possible. However, lower accuracy of BU inter-

nal nodes’ linear regression models would cause the two layouts

to be more different. To this end, we modify TBns (Ni, 𝑥) to strike

a trade-off between the BU-Tree’s height and the accuracy of its

models. In addition, internal nodes at a higher height tend to have

less impact on the layout of DILI’s leaf nodes. Thus, we multiply

tBE (Ni, 𝑥) by a factor 𝜌ℎ in Eq. 5 to reflect this effect.

Our cost models of BU-Tree and DILI consider the effect of the

cache locality and attempt to strike a good balance between the

node fanouts and the tree height. In contrast, the B+Tree restricts

its node fanout to a pre-defined range [𝑚
2
,𝑚]. Thus, to find the

next child node to visit in an internal node’s child array, the B+Tree

binary search needs to access the array ⌈𝑙𝑜𝑔2𝑚⌉ times in the worst

case. As𝑚 is relatively large, the local search inside a B+Tree node

often triggers many cache misses. In contrast, finding the required

child node in DILI triggers only one cache miss. Also, compared to

B+Tree, DILI’s internal nodes have larger average fanouts. Thus,

it usually has a wider and shallower structure such that a search

needs to traverse fewer nodes to locate the relevant leaf nodes.

Note that ALEX partitions the key space in a relatively static

way as its node fanout is always a power of 2. This causes its linear

models to have relatively low accuracy. To this end, ALEX adopts

a gapped array to increase the model accuracy in its leaf nodes.

Still, this cannot guarantee optimal model accuracy—ALEX needs

more time and triggers more cache misses than DILI, as shown in

Section 7. Unlike ALEX, our local optimization (to be detailed in

Section 5) makes the models in DILI’s leaf nodes perfectly accu-

rate and thus shortens DILI’s search time. Nevertheless, DILI still

outperforms ALEX even without the local optimization.

5 LOCAL OPTIMIZATION OF DILI
A leaf node ND’s linear model ND .LR approximates the relation

between keys and their positions in the array ND .𝑽 . However, no
model can always make perfect predictions. Our experiments imply

that the exponential search in the leaf nodes often forms a bottle-

neck. Also, the leaf node structure does not consider insertions.

On average, half pairs covered by a leaf node needs to be shifted

for a single insertion. To address these issues, we propose a local

optimization for DILI’s leaf nodes. It helps the linear models make

100% accurate predictions and avoid element shifting in insertions.

Algorithm 5 LocalOpt(ND, 𝑷D)

1: 𝑁 ← |𝑷D |,𝑿 ← [𝑥0, · · · , 𝑥𝑁−1] where 𝑥𝑖 = 𝑷D [𝑖] .𝑘𝑒𝑦
2: ND .Δ← 0, ND .fo← [ND .Ω ([> 1)
3: fo← ND .fo and allocate ND .𝑽 with fo NULLs

4: Define 𝑓D (𝑥) ≜ min(fo − 1,max(0,ND .LR(𝑥))
5: ∀ 𝑖 = 0 to 𝑁 − 1, set 𝑷𝑖

D an empty list

6: for 𝑖 ∈ {0, 1, · · · , 𝑁 − 1} do
7: 𝑡 ← 𝑓D (𝑥𝑖), 𝑷𝑡

D .append(𝑷D [𝑖])
8: for 𝑡 ∈ {0, 1, · · · , fo − 1} do
9: if |𝑷𝑡

D | = 1 then
10: ND .𝑽 [𝑡] ← 𝑷𝑡

D [0], ND .Δ+= 1

11: else if |𝑷𝑡
D | > 1 then

12: Create a new leaf node N′ and train N′.LR with the input 𝑷𝑡
D

13: LocalOpt(𝑷𝑡
D,N

′)
14: ND .𝑽 [𝑡] ← the pointer to N′, ND .Δ += |𝑷𝑡

D | + N′.Δ

15: else ND .𝑽 [𝑡] ← NULL

16: ND .𝜅 =
ND .Δ
ND .Ω

Our local optimization (Algorithm 5) starts at the final step in

the procedure of creating a leaf node ND (line 25 in Algorithm 4).

Suppose there is one and only one pair whose predicted position

by ND .LR is 𝑡 , we set ND .𝑽 [𝑡] to be this pair (lines 6-7, 9-10). If

multiple pairs conflict at position 𝑡 , we create a new leaf node N′

to cover them (lines 11-12). The LocalOpt function is recursively

2218

called such that the entry array N′.𝑽 is created to organize the

conflicting pairs (line 13). After that, the pointer to N′ is assigned
toND .𝑽 [𝑡]. Those slots of ND .𝑽 without a pair are set to NULL

(lines 15). In practice, we set ND .fo to 𝜂 · ND .Ω, where 𝜂 is an

enlarging ratio, such that continuous keys are more likely assigned

in different slots (line 2) and conflicts are reduced. Fig. 4 illustrates

the structure of a typical leaf node.

pair

leaf node pointer

NULL

Figure 4: Leaf node structure

The local optimization renders search via DILI slightly different

from Algorithm 1, as shown in Algorithm 6. After finding the high-

est leaf node ND covering 𝑥 (line 1), the loop starts from obtaining

the value of the returned element 𝑝 in ND .𝑽 through ND .LR. If 𝑝
points to another leaf node N′, the loop continues by setting ND to

N′ (lines 5-6). Otherwise, the loop ends and returns the right result,

depending on if 𝑝 is a pair with key equal to 𝑥 (lines 7-9).

Algorithm 6 SearchWOpt(Root, 𝑥)

1: ND ← locateLeafNode(Root, 𝑥)
2: while True do
3: 𝑝𝑜𝑠 ← ⌊ND .LR(𝑥) ⌋
4: 𝑝 ← ND .𝑽 [𝑝𝑜𝑠]
5: if 𝑝 points to a leaf node N′ then
6: ND ← N′

7: else if 𝑝 ≠ NULL and 𝑝.𝑘𝑒𝑦 == 𝑥 then
8: return 𝑝.𝑘𝑒𝑦

9: else return NULL

Fig. 1 gives an example of search via locally optimized DILI for

a key 𝑥 = 101. The root node R’s key range is [0, 240). R has three

child nodes. It is easy to derive that R.𝑎 = 0, R.𝑏 = 1

80
such that

R′𝑠 linear model equally divides its key range into three parts. By

a simple calculation ⌊R.𝑎 + R.𝑏 × 𝑥⌋ = 1, we know 𝑥 is covered

by R’s second child node, namely NT in Fig. 1 (Step-1). NT equally

divides its range [80, 160) to its four children with NT .𝑎 = −4
and NT .𝑏 = 0.05. The search goes into NT’s second child node

N1
D whose range is [100, 120) (Step-2). N1

D is a leaf node whose

linear model is trained with the keys covered by its range, in a

different way from that of R and NT. At the predicted slot position

⌊N1
D .𝑎 + N

1
D .𝑏 × 𝑥⌋ = ⌊−9 + 0.1 × 101⌋ = 1 is another leaf node N2

D
(Step-3). Note that two keys 101 and 102 conflict at the same slot in

N1
D .𝑽 . Thus,N

2
D is generated to store them as the local optimization.

Finally, N2
D .LR predicts for 𝑥 a pair 𝑝 at position 0 in N2

D .𝑽 . The
output pointer 𝑝𝑥 = 𝑝.𝑝𝑡𝑟 points to the data record identified by 𝑥 .

6 DATA UPDATES IN DILI
6.1 Insertions
Insertions via DILI are logically simple and efficient. Our inser-

tion algorithm avoids element shifting that happen to B+Tree and

ALEX, and it redistributes pairs when insertions degrade the search

performance. The details are shown in Algorithm 7.

To insert a pair 𝑝 to DILI, the first step calls the function locate-

LeafNode (defined in Algorithm 1) to find the leaf node ND that

supposedly covers 𝑝.𝑘𝑒𝑦 (line 1). Next, the algorithm inserts 𝑝 into

ND by calling the recursive function insertToLeafNode (line 2).

We use the model ND .LR to calculate the position 𝑝𝑜𝑠 in ND .𝑽 for

𝑝 . Suppose that at position 𝑝𝑜𝑠 is the element 𝑝 ′ (line 4). If 𝑝 ′ is
NULL, the 𝑝𝑜𝑠-th slot of ND .LR is empty. We simply place 𝑝 at the

slot. Then, the cost of searching for all pairs except for 𝑝 covered

by ND does not change. Searching for 𝑝 from ND needs only one

extra entry access, so we simply add one to ND .Δ (lines 6-7). Here,

ND .Δ denotes the total number of entries to be accessed to search

for all keys covered byND, starting fromND. If 𝑝
′
points to another

leaf node N′, we insert 𝑝 into N′’s entry array (line 10). This time

the change of ND .Δ is related to those pairs in N′. Thus, we record
N′.Δ before the insertion (line 9). The increment of ND .Δ is the

change of N′.Δ plus 1 (line 11). If 𝑝 exists (line 12), we do nothing

(line 13). If a conflict happens (line 14), we need to replace the pair

𝑝 ′ with a new leaf node covering 𝑝 and 𝑝 ′ at the 𝑝𝑜𝑠-th position of

ND .𝑽 (lines 15-17). In this case, ND .Δ is increased by three (line 18):

one for searching for 𝑝 ′ and two for 𝑝 .

Algorithm 7 Insert(Root, 𝑝)

1: ND ← locateLeafNode(Root, 𝑝.𝑘𝑒𝑦)
2: return insertToLeafNode(ND, 𝑝)

3: function insertToLeafNode(ND, 𝑝)

4: 𝑝′ ← ND .𝑽 [𝑝𝑜𝑠], 𝑝𝑜𝑠 ← ND .LR(𝑝.𝑘𝑒𝑦)
5: notExist← True

6: if 𝑝′ = NULL then
7: ND .𝑽 [𝑝𝑜𝑠] ← 𝑝 , ND .Δ += 1 ⊲ insert 𝑝 to an empty slot

8: else if 𝑝′ points to another leaf node N′ then
9: Δ′ ← N′.Δ
10: notExist← insertToLeafNode(N′, 𝑝)
11: ND .Δ += 1 + N′.Δ − Δ′
12: else if 𝑝′.𝑘𝑒𝑦 = 𝑝.𝑘𝑒𝑦 then
13: notExist← True ⊲ 𝑝 exists

14: else
15: create a new leaf node N′ to cover 𝑝 and 𝑝′

16: N′.Δ← 2, N′.Ω ← 2 and train N′.LR
17: ND .𝑽 [𝑝𝑜𝑠] ← the pointer to N′

18: ND .Δ += 1 + N′.Δ
19: ND .Ω += (notExist = True ? 1 : 0)

20: if notExist = True and

ND .Δ
ND .Ω > 𝜆 × ND .𝜅 then

21: collect all pairs covered by ND and store them in list 𝑷D
22: ND .fo← ND .Ω × 𝑟 , 𝑟 ← 𝜑(ND .𝛼), ND .𝛼 += 1

23: ND .LR ← leastSqares(keys(𝑷D), [ND .Ω]˜
)

24: ND .LR .𝑎 ← ND .LR .𝑎 × 𝑟 , ND .LR .𝑏 ← ND .LR .𝑏 × 𝑟
25: LocalOpt(ND, 𝑷D)

26: ND .𝜅 =
ND .Δ
ND .Ω

27: return notExist

However, many new nodes for conflicting keys may increase the

depth of leaf nodes wildly. Thus, it is necessary to adjust the layout

of some leaf nodes when the search performance degrades. We

observe the relationship among ND .Δ, ND .Ω and ND .𝜅, and uses

a flexible strategy to decide if a leaf node ND should be adjusted.

When inserting a pair 𝑝 toND, from this node, if the average number

of entries need to be accessed to search for a pair (i.e., ND .Δ
ND .Ω

) is

larger than a pre-defined threshold (line 20), we think the insertions

degrade the search performance. Thus, ND is adjusted, which starts

by collecting all pairs covered by ND (line 21). Then, the capacity

2219

of ND .𝑽 is enlarged and we train ND’s linear model accordingly

such that conflicts will happen more rarely (lines 22-24). Finally,

we redistribute the pairs with the local optimization (line 25).

The pre-defined threshold is set to 𝜆 · ND .𝜅 (𝜆 > 1) where ND .𝜅

is the average number of accessed entries in search for a pair covered

by ND after executing the last local optimization at ND. In

our experiments, 𝜆 is set to 2. As a result, if the average cost per

search w.r.t. ND doubles after a series of insertions, we deem some

nodes underND become too deep and the performance of searching

for relevant keys degrades dramatically. In this case, it is better to

collect all pairs that ND covers, retrain ND .LR and redistribute

those pairs. Finally, the value of ND .𝜅 will be updated (line 26).

 = 5
fo = 5

 = 1

 = 11 fo = 5

 =
13

11

 = 5

 = 23
 = 1

 = 11

fo = 12

 = 13
Insert 6 pairs

>

Adjust

fo = 1.1

 = 2

Figure 5: Adjusting a leaf node after insertions

When adjusting the leaf node ND, we also set ND .fo to be larger
than ND .Ω. The gap between them grows with more adjustments

(line 22). A simple yet reasonable assumption is that the more

adjustments, the more frequently relevant pairs are accessed. Also,

more adjustments usually mean more conflicts. Thus, to reduce

the number of conflicts at ND, we enlarge the capacity of ND .𝑽 ,
making more slots for pairs. In our experiments, the enlarging

ratio 𝜑 (ND .𝛼) ≜ min(𝜂 + 0.1 × ND .𝛼 , 4), where 𝜂 carries the same

meaning with that in Algorithm 5. 𝜑 (·) can be any monotonically

increasing function and its derivative should consider the memory

usage. Our strategy of having redundancy in frequently adjusted

nodes is similar to but more flexible than the usage of gapped array

in ALEX [18]. Fig. 5 gives an example of adjusting a leaf node.

6.2 Deletions
To delete a pair with the key 𝑥 , we call locateLeafNode to find

the highest leaf node ND covering 𝑥 (line 1). Next, we use delete-

FromLeafNode to delete the pair from ND (line 2). It recursively

checks if there is a pair, covered by ND or a leaf node underneath,

having the key 𝑥 (lines 4-14). If the pair is found, we remove it

by setting the corresponding slot in the leaf node’s entry array to

NULL (lines 5-6). Otherwise, deleteFromLeafNode simply returns

False (lines 7-8). After the removal, the values of ND’s some fields

will change, like the number of pairs contained in ND and the aver-

age cost of searching keys from ND. Thus, we update the values of

ND .Δ, ND .Ω and ND .𝜅 (lines 6, 10-12, 16). If ND’s child leaf node

N′ contains only one pair 𝑝 ′′ after the removal, we simply delete

N′ and replace the pointer to it with 𝑝 ′′ in ND .𝑽 (lines 13-15).

7 EXPERIMENTAL STUDIES
DILI and all competitors are implemented in C++ [1] and evaluated

using a single thread on a Ubuntu server with a 96-core Xeon(R)

Platinum 8163 CPU and 376 GB memory. Due to space limit, we

present more experimental results and analyses in an extended

version [32].

Algorithm 8 Delete(Root, 𝑥) ⊲ 𝑥 is the key to be deleted

1: ND ← locateLeafNode(Root, 𝑥)
2: return deleteFromLeafNode(ND, 𝑥)

3: function deleteFromLeafNode(ND, 𝑥)

4: 𝑝′ ← ND .𝑽 [𝑝𝑜𝑠], 𝑝𝑜𝑠 ← 𝑓D (𝑥) , exist← True

5: if 𝑝′.𝑘𝑒𝑦 = 𝑥 then
6: ND .𝑽 [𝑝𝑜𝑠] ← NULL, ND .Δ -= 1 ⊲ delete 𝑝′ from ND .𝑽
7: else if 𝑝′ = NULL then
8: exist← False ⊲ corresponding pair does not exsit

9: else if 𝑝′ points to another leaf node N′ then
10: Δ′ ← N′.Δ
11: exist← deleteFromLeafNode(N′, 𝑥)
12: ND .Δ -= 1 + Δ′ − N′.Δ
13: if N′.Ω = 1 then ⊲ N′ covers only one pair 𝑝′′

14: ND .𝑽 [𝑝𝑜𝑠] ← the remaining one pair 𝑝′′ contained in N′

15: ND .Δ -= 1 and delete N′

16: ND .Ω -= (exist = True ? 1 : 0), ND .𝜅 =
ND .Δ
ND .Ω

17: return exist

7.1 Experimental Settings
Datasets.We use four real datasets from the SOSD benchmark [36]

and one synthetic dataset.

• FB [2] contains 200M Facebook user ids.

• WikiTS [3] contains 200M unique request timestamps (in inte-

gers) of log entries of the Wikipedia web-site.

• OSM [4] contains 800M ids of OpenStreetMap cells.

• Books [5] contains 800M ids of books in Amazon.

• Logn contains 200M unique values sampled from a heavy-tail

log-normal distribution with 𝜇 = 0 and 𝜎 = 1.

For each key, we associate it with a random integer number and

pack them as a simulated record. The records are stored in an data

array. For each record, its key and address together form a pair. For

the pairs for index’s bulk loading, we sort them according to their

keys and feed them to index’s bulk loading algorithm.

Competitors.We compare DILI with the following methods:

• BinS does a binary search over the whole sorted key set to find

the position of the given search key.

• B+Tree [15]: We use a production quality B+Tree implementa-

tion stx::btree for comparison [6].

• MassTree [35] is a variant of B-Tree which improves cache-

awareness by employing a trie-like [12] structure.

• RMI [29] is built through linear stages and cubic stages.

• ALEX [18] is an in-memory learned index which partition keys

into leaf nodes in a relatively static way [7].

• RS (RadixSpline) [26] uses a linear spline to approximate the

CDF of the data and a radix table to index spline points.

• PGM (PGM-index) [20] contains multiple levels, each represent-

ing an error-bounded piece-wise linear regression [8].

• LIPP [44] can be seen as a special RMI. Its root node uses a

linear regression model with the range of [0, 𝑁), where 𝑁 is

the dataset cardinality. At lower levels, LIPP recursively uses

linear regression models to partition search keys until each key’s

position is accurately predicted. LIPP aims to predict as many

keys’ position as possible with only one model [9].

For RMI and RS, we adopt the implementations in SOSD [10, 36].

Table 2 summarizes the properties of all indexes. The better

performance is indicated in bold.

Evaluation Metrics.We use two performance metrics: Lookup is

the average lookup time per query, including the time spent in the

2220

Table 2: Properties of different methods

Method Support

update

Consider data

distribution

Extra local

search

Tree

height

Memory

cost

B+Tree ✓ × ✓ medium medium

RMI × × ✓ low small
RS × ✓ ✓ low small
PGM ✓ × ✓ high medium

Masstree ✓ × ✓ medium medium

ALEX ✓ ✓ ✓ medium medium

LPP ✓ × × medium large

DILI ✓ ✓ × low medium

index and in finding the records in the data array. Throughtput is
the number of operations, including query, insertion and deletion,

that of a method can handle per second.

Parameter Settings. Table 3 lists the parameter settings for B+Tree

and ALEX. They are built with bulk loading for better lookup and

throughput performance. For RMI and RS, we follow [36] to use

two settings with the largest (L) and smallest (S) memory costs.

In our machine, an LL-cache line is of 64 bytes and fetching a

cache line from the memory costs 130 CPU cycles at worst [16, 21,

41]. A DILI (internal or leaf) node can be held in a single cache line.

Therefore, we set 𝜃N = 𝜃C = 130. Executing a linear function as well

as type casting cost about 𝜂 = 25 cycles. Moreover, 𝜇𝐿 = 5 and 𝜇𝐸 =

17 cycles are spent on executing operations except accessing pairs

in linear search and exponential search, respectively. The decaying

rate 𝜌 in Eq. 5, enlarging ratio 𝜂 in Algorithm 5 and maximum

fanout 𝜔 in Algorithm 3 are set to 0.2, 2 and 4,096, respectively.

Table 3: Parameter settings in experiments

Param Description Setting
Ω Node fanout of a B+Tree 16, 32, 64, 128, 256, 512

Γ Max node size of ALEX 16KB, 64KB, 1MB, 16MB, 64MB

7.2 Overall Query Performance
For each dataset, we build all indexes using the whole dataset 𝑷
and randomly select 100M keys in keys(𝑷) to form point queries.

All competitors are built with their preferred parameter settings.

Table 4 reports on the overall performance results of all methods

on point queries. To investigate the effect of the local optimization,

we also include a DILI variant DILI-LO that applies no local opti-

mization in its leaf nodes but tightly arranges pairs in the entry

arrays. The search via DILI-LO simply follows Algorithm 1. We

choose the LIPP as the fixed reference point as it is the best among

all competitors. The color-encoding indicates how much faster or

slower a model is against the reference point.

DILI has clear advantages over other state-of-the-art methods.

Compared to LIPP, DILI saves about 9% to 34% lookup time. The

design of DILI’s bulk loading algorithm make the keys in DILI’s

leaf nodes almost linearly distributed and the linear regression

models well describe these distributions. Thus, conflicts happens

more rarely in DILI. The traversal path of DILI is shorter than that

of LIPP and other competitors, which results in DILI has better

performance. Compared to ALEX and PGM, besides the shorter

traversal path, DILI is able to avoid the search inside the leaf nodes

and have clearer advantages. BinS, MassTree and all variants of

Table 4: Lookup time (ns) of all methods after bulk loading

Model Config FB WikiTS OSM Books Logn

BinS 819 822 839 844 817

B+Tree

Ω=16 629 633 578 584 624

Ω=32 620 616 589 611 629

Ω=64 658 649 641 651 653

Ω=128 722 719 693 699 725

Ω=256 794 790 776 775 790

Ω=512 995 980 979 982 984

ALEX

Γ=16KB 655 580 544 509 463

Γ=64KB 573 465 419 382 398

Γ=1MB 490 248 281 274 259

Γ=16MB 476 236 223 221 170

Γ=64MB 462 252 234 203 161

RMI (S) 833 806 1255 540 907

(L) 215 175 166 221 208

RS (S) 398 313 358 355 172

(L) 305 264 218 210 132

MassTree 1245 1238 1500 1492 1220

PGM 483 468 474 457 453

LIPP 197 152 178 182 173

DILI-LO 240 168 192 208 142

DILI 150 139 126 153 116

B+Tree even needs to take 4–10 times of lookup time to search for a

key on average. Also, DILI clearly outperforms RMI and RS on pro-

cessing point queries. And it is noteworthy that RMI and RS do not

support updates. These results illustrate DILI achieves large lookup

superiority over other alternatives. In addition, DILI consumes less

lookup time than DILI-LO over all the five datasets. This verifies

the effectiveness of the local optimization in DILI’s leaf nodes.

As B+Tree with Ω = 32, ALEX with Γ = 16MB and the large RMI

and RS perform best among their variants, we will choose them as

representatives and omit the evaluation of the other variants in the

following sections. The parameter settings of these methods will

also be omitted when we refer to them. Also, to save space, we will

omit the comparable results on the datasets OSM and Books. The

results on both datasets are similar to that on other datasets.

Cache Misses. DILI’s advantage is partly due to that the design

of DILI’s structure makes DILI triggers fewer cache misses. A sin-

gle LL-cache miss incurs 50-200 additional cycles [16, 29, 41]. In

contrast, register operations like addition and multiplication cost

1-3 cycles only. Avoiding cache misses clearly speeds up query pro-

cessing for DILI. Table 5 reports the average number of LL-cache

misses for all methods. In particular, compared with ALEX and

LIPP, DILI avoids up to 9.7 and 3.5 LL-cache misses per query.

Table 5: #LL-cache misses of methods per point query

Dataset B+Tree RMI RS PGM MassTree ALEX LIPP DILI

FB 10.27 5.25 8.43 10.73 9.84 14.91 7.94 4.88
WikiTS 10.51 4.60 5.68 11.56 9.24 7.36 5.86 4.78

Logn 10.19 5.28 3.22 9.88 9.48 4.47 7.17 3.80

OSM 10.47 3.89 4.50 7.42 12.85 5.86 7.13 4.08

Books 10.46 6.02 4.74 7.38 13.02 4.27 7.81 4.31

Offline Construction Time. On a 100M dataset, the bulk loading

of B+Tree, ALEX, LIPP and DILI takes less than 1, 2, 1 and 6 minutes,

respectively. Each construction time grows almost linearly with the

increase of the data size. The most time-consuming step in DILI’s

construction is the greedy merging algorithm to get the BU nodes

2221

at the bottom layer. A direct yet effective approach to make this

step more efficient is sampling. When a piece 𝐼𝑘𝑢 (in Algorithm 3)

covers many keys, we could randomly or selectively sample part of

the keys, e.g., select one key out of two, to get the linear regression

model and calculate the cost. The sampling strategy makes little

influence on the whole BU-tree node layout or the performance

of the generated DILI. However, it will make the the construction

time of the BU-tree and DILI decrease by over 1 minute. As the bulk

loading is one-time, DILI’s a few more minutes highly pay off.

Table 6: The statistics of DILI

Dataset

Minimum

height

Maximum

height

Average

height

of conflicts

per 1K keys

FB 3 8 3.45 227.1

WikiTS 3 6 3.09 44.4

Logn 3 4 3.01 1.2

OSM 3 9 3.26 117.7

Books 3 8 3.44 220.4

Analysis of DILI’s Construction.Table 6 showsDILI’sminimum/

maximum/average heights and the number of conflicts in DILI’s

construction for different datasets. Apparently, DILI has a shallow

structure. The slot assignments for most pairs cause no conflicts.

The average heights of the DILIs built on the Logn and WikiTS

dataset are smaller than that of others. The reason is that the keys

in both datasets are more linearly or piecewise linearly distributed.

Thus, the linear regression models in the leaf nodes are able to

make more accurate predictions and thus result in less conflicts.

Index Size. Fig. 6 displays the memory cost of different methods.

RMI and RS consume the least memory. However, they do not

need to store pairs in their structures and do not support data up-

dates. DILI consumes more memory than B+Tree, PGM and ALEX

due to the local optimization in the leaf nodes. A conflict will result

in a new leaf node creation and an empty slot in the entry array.

Nevertheless, our design strikes a trade-off between the memory

cost and the query efficiency. Considering modern computers usu-

ally have huge memory, it is acceptable to improve the efficiency

at the expense of some memory. Although LIPP also tries to strike

a memory-efficiency trade-off and adopts a similar strategy for

conflicts, its node layout is not so optimized as ours. Thus, LIPP

results in more conflicts and memory costs. Its memory cost is

at least one order of magnitude larger than others. On the other

hand, after disabling the local optimization, the memory cost of the

variant DILI-LO becomes comparable with B+Tree. Meanwhile, the

query performance does not degrade much.

Figure 6: Index sizes

7.3 Performance on Different Workloads
We conduct experiments to compare DILI and the alternatives on

different types of workloads: (1) The Read-only workload contains

100M point queries. (2) The Read-Heavy workload contains 50M

insertions and 100M point queries. (3) The Write-Heavy workload

contains 100M insertions and 50M point queries. (4) TheWrite-only

workload contains 100M insertions. In each dataset 𝑷 , we randomly

select 50% of the pairs as the initial dataset 𝑷0. The other 50% of

𝑷 is named 𝑷1. All workloads are tested on an index with bulk

loading of 𝑷0. Besides, the query keys are randomly selected from

the keys(𝑷), and the pairs to be inserted are randomly chosen from

𝑷1. Each workload is a random mix of queries and insertions. We

run the workloads on different indexes for five times and obtain

their average throughput. As RMI and RS do not support updates,

they are excluded from the experiments involving insertions. The

experimental results are shown in Fig. 7. Overall, DILI achieves the

highest throughput on all workloads.

For the read-onlyworkloads, compared to the others, DILI achieves

shorter average search path. In particular, DILI accesses only 0.2-

1 node per point query on average. This indicates that DILI uti-

lizes the data distribution well and thus the learned models in its

leaf nodes incur few conflicts. The alternatives need longer search

paths queries and extra steps to carry out local search. RMI and RS

achieves comparably long search paths with DILI. However, the

effort of correcting their prediction results in lower throughput.

When more insertions are in the workloads, we see that DILI still

outperforms others though its performance also degrades. The rea-

son is that an insertion not only includes searching for a key but

also writing a pair to an entry array. Also, new node creations are

required to process conflicts. Moreover, adjustments occasionally

happen to bound DILI’s height. Even though insertions on DILI re-

quires more time than queries, DILI is still able to deal with index

structure change well and more efficient at insertions than others.

PGM performs worst in these workloads as it needs𝑂 (log𝑁) trees
to support insertions and each query will search in all these trees.

Compared to B+Tree and ALEX, DILI can avoid element shifting.

Also, the new node creation in DILI is light-weight. In addition,

compared to LIPP, DILI has shorter traversal path for insertions.

Our strategy of setting more slot redundancy for leaf nodes more

frequently accessed also avoid unnecessary node adjustments.

7.4 Effect of Many Deletions
We also experimentally investigate the effect of deletions on DILI,

B+Tree, PGM MassTree and ALEX. LIPP is excluded as it does not

support deletions. We first build each of them with bulk loading of

the whole 𝑷 . Then we repeatedly delete/search for random keys

from 𝑷 via all methods and observe their changing throughput on

three workloads: (1) Read-Heavy workload, which contains 100M

lookups and 50M deletions; (2) Deletion-Heavy workload, which

contains 100M deletions and 50M loopups. Fig. 8 shows the results.

Referring to Figure 8, on Read-Heavy workload, DILI achieves up

to 3.6×, 2.3×, 7.0× and 2.3× higher throughput than B+Tree, PGM,

MassTree and ALEX, respectively. This illustrates that DILI main-

tains high performance on queries with deletions happening. On

Deletion-Heavy workload, only ALEX performs a little better than

DILI on Logn dataset. As ALEX almost adopts lazy deletion strategy,

2222

Figure 7: DILI vs. State-of-the-art methods: throughput comparisons on four workloads

Figure 8: Performance after deletions

deleting a pair from ALEX almost equals searching for it. However,

this strategy will cause its lookup time not decrease even through

it index a small amount of data only. Actually, DILI performs much

better than ALEX when the workload consists of more queries.

8 RELATEDWORK
B-tree variants. A B+Tree [15] is the most popular B-tree variant

in which each internal node contains only keys, and the leaf nodes

are chainedwith extra links. Digital B-trees [33] allows a node to use

two pages via a hashing-like technique. The B-trie [12] combines

B-Tree and trie [27] to index strings stored in external memory.

MassTree [35] employs a trie-like concatenation of B-trees to im-

prove cache-awareness in indexing key-value pairs. A BF-tree [13]

replaces B-Tree leaf nodes with bloom filters to substantially reduce

the index size. Unlike all B-tree variants, our DILI stores models

instead of pointers in the nodes for indexing purpose.

Learned indexes for 1Dkeys.The recursivemodel index (RMI) [29]

uses staged models. An internal model directs a key search to one of

its childmodels and a bottom-level model predicts an error-bounded

position in the database. RMI has inspired a number of learned in-

dexes. To reduce index memory footprint, a FITing-Tree [22] uses

linear models to replace the leaf nodes of a B-Tree. CARMI [47]

applies data partitioning to RMI construction and supports data up-

date. NFL [45] uses a normalizing flow techniques [40] to transform

the key space for better approximation on the CDF. PGM-index [20]

employs piecewise linear models to approximate the relationship

between search keys and their positions in a database. Hermit [46]

creates a succinct tiered regression search tree (TRS-tree) which

passes a search query to an existing index for correlated columns.

RadixSpline [26] uses a set of spline functions as the learned in-

dex that can be built in a single pass over sorted data. ALEX [18]

trains accurate linear regression models to split the key space, or-

ganizes all models also in a tree-like structure, and uses a gapped

array for each leaf node. ALEX supports updates. LIPP [44] uses

kernelized linear functions as learned models that make perfect pre-

dictions. However, it does not make use of the information of data

distribution. SOSD [36] is a preliminary benchmark for 1D learned

indexes. FINEdex [30] is a fine-grained learned index scheme, which

constructs independent models with a flattened data structure to

process concurrent requests. APEX [34] combines the recently re-

leased persistent memory optimization [24] and ALEX to support

persistence and instant recovery. The on-disk learned index proto-

type AirIndex [14] uses with a storage-aware auto-tuning method

to minimize accesses to the external memory. To validate the effec-

tivenesss of the existing updatable learned indexes, Wongkham et

al. [43] conduct a comprehensive evaluation.

Learned indexes for multidimensional data. SageDB [28] ex-

tends RMI to indexmultidimensional data in a transformed 1D space.

ZM-index [42] applies RMI to the Z-order curve [37] to process

spatial point and range queries. ML-index [17] applies RMI to iDis-

tance [25] to support queries on multidimensional data. Flood [38]

and Tsunami [19] are learned indexes for in-memory multidimen-

sional data, whereas LISA [31] and RSMI [39] are for disk-resident

dynamic spatial data. In contrast, our DILI focuses on 1D data.

9 CONCLUSION AND FUTUREWORK
In this work, we design for in-memory 1D keys a distribution-

driven learned tree DILI. Its nodes use linear regression models

to map keys to corresponding children or records. An internal

node’s key range is equally divided by all its children, endowing

internal models with perfect accuracy for finding the leaf node

covering a key. We optimize DILI’s node layout by a two-phase bulk

loading approach. First, we create a bottom-up tree that balances the

number of leaf nodes and tree height. Based on that, we determine

for each DILI internal node its best fanout and local model. Also, we

design algorithms for DILI for data updates. Extensive experimental

results show that DILI clearly expand the state of the art.

For future research, it is relevant to adapt DILI to disk-resident

data. To this end, the costmodel for the BU-Tree construction should

consider the expected IOs, striking a trade-off between the IO cost

and the computational overhead. Also, the local optimization should

be disabled as it may create leaf nodes covering few keys. Moreover,

it is interesting to consider concurrent data updates with DILI. Note

that an insertion or deletion operation in DILI involves only one

leaf node. The node adjustment of DILI is much simpler than the

rebalance operation of the B+Tree. Theoretically, the lock-free and

lock-crabbing [23] approaches can be applied to DILI, in the same

way as how they are applied to the B+Tree.

ACKNOWLEDGMENTS
Hua Lu’s work was partly supported by Independent Research Fund

Denmark (No. 1032-00481B).

2223

REFERENCES
[1] https://github.com/pfl-cs/DILI.

[2] https://doi.org/10.7910/DVN/JGVF9A/Y54SI9.

[3] https://doi.org/10.7910/DVN/JGVF9A/SVN8PI.

[4] https://www.dropbox.com/s/j1d4ufn4fyb4po2/osm_cellids_800M_uint64.zst?dl=

1.

[5] https://www.dropbox.com/s/y2u3nbanbnbmg7n/books_800M_uint64.zst?dl=1.

[6] https://panthema.net/2007/stx-btree.

[7] https://github.com/microsoft/ALEX.

[8] https://github.com/gvinciguerra/PGM-index.

[9] https://github.com/Jiacheng-WU/lipp.

[10] https://github.com/learnedsystems/SOSD.

[11] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. 2016. Fast Al-

gorithms for Segmented Regression. In ICML, Maria-Florina Balcan and Kilian Q.

Weinberger (Eds.), Vol. 48. 2878–2886.

[12] Nikolas Askitis and Justin Zobel. 2009. B-tries for disk-based string management.

VLDB J. 18, 1 (2009), 157–179.
[13] Manos Athanassoulis and Anastasia Ailamaki. 2014. BF-Tree: Approximate Tree

Indexing. Proc. VLDB Endow. 7, 14 (2014), 1881–1892.
[14] Supawit Chockchowwat. 2022. Tuning Hierarchical Learned Indexes on Disk

and Beyond. In SIGMOD. 2515–2517.
[15] Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (1979),

121–137.

[16] Intel Corporporation. 2018. Intel 64 and ia-32 architectures software developer

manuals. https://software.intel.com/content/www/us/en/develop/articles/intel-

sdm.html.

[17] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:

A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor

Queries. In EDBT. OpenProceedings.org, 407–410.
[18] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In SIGMOD. 969–984.
[19] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.

Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed

Workloads. CoRR abs/2006.13282 (2020). arXiv:2006.13282 https://arxiv.org/abs/

2006.13282

[20] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic

compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162–1175.

[21] Agner Fog. 2018. Lists of Instruction Latencies, Throughputs andMicro-operation

Breakdowns for Intel, AMD and VIA CPUs, Technical University of Denmar, Last

updated 2021-01-31. http://www.agner.org/optimize/instruction_tables.pdf,DoA.

(2018).

[22] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD. 1189–
1206.

[23] Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Trans. Database
Syst. 35, 3 (2010), 16:1–16:26.

[24] Intel. 2021. Intel Optane Persistent Memory (PMem), Last updated 2021-

11-13. https://www.intel.ca/content/www/ca/en/architecture-and-technology/

optane-dcpersistent-memory.html.

[25] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. 2005.

iDistance: An adaptive B
+
-tree based indexing method for nearest neighbor

search. ACM Trans. Database Syst. 30, 2 (2005), 364–397.

[26] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned

index. In aiDM@SIGMOD. 5:1–5:5.
[27] Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3. Pearson

Education.

[28] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume

Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. SageDB: A

Learned Database System. In CIDR.
[29] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD, Gautam Das, Christopher M.

Jermaine, and Philip A. Bernstein (Eds.). 489–504.

[30] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: A Fine-grained

Learned Index Scheme for Scalable and Concurrent Memory Systems. Proc. VLDB
Endow. 15, 2 (2021), 321–334.

[31] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A Learned

Index Structure for Spatial Data. In SIGMOD. 2119–2133.
[32] Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan. 2023. DILI:

A Distribution-Driven Learned Index (Extended version). CoRR abs/2304.08817

(2023). https://doi.org/10.48550/arXiv.2304.08817 arXiv:2304.08817

[33] David B. Lomet. 1981. Digital B-Trees. In VLDB. 333–344.
[34] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang.

2021. APEX: A High-Performance Learned Index on Persistent Memory. Proc.
VLDB Endow. 15, 3 (2021), 597–610.

[35] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness

for fast multicore key-value storage. In EuroSys. 183–196.
[36] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned

Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13.
[37] Guy M Morton. 1966. A computer oriented geodetic data base and a new tech-

nique in file sequencing. (1966).

[38] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ing Multi-Dimensional Indexes. In SIGMOD. 985–1000.
[39] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively

Learning Spatial Indices. Proc. VLDB Endow. 13, 11 (2020), 2341–2354.
[40] Esteban G Tabak and Cristina V Turner. 2013. A family of nonparametric density

estimation algorithms. Communications on Pure and Applied Mathematics 66, 2
(2013), 145–164.

[41] Vladimir Tsymbal. 2019. Tuning Guides and Performance Analysis Papers, Last

updated 2020-12-15. https://software.intel.com/content/www/us/en/develop/

articles/processor-specific-performance-analysis-papers.html.

[42] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for

Spatial Queries. In MDM. 569–574.

[43] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and

Tianzheng Wang. 2022. Are Updatable Learned Indexes Ready? Proc. VLDB
Endow. 15, 11 (2022), 3004–3017.

[44] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao Xing.

2021. Updatable Learned Index with Precise Positions. Proc. VLDB Endow. 14, 8
(2021), 1276–1288.

[45] Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun Jason

Xue. 2022. NFL: Robust Learned Index via Distribution Transformation. Proc.
VLDB Endow. 15, 10 (2022), 2188–2200.

[46] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. 2019.

Designing Succinct Secondary Indexing Mechanism by Exploiting Column Cor-

relations. In SIGMOD. 1223–1240.
[47] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: A Cache-Aware Learned Index with a

Cost-based Construction Algorithm. Proc. VLDB Endow. 15, 11 (2022), 2679–2691.

2224

https://github.com/pfl-cs/DILI
https://doi.org/10.7910/DVN/JGVF9A/Y54SI9
https://doi.org/10.7910/DVN/JGVF9A/SVN8PI
https://www.dropbox.com/s/j1d4ufn4fyb4po2/osm_cellids_800M_uint64.zst?dl=1
https://www.dropbox.com/s/j1d4ufn4fyb4po2/osm_cellids_800M_uint64.zst?dl=1
https://www.dropbox.com/s/y2u3nbanbnbmg7n/books_800M_uint64.zst?dl=1
https://panthema.net/2007/stx-btree
https://github.com/microsoft/ALEX
https://github.com/gvinciguerra/PGM-index
https://github.com/Jiacheng-WU/lipp
https://github.com/learnedsystems/SOSD
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://arxiv.org/abs/2006.13282
https://arxiv.org/abs/2006.13282
https://arxiv.org/abs/2006.13282
http://www. agner. org/optimize/instruction_tables. pdf, DoA
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-dcpersistent-memory.html
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-dcpersistent-memory.html
https://doi.org/10.48550/arXiv.2304.08817
https://software.intel.com/content/www/us/en/develop/articles/processor-specific-performance-analysis-papers.html
https://software.intel.com/content/www/us/en/develop/articles/processor-specific-performance-analysis-papers.html

	Abstract
	1 Introduction
	2 Overview of DILI
	3 Search Cost Analysis
	4 Construction of DILI
	4.1 Motivation and Overall Idea of BU-Tree
	4.2 Building BU-Tree
	4.3 BU-Tree based Bulk Loading for DILI
	4.4 Remarks

	5 Local Optimization of DILI
	6 Data Updates in DILI
	6.1 Insertions
	6.2 Deletions

	7 Experimental Studies
	7.1 Experimental Settings
	7.2 Overall Query Performance
	7.3 Performance on Different Workloads
	7.4 Effect of Many Deletions

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

