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ABSTRACT
Community search (CS) aims at personalized subgraph discovery

which is the key to understanding the organisation of many real-

world networks. CS in undirected networks has attracted significant

attention from researchers, including many solutions for various

cohesive subgraph structures and for different levels of dynamism

with edge insertions and deletions, while they are much less con-

sidered for directed graphs. In this paper, we propose incremental

solutions of CS based on the D-truss in dynamic directed graphs,

where the D-truss is a cohesive subgraph structure defined based on

two types of triangles in directed graphs. We first analyze the theo-

retical boundedness of D-truss given edge insertions and deletions,

then we present basic single-update algorithms. To improve the

efficiency, we propose an order-based D-Index, associated batch-

update algorithms and a fully-dynamic query algorithm. Our ex-

tensive experiments on real-world graphs show that our proposed

solution achieves a significant speedup compared to the SOTA

solution, the scalability over updates is also verified.
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1 INTRODUCTION
The graph is a concise structure consisting of vertices and edges and

is widely used in multiple fields. Community search (CS) is a popu-

lar topic of graph processing, which intends to find a specifically

connected subgraph for the given query vertices [22]. The commu-

nity is a concept generated from social networks, while CS works

in not only social analysis [1, 5], but also recommendation [3, 12],

industry intelligence [30] and bio-medicine [20, 31, 33].

Many works have proposed various solutions based on different

metrics [4, 25, 29] or cohesive subgraph structures [7, 9, 41] for solv-

ing CS problems. Though CS is well-studied in undirected graphs,
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it is less considered for directed graphs. For capturing asymmetric

relationships between entities in directed graphs, the D-truss [28] is

proposed as a cohesive subgraph structure, which is defined based

on two types of triangles in directed graphs. Different from undi-

rected graphs, triangles can be classified into flow triangles and

cycle triangles according to directions of edges among the three

vertices [37]. Figure 1 (a) shows an example of directed triangles,

where 𝑣2, 𝑣3 and 𝑣4 form a cycle triangle, 𝑣2, 𝑣5 and 𝑣6 form a flow

triangle. It is worth to mention that the same three vertices can be a

part of multiple triangles, e.g. 𝑣2, 𝑣3 and 𝑣4 also form a flow triangle

since 𝑣2 and 𝑣4 are bi-directionally connected. We can find a hub

vertex in a flow triangle where the other two vertices always point

to it, while we cannot distinguish such a vertex out of three vertices

which are connected cyclically. In a D-truss (or (𝑘𝑐 , 𝑘𝑓 )-truss) [28],
each edge is involved in cycle (flow resp.) triangles with at least 𝑘𝑐
(𝑘𝑓 resp.) other vertices. The 𝑘-truss [9] is proposed for undirected

graphs, where each edge is contained in at least 𝑘 triangles, apply-

ing the 𝑘-truss in directed graphs by ignoring directions of edges

cannot distinguish different triangle participations of each edge.

The D-truss shows advantages in CS over directed graphs compared

with the 𝑘-truss. Formally, given a set of query vertices, D-truss

community search (DCS) [28] is defined as finding the connected

subgraph that: (1) contains the query vertices; (2) fulfils the require-

ment of D-truss number; (3) minimizes the diameter. Specifically,

the existing solution to DCS [28] obtains the maximal satisfied

subgraph first, and then peels off vertices which are deemed as not

tightly related to query vertices by minimizing the diameter.

Figure 1: The D-truss example in a toy directed graph

However, many existing CS works based on cohesive subgraph

structures [17, 21, 39] which only require the first two conditions

and then return the maximal satisfied subgraph directly as the

query answer, because many applications need the maximality of
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the community such as network analysis [18, 23], recommenda-

tion [40] and event organisations [16]. We take the biological food

web analysis [23] as an example, the maximal subgraph is necessary

for discovering all taxa given the cohesiveness requirement. For

proposing a general CS scheme based on the D-truss, we study the

problem called maximal D-truss search (MDS), which removes the

diameter constraint of DCS.

Considering directed graphs in the real-world, they are always

changing with edges or vertices being continuously inserted into or

removed from the original graph. Let the directed graph be𝐺 , the

updates of it be Δ𝐺 , and the result of the query given 𝐺 be 𝑅(𝐺),
an incremental algorithm AΔ aims at obtaining the updated result

and reusing 𝑅(𝐺) as much as possible, well-designed incremental

algorithms are always more efficient and more scalable than from-

scratch solutions [14, 15].

Applications. Finding the D-truss has many real-world applica-

tions, such as the analysis of social networks and the discovery of

web networks [28]. It is inherent that many real-world directed

graphs are updated frequently, thus having the D-truss in the latest

graph maintained correctly and efficiently is extremely desired in

many scenarios. We list some examples below.

• Social network. Figure 1 (a) shows an example of the social net-

work, the direction of an edge represents the followed-following

relationship between two users, i.e. the edge ⟨𝑣1, 𝑣2⟩ means the user

𝑣1 follows the user 𝑣2. Users always follow and unfollow others

according to their interests, which will result in the update of the

whole graph. In Figure 1 (a), we mark all D-trusses in different

colors in the original graph 𝐺 . In Figure 1 (b), let Δ𝐺 be {− ⟨𝑣1, 𝑣3⟩,
− ⟨𝑣3, 𝑣1⟩, − ⟨𝑣2, 𝑣4⟩, + ⟨𝑣5, 𝑣2⟩}, where we denote the deletion by

− and the insertion by +. After applying Δ𝐺 , the result of MDS

becomes different from the result in Figure 1 (a).

• Associative thesaurus. The word associative network works as a

useful tool for computational linguistics and natural language pro-

cessing. On the network of the Edinburgh Associative Thesaurus

(EAT) [6]: the word𝑤𝑖 points to another word𝑤 𝑗 if𝑤 𝑗 appears as

the response when 𝑤𝑖 is received as the stimulus. Given a query

word, the D-truss will include all associative words of it and distin-

guish them via cycle triangles and flow triangles. In the case study

of EAT [28], the (3, 0)-truss of the word “drink” consists of words

that have an equal relationship with it, including “glass”, “bottle”,

“wine” and “water”. Instead the (0, 7)-truss of it shows the remind-

ing hierarchy relationships around “drink”. There exist words are

in the upstream of the hierarchy relationship, e.g. the word “drunk”

always reminds “drink” and other words in the subgraph, the word

“drink” also reminds many words that in the downstream of the

relationship, e.g. “rum” and “liquor”. Once the thesaurus is updated

with new edges added and out-of-time edges deleted, such relation-

ships found by the D-truss may be changed, it is strongly motivated

that maintaining these D-trusses instead of recomputing them.

Challenges. Though effective and efficient solutions for 𝑘-truss

maintenance problem of both single-update [21] and batch-update

[42] are developed, it is not trivial to extend those solutions to the

D-truss. Instead, we must address the following challenges in order

to solve the problem.

• Challenge 1. Compared with the 𝑘-truss model in undirected

graphs, the D-truss takes the directions of edges within triangles

into consideration. The direction of an edge makes it mean differ-

ently from an undirected edge, this fact implies two key points to

notice: (1) the triangles in directed graphs can be classified into two

types (i.e. cycle triangles and flow triangles) due to different direc-

tions within a triangle; (2) the 𝑘-truss ignore duplicate edges, while

two edges with different directions are allowed between two ver-

tices 𝑢 and 𝑣 . The theoretical hardness of the D-truss maintenance

is unknown because of these two points.

• Challenge 2. According to the two different types of triangles,

the D-truss decomposition [28] is naturally related to two types

of supports. For single edge updates, existing work [21] proposes

theorems that indicate the rules of 𝑘-truss maintenance depending

on the only type of support. The fact that the same three vertices

can be contained in multiple triangles in the D-truss makes such

theorems cannot be extended correctly.

• Challenge 3. For more efficient batch-update solutions, the existing

index [42] of the 𝑘-truss stores edges in the non-ascending order

of 𝑘 values. However, there are a pair of values to consider (i.e.

(𝑘𝑐 , 𝑘𝑓 )) for the D-truss, the dominant property of (𝑘𝑐 , 𝑘𝑓 ) [28]
makes it impossible to construct such an index for the D-truss.

In this paper, we aim at an efficient incremental solution for

addressing the challenges above. We denote that applying Δ𝐺 to

𝐺 by 𝐺 ⊕ Δ𝐺 . Many existing solutions of CS have to recompute

from scratch for𝐺 ⊕ Δ𝐺 , the cost of recomputing given Δ𝐺 always

depends on the size of the whole graph, the incremental solution

would be more efficient if its cost is polynomial with a specific

range of data accessed, which is always smaller than the size of the

graph. Furthermore, the solution is more practical if it can handle

the updates of different query vertices and (𝑘𝑐 , 𝑘𝑓 ) requirements

except for Δ𝐺 , which is called fully-dynamic.

Contributions. For proposing a general incremental scheme for

solving CS based on the D-truss, we first analyze the hardness

of D-truss maintenance theoretically and then we propose solu-

tions for both single-update and batch-update. More concretely, our

contributions can be concluded below:

•We define the maximal D-truss search problem for generality and

extend the existing solution to it.

•We conduct theoretical analysis about the boundedness and the

unboundedness of the maximal D-truss maintenance.

• We present support update operators and basic single-update

algorithms for edge insertion and deletion respectively for the

maximal D-truss maintenance problem.

•We propose an order-based index structure, its associated batch-

update algorithms and the fully-dynamic query algorithm.

Outline. In Section 2, we review the related work on this topic.

Section 3 gives definitions of notations, concepts and problems. We

show theoretical discussions in Section 4. Our basic methods are

presented in Section 5 and index-based methods are introduced in

Section 6. Section 7 gives batch-update algorithms and the query

algorithm for the proposed index. We show experimental results in

Section 8 and conclude this paper in Section 9.

2 RELATEDWORK
In this section, we review existing works of cohesive subgraph

models, their maintenance techniques in directed graphs and effec-

tiveness measures of incremental algorithms.
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Cohesive subgraph structures over directed graphs.We con-

clude popular cohesive subgraph structures into three types below.

• Core-like models: 𝑘-core [7, 8] is a cohesive subgraph structure of

undirected graphs where every vertex has at least 𝑘 degrees. For

directed graphs, the D-core (or (𝑘, 𝑙)-core) [17, 19] is proposed to

find the community with minimum 𝑘 in-degree and 𝑙 out-degree

requirements being fulfilled. Specifically, the D-core is limited by its

inherent property that the fixed requirement of combinations of in-

degree and out-degree. The degree-based features of some vertices

can be identified explicitly, e.g. vertices with high in-degree and

low out-degree imply that entities have influences over others like

authorities, and vertices with low in-degree and high out-degree

imply that entities tend to be followers [28]. However, compared to

the D-truss, for containing two aforementioned types in the D-core,

it will be too sparse and unable to capture edge cohesiveness [9, 28].

• Truss-like models: In undirected graphs, 𝑘-truss [9] is defined

based on the number of triangles that each edge is involved in. In

this paper, we develop the work based on the D-truss (or (𝑘𝑐 , 𝑘𝑓 )-
truss) [28], which distinguishes two different types of triangles

in semantics for directed graphs. The D-truss can alleviate the

limitation of the D-core by varying different 𝑘𝑐 and 𝑘𝑓 [28]. With

the computation of the skyline trussness set for all edges of the

given graph, all possible queries of MDS can be efficiently answered

from the constructed index [28]. A query algorithm [28] is given

which can find the maximal D-truss that contains 𝑄 by sparing the

procedures for minimizing the diameter.

Cohesive subgraph maintenance over dynamic graphs. In the

real world, graphs are always changing over time, instead of re-

computing subgraphs from scratch, many works focus on efficient

incremental algorithms. For core maintenance, a suite of incremen-

tal 𝑘-core decomposition algorithms [35] are verified to be efficient,

and a tree-like index [27] can be constructed for more efficient

maintenance. A fully dynamic approximate solution for the 𝑘-core

in hypergraphs [36] is also considered. In bipartite graphs, the prob-

lem of (𝛼, 𝛽)-core decomposition and maintenance is solved by an

index-based solution [39]. For truss maintenance, different index

structures are proposed based on the preserved information of tri-

angle connectivity [21] and the edge decomposition order [42]. For

clique maintenance, maintaining the 𝑘-clique in dynamic graphs is

tackled by single-update [13] and batch-update methods [10].

3 PRELIMINARIES
Given a directed, simple and unweighted graph denoted by 𝐺 =

(𝑉 (𝐺), 𝐸 (𝐺)). Here 𝑉 (𝐺) denotes the set of vertices and 𝐸 (𝐺) de-
notes the set of edges that 𝐸 (𝐺) = {⟨𝑢, 𝑣⟩ |𝑢, 𝑣 ∈ 𝑉 (𝐺)}. Note that
double edges which point in opposite directions are allowed. The

edge ⟨𝑢, 𝑣⟩ is the directed edge that points from 𝑢 to 𝑣 , where 𝑢 is

an in-neighbor of 𝑣 and 𝑣 is an out-neighbor of 𝑢.

For a vertex 𝑢 ∈ 𝑉 (𝐺), we denote the set of in-neighbors of

𝑢 by Nin (𝑢,𝐺) = {𝑣 | ⟨𝑣,𝑢⟩ ∈ 𝐸 (𝐺)} and the set of out-neighbors

of 𝑣 by Nout (𝑢,𝐺) = {𝑣 | ⟨𝑢, 𝑣⟩ ∈ 𝐸 (𝐺)}. degin (𝑢,𝐺) = |Nin (𝑢,𝐺) |
is used to denote the in-degree of 𝑢 and similarly degout (𝑢,𝐺) =
|Nout (𝑢,𝐺) | denotes the out-degree of 𝑢. The degree of 𝑢 is defined

as the sum of its in-degree and out-degree. We use 𝑛 to denote the

number of vertices in 𝐺 and𝑚 to denote the number of edges in 𝐺 .

In this section, we give the definitions of the D-truss and existing

solutions based on it.

3.1 Problem Definition
Before we give the formal problem statement, some basic concepts

are defined as follows. We denote three vertices within a triangle by

𝑢, 𝑣,𝑤 respectively. A cycle triangle is a triangle where each vertex

within has exactly 1 in-degree and 1 out-degree, we denote it by

△𝑐𝑢,𝑣,𝑤 . A flow triangle is a triangle where the out-degrees of vertices

within are 0, 1, 2 and in-degrees of them are 2, 1, 0 correspondingly,

we denote a flow triangle by △𝑓𝑢,𝑣,𝑤 . Figure 1 shows an example for

directed triangles where 𝑣2, 𝑣3 and 𝑣4 form a cycle triangle, 𝑣2, 𝑣5
and 𝑣6 form a flow triangle. The D-truss [28] is proposed together

with two types of support below.

Table 1: Notations

Notation Description

𝐺 , Δ𝐺 A directed graph and updates to it

𝐺 ′ or𝐺 ⊕ Δ𝐺 The graph after applying Δ𝐺 to𝐺

𝑉 (𝐺 ) , 𝐸 (𝐺 ) The set of vertices and edges respectively

sup𝑐
𝐺
(𝑒 ) , sup𝑓

𝐺
(𝑒 ) The cycle support and flow support of

∀𝑒 ∈ 𝐸 (𝐺 )
N𝑐
𝐺
(𝑒 ) , N𝑓

𝐺
(𝑒 ) The cycle set and flow set of ∀𝑒 ∈ 𝐸 (𝐺 )

E𝑐
𝐺
(𝑒 ) The set of edges that are spanned between

N𝑐
𝐺
(𝑒 ) and {𝑢, 𝑣}, where 𝑒 = ⟨𝑢, 𝑣⟩.

E𝑓
𝐺
(𝑒 ) The set of edges that are spanned between

N𝑓

𝐺
(𝑒 ) and {𝑢, 𝑣}, where 𝑒 = ⟨𝑢, 𝑣⟩.

𝐻𝑘𝑐 ,𝑘𝑓
The D-truss ((𝑘𝑐 , 𝑘𝑓 )-truss) in𝐺

𝑄 , Δ𝑄 A set of query vertices in 𝑉 (𝐺 ) and up-

dates to this set

𝑄 ′ or𝑄 ⊕ Δ𝑄 The set of query vertices after applying

Δ𝑄 to𝑄

H𝑘𝑐 ,𝑘𝑓 ,𝑄
(𝐺 ) The maximal (𝑘𝑐 , 𝑘𝑓 )-truss community

for𝑄 given𝐺

Definition 1. Cycle Support [28]. Given a directed graph 𝐺 and

an edge 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 (𝐺), the cycle support of 𝑒 in 𝐺 is the

number of vertices that form cycle triangles with 𝑒 in𝐺 , denoted by

sup𝑐
𝐺
(𝑒) = |{𝑤 ∈ 𝑉 (𝐺) |△𝑐𝑢,𝑣,𝑤 𝑖𝑛 𝐺}|. We denote the cycle set of 𝑒

by N𝑐
𝐺
(𝑒) = {𝑤 | 𝑤 ∈ Nin (𝑢) ∩ Nout (𝑣)}, which stores all vertices

that form cycle triangles with 𝑒 in𝐺 . Let all edges that are spanned

between N𝑐
𝐺
(𝑒) and {𝑢, 𝑣} be 𝐸𝑐

𝐺
(𝑒).

Definition 2. Flow Support [28]. Given a directed graph𝐺 and an

edge 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸 (𝐺), the flow support of 𝑒 in 𝐺 is defined simi-

larly to the cycle support as sup𝑓
𝐺
(𝑒) = |{𝑤 ∈ 𝑉 (𝐺) |△𝑓𝑢,𝑣,𝑤 𝑖𝑛 𝐺}|.

We denote the flow set of 𝑒 by N𝑓

𝐺
(𝑒) = {𝑤 | 𝑤 ∈ (Nin (𝑢) ∩

Nin (𝑣)) ∪ (Nout (𝑢) ∩Nin (𝑣)) ∪ (Nout (𝑢) ∩Nout (𝑣))}, which stores

all vertices that form flow triangles with 𝑒 in 𝐺 . Let all edges that

are spanned between N𝑓

𝐺
(𝑒) and {𝑢, 𝑣} be 𝐸 𝑓

𝐺
(𝑒).

Definition 3. Maximal D-truss [28]. Given a directed graph 𝐺

and two non-negative integers 𝑘𝑐 and 𝑘𝑓 , a subgraph 𝐻𝑘𝑐 ,𝑘𝑓 ⊆ 𝐺

is a D-truss ((𝑘𝑐 , 𝑘𝑓 )-truss) if
• sup𝑐

𝐺
(𝑒) ≥ 𝑘𝑐 and sup𝑓

𝐺
(𝑒) ≥ 𝑘𝑓 , ∀𝑒 ∈ 𝐸 (𝐻𝑐,𝑓 );

• 𝐻𝑘𝑐 ,𝑘𝑓 is maximal (i.e. 𝐻𝑘𝑐 ,𝑘𝑓 is not contained in any other

(𝑘𝑐 , 𝑘𝑓 )-trusses of 𝐺).
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The pair (𝑘𝑐 , 𝑘𝑓 ) is called a trussness of 𝑒 , where 𝑘𝑐 is the cycle
truss number of 𝑒 and 𝑘𝑓 is the flow truss number of 𝑒 . Note
that for a single edge 𝑒 ∈ 𝐸 (𝐺), it can be contained in different

D-trusses, so there may exist multiple trussnesses for it. We denote

the trussness set of 𝑒 as T (𝑒) = {(𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) | 𝑒 ∈ 𝐸 (𝐻𝑐𝑖 ,𝑓𝑖 )}.
Based on the definitions above, we formally define a series of

problems of maximal D-truss search below. First, we define the

problem of maximal D-truss search (MDS) in Problem Statement 1.

Problem Statement 1. Maximal D-truss Search (MDS) [28].
Given a directed graph𝐺 , two non-negative integers 𝑘𝑐 and 𝑘𝑓 , and

a set of query vertices𝑄 ⊆ 𝑉 (𝐺), the maximal D-truss search (MDS)

is to find a subgraphH𝑘𝑐 ,𝑘𝑓 ,𝑄 (𝐺) such that: 1)H𝑘𝑐 ,𝑘𝑓 ,𝑄 (𝐺) is con-
nected and 𝑄 ⊆ 𝑉 (H𝑘𝑐 ,𝑘𝑓 ,𝑄 (𝐺)); 2)H𝑘𝑐 ,𝑘𝑓 ,𝑄 (𝐺) is a subgraph of

the (𝑘𝑐 , 𝑘𝑓 )-truss (i.e.H𝑘𝑐 ,𝑘𝑓 ,𝑄 (𝐺) ⊆ 𝐻𝑘𝑐 ,𝑘𝑓 ); 3)H𝑘𝑐 ,𝑘𝑓 ,𝑄 (𝐺) is the
maximal subgraph that satisfying two conditions above.

We extend the problem of MDS to two advanced problems con-

sidering the scenario of dynamic directed graphs below.

Problem Statement 2.Maximal D-truss Maintenance (MDM)
Given a directed graph 𝐺 and a set of to-be-updated edges Δ𝐺 , the

problem of maximal D-truss maintenance (MDM) is to compute

new trussness set of any edges 𝑒 ∈ 𝐸 (𝐺 ⊕Δ𝐺), where ⊕ means that

changes are applied. We use 𝐺 ′ for short of 𝐺 ⊕ Δ𝐺 .
Problem Statement 3. Maximal D-truss Search Maintenance
(MDSM). Given a directed graph 𝐺 , the previously queried maxi-

mal D-trussH𝑘𝑐 ,𝑘𝑓 ,𝑄 in 𝐺 , a set of to-be-updated edges Δ𝐺 , new

thresholds 𝑘′𝑐 and 𝑘
′
𝑓
and a set of to-be-updated query vertices Δ𝑄 ,

the maximal D-truss search maintenance (MDSM) is to search the

new maximal D-trussH𝑘 ′𝑐 ,𝑘
′
𝑓
,𝑄 ′ (𝐺 ′).

Example 3.1. Consider the given graph in Figure 1 (a), let (𝑘𝑐 , 𝑘𝑓 )
be (1, 1) and let 𝑄 be {𝑣2}, in this way the result of MDS is the

subgraph 𝐻3. Then in Figure 1 (b), let Δ𝐺 be {⊖ ⟨𝑣1, 𝑣3⟩, ⊖ ⟨𝑣3, 𝑣1⟩,
⊖ ⟨𝑣2, 𝑣4⟩, ⊕ ⟨𝑣5, 𝑣2⟩}, let (𝑘′𝑐 , 𝑘′𝑓 ) be (0, 1), let Δ𝑄1 be {⊕𝑣5} and
let Δ𝑄2 be {⊖𝑣2, ⊕𝑣3}. For 𝑄 ⊕ Δ𝑄1, the result of MDSM is 𝐽1,

since both 𝑣2 and 𝑣5 are contained in the maximal (0, 1)-truss. For
𝑄 ⊕ Δ𝑄2, the result of MDSM is null, it is obvious that 𝑣3 is not

contained in the maximal (0, 1)-truss 𝐽1.
Note that the solution of MDS performs inefficiently when Δ𝐺

is given, because it have to recompute the result from scratch. The

solution of MDM is expected to handle Δ𝐺 much more efficiently,

which is the data-update of MDS. What’s more, the solution of

MDSM shall answer the new query by maintaining the old result,

which is the query-update of MDS.

4 THEORETICAL ANALYSIS OF MDM
For proposing the incremental solutions for the MDM problem, we

need to analyze the hardness of MDM first in this section.

4.1 The Theoretical Model and Metrics
Following many works on the boundedness of graph problems [2,

14, 32, 42], we require AΔ to be locally persistent. An algorithm is

locally persistent [2, 32] if, 1) it may use a block of storage for each

edge, where it saves pointers to (the blocks of storage for) its adja-

cent edges; 2) no global auxiliary information is allowed, such as the

blocks of each edge are not allowed to save pointers to non-adjacent

edges; 3) the block of edge 𝑒 may contain auxiliary status informa-

tion status(𝑒). Given the updates Δ𝐺 , a locally persistent algorithm

AΔ starts from the pointers of edges in 𝐸 (Δ𝐺) and traverses the

original graph𝐺 via tracing pointers. The next-to-be-visited edge

only depends on the status of all visited edges.

For the MDM problem, we denote the set of edges whose truss-

ness set changes by CHANGED. An incremental algorithm AΔ is

bounded [38] if its cost is a polynomial function of ∥CHANGED∥𝑐 ,
where ∥·∥𝑐 denotes the size of 𝑐-hop neighbors for a positive integer
𝑐 . The problem of MDM is bounded if there exists a bounded AΔ,

or is unbounded otherwise. However, the boundedness is such a

strong property that many graph problems cannot be solved bound-

edly [15]. Regarding this gap of hardness, the relative boundedness
[14] is proposed for measuring the efficiency of incremental algo-

rithms for graph problems. Let a batch algorithm be A, the data

accessed by A during the computing be 𝐺A , the difference be-

tween (𝐺 ⊕ Δ𝐺)A and 𝐺A be AFF. An incremental algorithm AΔ

is bounded relative toA if its cost is a polynomial function of |AFF|.
Existing works [14, 15, 42] show that an unbounded incremental

algorithm is still practically efficient if it is of relative boundedness.

4.2 The Boundedness Discussion of MDM
Existing works study the maintenance problems of other cohesive

subgraph structures, including the truss maintenance [21, 42] and

the coremaintenance [27, 35] for undirected graphs. It is proved that

both the truss maintenance and the core maintenance are asymmet-

ric regarding the boundedness of edge insertions and deletions [42].

We show the theoretical conclusion in Theorem. 4.1 similarly and

prove it in the rest of this section.

Theorem 4.1. Under the model of locally persistent algorithms,
the problem of MDM is bounded for edge deletions, but unbounded
for edge insertions.

The unboundedness of edge insertions. The proof sketch is

similar to the proof for the 𝑘-truss [42]. We construct a directed

graph 𝐺 and two specific sets of edge updates Δ𝐺1 and Δ𝐺2. We

list two key points of the proof sketch, 1) By applying Δ𝐺1 and

Δ𝐺2 to the original graph 𝐺 respectively, the size of |CHANGED|
for each update is constant (i.e. 𝑂 (𝑓 (∥CHANGED∥𝑐 )) = 𝑂 (1)). If
there exists a bounded algorithm AΔ, it can obtain the correct

result with a constant cost for Δ𝐺1 and Δ𝐺2 respectively; 2) For
any locally persistent algorithms, the cost of applying Δ𝐺1 and the

cost of applying Δ𝐺2 are Ω(𝑙), where 𝑙 is not constant.
Note that the second point directly contradicts the existence of

the bounded algorithm. Because if there exists a bounded algorithm,

the cost of applying Δ𝐺1 plus the cost of applying Δ𝐺2 should also

be constant. According to the proof sketch introduced above, we

construct the directed graph 𝐺 in Figure 2. Let the insertion of

𝑒1 = ⟨𝑣0, 𝑢0⟩ be the update Δ𝐺1 and the insertion of 𝑒2 = ⟨𝑣𝑙 , 𝑢𝑙 ⟩ be
the updateΔ𝐺2. Considering all edges in the original graph, we have

the trussness set for each edge 𝑒 ∈ 𝐸 (𝐺) marked in Figure 2. We

assume that there exists a bounded insertion algorithm AΔ for the

MDM problem. First, after applying Δ𝐺1 singly, CHANGED = {𝑒1,
⟨𝑣0, 𝑢1⟩ , ⟨𝑢0, 𝑣1⟩ , ⟨𝑣1, 𝑢1⟩}, where these 4 edges have their trussness
changed to (0, 2). This implies thatAΔ costs𝑂 (𝑓 (∥CHANGED∥𝑐 ))
= 𝑂 (1) time for the update Δ𝐺1.
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Figure 2: The unboundedness of edge insertions for MDM

Similarly, CHANGED is also of constant size for the update Δ𝐺2

singly, whereCHANGED = {𝑒2, ⟨𝑣𝑙−1, 𝑢𝑙 ⟩ , ⟨𝑢𝑙−1, 𝑣𝑙 ⟩ , ⟨𝑣𝑙−1, 𝑢𝑙−1⟩}.
The time cost for the update Δ𝐺2 is 𝑂 (𝑓 (∥CHANGED∥𝑐 )) = 𝑂 (1),
too. Let 𝐸A (𝐺,Δ𝐺) be the sequence of edges that AΔ visits for

applying Δ𝐺 to𝐺 . Both |𝐸A (𝐺,Δ𝐺1) | and |𝐸A (𝐺,Δ𝐺2) | are of con-
stant size. Then, we denote the subgraph that applies Δ𝐺1 to𝐺 by𝐻 ,

and then we compare the sequences visited by AΔ between apply-

ing Δ𝐺2 to𝐺 and𝐻 . According to the definition of the boundedness,

AΔ chooses the next edge only depending on all visited edges. Thus

the sequences are the same for𝐺 ⊕Δ𝐺2 and𝐻 ⊕Δ𝐺2 until an edge 𝑒

is visited whose status(𝑒) are different in these two sequences. Such
𝑒 must exist because CHANGED for these two updates in Figure 2

are different. Furthermore, this 𝑒 is definitely visited in 𝐸A (𝐺,Δ𝐺1)
since status(𝑒) are different in 𝐻 and 𝐺 . In this way, 𝐸A (𝐺,Δ𝐺1)
overlaps 𝐸A (𝐺,Δ𝐺2) with 𝑒 . For any locally persistent algorithms,

there exist a path from 𝑒1 to 𝑒 in 𝐸A (𝐺,Δ𝐺1) and a path from 𝑒2 to

𝑒 in 𝐸A (𝐺,Δ𝐺2) respectively, then we obtain a path between 𝑒1 and
𝑒2 with the length of Ω(𝑙) which is obvious in Figure 2. This implies

that |𝐸A (𝐺,Δ𝐺1) | + |𝐸A (𝐺,Δ𝐺2) | = Ω(𝑙), which contradicts the

fact that both |𝐸A (𝐺,Δ𝐺1) | and |𝐸A (𝐺,Δ𝐺2) | are of constant size.
Above all, AΔ cannot be bounded for edge insertions of MDM.

The boundedness of edge deletions. For the boundedness of edge
deletions of the MDM problem, we provide the proof in Section 7.1,

where we present a bounded batch-edge-deletion algorithm.

5 BASIC SINGLE-UPDATE ALGORITHMS
In this section, we consider the cases of single-edge deletion and

insertion for the MDM problem, since the single update is the most

basic scenario for dynamic directed graphs. Different from the 𝑘-

truss maintenance problem [42], consider a D-truss, the fact that the

same three vertices can be contained in multiple triangles means

the existing index [42] cannot have the cycle trussness and the

flow trussness correctly updated. Before presenting the proposed

algorithms, we introduce some typical operations of the support

maintenance. Then we elaborate on algorithms and conduct the

complexity analysis for them regarding Theorem 4.1. Without loss

of generality, we assume all updates are valid, it must delete an

existing edge or insert a new edge for each update. Refer to the full

paper [34] for the proofs of all lemmas and theorems.

5.1 Support Single-Update Operators
For the 𝑘-truss, the support of each edge 𝑒 = (𝑢, 𝑣) is the size of
the intersection of the neighbors of 𝑢 and 𝑣 , which is equal to the

number of triangles that 𝑒 is contained in. Existing works [21, 42]

observe the fact that each single edge deletion (resp. insertion)

results in the decrement (resp. the increment) of supports by 1 for

a specific range of edges. However, this fact does not hold for the

D-truss. Because in directed graphs, (1) there are two different types

of supports, (2) two edges are allowed between the same vertices

(i.e. ⟨𝑢, 𝑣⟩ and ⟨𝑣,𝑢⟩). We propose 4 operators for single-update

scenarios below, applying these operators to maintain supports can

directly update the trussness set of some edges in CHANGED to

save the computation cost. To distinguish different connections

between two vertices 𝑢 and 𝑣 in directed graphs, we say 𝑢 and 𝑣

are uni-linked if there exists an edge either ⟨𝑢, 𝑣⟩ or ⟨𝑣,𝑢⟩, they are

bi-linked if there exist both ⟨𝑢, 𝑣⟩ and ⟨𝑣,𝑢⟩, and they are not linked
if there exists no edge between them.

Lemma 5.1. Given a directed graph 𝐺 , consider any two vertices
𝑢, 𝑣 ∈ 𝑉 (𝐺). For the insertion 𝑒+ = ⟨𝑢, 𝑣⟩ (resp. the deletion 𝑒− =

⟨𝑢, 𝑣⟩) if 𝑢 and 𝑣 are not uni-linked before ⊕𝑒+ (resp. 𝑢 and 𝑣 are not
bi-linked before ⊕𝑒−), then for any affected edge, its cycle support, or
its flow support, or both increase (resp. decrease) by at most 1.

The affected edges are composed of two parts, one is the changed

edge 𝑒∗ (i.e. the inserted edge 𝑒+ or the deleted edge 𝑒−), and
the other is all edges that are incident to all vertices in N𝑐

𝐺 ′ (𝑒
∗)

and N𝑓

𝐺 ′ (𝑒
∗). For the changed edge 𝑒∗, it is inevitable to compute

its supports from scratch, the cost of computing is different for

the insertion and the deletion. It costs 𝑂 (deg(𝑢) + deg(𝑣)) for
the insertion because of computing the intersection between the

neighbor sets of two endpoints 𝑢 and 𝑣 , and it only costs 𝑂 (1)
for the deletion by zeroing them. For the the other part, it costs

𝑂 (∑︁𝑧 (deg(𝑧) + deg(N(𝑧)))) for recomputing them from scratch,

where 𝑧 denotes the shared neighbors of 𝑢 and 𝑣 and is bounded

by 𝑂 (𝑚𝑖𝑛(deg(𝑢), deg(𝑣))). We observe that it is not necessary to

recompute supports of the latter part of affected edges but it can be

maintained by two proposed operators Ins(𝑒+) and Del(𝑒−). Both
operators can update supports efficiently for all edges that are in-

cident to all vertices in N𝑐
𝐺 ′ (𝑒

∗) and N𝑓

𝐺 ′ (𝑒
∗) with the time cost

of𝑂 (∑︁𝑧 deg(𝑧)) only. The correctness is guaranteed by Lemma 5.1.

Ins(𝑒+).We compute supports for the newly inserted edge 𝑒+. Ac-
cording to Lemma 5.1, for any edge 𝑒𝑐 , its cycle support increases

by 1; for any edge 𝑒 𝑓 , its flow support increases by 1; note that

there may exist the same edges in both 𝐸𝑐
𝐺 ′ (𝑒

+) and 𝐸 𝑓
𝐺 ′ (𝑒

+).

Ins(𝑒+)
{︃
sup𝑐

𝐺 ′ (𝑒
+ ) ← |N𝑐

𝐺 ′ (𝑒
+ ) |; sup𝑐

𝐺 ′ (𝑒
𝑐 ) ← sup𝑐

𝐺
(𝑒𝑐 ) + 1, ∀𝑒𝑐 ∈ 𝐸𝑐

𝐺 ′ (𝑒
+ ) ;

sup𝑓
𝐺 ′ (𝑒

+ ) ← |N𝑓

𝐺 ′ (𝑒
+ ) |; sup𝑓

𝐺 ′ (𝑒
𝑓 ) ← sup𝑓

𝐺
(𝑒 𝑓 ) + 1, ∀𝑒 𝑓 ∈ 𝐸 𝑓

𝐺 ′ (𝑒
+ ) .

Del(𝑒−). For the deleted edge, we zero its support. Similarly to

Ins(𝑒+), we only need to update the cycle support of 𝑒𝑐 and the

flow support of 𝑒 𝑓 .

Del(𝑒−)
{︃
sup𝑐

𝐺 ′ (𝑒
− ) ← 0; sup𝑐

𝐺 ′ (𝑒
𝑐 ) ← sup𝑐

𝐺
(𝑒𝑐 ) − 1, ∀𝑒𝑐 ∈ 𝐸𝑐

𝐺 ′ (𝑒
− ) ;

sup𝑓
𝐺 ′ (𝑒

− ) ← 0; sup𝑓
𝐺 ′ (𝑒

𝑓 ) ← sup𝑓
𝐺
(𝑒 𝑓 ) − 1, ∀𝑒 𝑓 ∈ 𝐸 𝑓

𝐺 ′ (𝑒
− ) .

Now we consider the cases that 𝑢 and 𝑣 are bi-linked before and

after applying the changed edge 𝑒∗ = ⟨𝑢, 𝑣⟩, we propose operators
Enga(𝑒+) and DisEnga(𝑒−), and the correctness of them is shown

in Lemma 5.2.

Lemma 5.2. Given a directed graph 𝐺 , consider any two vertices
𝑢, 𝑣 ∈ 𝑉 (𝐺). For the insertion 𝑒+ = ⟨𝑢, 𝑣⟩ (resp. the deletion 𝑒− =

⟨𝑢, 𝑣⟩), if𝑢 and 𝑣 are uni-linked before ⊕𝑒+ (resp.𝑢 and 𝑣 are bi-linked
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before ⊕𝑒−), then Enga(𝑒+) (resp. DisEnga(𝑒−)) updates supports
correctly for all affected edges.

Enga(𝑒+). Consider a single edge insertion 𝑒+ = ⟨𝑢, 𝑣⟩, it is known
that 𝑢 and 𝑣 are uni-linked before the insertion (i.e. there exists an

edge
˜︁𝑒+ = ⟨𝑣,𝑢⟩ ∈ 𝐸 (𝐺)). For 𝑒+, it costs 𝑂 (degin (𝑢) + degout (𝑣))

for updating its cycle support and flow support. The cycle support

increases by 1 for any edge 𝑒𝑐 and the flow support increases by 1

for any edge 𝑒 𝑓 with the time cost of 𝑂 (deg(𝑢) + deg(𝑣)).

Enga(𝑒+)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup𝑐
𝐺 ′ (𝑒

+ ) ←
|︁|︁Nin (𝑢 ) ∩ Nout (𝑣)

|︁|︁
;

sup𝑐
𝐺 ′ (𝑒

𝑐 ) ← sup𝑐
𝐺
(𝑒𝑐 ) + 1,

∀𝑒𝑐 ∈ {⟨𝑣, 𝑤⟩ , ⟨𝑤,𝑢 ⟩ |
∀𝑤 ∈ Nin (𝑢 ) ∩ Nout (𝑣) \ Nin (𝑣) ∩ Nout (𝑢 ) };
sup𝑓

𝐺 ′ (𝑒
+ ) ← sup𝑓

𝐺
(˜︂𝑒+ ) − sup𝑐

𝐺 ′ (𝑒
+ ) + sup𝑐

𝐺
(˜︂𝑒+ ) ;

sup𝑓
𝐺 ′ (𝑒

𝑓 ) ← sup𝑓
𝐺
(𝑒 𝑓 ) + 1,

∀𝑒 𝑓 ∈ {⟨𝑢, 𝑥 ⟩ , ⟨𝑥, 𝑣⟩ |
∀𝑥 ∈ Nin (𝑣) ∩ Nout (𝑢 ) \ (N(𝑢 ) ∩ Nout (𝑣) ) ∪ (Nin (𝑢 ) ∩ Nin (𝑣) ) } .

DisEnga(𝑒−). Consider a single edge deletion 𝑒− = ⟨𝑢, 𝑣⟩, it is
known that𝑢 and 𝑣 are bi-linked before the deletion. For 𝑒− , it costs
𝑂 (1) for zeroing supports. The cycle support decreases by 1 for any
edge 𝑒𝑐 and the flow support decreases by 1 for any edge 𝑒 𝑓 with

the time cost of 𝑂 (deg(𝑢) + deg(𝑣)).

DisEnga(𝑒−)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup𝑐

𝐺 ′ (𝑒
− ) ← 0; sup𝑐

𝐺 ′ (𝑒
𝑐 ) ← sup𝑐

𝐺
(𝑒𝑐 ) − 1,

∀𝑒𝑐 ∈ {⟨𝑣, 𝑤⟩ , ⟨𝑤,𝑢 ⟩ |
∀𝑤 ∈ Nin (𝑢 ) ∩ Nout (𝑣) \ Nin (𝑣) ∩ Nout (𝑢 ) };
sup𝑓

𝐺 ′ (𝑒
− ) ← 0; sup𝑓

𝐺 ′ (𝑒
𝑓 ) ← sup𝑓

𝐺
(𝑒 𝑓 ) − 1,

∀𝑒 𝑓 ∈ {⟨𝑢, 𝑥 ⟩ , ⟨𝑥, 𝑣⟩ |
∀𝑥 ∈ Nin (𝑣) ∩ Nout (𝑢 ) \ (N(𝑢 ) ∩ Nout (𝑣) ) ∪ (Nin (𝑢 ) ∩ Nin (𝑣) ) } .

5.2 Single Edge Deletion Algorithm
We denote the to-be-deleted edge by 𝑒− = ⟨𝑢, 𝑣⟩ and denote the

updated skyline trussness sets by ST ′ (𝑒) for ∀𝑒 ∈ 𝐸 (𝐺\𝑒−). First,
we discuss the range of affected skyline trussness sets in Lemma 5.3.

Lemma 5.3. Given a directed graph𝐺 , consider the deletion 𝑒− =

⟨𝑢, 𝑣⟩ ∈ 𝐸 (𝐺). For each edge 𝑒 ∈ E𝑐
𝐺
(𝑒−) ∪ E𝑓

𝐺
(𝑒−) and its skyline

trussness set ST (𝑒) = {(𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) | for all 𝑖}, (1) if (𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) domi-
nates any skyline trussness (𝑘𝑐 (𝑒−) +1, 𝑘𝑓 (𝑒−) +1) in ST (𝑒−), then
(𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) will NOT be affected; (2) otherwise (𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) may be affected.

We present an algorithm that can update an edge deletion cor-

rectly for the MDM problem in Algorithm 1. In line 1, we initialize

variables. In line 2, we update supports of corresponding edges with

operators DisEnga(𝑒−) and Del(𝑒−). In lines 4-5, we start process-

ing the queue that is used for detecting affected edges. We check

each trussness of the current edge ⟨𝑢1, 𝑣1⟩ in lines 6-12. In lines

7-9, we maintain trussness sets that can be done instantly after

support maintenance. In line 10, we peel off edges whose cycle

support is not qualified. We check the local cycle support and the

local flow support of ⟨𝑢1, 𝑣1⟩ in lines 11-12. At last, we mark ⟨𝑢1, 𝑣1⟩
and continue to push edges into 𝑄𝑢𝑒𝑢𝑒 in lines 13-14. When there

is no edge in 𝑄𝑢𝑒𝑢𝑒 , we have all skyline trussness sets correctly

updated and return them as ST ′ (𝑒), ∀𝑒 ∈ 𝐸 (𝐺 ′).

5.3 Single Edge Insertion Algorithm
We denote the to-be-inserted edge by 𝑒+ = ⟨𝑢, 𝑣⟩ and denote the

updated skyline trussness set by ST ′ (𝑒) for ∀𝑒 ∈ 𝐸 (𝐺 ⊕ 𝑒+). First,
we discuss the range of affected skyline trussness set in Lemma 5.4.

Algorithm 1: Single Edge Deletion Algorithm

Input:𝐺 , 𝑒− = ⟨𝑢, 𝑣⟩, ST(𝑒 ) , ∀𝑒 ∈ 𝐸 (𝐺 )
Output: ST′ (𝑒 ) , ∀𝑒 ∈ 𝐸 (𝐺\𝑒− )

1 𝐺 ′ ← 𝐺\𝑒− ;𝑄𝑢𝑒𝑢𝑒 ← ∅; 𝐻 ← ∅; DelCheck2(𝑒− ) ;
2 Call DisEnga(𝑒− ) if ⟨𝑣,𝑢 ⟩ ∈ 𝐸 (𝐺 ) , or call Del(𝑒− ) otherwise;
3 while !𝑄𝑢𝑒𝑢𝑒.𝑒𝑚𝑝𝑡𝑦 ( ) do
4 𝐻 ← 𝐺 ′ ; ⟨𝑢1, 𝑣1 ⟩ ← 𝑄𝑢𝑒𝑢𝑒.𝑡𝑜𝑝 ( ) ;
5 if ⟨𝑢1, 𝑣1 ⟩ is NOT visited then
6 for each 𝑘𝑐𝑖 in associated trussnesses of ⟨𝑢1, 𝑣1 ⟩ do
7 if 𝑘𝑐𝑖 == sup𝑐

𝐺
(⟨𝑢1, 𝑣1 ⟩) and

sup𝑐
𝐺 ′ (⟨𝑢1, 𝑣1 ⟩) < sup𝑐

𝐺
(⟨𝑢1, 𝑣1 ⟩) then

8 𝑘𝑐 ← 𝑘𝑐 − 1;

9 Repeat lines 7-8 similarly for the associated 𝑘𝑓 ;

10 𝐻 ← 𝐻\𝑒′ , s.t. 𝑘𝑐 (𝑒′ ) < 𝑘𝑐𝑖 ;

11 if LCS(⟨𝑢1, 𝑣1 ⟩ , 𝐻 ) < 𝑘𝑐𝑖 then 𝑘𝑐𝑖 ← 𝑘𝑐𝑖 − 1 ;

12 if LFS(⟨𝑢1, 𝑣1 ⟩ , 𝐻 ) < 𝑘𝑓𝑖 then 𝑘𝑓𝑖 ← 𝑘𝑓𝑖 − 1 ;

13 Mark ⟨𝑢1, 𝑣1 ⟩ as visited;
14 if ⟨𝑢1, 𝑣1 ⟩ is affected then DelCheck2(⟨𝑢1, 𝑣1 ⟩) ;
15 return ST′ (𝑒 ) , ∀𝑒 ∈ 𝐸 (𝐺 ′ ) ;

Procedure. DelCheck2(𝑒 )
Put all unvisited edges in E𝑐

𝐺
(𝑒 ) ∪ E𝑓

𝐺
(𝑒 ) together with their skyline

trussness set belong to case (2) in Lemma 5.3 into𝑄𝑢𝑒𝑢𝑒 ;
Procedure. LCS(𝑒,𝐻 )
Return the cycle support of the edge 𝑒 in the subgraph 𝐻 ;

Procedure. LFS(𝑒,𝐻 )
Return the flow support of the edge 𝑒 in the subgraph 𝐻 ;

Lemma 5.4. Given a directed graph 𝐺 , consider the insertion 𝑒+ =
⟨𝑢, 𝑣⟩. Then for each edge 𝑒 ∈ E𝑐

𝐺
(𝑒+) ∪ E𝑓

𝐺
(𝑒+) and its skyline truss-

ness set ST (𝑒) = {(𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) | for all 𝑖}, if (𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) dominates any
skyline trussness (𝑘′𝑐 (𝑒+) + 1, 𝑘′𝑓 (𝑒

+) + 1) in ST (𝑒+), then (𝑘𝑐𝑖 , 𝑘𝑓𝑖 )
will NOT be affected, otherwise (𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) may be affected.

We present a solution that can update an edge insertion correctly

for the MDM problem in Algorithm 2. In lines 1-3, we initialize

variables. We call operators to update supports in line 4. In lines

5-15, we maintain edges in E𝑐
𝐺
(𝑒+) ∪ E𝑓

𝐺
(𝑒+) after applying opera-

tors. In line 14, note that the support checked within this loop has

been correctly updated, in this way, sup𝐺 ′ (𝑒) > 𝑘 can guarantee an

increase in trussness. Because for those edges who forms triangles

with 𝑒+ and have their cycle truss or the flow truss of 𝑘 , the in-

crease in trussness is guaranteed with operators updating supports

correctly. In line 16, we compute the skyline trussness set for 𝑒+.
We start processing the queue in lines 17-18 and check the change

of cycle truss numbers and flow truss numbers successively in lines

19-35. In lines 20-22, we mark edges whose cycle truss number may

increase and append the queue. In lines 23-25, we unmark edges

whose cycle truss number remains the same. In lines 26-34, we

conduct the checking for flow truss numbers similarly. We update

trussness sets according to their marks in line 35 and return the

result in line 36.

5.4 Theoretical Analysis
Theorem 5.5. For Algorithm 1, the time complexity is 𝑂 (Δ𝑘𝑐 ·∑︁
𝑒∈𝐸𝐷𝐶2

deg(𝑢1) + deg(𝑣1)), where 𝑒 = ⟨𝑢1, 𝑣1⟩ and |𝐸𝐷𝐶2 | is the
number of edges that are inspected by DelCheck2 in Algorithm 1 and
is bounded by ∥CHANGED∥

1
, and the space complexity is 𝑂 (𝑚).

Theorem 5.6. For Algorithm 2, the time complexity is 𝑂 (Δ𝑘𝑐 ·∑︁
𝑒∈𝐸𝐼𝐶2

deg(𝑢1) + deg(𝑣1)), where 𝑒 = ⟨𝑢1, 𝑣1⟩ and |𝐸𝐼𝐶2 | is the
number of edges that are inspected by InsCheck2 in Algorithm 2, and
the space complexity is 𝑂 (𝑚′).
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Algorithm 2: Single Edge Insertion Algorithm

Input:𝐺 , 𝑒+ = ⟨𝑢, 𝑣⟩, ST(𝑒 ) , ∀𝑒 ∈ 𝐸 (𝐺 )
Output: ST′ (𝑒 ) , ∀𝑒 ∈ 𝐸 (𝐺 ⊕ 𝑒+ )

1 𝐺 ′ ← 𝐺 ⊕ 𝑒+ ;𝑄𝑢𝑒𝑢𝑒 ← ∅; 𝐻 ← ∅; InsCheck2(𝑒+ ) ;
2 for each 𝑒 ∈ 𝐸 (𝐺 ′ ) do
3 cinc (𝑒 ) ← false; finc (𝑒 ) ← false; Dunc (𝑒 ) ← false;

4 Call Enga(𝑒+ ) if ⟨𝑣,𝑢 ⟩ ∈ 𝐸 (𝐺 ) , or call Ins(𝑒+ ) otherwise;
5 𝑘𝑐𝑚𝑖𝑛 ← min{𝑘𝑐 | (𝑘𝑐 , 𝑘𝑓 ) ∈ ST (𝑒′ ), ∀𝑒′ ∈ E𝑐𝐺 (𝑒

+ ) ∪ E𝑓
𝐺
(𝑒+ ) };

6 𝑘𝑐𝑚𝑎𝑥 ← max{𝑘𝑐 | (𝑘𝑐 , 𝑘𝑓 ) ∈ ST (𝑒′ ), ∀𝑒′ ∈ E𝑐𝐺 (𝑒
+ ) ∪ E𝑓

𝐺
(𝑒+ ) };

7 for 𝑘𝑐 ← 𝑘𝑐𝑚𝑖𝑛 to 𝑘𝑐𝑚𝑎𝑥 do
8 if sup𝑐

𝐺 ′ (𝑒
+ ) == 𝑘𝑐 then

9 𝑘 ′𝑐 (𝑒+ ) ← 𝑘𝑐 ;

10 for each 𝑒′ ∈ E𝑐
𝐺
(𝑒+ ) ∪ E𝑓

𝐺
(𝑒+ ) do Dunc (𝑒′ ) ← true;

11 else if sup𝑐
𝐺 ′ (𝑒

+ ) < 𝑘𝑐 then
12 for each 𝑒′ ∈ E𝑐

𝐺
(𝑒+ ) ∪ E𝑓

𝐺
(𝑒+ ) do Dunc (𝑒′ ) ← true;

13 else
14 𝑘 ′𝑐 (𝑒′ ) ← 𝑘𝑐 + 1 s.t. 𝑘𝑐 (𝑒′ ) == 𝑘𝑐 ;

15 Repeat lines 5-14 similarly for flow truss numbers;

16 Compute the skyline trussness set for 𝑒+ ;
17 while !𝑄𝑢𝑒𝑢𝑒.𝑒𝑚𝑝𝑡𝑦 ( ) do
18 𝐻 ← 𝐺 ′ ; ⟨𝑢1, 𝑣1 ⟩ ← 𝑄𝑢𝑒𝑢𝑒.𝑡𝑜𝑝 ( ) ;
19 for each 𝑘𝑐𝑖 in associated trussnesses (𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) of ⟨𝑢1, 𝑣1 ⟩ do
20 if LCUB(⟨𝑢1, 𝑣1 ⟩ , 𝑘𝑐𝑖 ) ≥ 𝑘𝑐𝑖 + 1 then
21 if !cinc (⟨𝑢1, 𝑣1 ⟩) then
22 cinc (⟨𝑢1, 𝑣1 ⟩) ← true; InsCheck2(⟨𝑢1, 𝑣1 ⟩) ;
23 else
24 if cinc (⟨𝑢1, 𝑣1 ⟩) then
25 cinc (⟨𝑢1, 𝑣1 ⟩) ← false;
26 if LFUB(⟨𝑢1, 𝑣1 ⟩ , 𝑘𝑓𝑖 ) ≥ 𝑘𝑓𝑖 + 1 then
27 if !finc (⟨𝑢1, 𝑣1 ⟩) then
28 finc (⟨𝑢1, 𝑣1 ⟩) ← true;
29 InsCheck2(⟨𝑢1, 𝑣1 ⟩) ;
30 else
31 if finc (⟨𝑢1, 𝑣1 ⟩) then
32 finc (⟨𝑢1, 𝑣1 ⟩) ← false;
33 Dunc (⟨𝑢1, 𝑣1 ⟩) ← true;
34 InsCheck2(⟨𝑢1, 𝑣1 ⟩) ;

35 if cinc (𝑒 ) or finc (𝑒 ) then Update 𝑘𝑐𝑖 or 𝑘𝑓𝑖 by 1;

36 return ST′ (𝑒 ) , ∀𝑒 ∈ 𝐸 (𝐺 ′ ) ;
Procedure. InsCheck2(𝑒 )
Put all unvisited edges in E𝑐

𝐺
(𝑒 ) ∪ E𝑓

𝐺
(𝑒 ) belong to case (2) together with

their undominated skyline trussnesses into𝑄𝑢𝑒𝑢𝑒 ;

Procedure. LCUB(𝑒, 𝑘𝑐 )
Compute the local cycle support upper bound of 𝑒 by counting the number of

cycle supports where the other two edges in the △𝑐 have their 𝑘𝑐𝑖 ≥ 𝑘𝑐
and Dunc ( ·) is false;

Procedure. LFUB(𝑒, 𝑘𝑓 )
Compute the local flow support upper bound of 𝑒 by counting the number of

flow supports where the other two edges in the △𝑓 have their 𝑘𝑓𝑖 ≥ 𝑘𝑓
and Dunc ( ·) is false;

6 EFFICIENT ORDER-BASED INDEX
Though the MDM problem can be solved by single update algo-

rithms proposed above, there are 2 weaknesses: (1) both algorithms

are only able to handle to-be-updated edges one by one, (2) Algo-

rithm 2 cannot be proved to show neither boundedness nor relative

boundedness for edge insertions. In this section, we propose an

order-based index calledD-Index, which can perform batch updates.

We present the index design first and then illustrate its rationale for

maintenance. Corresponding batch-update algorithms and query

algorithms are further presented in Section 7. Refer to the full

paper [34] for the proofs of theorems.

6.1 D-Index Overview
The existing index [42] of the 𝑘-truss stores edges in the non-

ascending order of 𝑘 values. However, there are a pair of values

to consider (i.e. (𝑘𝑐 , 𝑘𝑓 )) for the D-truss, the dominant property of

(𝑘𝑐 , 𝑘𝑓 ) [28] confirms that it is impossible to construct such a single

order for the two dimensions of trussnesses in the D-truss. This

fact also increases the problem dimension for handling two types

of trussness compared to 𝑘-truss, which makes the MDM problem

harder. For addressing the hardness, we design our D-Index and
batch-update algorithms as follows.

Figure 3: The structure of D-Index

Definition 6. Cycle Decomposition Order (CD Order). Given a

directed graph𝐺 and a flow truss number 𝑘𝑓𝑖 , the cycle decomposi-

tion order (CD order) of 𝑘𝑓𝑖 is a sequence of edges in the subgraph

𝐻
0,𝑘𝑓𝑖

that follows the order of the decomposition along cycle truss

numbers, we denote it by ⪯𝑘𝑓𝑖 = {𝑒1, 𝑒2, · · · , 𝑒 |𝐻 | }. For any ⪯𝑘𝑓𝑖 of
𝐺 , it is divided into segments where edges within a segment share

the same cycle truss number. We denote a segment by seg(𝑘𝑐 𝑗 , 𝑘𝑓𝑖 ).
Then a CD Order ⪯𝑘𝑓𝑖 can be represented by segments ⪯𝑘𝑓𝑖 =

{seg(0, 𝑘𝑓𝑖 ), seg(1, 𝑘𝑓𝑖 ), seg(2, 𝑘𝑓𝑖 ), · · · , seg(𝑘𝑐 𝑗 , 𝑘𝑓𝑖 )}. Figure 3 il-

lustrates the structure of the D-Index. Given a directed graph 𝐺 ,

the D-Index of 𝐺 is the list of all ⪯𝑘𝑓𝑖 in the ascending order of 𝑘𝑓𝑖 ,

we denote the D-Index of 𝐺 and 𝐺 ′ by I𝐷 and I′
𝐷
respectively.

This index can be inherently constructed by the D-truss decom-

position algorithm [28]. Note that there may exist many valid CD

orders for a single 𝑘𝑓𝑖 , since all edges within the same segment can

be peeled off in any orders during the process of D-truss decompo-

sition. We keep an arbitrary valid CD order for each 𝑘𝑓𝑖 in D-Index
and maintain these CD orders one by one for the MDM problem.

6.2 The Rationale of D-Index
Maintenance in a CD order. Given the updated edges for this CD

order, the maintenance of it is illustrated below. Since we fix 𝑘𝑓𝑖 for

each ⪯𝑘𝑓𝑖 , we only need to decide new cycle truss numbers for all

edges in ⪯𝑘𝑓𝑖 and the maintenance can be deemed as the movement

of edges among segments. Figure 4 illustrates the pattern of such

movement, which is extended from the order index [42].

We consider edge insertions first for the ease of illustration, the

details for edge deletions are presented in Section 7.1. In Figure 4,

we choose an arbitrary CD order ⪯𝑘𝑓𝑖 and itself after maintaining

⪯′
𝑘𝑓𝑖

. We use 3 segments to show the principle of maintaining this

CD order (i.e. seg(𝑘𝑐 𝑗 , 𝑘𝑓𝑖 ), seg(𝑘𝑐 , 𝑘𝑓𝑖 ) and seg(𝑘𝑐 + 1, 𝑘𝑓𝑖 )), and
themselves after applying updates (i.e. seg′ (𝑘𝑐 𝑗 , 𝑘𝑓𝑖 ), seg′ (𝑘𝑐 , 𝑘𝑓𝑖 )

2205



and seg′ (𝑘𝑐 + 1, 𝑘𝑓𝑖 )). Within seg(𝑘𝑐 𝑗 , 𝑘𝑓𝑖 ), we mark edges whose

trussness will change in two boxes, where edges in box1 will move

to seg′ (𝑘𝑐 , 𝑘𝑓𝑖 ), and edges in box2 will move to seg′ (𝑘𝑐 + 1, 𝑘𝑓𝑖 ).
Within seg(𝑘𝑐 , 𝑘𝑓𝑖 ), we mark edges whose trussness remain same

in box3, and mark edges that will move to seg′ (𝑘𝑐 + 1, 𝑘𝑓𝑖 ) in box4.
We denote the edges set where each edge exists in the (𝑘𝑐 , 𝑘𝑓 )′-
truss but not in the (𝑘𝑐 , 𝑘𝑓 )-truss by Nseg(𝑘𝑐 , 𝑘𝑓 ). In this way,

we have Nseg(𝑘𝑐 , 𝑘𝑓𝑖 ) = {Box1 ∪ Box2}, seg(𝑘𝑐 , 𝑘𝑓𝑖 ) = {Box3 ∪
Box4},Nseg′ (𝑘𝑐 , 𝑘𝑓𝑖 ) = {Box2∪Box4} and seg′ (𝑘𝑐 , 𝑘𝑓𝑖 ) = {Box1∪
Box3}. We can regard all these unions as additions because each

pair of boxes is disjoint, we naturally obtain that Nseg(𝑘𝑐 , 𝑘𝑓𝑖 ) ∪
seg(𝑘𝑐 , 𝑘𝑓𝑖 ) = Nseg(𝑘𝑐 + 1, 𝑘𝑓𝑖 ) ∪ seg′ (𝑘𝑐 , 𝑘𝑓𝑖 ). For each CD order

and itself after maintaining, we have such Nseg − seg relationship

hold for all flow truss numbers 𝑘𝑓𝑖 .

Let 𝑒∗ be the edge we currently visit andwe initialize it as the first
one in ⪯𝑘𝑓𝑖 , two sets 𝐶 (𝑘𝑐 ,𝑘𝑓 ) and 𝑅 (𝑘𝑐 ,𝑘𝑓 ) are prepared for storing

Nseg(𝑘𝑐 + 1, 𝑘𝑓𝑖 ) and seg′ (𝑘𝑐 , 𝑘𝑓𝑖 ). First, we initialize 𝐶 (𝑘𝑐 ,𝑘𝑓𝑖 ) =

Nseg(𝑘𝑐 , 𝑘𝑓𝑖 ) and 𝑅 (𝑘𝑐 ,𝑘𝑓𝑖 ) = ∅. For any edge in seg(𝑘𝑐 , 𝑘𝑓𝑖 ) that is
visited before 𝑒∗, if it exists in Nseg(𝑘𝑐 , 𝑘𝑓𝑖 ), then it can be checked

whether it exists in seg′ (𝑘𝑐 , 𝑘𝑓𝑖 ) or not. We move it into 𝑅 (𝑘𝑐 ,𝑘𝑓𝑖 ) if
the answer is yes, and move it into 𝐶 (𝑘𝑐 ,𝑘𝑓𝑖 ) otherwise.

We construct and maintain 3 auxiliary variables for the correct-

ness of maintenance in each CD order, including 𝑟𝑒𝑚⪯ (·), 𝑠 (·) and
𝑒𝑥𝑡 (·). For ∀𝑒 ∈⪯𝑓𝑖 , we denote the number of cycle support of 𝑒

which exist in the edges after 𝑒 in ⪯𝑓𝑖 by 𝑟𝑒𝑚⪯ (𝑒). For∀𝑒 ∈ 𝐶 (𝑘𝑐 ,𝑘𝑓𝑖 ) ,
we maintain 𝑠 (𝑒) that is equal to the number of cycle support of 𝑒

in (𝑘𝑐 , 𝑘𝑓𝑖 )′-truss \ 𝑅 (𝑘𝑐 ,𝑘𝑓𝑖 ) . For the current visiting 𝑒
∗
and edges

after 𝑒∗ in ⪯𝑓𝑖 , 𝑒𝑥𝑡 (𝑒) is maintained such that 𝑒𝑥𝑡 (𝑒) + 𝑟𝑒𝑚⪯ (𝑒)
always equal the number of cycle support in the subgraph which

consists of 𝐶 (𝑘𝑐 ,𝑘𝑓𝑖 ) and the edges after 𝑒 in ⪯𝑓𝑖 . We design dif-

Figure 4: The principle of order-based maintenance idea

ferent procedures for processing all 3 cases of 𝑒∗, that is case 1

(𝑒𝑥𝑡 (𝑒∗) = 0), case 2 (𝑒𝑥𝑡 (𝑒∗) > 0 and 𝑒𝑥𝑡 (𝑒∗) + 𝑟𝑒𝑚⪯ (𝑒∗) > 𝑘𝑐 )

and case 3 (𝑒𝑥𝑡 (𝑒∗) > 0 and 𝑒𝑥𝑡 (𝑒∗) + 𝑟𝑒𝑚⪯ (𝑒∗) < 𝑘𝑐 ). For case 1,

we can verify that 𝑒∗ exists in seg′ (𝑘𝑐 , 𝑘𝑓𝑖 ) straightforwardly, so we
remove it from the CD order and move it into 𝑅 (𝑘𝑐 ,𝑘𝑓𝑖 ) , all 𝑠 (·) and
𝑒𝑥𝑡 (·) remain same. For case 2, 𝑒∗ may exist in the (𝑘𝑐 +1, 𝑘𝑓𝑖 )-truss
of𝐺 ′, we keep it in the CD order and add it into𝐶 (𝑘𝑐 ,𝑘𝑓𝑖 ) , all corre-
sponding auxiliary variables need to be maintained according to

their definitions. For case 3, 𝑒∗ cannot exist in the (𝑘𝑐 + 1, 𝑘𝑓𝑖 )-truss
of 𝐺 ′, we remove it from the CD order and move it into 𝑅 (𝑘𝑐 ,𝑘𝑓𝑖 ) ,
meanwhile, we remove any edge 𝑒 ∈ 𝐶 (𝑘𝑐 ,𝑘𝑓𝑖 ) recursively such that

𝑠 (𝑒) ≤ 𝑘𝑐 , and update auxiliary variables.

Example 6.1. Consider the graph 𝐺 in Figure 1(a), assume that we

insert a new edge ⟨𝑣8, 𝑣9⟩ to 𝐺 , and the procedures that how ⪯0 is

Figure 5: The illustration of Example 6.1

maintained to ⪯′
0
are in Figure 5. We underline changes between

consecutive subgraphs by red dashed lines. Figure 5 (a) shows a

feasible CD order ⪯0, which consists of seg(0, 0) and seg(1, 0). Note
that each edge is stored in the format of (𝑒, 𝑘𝑐 (𝑒), 𝑟𝑒𝑚⪯ (𝑒)). After
the insertion of ⟨𝑣8, 𝑣9⟩, we start to maintain seg(0, 0) to seg′ (0, 0).
First, in Figure 5 (b), we initialize 𝐶 (0,0) = {(⟨𝑣8, 𝑣9⟩ , 1)} in the

format of the pair of (𝑒, 𝑠 (𝑒)), and process 𝐶 (0,0) as in lines 5-15 in

Algorithm 4, where 𝐶 (0,0) remains unchanged. Then we start to

process edges in seg(0, 0), since ⟨𝑣9, 𝑣5⟩ belongs to case 2, so it is

added to 𝐶 (0,0) . In Figure 5 (c), the remained two edges belong to

case 1, by now seg′ (0, 0) is obtained and 𝐶 (0,0) = Nseg(1, 0).
In Figure 5 (d), we focus on seg(1, 0) and initialize 𝐶 (1,0) =

{(⟨𝑣8, 𝑣9⟩ , 1), (⟨𝑣9, 𝑣5⟩ , 1)}, the checking turns out that they will be
removed from 𝐶 (1,0) and added at the head of seg′ (1, 0). Figure 5
(e) shows ⟨𝑣8, 𝑣9⟩ and ⟨𝑣9, 𝑣5⟩ belong to case 1. Due to the change

of 𝐶 (1,0) , 𝑒𝑥𝑡 (⟨𝑣5, 𝑣8⟩) changes from 1 to 0, its case also changes

from case 2 to case 1. By now all remained edges belong to case 1

thus are omitted. 𝐶 (1,0) becomes empty, thus the maintenance to

⪯′
0
is finished.

Maintenance among CD orders. Instead of simply maintaining

all orders independently, we utilize the dominant property of D-

truss to prune unnecessary to-be-checked orders and accelerate the

maintenance process as follows. It is obvious that all edges within

⪯𝑘𝑓𝑖 exactly form the subgraph 𝐻
0,𝑘𝑓𝑖

. For correctly maintain the

index, each ⪯′
𝑘𝑓𝑖

should form𝐻 ′
0,𝑘𝑓𝑖

after applying edge updates. We

start maintaining D-Index from ⪯0 given edge updates 𝐸+, instead
of maintaining CD orders one by one simply, the squeezing search

based on the dominant property of D-truss can be conducted below.

For edge deletions, we first obtain ⪯′
𝑘𝑓𝑖

by maintaining the CD

order ⪯𝑘𝑓𝑖 , then we need to maintain ⪯𝑘𝑓𝑖 +1, based on the dominant
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property, we can pick a tighter upper bound for the cycle truss

number of any edge 𝑒 in ⪯𝑘𝑓𝑖 +1: {min(𝑘1𝑐 , 𝑘2𝑐 ) | 𝑒 ∈ seg(𝑘1𝑐 , 𝑘𝑓𝑖 +
1), 𝑒 ∈ seg′ (𝑘2𝑐 , 𝑘𝑓𝑖 )}. For edge insertions, the cycle truss of 𝑒 has
a lower bound 𝑘1𝑐 exist in ⪯𝑘𝑓𝑖 +1, it also has an upper bound 𝑘2𝑐

exist in ⪯′
𝑘𝑓𝑖

for ∀𝑒 ∈⪯𝑘𝑓𝑖 +1. Then the maintenance of ⪯𝑘𝑓𝑖 +1 can be

conducted more efficiently from both the head and the tail of the CD

order. Note that we need to update 𝐸+ by 𝐸 (𝐻
0,𝑘𝑓𝑖 +1)\𝐸 (𝐻

′
0,𝑘𝑓𝑖 +1

)
for the next to-be-maintained CD order, and if 𝐸+ becomes empty,

which implies that no updated edges exist in the next CD order

and all remained CD orders are unchanged, in this way, we can

early-stop the maintenance correctly and efficiently.

7 INDEX-BASED ALGORITHMS
In this section, we propose the solutions for the problem of MDM

andMDSMbased on theD-Index, including the algorithms for batch

edges deletion and insertion respectively for the MDM problem, the

query algorithm for the MDSM problem, together with theoretical

analysis for these algorithms.

7.1 Batch Edges Update Algorithms
We denote the batch of to-be-deleted edges by 𝐸− . We present

our batch edges deletion algorithm in Algorithm 3. We initialize

variables in line 1, note that 𝐸𝑢𝑝 is initialized as 𝐸− and is updated

for the next CD order in lines 2-19. In lines 3-7, we start maintaining

trussness sets for edges in 𝐸𝑢𝑝 by initializing the queue. In lines

8-16, we maintain the order by auxiliary variables 𝑟𝑒𝑚⪯ (·) and
𝑡𝑠 (·), where 𝑡𝑠 (𝑒) is defined as the number of cycle triangles where

the other two edges 𝑒′ and 𝑒′′ both have their cycle truss numbers

no smaller than 𝑘𝑐 of 𝑒 . Note that all existing trussness sets are

obtained from I𝐷 . In lines 17-19, we update the flow truss numbers

of edges that exist in the next CD order by picking a tighter upper

bound to squeeze the search space. We update 𝐸𝑢𝑝 and necessary

variables in line 20 and return the result in line 21.

We denote the batch of to-be-inserted edges by 𝐸+. Our batch
edges insertion algorithm is presented in Algorithm 4. We initialize

variables in line 1. As illustrated in Section 6.2, 𝐸𝑢𝑝 is initialized

and maintained in lines 2-33. We initialize 𝐶 (𝑘𝑐 ,𝑘𝑓 ) is initialized
in line 5 and is processed in lines 6-13. In lines 14-15, we update

𝑒𝑥𝑡 (·) for edges after 𝑒∗ inclusively in ⪯𝑘𝑓 . In lines 16-26, process

the edge according to 3 cases of different 𝑒𝑥𝑡 (·) and 𝑟𝑒𝑚⪯ (·) men-

tioned in Section 6.2. We initialize Nseg(𝑘𝑐+1,𝑘𝑓 ) with remained

edges in 𝐶 (𝑘𝑐 ,𝑘𝑓 ) in line 27 and update cycle truss numbers in

Nseg(𝑘𝑐 ,𝑘𝑓 )\Nseg(𝑘𝑐+1,𝑘𝑓 ) in line 28. In lines 30-32, we squeeze the

search space for the maintenance of each edge. We update 𝐸𝑢𝑝 and

necessary variables in line 33. Note thatOIns andODel can be done

in 𝑂 (1) based on the order maintenance algorithm [11].

7.2 Fully-Dynamic Search Maintenance
Based on the batch edges update algorithms above, we present

the fully-dynamic MDSM query algorithm in Algorithm 5. For the

given batch edges update which consists of batch edges insertion

and deletion, we remove the insertion and deletion of the same edge

first, then move deletions in the first half of the updates, and leave

insertions in the second half of updates. In this way, we maintain I𝐷
by calling Algorithm 3 and Algorithm 4 in line 1. In lines 2-3, if the

Algorithm 3: Batch Edges Deletion Algorithm

Input:𝐺 , 𝐸− , I𝐷
Output: I′

𝐷

1 𝐺 ′ ← 𝐺\𝐸− ; 𝐸𝑢𝑝 ← 𝐸− ;𝑄𝑢𝑒𝑢𝑒 ← ∅; 𝑘𝑐 ← 0 ;

2 while !𝐸𝑢𝑝 .𝑒𝑚𝑝𝑡𝑦 ( ) do
3 for each edge 𝑒− ∈ 𝐸𝑢𝑝 do
4 Remove 𝑒− from ⪯𝑘𝑓 ;
5 Update 𝑟𝑒𝑚⪯ ( ·) and 𝑡𝑠 ( ·) for edges that form a △ with 𝑒− ;
6 for each 𝑒 with 𝑡𝑠 (𝑒 ) < 𝑘𝑐 (𝑒 ) in line 5 do
7 if 𝑒 ∈ 𝑄𝑢𝑒𝑢𝑒 and 𝑒 ∉ 𝐸− then𝑄𝑢𝑒𝑢𝑒 ← 𝑒 ;

8 while !𝑄𝑢𝑒𝑢𝑒.𝑒𝑚𝑝𝑡𝑦 ( ) do
9 𝑒 ← 𝑄𝑢𝑒𝑢𝑒.𝑡𝑜𝑝 ( ) ; 𝑘 ′𝑐 (𝑒 ) ← max{𝑘𝑐 | |△𝑘𝑐𝑒 | ≥ 𝑘𝑐 };

1010 for each △ that contains 𝑒 in𝐺 ′ do
11 Let 𝑒′ and 𝑒′′ be the other two edges of △;
12 Update 𝑡𝑠 (𝑒′ ) by checking 𝑘 ′

𝑓
(𝑒 ), 𝑘𝑓 (𝑒′ ) , 𝑘𝑓 (𝑒′′ ) ;

13 if 𝑡𝑠 (𝑒′ ) < 𝑘𝑓 (𝑒′ ) and 𝑒′ ∉ 𝑄𝑢𝑒𝑢𝑒 then 𝑄𝑢𝑒𝑢𝑒 ← 𝑒′ ;
14 Repeat line 12-13 for 𝑒′′ ;

15 Append 𝑒 into ⪯′
𝑘𝑓

;

16 Update 𝑟𝑒𝑚⪯ ( ·) and 𝑡𝑠 ( ·) for edges that form cycle triangles with

𝑒 ;

17 Conduct maintenance from 𝑘𝑐𝑚𝑎𝑥 similar to lines 8-16;

18 for each 𝑒 ∈⪯𝑘𝑓 +1 do
19 𝑘𝑐 (𝑒 ) ← {min(𝑘1

𝑐 , 𝑘
2

𝑐 ) | 𝑒 ∈ seg(𝑘1

𝑐 , 𝑘𝑓𝑖 + 1), 𝑒 ∈ seg
′ (𝑘2

𝑐 , 𝑘𝑓 ) }
20 𝐸𝑢𝑝 ← 𝐸 (𝐻0,𝑘𝑓 +1 )\𝐸 (𝐻

′
0,𝑘𝑓 +1

) ;𝑄𝑢𝑒𝑢𝑒 ← ∅; 𝑘𝑓 ← 𝑘𝑓 + 1;

21 return I′
𝐷
;

previous result𝐻 is empty, then we need to compute this new query

from scratch. In lines 5-8, we consider all edges in the given query

resultH𝑘𝑐 ,𝑘𝑓 ,𝑄 (𝐺) before applying edge updates, find those whose

trussnesses can dominate or equal (𝑘′𝑐 , 𝑘′𝑓 ) and mark them as kept.
After inspecting trussnesses, we check the connectivity of 𝐻 in line

9. In line 10, we conduct searching based on 𝐻 by the index-based

query algorithm [28]. In lines 11-13, we check the containment of

𝑄 ′ of the result community 𝐻 .

The optimization of leveraging all previous results. Algo-
rithm 5 is only able to maintain the query result from the last one.

When the results of two consecutive queries are not relevant, the

extra checking procedures make the query maintenance algorithm

worse than direct query algorithm. It is strongly motivated that

making Algorithm 5 utilizes of all previous query results. The opti-

mization can be extended based on Algorithm 5 as follows. With

storing previous queries and their result subgraphs in advance,

when we receive a new query 𝑄𝑖+1, we can check the existence of

query vertices in all previous result subgraphs 𝐻𝑖 ,∀𝑖 and obtain a

candidate set of result subgraphs. Then we compute the difference

of Δ𝐺𝑖+1 and each Δ𝐺 in the candidate set, where the difference is

defined as the number of different deletions or insertions. Finally we

select the previous query and its result subgraph with the smallest

difference as the input of Algorithm 5.

7.3 Theoretical Analysis
Boundedness of Algorithm 3. The Algorithm 3 is bounded to

the polynomial function of |CHANGED|, which is shown in The-

orem 7.1. Our proposed index I𝐷 can handle batch edges deletion

boundedly by Algorithm 3, meanwhile, it can handle batch edges

insertion relative-boundedly, which is shown in Theorem 7.2.

Theorem 7.1. For Algorithm 3, the time complexity of is 𝑂 (Δ𝑘𝑓 ·
𝑇△ (CHANGED) ·max𝑒∈CHANGED𝑇△ (𝑒)), where 𝑇△ (𝑒) denotes the
time of listing all triangles that contain 𝑒 , and 𝑂 (𝑚′) for space.
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Algorithm 4: Batch Edges Insertion Algorithm

Input:𝐺 , 𝐸+, I𝐷
Output: I′

𝐷

1 𝐺 ′ ← 𝐺 ⊕ 𝐸+; 𝐸𝑢𝑝 ← 𝐸+;𝑄𝑢𝑒𝑢𝑒 ← ∅; 𝑘𝑓 ← 0;

Nseg(𝑘𝑐 ,𝑘𝑓 ) ← 𝐸+;

2 while !𝐸𝑢𝑝 .𝑒𝑚𝑝𝑡𝑦 ( ) do
3 𝑘𝑐 ← 0;

4 while !Nseg(𝑘𝑐 ,𝑘𝑓 ) .𝑒𝑚𝑝𝑡𝑦 ( ) do
5 𝑒∗ ←⪯𝑘𝑓 .𝑡𝑜𝑝 ( ) ;𝐶 (𝑘𝑐 ,𝑘𝑓 ) ← Nseg(𝑘𝑐 ,𝑘𝑓 ) with 𝑠 (𝑒 )

correctly initialized for ∀𝑒 ∈ 𝐶 (𝑘𝑐 ,𝑘𝑓 ) ;
6 while ∃𝑒 ∈ 𝐶 (𝑘𝑐 ,𝑘𝑓 ) with 𝑠 (𝑒 ) ≤ 𝑘𝑐 do
7 𝑟𝑒𝑚⪯ (𝑒 ) ← 𝑠 (𝑒 ) ;
8 for each △ that contains 𝑒 do
9 Let 𝑒′ and 𝑒′′ be other two edges of △;

10 if △ ∉ 𝐺 (𝐶 (𝑘𝑐 ,𝑘𝑓 ) ∪ 𝐸⪯𝑒∗ ) then continue;

11 if 𝑒′ ∈ 𝐶 (𝑘𝑐 ,𝑘𝑓 ) then 𝑠 (𝑒′ ) ← 𝑠 (𝑒′ ) − 1;

12 if 𝑒′′ ∈ 𝐶 (𝑘𝑐 ,𝑘𝑓 ) then 𝑠 (𝑒′′ ) ← 𝑠 (𝑒′′ ) − 1;

13 𝐶 (𝑘𝑐 ,𝑘𝑓 ) ← 𝐶 (𝑘𝑐 ,𝑘𝑓 ) \𝑒 ; OIns(⪯𝑘𝑓 , 𝑒, 𝑒
∗ ) ;

14 for each 𝑒 ∈ 𝐶 (𝑘𝑐 ,𝑘𝑓 ) do
15 Update 𝑒𝑥𝑡 ( ·) for edges after 𝑒∗ inclusively in ⪯𝑘𝑓 ;
16 while 𝑒∗ ≠ 𝑛𝑖𝑙 do
17 𝑒∗𝑛𝑒𝑥𝑡 ← the edge next to 𝑒∗ in ⪯𝑘𝑓 ;
18 if 𝑒𝑥𝑡 (𝑒∗ ) = 0 then
19 Find the first 𝑒 in ⪯𝑘𝑓 s.t. 𝑒𝑥𝑡 (𝑒 ) > 0, else break;

20 else if 𝑒𝑥𝑡 (𝑒∗ ) + 𝑟𝑒𝑚⪯ (𝑒∗ ) > 𝑘𝑐 then
21 Add 𝑒∗ to𝐶 (𝑘𝑐 ,𝑘𝑓 ) with 𝑠 ( ·) = 𝑒𝑥𝑡 ( ·) + 𝑟𝑒𝑚⪯ ( ·) ;
22 Update 𝑒𝑥𝑡 ( ·) for edges in 𝐸⪯𝑒∗ ; ODel(⪯, 𝑒∗ ) ;
23 else
24 Update 𝑟𝑒𝑚⪯ (𝑒∗ ) , 𝑒𝑥𝑡 (𝑒∗ ) and 𝑠 ( ·) for𝐶 (𝑘𝑐 ,𝑘𝑓 ) ;
25 Process all edges that are affected in𝐶 (𝑘𝑐 ,𝑘𝑓 ) ;

26 𝑒∗ ← 𝑒∗𝑛𝑒𝑥𝑡 ;

27 Nseg(𝑘𝑐+1,𝑘𝑓 ) ← 𝐶 (𝑘𝑐 ,𝑘𝑓 ) ;

28 for 𝑒 ∈ Nseg(𝑘𝑐 ,𝑘𝑓 ) \Nseg(𝑘𝑐+1,𝑘𝑓 ) do 𝑘 ′𝑐 ← 𝑘𝑐 ;

29 𝑘𝑐 ← 𝑘𝑐 + 1;
30 Conduct maintenance from 𝑘𝑐𝑚𝑎𝑥 similar to lines 4-29;

31 for each 𝑒 ∈⪯′
𝑘𝑓

do
32 𝑘𝑐 (𝑒, 𝑘𝑓 + 1) ← min{𝑘𝑐 (𝑒, 𝑘𝑓 + 1), 𝑘 ′𝑐 (𝑒, 𝑘𝑓 ) };
33 𝐸𝑢𝑝 ← 𝐸 (𝐻 ′

𝑘𝑐+1,0 )\𝐸 (𝐻𝑘𝑐+1,0 ) ;𝑄𝑢𝑒𝑢𝑒 ← ∅; 𝑘𝑓 ← 𝑘𝑓 + 1;
34 return I′

𝐷
;

Formulating AFFkf . Given the batch edges update Δ𝐺 , we con-

sider two valid CD orders ⪯𝑘𝑓 and ⪯1
𝑘𝑓
. We define the difference

between them as dif (⪯𝑘𝑓 , ⪯
1

𝑘𝑓
) = CHANGED ∪ {𝑒1 ∈ 𝐺 | ∃𝑒2 ∈

𝐺, 𝑠.𝑡 .𝑒1 ⪯𝑘𝑓 𝑒2 𝑎𝑛𝑑 𝑒2 ⪯1𝑘𝑓 𝑒1} , where 𝑒1 ⪯𝑘𝑓 𝑒2 means that 𝑒1

appears before 𝑒2 in the CD order ⪯𝑘𝑓 , also implies that the cycle

truss number of 𝑒1 is no bigger than 𝑒2’s. Then the AFFkf of the CD
order ⪯𝑘𝑓 is defined as, AFFkf =

⋂︁
⪯1
𝑘𝑓

dif (⪯𝑘𝑓 , ⪯
1

𝑘𝑓
) .

Relative boundedness of Algorithm 4. The MDM problem is

unbounded for edge insertions, which is proved in Section 4. By

formulating AFFkf and proposing the index I𝐷 , we show that the

Algorithm 4 is relative bounded below.

Theorem 7.2. The time complexity of Algorithm 4 is 𝑂 (Δ𝑘𝑓 ·|︁|︁AFFkf |︁|︁ ∥︁∥︁AFFkf ∥︁∥︁21 · log(|︁|︁AFFkf |︁|︁ ∥︁∥︁AFFkf ∥︁∥︁21)) and 𝑂 (𝑚′) for space.
Theorem 7.3. The time complexity of Algorithm 5 is𝑂 (𝑘𝑓𝑚𝑎𝑥 ·𝑚),

the space complexity of Algorithm 5 is 𝑂 (𝑚′).

Algorithm 5:MDSM Query Algorithm

Input:𝐺 ,𝑄 , 𝑘𝑐 , 𝑘𝑓 , H𝑘𝑐 ,𝑘𝑓 ,𝑄
(𝐺 ) , I𝐷 and Δ𝐺 , Δ𝑄 , 𝑘 ′𝑐 , 𝑘

′
𝑓

Output: H𝑘′𝑐 ,𝑘′𝑓 ,𝑄
′ (𝐺 ⊕ Δ𝐺 )

1 𝐻 ← H𝑘𝑐 ,𝑘𝑓 ,𝑄
; Obtain I′

𝐷
by Algorithm 3 and Algorithm 4;

2 if 𝐻 is empty then
3 𝐻 ← the result by the query algorithm [28] with

𝑘 ′𝑐 , 𝑘
′
𝑓
,𝑄 ⊕ Δ𝑄 input;

4 else
5 for each 𝑒 ∈ 𝐸 (𝐻 ) do
6 for each (𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) ∈ ST

′ (𝑒 ) do
7 if (𝑘𝑐𝑖 , 𝑘𝑓𝑖 ) ⪯ (𝑘 ′𝑐 , 𝑘 ′𝑓 ) thenMark 𝑒 as kept; break;

8 if 𝑒 is NOT kept then 𝐻 ← 𝐻\𝑒 ;
9 if 𝐻 is NOT connected then 𝐻 ← ∅; return 𝐻 ;

10 𝐻 ← the result by the query algorithm [28] that starts with

𝑘 ′𝑐 , 𝑘
′
𝑓
, 𝐻 ;

11 for each 𝑢 ∈ 𝑉 (𝐻 ) doMark 𝑢 as visited;
12 for each 𝑞′ ∈ Δ𝑄 do
13 if 𝑞′ is NOT visited then 𝐻 ← ∅; return 𝐻 ;

14 return 𝐻 ;

8 EXPERIMENTS
In this section, we conduct all experiments on a Linux machine

with an Intel Xeon Gold 6240R CPU and 1007GBmain memory. Due

to page limitations, we only show experimental results on selected

datasets, complete results of all datasets are available here [34],

similar performance trends are observed from other datasets.

Datasets. We use 7 real-world datasets which are publicly accessi-

ble, including Email (EM), Twitter (TW), BerkStan (BS), Wiki (WK),

Pokec (PK) from SNAP [26], Edinburgh Associative Thesaurus

(EAT) from Pajek [6] and DBpedia Links (DL) from KONECT [24].

The summary of datasets is shown in Table 2. Note that DL cannot

be decomposed within 6 × 104 seconds, thus we sample subgraphs

of it at different rates.

Algorithms.We evaluate the following algorithms in this paper.

For the MDS problem: (1) the D-truss decomposition algorithm

Dec (the decomposition algorithm [28] with 𝐺 ⊕ Δ𝐺 input). For

the MDM problem: (1) the single deletion algorithm SDel (Algo-
rithm 1), (2) the single insertion algorithm SIns (Algorithm 2), (3)

the batch deletion algorithm with unit edge processing UBDel and
with batch edge processing BDel (Algorithm 3) and (4) the batch in-

sertion algorithm with unit edge processing UBIns and with batch

edge processing BIns (Algorithm 4). For the MDSM problem: (1)

ReQry (the query algorithm [28] with𝐺 ⊕Δ𝐺 input), (2)CoQry (the
query algorithm [28] after being maintained by Algorithm 3 and

Algorithm 4), (3)MtQry (Algorithm 5) and (4) OpQry (Algorithm 5

with the optimization). All algorithms are implemented in C++. In

all experiments, the 𝑦-axis denotes the running time in logarithmic

scale, and we end algorithms which run longer than 2×104 seconds.

8.1 Effectiveness Evaluation
EAT [6] is a word network which is built from the Edinburgh Asso-

ciative Thesaurus (EAT). In the EAT network, the vertices denote

the words, and the edge

⟨︁
𝑤𝑖 ,𝑤 𝑗

⟩︁
from𝑤𝑖 to𝑤 𝑗 means that the word

𝑤𝑖 points to another word𝑤 𝑗 if𝑤 𝑗 appears as the response when𝑤𝑖

is received as the stimulus. For clearly illustrating the use case, we
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Table 2: Summary of Datasets

Dataset |𝑉 | |𝐸 | degin𝑚𝑎𝑥 degout𝑚𝑎𝑥 𝑘𝑐𝑚𝑎𝑥 𝑘𝑓𝑚𝑎𝑥

EM 1.0K 25.6K 211 333 14 21

EAT 23.1K 685K 1073 78 3 8

TW 81.3K 1.8M 3, 383 1, 205 161 199

BS 685K 7.6M 84, 208 249 41 80

WK 1.8M 28.5M 238, 040 3, 907 36 37

PK 1.6M 30.6M 13, 733 8, 763 18 27

DL 18.2M 136.5M 612, 308 8, 105 − −

sample the subgraph such that in Figure 6(a). Consider the following

two queries for the word “drink”, one is𝑄𝑢𝑒𝑟𝑦1 : {𝑄 =“drink”, 𝑘𝑐 =

3, 𝑘𝑓 = 0}, the other is 𝑄𝑢𝑒𝑟𝑦2 : {𝑄 =“drink”, 𝑘𝑐 = 2, 𝑘𝑓 = 4}.
Here 𝑄𝑢𝑒𝑟𝑦1 aims for finding the word community around “drink”,

where every word can remind other 4words with similar influences;

while 𝑄𝑢𝑒𝑟𝑦2 weakens the requirement of similar influences, but

introduces the hierarchical reminding relationship that each word

is participated in with other 5 words. The updated edges 𝐸+ are
marked red in Figure 6(a). Figure 6(b) and (c) show the query results

before and after applying updated edges.

Figure 6: Effectiveness evaluation

𝑄𝑢𝑒𝑟𝑦1 desires a (3, 0)-truss of the word “drink”, before applying
the updated edges, the result subgraph consists of “glass”, “bottle”,

“wine” and “water”. After maintaining by Algorithm 4, the new

(3, 0)-truss of “drink” also contains “cup”, which shares an equal

relationship with all words in old result. Considering 𝑄𝑢𝑒𝑟𝑦2, a

(2, 4)-truss of the word “drink” is returned, many words are con-

tained in the old result subgraph, form a mixed structure around

“drink”. They are participated with the community of “drink” both

in a relatively weak equal relationship and a relatively strong hi-

erarchical relationship. Together with the result of 𝑄𝑢𝑒𝑟𝑦1, we

know that the words “glass”, “bottle”, “wine” forms a stronger equal

relationship with “drink”. The word “drunk” is in the upstream

of “drink”, which means that it always reminds people of “drink”,

while the words “booze”, “cider”, “beer”, “rum”, “ale” are in the

downstream of “drink”, which means that when people are given

“drink” as the stimulus, these alcoholic words arise as a response.

After being maintained, the new (2, 4)-truss of “drink” also contains
“cup” and “water”, which enlarge the community with a relatively

strong equal relationship.

8.2 Efficiency Evaluation
Exp-1: Index construction.We show the index construction time

and index size in Figure 7(a). For all the datasets, the D-Index can
be built within 2 × 104 seconds, and the index size is within 85 GB.

Such construction costs are acceptable for real world applications.

Exp-2: Varying |Δ𝐺 |. We conduct the experiment of investigating

the impact of |Δ𝐺 | over EM and TW. Given a directed graph𝐺 , Δ𝐺
is sampled from 𝐸 (𝐺) randomly, in this way, we set𝐺 as the original

graph for edge deletions and set 𝐺\Δ𝐺 as the original graph for

edge insertions. We vary |Δ𝐺 | from 4% to 20% of the original graph

size. The running times on each graph are shown in Figure 7 (b), (c),

(d), (e) respectively. The results show that, (1) BIns performs better

than SIns and UBIns consistently, and BIns runs faster than Dec
with Δ𝐺 of around 12% for EM, and of around 10% for TW; (2) BDel
also performs better than SDel and UBDel consistently, and BDel is
more efficient thanDecwith Δ𝐺 of around 20% for both datasets; (3)

SIns and SDel perform better than UBIns and UBDel coordinately,
which implies that single-udpate algorithms are more efficient than

the D-Index because of index-related processing are costly than

index-free operators under the single-update setting; (4) |Δ𝐺 | is
usually very small relative to |𝐺 | in real world [15], BIns runs at
most 4.12x and 1.63x faster than Dec for EM and TW respectively,

and BDel runs at most 6.89x and 2.94x faster than Dec for two

datasets. We observe that BDel is more efficient than BIns, because
BDel is bounded to CHANGED, while BIns is unbounded.
Exp-3: Varying |𝐺 |. The impact of |𝐺 | is evaluated on 2 largest

datasets PK andDLwith 30.6Medges and 136.5Medges respectively.

We also obtain 5 subgraphs for PK by randomly sampling from the

original graph at rates of 20%, 40%, 60%, 80% and 100%. Note that

𝐺20% ⊆ 𝐺40% ⊆ 𝐺60% ⊆ 𝐺80% ⊆ 𝐺100% is guaranteed. The results of

PK are shown in Figure 7 (f) and (h). We sample DL similarly at rates

of 20%, 25%, 30%, 35% and 40%, and results are shown in Figure 7

(g) and (i). In this experiment, we apply the same Δ𝐺 for these

sampled subgraphs of each dataset, where |Δ𝐺 | is 1% of |𝐺 |. The
usage of |Δ𝐺 | for insertions and deletions is exactly as same as Exp-

2. We see that Dec runs super-linearly with the size of the graph

for both PK and DL. Take Dec as the baseline method, (1) for edge

insertions, BIns and SIns scale well and perform better than Dec as
|𝐺 | getting larger, but UBIns is not always scalable, especially for

very large datasets such as DL, since too many low-level operations

are executed in UBIns for each unit update and the time cost of

these operations gets longer when |𝐺 | gets larger; (2) for edge
deletions, all algorithms perform well and BDel performs best in

the experiment since all of them are bounded. Similar performance

trends are observed from other datasets.

Exp-4: Vary |previous queries|. In this experiment, we generate

100 queries randomly, the queried trussness is guaranteed to be

dominated by (𝑘𝑐𝑚𝑎𝑥 , 𝑘𝑓𝑚𝑎𝑥 ). Note that generated queries are not

necessarily valid, since the solution should also be efficient to judge

invalid queries. Δ𝐺 is composed of a half of edge deletions and the

other half of edge insertions.We set |𝑄 | = 4, Δ𝑄 as null. We vary the

number of previous queries of 19, 39, 59, 79, 99. For ReQry, CoQry
and MtQry, we report the average query time by each point; for

CoQry, we report the exact query time at each point. In Figure 7 (j),

we show the results on WK. When the number of previous queries

gets larger, the query time changes slightly for ReQry, CoQry and
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(a) Index construction (b) EM, Δ𝐺 insertions (c) TW, Δ𝐺 insertions (d) EM, Δ𝐺 deletions (e) TW, Δ𝐺 deletions

(f) PK, Δ𝐺 insertions (g) DL, Δ𝐺 insertions (h) PK, Δ𝐺 deletions (i) DL, Δ𝐺 deletions (j) WK, |previous queires |

Figure 7: Exp-1, 2, 3 and 4 of Efficiency Evaluation

MtQry. OpQry is faster than other methods on almost all points.

The time cost of OpQry decreases first but keeps increasing as the

number of previous queries gets larger. Because with more previous

results, the checking procedures of them take longer time.

(a) WK, |𝑄 | (b) WK, Δ𝑄

(c) BS, 𝑘 ′𝑐 = 𝑐 · 𝑘𝑐𝑚𝑎𝑥 , 𝑘
′
𝑓
= 0 (d) BS, 𝑘 ′𝑐 = 0, 𝑘 ′

𝑓
= 𝑐 · 𝑘𝑓𝑚𝑎𝑥

Figure 8: Exp-5 and 6 of Efficiency Evaluation

Exp-5: Varying |𝑄 | and |Δ𝑄 |. In Figure 8 (a), we evaluate the

impact of |𝑄 | on WK. We set Δ𝑄 as null and vary |𝑄 | of 1, 2, 4, 6 and
8. The query time becomes longer for all methods when |𝑄 | gets
larger, because it costs longer for checking more query vertices.

ReQry and CoQry cost more time than MtQry and OpQry when

|𝑄 | gets larger, since the dominating cost of ReQry and CoQry is
from the static decomposition from scratch. MtQry and OpQry
show better scalability. In Figure 8 (b), we evaluate the impact of

|Δ𝑄 | on WK, where we set |𝑄 | = 4. |Δ𝑄 | is varied from −3 to 3. The

impact of |Δ𝑄 | is similar to that of |𝑄 |, because when |Δ𝑄 | gets
larger, it needs to check more query vertices. In all tested cases,

CoQry, MtQry and OpQry are much more efficient than ReQry.
OpQry performs best among all competitors, since OpQry utilizes

more previous results instead of only the latest one.

Exp-6: Varying (𝑘′𝑐 , 𝑘′𝑓 ). In this experiment, 𝑄 and Δ𝐺 remain

same as before varying (𝑘′𝑐 , 𝑘′𝑓 ). We investigate the impact of 𝑘′𝑐
and 𝑘′

𝑓
respectively in Figure 8 (c) and (d). Either 𝑘′𝑐 or 𝑘

′
𝑓
gets larger,

all methods run faster because the size of the result gets smaller,

OpQry is the most efficient one among all competitors with the

same reason above.

9 CONCLUSIONS
In this paper, we propose a collection of incremental solutions for

maximal D-truss search in dynamic graphs, including single-update

algorithms and an order-based index that can handle batch updates

efficiently. We conduct theoretical boundedness analysis of the max-

imal D-truss given edge insertions and deletions respectively. We

further present a fully-dynamic query algorithm to help accelerate

the query processing. Extensive experimental results on real-world

graphs validate the effectiveness and efficiency of our solutions.
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