
BICE: Exploring Compact Search Space by Using Bipartite
Matching and Cell-Wide Verification

Yunyoung Choi

Alsemy

Seoul, South Korea

yunyoungchoi96@gmail.com

Kunsoo Park

Seoul National University

Seoul, South Korea

kpark@theory.snu.ac.kr

Hyunjoon Kim
∗†

Hanyang University

Seoul, South Korea

hyunjoonkim@hanyang.ac.kr

ABSTRACT
Subgraph matching is the problem of searching for all embeddings

of a query graph in a data graph, and subgraph query processing

(also known as subgraph search) is to find all the data graphs that

contain a query graph as subgraphs. Extensive research has been

done to develop practical solutions for both problems. However,

the existing solutions still show limited query processing time due

to a lot of unnecessary computations in search. In this paper, we

focus on exploring as compact search space as possible by using

three techniques: (1) pruning by bipartite matching, (2) pruning

by failing sets with bipartite matching, and (3) cell-wide verifica-

tion. We propose a new algorithm BICE, which combines these

three techniques. We conduct extensive experiments on real-world

datasets as well as synthetic datasets to evaluate the effectiveness

of the techniques. Experiments show that our approach outper-

forms the fastest existing subgraph search algorithm by up to two

orders of magnitude in terms of elapsed time to process a query.

Our approach also outperforms state-of-the-art subgraph matching

algorithms by up to two orders of magnitude.

PVLDB Reference Format:
Yunyoung Choi, Kunsoo Park, and Hyunjoon Kim. BICE: Exploring

Compact Search Space by Using Bipartite Matching and Cell-Wide

Verification. PVLDB, 16(9): 2186 - 2198, 2023.

doi:10.14778/3598581.3598591

PVLDB Artifact Availability:
The code, data, and other artifacts have been made available at https://

github.com/SNUCSE-CTA/BICE.

1 INTRODUCTION
In recent decades, researchers have been motivated to develop

efficient algorithms to analyze graphs in various domains. Subgraph
matching and subgraph query processing (or subgraph search) are
fundamental problems arising in these domains.

Given a query graph 𝑞 and a data graph 𝐺 , subgraph matching

is the problem of finding all distinct embeddings of 𝑞 in 𝐺 . Given a

query graph 𝑞 and a set D of data graphs, subgraph search is the

∗
Corresponding author.

†
Department of Data Science, Department of Artificial Intelligence.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.

doi:10.14778/3598581.3598591

0*100

1*103

2*103

3*103

4*103

0*100 1*103 2*103 3*103 4*103

E
n

u
m

e
ra

ti
o

n
 T

im
e
 (

m
s)

Preprocessing Time (ms)

VEQ
RapidMatch

RIfs
GQLfs
BICE

Figure 1: Preprocessing time vs. enumeration time of state-
of-the-art subgraph matching algorithms for six datasets

problem of finding all the data graphs that contain 𝑞 as subgraphs.

Both problems have a variety of real-world applications [37, 39]

such as social network analysis [11, 41], RDF query processing

[24, 25], protein-protein interaction (PPI) network analysis [7, 34],

and chemical compound search [23, 47]. For example, researchers

find a given pattern in a large social network, and search biomedical

networks for important subgraphs by counting their occurrences.

In organic chemistry, patterns of atoms called functional groups

are considered to indicate the molecules’ properties. The number

of occurrences of the substructure has been used to produce molec-

ular fingerprints [31] and compute similarities between molecules

[2, 35]. National Institutes of Health (NIH) provides a web user

interface for subgraph search of chemical compounds in a chem-

istry database called PubChem
1
. In knowledge graphs, common

substructures are extracted by querying them in the larger target

graph [33].

These problems are based on subgraph isomorphism, which is a

well-known NP-hard problem [12]. Therefore, solving these prob-

lems is a bottleneck in overall performance of such applications.

Extensive research has been done to develop practical solutions

for these problems. The recent study [21, 42] on subgraph search

used the filtering-verification strategy: (1) given a query graph 𝑞

and a set D of data graphs, filter out false answers in D, and

(2) a subgraph isomorphism test is performed against every re-

maining candidate graph in a verification step. The recent study

[5, 14, 15, 43] on subgraph matching proposed algorithms based

on the preprocessing-enumeration framework: (1) an auxiliary data

1
https://pubchem.ncbi.nlm.nih.gov/

2186

https://www.acm.org/publications/policies/artifact-review-and-badging-current

structure on a query graph and a data graph is constructed, and

(2) all matches of the query graph are found by using the data

structure.

These algorithms adopt the backtracking approach (in the enu-

meration of subgraph matching and in the verification of subgraph

search), which recursively extends a partial embedding of a query

graph by mapping the next query vertex to a data vertex. Although

these efforts achieved some success, these algorithms still show

limited response time and scalability as there could be a lot of

redundant computations in the search process by the nature of

backtracking. Figure 1 compares the mean preprocessing time and

the mean enumeration time for the queries finished within a time

limit of 10 minutes by state-of-the-art subgraph matching algo-

rithms on six real-world datasets. All algorithms (except BICE)
spend much more time in enumeration (i.e., backtracking) than in

preprocessing. This phenomenon motivates us to design techniques

that dramatically reduce the search space of backtracking.

To tackle this issue, we propose a new subgraph matching and

subgraph search framework BICE, which significantly reduces

search space of backtracking with three novel techniques. We make

the following contributions.

Pruning by bipartite matching. At each node of the search tree

during backtracking, we can construct a bipartite graph between

unmapped query vertices and their candidate vertices of the data

graph, and compute a maximum matching of the bipartite graph. If

the size of the maximum matching in the bipartite graph is smaller

than the number of unmapped query vertices (i.e., there is no way

to match the unmapped query vertices to their candidate vertices),

it is guaranteed that there is no embedding in the subtree of this

node in the search tree. Thus we can prune the subtree of this node

and backtrack. This bipartite graph matching technique is very

effective in pruning the search tree, but there is an overhead to

compute the maximum matching in the bipartite graph. In our tech-

nique, however, we inherit the maximum matching of the parent

node in the search tree, and compute only additional matchings in

the current node. Hence the overhead of the maximum matching

computation is marginal.

Pruning by Failing Sets with Bipartite Matching. It has been
shown that the failing set is an effective technique in pruning

the search tree [14, 43]. We combine the failing set with our new

bipartite matching technique so that we can compute failing sets in

the search tree pruned by bipartite matching. Consequently, taking

full advantage of two different pruning techniques (i.e., failing set

and bipartite matching) can reduce a lot of search space.

Cell-Wide Verification. During backtracking in previous research,
each query vertex is mapped to a single data vertex, which is called

a mapping. In cell-wide verification, we map a query vertex to a

cell (which is a set of candidate vertices with the same neighbors),

which we call a hypermapping. Instead of computing mappings,

we compute hypermappings in the backtracking, saving a lot of

computation in the search space.

Experiments. We conduct extensive experiments on real-world

datasets as well as synthetic datasets to evaluate the effectiveness of

the techniques. Experiments show that our approach outperforms

the fastest existing subgraph search algorithm VEQS [21, 22] by up

to two orders of magnitude in terms of elapsed time to process a

query. Furthermore, our approach also outperforms state-of-the-art

subgraph matching algorithms by up to two orders of magnitude.

The rest of the paper is organized as follows. Section 2 gives

the problem definition and related work. Section 3 provides a brief

overview of our approach. Section 4 introduces pruning by bipar-

tite matching. Section 5 describes computing failing sets by using

bipartite matching. Section 6 presents a new backtracking method

based on cell-wide verification. Section 7 presents an experimental

comparison with previous work, and Section 8 concludes the paper.

2 PRELIMINARIES
For simplicity, we focus on connected graphs with labeled vertices.

Our techniques can be easily extended to disconnected graphs with

labeled edges. A graph 𝑔 = (𝑉 (𝑔), 𝐸 (𝑔), 𝐿𝑔) consists of a set𝑉 (𝑔) of
vertices, a set 𝐸 (𝑔) of edges, and a labeling function 𝐿𝑔 : 𝑉 (𝑔) → Σ
that assigns a label to each vertex, where Σ is a set of labels. A graph

𝑔 with no labels on vertices is denoted by 𝑔 = (𝑉 (𝑔), 𝐸 (𝑔)). For a
subset 𝑆 of𝑉 (𝑔), an induced subgraph 𝑔[𝑆] denotes the subgraph of

𝑔 whose vertex set is 𝑆 and whose edge set consists of all the edges

in 𝐸 (𝑔) that have both endpoints in 𝑆 .

Given graphs 𝑞 = (𝑉 (𝑞), 𝐸 (𝑞), 𝐿𝑞) and𝐺 = (𝑉 (𝐺), 𝐸 (𝐺), 𝐿𝐺), an
embedding of 𝑞 in 𝐺 is a mapping𝑀 : 𝑉 (𝑞) → 𝑉 (𝐺) such that:

(1) 𝑀 is injective (i.e.,𝑀 (𝑢) ≠ 𝑀 (𝑢′) for 𝑢 ≠ 𝑢′ in 𝑉 (𝑞)).
(2) 𝐿𝑞 (𝑢) = 𝐿𝐺 (𝑀 (𝑢)) for every 𝑢 ∈ 𝑉 (𝑞) .
(3) (𝑀 (𝑢), 𝑀 (𝑢′)) ∈ 𝐸 (𝐺) for every (𝑢,𝑢′) ∈ 𝐸 (𝑞).

We call that 𝑞 is subgraph isomorphic to 𝐺 , denoted by 𝑞 ⊆ 𝐺 , if

there exists an embedding of 𝑞 in 𝐺 . A mapping that satisfies (2)

and (3) is called a homomorphism. An embedding of an induced

subgraph of 𝑞 in 𝐺 is called a partial embedding. For the sake of
traceability, we enumerate the mapping pairs in a partial embedding

𝑀 in the order in which they are added to𝑀 during backtracking.

A bipartite graph is a graph whose vertices can be partitioned

into two disjoint sets such that no two vertices within a same set are

adjacent. We will use the bipartite graph as a tool to reduce search

space of backtracking. Given a bipartite graph 𝑔 = (𝑉 (𝑔), 𝐸 (𝑔)), a
bipartite matching in 𝑔 is a set of pairwise non-adjacent edges in

𝐸 (𝑔). A maximum bipartite matching in 𝑔 is a bipartite matching in

𝑔 that contains the largest number of edges. A bipartite graph will

be denoted by 𝑔 = (𝑉1 (𝑔),𝑉2 (𝑔), 𝐸 (𝑔)) in which 𝑉1 (𝑔) and 𝑉2 (𝑔)
are disjoint sets of 𝑉 (𝑔).

Table 1 lists the notations frequently used in the paper.

Table 1: Notations.
Symbol Definition

𝐺 Data graph

𝑞 Query graph

D Set of data graphs

𝑀 Partial embedding of 𝑞 in 𝐺

𝑑𝑀 Dynamic DAG of 𝑞 regarding𝑀

𝐶 (𝑢) Set of candidate vertices of 𝑢 ∈𝑉 (𝑞)
𝐶𝑀 (𝑢) Set of extendable candidates of 𝑢 regarding𝑀

𝐵𝑀 Candidate bipartite graph of𝑀

M Partial hypermapping of 𝑞 in CS

2187

2.1 Problem Statement
Subgraph Matching. Given a query graph 𝑞 and a data graph 𝐺 ,

the subgraph matching problem is to find all embeddings of 𝑞 in 𝐺 .

Subgraph Search. Given a query graph 𝑞 and a set D of data

graphs, the subgraph search problem is to find all data graphs in D
that contains 𝑞 as subgraphs. That is, subgraph search is to compute

the answer set 𝐴𝑞 = {𝐺 ∈ D | 𝑞 ⊆ 𝐺}.
Example 2.1. Given query graph 𝑞 in Figure 2a and a data graph

𝐺 in Figure 2b, there are five embeddings of 𝑞 in 𝐺 :𝑀1 = {(𝑢1, 𝑣1),
(𝑢2, 𝑣3), (𝑢3, 𝑣7), (𝑢4, 𝑣11), (𝑢5, 𝑣10), (𝑢6, 𝑣9), (𝑢7, 𝑣13)} ,𝑀2 = {(𝑢1, 𝑣1),
(𝑢2, 𝑣3), (𝑢3, 𝑣7), (𝑢4, 𝑣11), (𝑢5, 𝑣4), (𝑢6, 𝑣9), (𝑢7, 𝑣13)},𝑀3 = {(𝑢1, 𝑣1),
(𝑢2, 𝑣4), (𝑢3, 𝑣7), (𝑢4, 𝑣11), (𝑢5, 𝑣10), (𝑢6, 𝑣9), (𝑢7, 𝑣13)},𝑀4 = {(𝑢1, 𝑣1),
(𝑢2, 𝑣5), (𝑢3, 𝑣7), (𝑢4, 𝑣11), (𝑢5, 𝑣10), (𝑢6, 𝑣9), (𝑢7, 𝑣13)}, and 𝑀5 =

{(𝑢1, 𝑣1), (𝑢2, 𝑣5), (𝑢3, 𝑣7), (𝑢4, 𝑣11), (𝑢5, 𝑣4), (𝑢6, 𝑣9), (𝑢7, 𝑣13)}.
Example 2.2. Given query 𝑞 in Figure 2a and a set D = {𝐺1,𝐺2}
of data graphs in Figure 2b and Figure 2c, 𝑞 is subgraph isomorphic

to only 𝐺1.

2.2 Related Work
Subgraph Matching.Many subgraph matching algorithms [4, 5,

8, 9, 14, 15, 17, 28, 40, 43, 49, 50] are based on the backtracking

framework.

VF2 [9],VF3 [8] andQuickSI [40] adopt direct-enumeration frame-

work, which directly explores a data graph 𝐺 to enumerate all re-

sults. GraphQL [17], Turboiso [15], CFL-Match [5], DAF [14], and

VEQ [21] are based on the preprocessing-enumeration framework,

i.e., they build auxiliary data structures with a query graph and a

data graph to get a small set of candidate vertices for each query

vertex. In fact, they vary significantly in performances, which rely

on the size of search space in backtracking. To reduce the search

space, state-of-the-art algorithms [14, 21] design pruning strategies

which eliminate unnecessary computations of the search process

originated from the nature of backtracking. They aim to prune out

unpromising partial embeddings that will not lead to embeddings

in the future by utilizing the knowledge gained from past explo-

ration in search space, and they attain considerable performance

improvement. For example, DAF [14] exploits the structure of a

query graph to identify a set (i.e., failing set) of query vertices that

may potentially be involved in each mapping failure, then it back-

tracks if the mapping of a query vertex not involved in the failure

was just updated. VEQ [21, 22] prunes out unnecessary subtrees of

a search tree by exploiting the equivalence of the subtrees.

Unlike backtracking search methods, join-based framework [1,

19, 30, 44] models subgraph homomorphism as a relational query

and evaluate the query with relational operators such as selections

and joins. To find either subgraph isomorphisms or subgraph homo-

morphisms, RapidMatch [44] utilizes graph structures to optimize

relation filtering and join plan generation.

Subgraph Search. Most subgraph search algorithms [6, 10, 13, 26,

47, 51, 52] adopt the indexing-filtering-verification paradigm, which

constructs indexes on a setD of data graphs, filters out data graphs

that cannot lead to answers with the assistance of the indexes, and

verify if each of remaining data graphs contains the query graph

as a subgraph in a subgraph isomorphism test.

However, the indexing methods have a considerable limitation

in scalability [16, 20, 42]. Researchers [21, 42] recently leverage

subgraph matching algorithms based on preprocessing-enumeration
paradigm. Without indexes, this approach such as CFQL [42] and

VEQ [21, 22] shows better performance and scalability.

Maximum Bipartite Matching. Subgraph matching and sub-

graph search can be seen as assignment problems that map each

vertex in a query graph to a distinct vertex in a data graph. SUM-
GRA [3] and SGMatch [38] use a bipartite graph between neighbors
of a query vertex 𝑢 and neighbors of its candidate vertex 𝑣 as a

local filter to check if 𝑢 and 𝑣 can match. However, applying the

maximum bipartite matching problem globally to all query ver-

tices in a partial embedding and their candidate vertices has been

underexplored, which is the focus of this work.

Graph Compression. For subgraph matching, BoostIso [36, 46]
compresses a data graph by merging symmetric vertices in prepro-

cessing before it processes a query. The graph compression works

well only for very dense data graphs according to [5].

3 OVERVIEW OF OUR APPROACH
We outline our subgraph matching algorithm and its modification

for subgraph search.

3.1 Subgraph Matching
Algorithm 1: SubgraphMatching(𝑞,𝐺)
Input: query graph 𝑞, data graph 𝐺

Output: all embeddings of 𝑞 in 𝐺

1 𝐶𝑆 ← BuildCS(𝑞,𝐺);
2 𝑀 ← ∅;
3 𝐻 ← GetMaximumMatching(𝐵∅ , ∅);
4 Backtrack𝑚 (𝑞,𝐶𝑆,𝑀,𝐻);

Given a query graph 𝑞 and a data graph𝐺 , Algorithm 1 performs

subgraph matching of 𝑞 in 𝐺 . Initially, BuildCS is invoked to build

an auxiliary data structure candidates space (CS) on 𝑞 and𝐺 , which

consists of the candidate set 𝐶 (𝑢) for each vertex 𝑢 ∈ 𝑉 (𝑞) and
edges between the candidates as in extended DAG-graph DP [21].

Definition 3.1. (Extendable Vertex) An unmapped vertex 𝑢 of

query graph 𝑞 in a partial embedding𝑀 is called extendable regard-
ing𝑀 if at least one neighbor of 𝑢 is mapped in𝑀 .

Definition 3.2. (Extendable Candidates) Suppose that we are
given a partial embedding 𝑀 . Given an unmapped query vertex

𝑢 ∈ 𝑉 (𝑞), let 𝑛1, 𝑛2, ..., 𝑛𝑘 be 𝑢’s neighbors mapped in 𝑀 . The set

𝐶𝑀 (𝑢) of𝑢’s extendable candidates regarding𝑀 is defined as follows

• If there are no mapped neighbors of 𝑢, 𝐶𝑀 (𝑢) = 𝐶 (𝑢).
• Otherwise, 𝐶𝑀 (𝑢) is the set of vertices 𝑣 ∈ 𝐶 (𝑢) adjacent to

𝑀 (𝑛𝑖) in CS for every mapped neighbor 𝑛𝑖 of 𝑢.

Next, Backtrack𝑚 is invoked to find all embeddings of 𝑞 in CS by

using three techniques in Sections 4, 5, and 6 to reduce the search

space. We recursively extend a partial embedding by mapping an

extendable vertex 𝑢 to each extendable candidate in 𝐶𝑀 (𝑢) [21].

3.2 Subgraph Search
In Algorithm 2, we first initialize a set 𝐴𝑞 of answer graphs as ∅.
For each data graph𝐺 ∈ D, we repeat the following steps on 𝑞 and

𝐺 . After all iterations over D, we output the updated 𝐴𝑞 .

(1) For the query graph 𝑞 and a data graph 𝐺 , BuildCS is invoked

to build CS in the same way as in subgraph matching.

2188

A

𝑢1

B𝑢2 C 𝑢3

D𝑢4 B 𝑢5

E

𝑢6

C

𝑢7

(a) Query graph 𝑞

A 𝑣1

C𝑣7

B

𝑣10

B

𝑣3

B

𝑣4

B

𝑣5

E

𝑣9

E

𝑣8

D

𝑣12

D

𝑣11

C

𝑣6

C

𝑣13

(b) Data graph𝐺1

A 𝑣1

B

𝑣10

B

𝑣3

B

𝑣4

B

𝑣5

E

𝑣9

E

𝑣8

D

𝑣12

D

𝑣11

C

𝑣6

C

𝑣13

(c) Data graph𝐺2

𝑢1 𝑣1

𝑢2 𝑣10 𝑣3 𝑣4 𝑣5 𝑢3 𝑣6 𝑣7

𝑢4 𝑣12 𝑣11 𝑢5 𝑣3 𝑣10 𝑣4

𝑢6 𝑣8 𝑣9

𝑢7 𝑣6 𝑣13

(d) CS

(𝑢1, 𝑣1)

(𝑢2, 𝑣10)

(𝑢4, 𝑣12)
𝑀1

(𝑢3, 𝑣6)
𝑀2

(𝑢5, 𝑣3)

(𝑢6, 𝑣8)

(𝑢7, 𝑣6)!

(e) Search tree

Figure 2: Query graph 𝑞, Data graph 𝐺1, Data graph 𝐺2, CS on 𝑞 and 𝐺1, and search tree for 𝑞 and 𝐶𝑆 in Figure 2d

Algorithm 2: SubgraphSearch(𝑞,D)
Input: query graph 𝑞, a set of data graphs D
Output: A set of answer graphs 𝐴𝑞

1 𝐴𝑞←∅;
2 foreach 𝐺 ∈ D do
3 𝐶𝑆 ← BuildCS(𝑞,𝐺);
4 𝑀 ← ∅;
5 𝐻 ← GetMaximumMatching(𝐵∅ , ∅);
6 if Backtrack𝑠 (𝑞,𝐶𝑆,𝑀,𝐻) returns 𝐺 then
7 𝐴𝑞 ← 𝐴𝑞 ∪ {𝐺};

(2) 𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is invoked to find up to one embedding of 𝑞 in 𝐺 .

This step returns 𝐺 as an answer if it finds an embedding of 𝑞

in 𝐺 ; nothing otherwise. We add 𝐺 into 𝐴𝑞 if 𝐺 is an answer.

4 PRUNING BY BIPARTITE MATCHING
In this section, we propose a new technique to prune out unnec-

essary search space by using bipartite matching between query

vertices and candidate vertices in the search process.

Example 4.1. Suppose that we constructed CS in Figure 2d from

query graph 𝑞 in Figure 2a and data graph𝐺1 in Figure 2b. Figure 2e

illustrates a part of search tree to find embeddings of 𝑞 in this CS.

We first map 𝑢1 to 𝑣1, and then map 𝑢2 to 𝑣10, 𝑢4 to 𝑣12, and so on.

A node (𝑢, 𝑣) represents the last mapping of a partial embedding

𝑀 . Let𝑀 denote a partial embedding as well as a node of a search

tree. We say that a node (or a partial embedding) of the search

tree is redundant if it cannot lead to an embedding of 𝑞. Let a node

(𝑢, 𝑣)! in a search tree denote a mapping conflict where 𝑣 is already

mapped so we cannot map 𝑢 to 𝑣 .

Example 4.2. In the search tree in Figure 2e, partial embedding

𝑀2 is redundant, since extending𝑀2 will end up with a mapping

conflict (𝑢7, 𝑣6)! between (𝑢3, 𝑣6) and (𝑢7, 𝑣6). Figure 3d illustrates

the CS of Figure 2d regarding partial embedding 𝑀2. Candidate

vertices mapped in𝑀2 are colored with gray, and extendable candi-

dates of unmapped query vertices are blue. Note that 𝑢7 has only

one extendable candidate 𝑣6 which has already been mapped to 𝑢3.

As shown in the above example, a partial embedding will not

lead to an embedding if the extension of that partial embedding

will result in only mapping conflicts. Thus, extending such partial

embedding𝑀 could cause huge redundant search space. To address

this issue, we propose a new technique called pruning by bipartite
matching that makes use of information obtained from CS.

4.1 Pruning by Bipartite Matching
Definition 4.1. (Candidate Bipartite Graph on Partial Em-
bedding) Given CS on a query graph 𝑞 and a data graph 𝐺 , and a

partial embedding𝑀 , we define a candidate bipartite graph 𝐵𝑀 =

(𝑉 (𝑞),𝑉 (𝐺), 𝐸 (𝐵𝑀)) on𝑀 as follows.

• There is an edge (𝑢,𝑀 (𝑢)) if 𝑢 is mapped in𝑀 ; there is an edge

between 𝑢 ∈ 𝑉 (𝑞) and every 𝑣 ∈ 𝐶𝑀 (𝑢) otherwise.
Example 4.3. Consider the partial embeddings𝑀1 and𝑀2 in the

search tree of Figure 2e. Figure 3a and Figure 3c illustrate candi-

date bipartite graphs 𝐵𝑀1
on 𝑀1 and 𝐵𝑀2

on 𝑀2, respectively. A

query vertex mapped in a partial embedding is only connected to its

mapping in the bipartite graph. In Figure 3a, query vertices 𝑢1, 𝑢2,

and 𝑢4 are mapped in𝑀1, so each of them is connected to its map-

ping 𝑀1 (𝑢1) = 𝑣1, 𝑀1 (𝑢2) = 𝑣10, and 𝑀1 (𝑢4) = 𝑣12, respectively.

A query vertex not mapped in 𝑀1 is connected to its extendable

candidates, e.g., 𝑢3 is connected to its extendable candidates 𝑣6, 𝑣7.

We observe that if the partial embedding𝑀 can lead to an em-

bedding, that embedding must be a bipartite matching in 𝐵𝑀 .

Lemma 4.1. Given a candidate bipartite graph 𝐵𝑀 of a partial

embedding𝑀 and a maximum bipartite matching 𝐻 in 𝐵𝑀 , partial

embedding𝑀 is redundant if |𝐻 | < |𝑉 (𝑞) |.
By Lemma 4.1, we prune out the subtree rooted at partial embed-

ding𝑀 if |𝐻 | < |𝑉 (𝑞) | where𝐻 is the maximum bipartite matching

in 𝐵𝑀 .

Example 4.4. Figure 3a illustrates the maximum matching 𝐻1 =

{(𝑢1, 𝑣1), (𝑢2, 𝑣10), (𝑢5, 𝑣3), (𝑢3, 𝑣7), (𝑢7, 𝑣6), (𝑢4, 𝑣12), (𝑢6, 𝑣9)} in
𝐵𝑀1

with red lines. Since |𝐻1 | = |𝑉 (𝑞) |, we extend𝑀1 to𝑀2 in the

search tree of Figure 2e. Figure 3c illustrates themaximummatching

𝐻2 = {(𝑢1, 𝑣1), (𝑢2, 𝑣10), (𝑢5, 𝑣3), (𝑢7, 𝑣6), (𝑢4, 𝑣12), (𝑢6, 𝑣9)} in 𝐵𝑀2

(red edges). Since |𝐻2 | < |𝑉 (𝑞) |, 𝑀2 is redundant, so the subtree

rooted at𝑀2 (enclosed by the gray box) in Figure 2e is pruned out.

Search Process. Algorithm 3 illustrates our backtracking for sub-

graph matching, which prunes out search space by Lemma 4.1.

Given query graph 𝑞, CS, current partial embedding𝑀 , and maxi-

mum matching 𝐻 in candidate bipartite graph 𝐵𝑀 , Backtrack𝑚

searches CS for all embeddings of 𝑞.

2189

𝑢1
𝑢2

𝑢5
𝑢3

𝑢7
𝑢4

𝑢6

𝑢1
𝑢2

𝑢4

𝑣1
𝑣3
𝑣4
𝑣5
𝑣10
𝑣6
𝑣7
𝑣13
𝑣11
𝑣12
𝑣8
𝑣9

(a) Bipartite graph 𝐵𝑀1

𝑢1 𝑣1

𝑢2 𝑣10 𝑣3 𝑣4 𝑣5 𝑢3 𝑣6 𝑣7

𝑢4 𝑣12 𝑣11 𝑢5𝑢5 𝑣3 𝑣10 𝑣4

𝑢6 𝑣8 𝑣9

𝑢7 𝑣6 𝑣13

(b) CS regarding𝑀1

𝑢1
𝑢2

𝑢5
𝑢3

𝑢7
𝑢4

𝑢6

𝑢1
𝑢2

𝑢3

𝑢4

𝑣1
𝑣3
𝑣4
𝑣5
𝑣10
𝑣6
𝑣7
𝑣13
𝑣11
𝑣12
𝑣8
𝑣9

(c) Bipartite graph 𝐵𝑀2

𝑢1 𝑣1

𝑢2 𝑣10 𝑣3 𝑣4 𝑣5 𝑢3 𝑣6 𝑣7

𝑢4 𝑣12 𝑣11 𝑢5𝑢5 𝑣3 𝑣10 𝑣4

𝑢6 𝑣8 𝑣9

𝑢7 𝑣6 𝑣13

(d) CS regarding𝑀2

Figure 3: Candidate bipartite graphs and their corresponding CS

Algorithm 3: Backtrack𝑚 (𝑞,𝐶𝑆,𝑀,𝐻)
1 if |𝐻 | < |𝑉 (𝑞) | then
2 return;

3 else if |𝑀 | = |𝑉 (𝑞) | then
4 Report𝑀 ;

5 else
6 Select a next extendable vertex 𝑢;

7 foreach 𝑣 ∈ 𝐶𝑀 (𝑢) do
8 if 𝑣 is unvisited then
9 𝑀′←𝑀 ∪ {(𝑢, 𝑣)};

10 ˜︁𝐻← {(𝑠, 𝑡) ∈ 𝐻 | 𝑠 ∉ {𝑢} ∪𝑈𝑁𝑀 (𝑢)};
11 𝐻 ′← GetMaximumMatching(𝐵𝑀 ′ , ˜︁𝐻);
12 Mark 𝑣 as visited;

13 Backtrack𝑚 (𝑞,𝐶𝑆,𝑀′, 𝐻 ′);
14 Mark 𝑣 as unvisited;

First, if |𝐻 | < |𝑉 (𝑞𝑑) |, we immediately backtrack (lines 1-2).

If |𝑀 | = |𝑉 (𝑞𝑑) |, 𝑀 is an embedding of 𝑞, so we report 𝑀 (lines

3-4). Otherwise, we first select a next extendable vertex 𝑢 (line

6). For each unvisited extendable candidate 𝑣 ∈ 𝐶𝑀 (𝑢) (lines 7-
8), we extend𝑀 to𝑀′ = 𝑀 ∪ {(𝑢, 𝑣)} (line 9). We then compute a

maximummatching𝐻 ′ in candidate bipartite graph𝐵𝑀 ′ on𝑀 (lines

10-11).𝑈𝑁𝑀 (𝑢) denotes a set of neighbors unmapped in𝑀 . Finding

a maximum matching in 𝐵𝑀 ′ from scratch for every extension𝑀′

may incur considerable computational overhead. Hence, we remove

matchings incident to 𝑢 and to every unmapped neighbor of 𝑢 from

𝐻 , and let 𝐵𝑀 ′ inherit from 𝐵𝑀 the remaining set ˜︁𝐻 of matchings

that both 𝐵𝑀 and 𝐵𝑀 ′ have in common (see Example 4.5). Next, we

compute 𝐻 ′ in 𝐵𝑀 ′ from ˜︁𝐻 (line 11) (see Section 4.2 for details). We

recursively invoke Backtrack𝑚 with 𝑀′ (line 13). Backtrack𝑠
in Algorithm 2 is the same as Backtrack𝑚 of Algorithm 3 except

line 4: Backtrack𝑠 returns data graph 𝐺 , and terminates.

Example 4.5. Suppose that we just extended partial embedding

𝑀1 to 𝑀2 = 𝑀1 ∪ {(𝑢3, 𝑣6)} in Figure 2e, i.e., we selected 𝑢3 as

the next extendable vertex and 𝑣6 as its extendable candidate to

extend 𝑀1 to 𝑀2 in Algorithm 3. Note that candidate bipartite

graph 𝐵𝑀2
is obtained by Definition 4.1, as a neighbor 𝑢3 of 𝑢5

is newly mapped in 𝑀2, which updates a set of 𝑢5’s extendable

candidates from 𝐶𝑀1
(𝑢5) = {𝑣3, 𝑣10, 𝑣4} to 𝐶𝑀2

(𝑢5) = {𝑣3} by Defi-

nition 3.2. Computing a maximum bipartite matching in𝑀2 from

scratch is costly. Hence, we reuse a part of the maximum bipartite

matching 𝐻1 of 𝐵𝑀1
in Figure 3a. Specifically, let 𝐵𝑀2

inherit the

subset ˜︁𝐻 = {(𝑢1, 𝑣1), (𝑢2, 𝑣10), (𝑢7, 𝑣6), (𝑢4, 𝑣12), (𝑢6, 𝑣9)} of 𝐻1 =

{(𝑢1, 𝑣1), (𝑢2, 𝑣10), (𝑢5, 𝑣3), (𝑢3, 𝑣7), (𝑢7, 𝑣6), (𝑢4, 𝑣12), (𝑢6, 𝑣9)}. Indeed,
𝐵𝑀1

in Figure 3a and 𝐵𝑀2
in Figure 3c have edges incident to all

vertices except𝑢3 and (its unmapped neighbor)𝑢5 in common. Note

that ˜︁𝐻 does not contain the edges incident to 𝑢3 and 𝑢5 in 𝐻1. In

Figure 3c, ˜︁𝐻 is still a bipartite matching in 𝐵𝑀2
, so we will start

computing the maximum bipartite matching in 𝐵𝑀2
from ˜︁𝐻 .

4.2 Maximum Bipartite Matching Algorithm
For each partial embedding 𝑀 in the search process, we find a

maximum bipartite matching in a candidate bipartite graph 𝐵𝑀 . We

describe a way to efficiently find the matching in this subsection.

Definition 4.2. (Augmenting Path) Given a bipartite graph 𝑔 =

(𝑉 (𝑔), 𝐸 (𝑔)) and a bipartite matching 𝐻 in 𝑔, a vertex 𝑣 ∈ 𝑉 (𝑔) is
called free if it is incident to no edges in 𝐻 . A simple path 𝑃 in a

bipartite graph is called an augmenting path relative to 𝐻 if both

start and end vertices are free, and its edges are alternatively in

𝐸 (𝑔) − 𝐻 and in 𝐻 .

Definition 4.3. (Symmetric Difference) Given two sets 𝐴 and 𝐵,

𝐴⊕𝐵 denotes the symmetric difference of𝐴 and 𝐵, i.e.,𝐴∪𝐵−𝐴∩𝐵.

𝑢1

𝑢2

𝑢3

𝑢4

𝑣1

𝑣2

𝑣3

𝑣4

(a) Bipartite
matching 𝐻 (red)

𝑢1

𝑢2

𝑢3

𝑢4

𝑣1

𝑣2

𝑣3

𝑣4

(b) Augmenting
path 𝑃 (blue)

𝑢1

𝑢2

𝑢3

𝑢4

𝑣1

𝑣2

𝑣3

𝑣4

(c) New matching
𝐻 ⊕ 𝑃 (red)

Figure 4: Finding a larger bipartite matching 𝐻 ⊕ 𝑃 from a
given bipartite matching 𝐻 using an augmenting path 𝑃

Theorem 4.1. [18] We have the following properties.

(a) Given a matching 𝐻 and an augmenting path 𝑃 relative to 𝐻 ,

𝐻 ⊕ 𝑃 is a matching, and |𝐻 ⊕ 𝑃 | = |𝐻 | + 1.
(b) Suppose that we are given two bipartite matchings 𝐻 and 𝐻 ′ in

a given bipartite graph. If |𝐻 | > |𝐻 ′ |, then 𝐻 ⊕ 𝐻 ′ contains at
least |𝐻 | − |𝐻 ′ | vertex-disjoint augmenting paths relative to 𝐻 .

2190

(c) 𝐻 is amaximummatching if and only if there are no augmenting

paths relative to 𝐻 .

Figure 4a shows bipartite matching 𝐻 = {(𝑢1, 𝑣1), (𝑢2, 𝑣2)} (red)
in bipartite graph𝑔, where𝑢3, 𝑢4, 𝑣3, and 𝑣4 are free. Figure 4b shows

an augmenting path 𝑃 = (𝑢3, 𝑣1), (𝑣1, 𝑢1), (𝑢1, 𝑣3) (blue). Figure 4c
shows a newmaximummatching𝐻⊕𝑃 = {(𝑢1, 𝑣3), (𝑢2, 𝑣2), (𝑢3, 𝑣1)}
(red). Note that |𝐻 ⊕ 𝑃 | = |𝐻 | + 1.
Algorithm 4: GetMaxiumMatching(𝑔, 𝐻𝑖𝑛𝑖𝑡)
1 𝐻 ← 𝐻𝑖𝑛𝑖𝑡 ;

2 𝑃 ← GetAugmentingPath(𝑔, 𝐻);
3 while 𝑃 ≠ ∅ do
4 𝐻 ← 𝐻 ⊕ 𝑃 ;
5 𝑃 ← GetAugmentingPath(𝑔, 𝐻);
6 return 𝐻 ;

Algorithm 4 finds the maximum bipartite matching 𝐻 based on

Theorem 4.1. First, 𝐻 is initialized as 𝐻𝑖𝑛𝑖𝑡 (line 1). Next, GetAug-

mentingPath performs depth-first search (DFS) to find an aug-

menting path relative to 𝐻 in 𝑔 in the 𝑂 (|𝐸 (𝑔) |) runtime (line 2).

This returns an augmenting path if such a path exists; ∅ otherwise.
We keep updating 𝐻 to 𝐻 ⊕ 𝑃 , and invoking GetAugmentingPath
with the updated𝐻 as input, as long as an augmenting path 𝑃 exists

(lines 3-5). If we no longer obtain an augmenting path, we return

𝐻 , as 𝐻 is the maximum bipartite matching.

Lemma 4.2. (Time Complexity) Given a candidate bipartite

graph 𝐵𝑀 = (𝑉 (𝑞), 𝑉 (𝐺), 𝐸 (𝐵𝑀)), Algorithm 4 takes 𝑂 ((|𝑉 (𝑞) | −
|𝐻𝑖𝑛𝑖𝑡 |) × |𝐸 (𝐵𝑀) |) runtime in the worst case.

For further analysis on the runtime of Algorithm 4, we differen-

tiate between following two distinct cases of 𝐻𝑖𝑛𝑖𝑡 , which leads to

a large difference of the time complexity.

(1) Case 𝐻𝑖𝑛𝑖𝑡 = ∅: In Algorithm 1, GetMaxiumMatching(𝐵𝑀 , ∅)
is called before the first invocation of Algorithm 3. We therefore

run up to |𝑉 (𝑞) | iterations of the while loop in Algorithm 4, which

results in the total running time bounded by 𝑂 (|𝑉 (𝑞) | × |𝐸 (𝐵𝑀) |).
(2) Case 𝐻𝑖𝑛𝑖𝑡 ≠ ∅: Suppose that we are given a partial embedding

𝑀 and themaximum bipartite matching𝐻 in𝐵𝑀 in Algorithm 3. For

every 𝑥 ∈ 𝑉 (𝑞) \ ({𝑢} ∪𝑈𝑁𝑀 (𝑢)), the neighbors of 𝑥 are exactly

the same in both 𝐵𝑀 and 𝐵𝑀 ′ when we just extended 𝑀 to 𝑀′.
Therefore, the subset ˜︁𝐻 = {(𝑠, 𝑡) ∈ 𝐻𝑝 |𝑠 ∈ 𝑉 (𝑞) \ ({𝑢} ∪𝑈𝑁𝑀 (𝑢))}
of 𝐻 is a matching in 𝐵𝑀 ′ . Recall that Algorithm 3 extracts ˜︁𝐻 from

𝐻 , and then Algorithm 4 is invoked with 𝐻𝑖𝑛𝑖𝑡 = ˜︁𝐻 .

In Algorithm 4, we repeat finding augmenting paths for up to

|𝑉 (𝑞) | − |˜︁𝐻 | = |{𝑢} ∪𝑈𝑁𝑀 (𝑢) | times, which is 𝑂 (deg(𝑢)) where
deg(𝑢) is the degree of query vertex 𝑢. As a result, the time com-

plexity of Algorithm 4 is 𝑂 (deg(𝑢) × |𝐸 (𝐵𝑀 ′) |).
Most invocations of GetMaxiumMatching belong to the second

case where 𝐻𝑖𝑛𝑖𝑡 ≠ ∅, because the first case applies to only when

partial embedding 𝑀 is ∅ at the beginning of Algorithm 1. As

a result, we efficiently obtain the maximum matching by taking

advantage of the second case.

5 PRUNING BY FAILING SETS WITH
BIPARTITE MATCHING

In this section, we propose a new method to additionally prune

out unnecessary search space by employing two pruning methods:

pruning by bipartite matching and pruning by failing sets [14]. In
DAF [14], a failing set is introduced as a concept to avoid redundant

search space generated due to either a conflict of mapping or an

empty set of extendable candidates. We aim to apply the idea of

pruning by bipartite matching in computing failing sets. For this,

we introduce a new method to compute failing sets in the search

tree pruned by bipartite matching. This approach in fact generalizes

the failing set computation method [14]. Consequently, taking full

advantage of two different pruning techniques can reduce a lot of

unnecessary search space.

A 𝑢1

C𝑢2 B 𝑢3 D𝑢4 B 𝑢5

E

𝑢6

C

𝑢7

F

𝑢8

C

𝑢9

(a) Query graph 𝑞.

A

𝑣1

D

𝑣13

D

𝑣23

B𝑣4 B𝑣5 B𝑣6

F𝑣7 C𝑣8 C

𝑣9

C

𝑣10
E𝑣11

A

𝑣12

(b) Data graph G.

Figure 5: A query graph 𝑞 and a data graph 𝐺

Example 5.1. Consider query graph 𝑞, data graph 𝐺 in Figure 5,

and CS constructed over them in Figure 7a as a new running ex-

ample. Figure 6 is a search tree for this query and the CS. Assume

that we just came back to the partial embedding 𝑀 after visiting

partial embeddings 𝑀1 and 𝑀2 in the exploration of the subtree

rooted at𝑀 . A node “(𝑢, 𝑣) × ” such as𝑀1 and𝑀2 in a search tree

denotes that (𝑢, 𝑣) is pruned out by bipartite matching in Section 4,

which subsumes every mapping conflict such as𝑀1. Figure 7b and

Figure 7d are candidate bipartite graphs on𝑀1 and𝑀2, respectively,

with maximum bipartite matchings (red). Note that 𝑢4 has nothing

related to the fact that the size of the maximum bipartite matchings

is smaller than |𝑉 (𝑞) |. Thus, updating the mapping of 𝑢4 from 𝑣13
to other extendable candidates (e.g., 𝑣23) of 𝑢4 still does not lead to

an embedding. As a result, all the siblings of𝑀 will be pruned out,

which can reduce the search space.

Definition 5.1. (Dynamic DAG) Given a query graph 𝑞 and a par-

tial embedding𝑀 , we define a dynamic DAG 𝑑𝑀 = (𝑉 (𝑑𝑀), 𝐸 (𝑑𝑀))
of 𝑞 regarding𝑀 as follows.

• 𝑉 (𝑑𝑀) is the set of either query vertices mapped in𝑀 or neigh-

bors of the mapped query vertices.

• For each undirected edge (𝑥,𝑦) ∈ 𝐸 (𝑞), there is a directed edge

(𝑥,𝑦) ∈ 𝐸 (𝑑𝑀) if and only if

(1) both 𝑥 and𝑦 are mapped in𝑀 , and 𝑥 is mapped earlier than

𝑦, or

(2) 𝑥 is mapped in𝑀 , and 𝑦 is unmapped in𝑀 .

Definition 5.2. (Ancestor-Closed Set)Given a dynamic DAG𝑑𝑀 ,

we say that a set of query vertices 𝑆 ⊆ 𝑉 (𝑑𝑀) is ancestor-closed in

𝑑𝑀 if for any 𝑢 ∈ 𝑆 , all the ancestors of 𝑢 in 𝑑𝑀 are also in 𝑆 .

For a set of query vertices 𝑆 ⊆ 𝑉 (𝑑𝑀) and a node 𝑀 in the

search tree, let𝑀 [𝑆] denote the largest subset of𝑀 that is a partial

embedding of 𝑞 [𝑆], i.e., (𝑢, 𝑣) ∈ 𝑀 [𝑆] if and only if (𝑢, 𝑣) ∈ 𝑀 and

𝑢 ∈ 𝑆 .
Definition 5.3. (Failing Set)We define a failing set 𝐹𝑀 ⊂ 𝑉 (𝑞)
of node 𝑀 as an ancestor-closed set satisfying the following fail-

ure property: given a partial embedding 𝑀 [𝐹𝑀], there exists no
embedding of 𝑞 [𝐹𝑀] which is extensions of𝑀 [𝐹𝑀].

2191

(𝑢1, 𝑣1)

(𝑢2, 𝑣8)

(𝑢3, 𝑣4)

(𝑢4, 𝑣13) 𝑀 (𝑢4, 𝑣23)

(𝑢5, 𝑣4)×
𝑀1 (𝑢5, 𝑣5)×

𝑀2 (𝑢5, 𝑣4)× (𝑢5, 𝑣5)×

Figure 6: Search tree for 𝑞 in Figure 5 and CS on 𝑞 and 𝐺 in
Figure 5

Lemma 5.1. [14] Let 𝑀 be a node in the search tree whose last

mapping is (𝑢, 𝑣) in corresponding partial embedding, and let 𝐹𝑀
be a non-empty failing set of node𝑀 . If 𝑢 ∉ 𝐹𝑀 , then all siblings of

node𝑀 cannot lead to an embedding of 𝑞.

By Lemma 5.1, we prune out a partial embedding𝑀 if the failing

set 𝐹𝑀 does not contain 𝑢 in the latest mapping in𝑀 .

Failing Set Computation. Since we traverse the search space in

the DFS order, a failing set 𝐹𝑀 for each node can be well defined in

the bottom-up fashion. We compute a failing set for each node𝑀

in a search tree according to the following cases:

(A) Get a failing set of every leaf node𝑀 as follows.

(i) A leaf𝑀 belongs to embedding class if𝑀 is a full embedding

of 𝑞. Then 𝐹𝑀 = ∅.
(ii) A leaf𝑀 belongs to non-injective class if |𝐻 | < |𝑉 (𝑞) |, where

𝐻 is themaximum bipartite matching in the candidate bipar-

tite graph 𝐵𝑀 on𝑀 , i.e.,𝑀 is pruned by bipartite matching.

We will describe a way to compute failing sets of this class.

(B) For every non-leaf node𝑀 , suppose that a node𝑀 has 𝑘 chil-

dren𝑀1, 𝑀2, ..., 𝑀𝑘 , which are all extensions of𝑀 to the next

vertex 𝑢𝑛 , i.e,𝑀𝑖 =𝑀 ∪ {(𝑢𝑛, 𝑣𝑖)}. Assume that we have com-

puted failing sets 𝐹𝑀1
, ..., 𝐹𝑀𝑘

of𝑀1, ..., 𝑀𝑘 respectively. If there

exists a child node 𝑀𝑖 such that 𝑢𝑛 ∉ 𝐹𝑀𝑖
, we set 𝐹𝑀 = 𝐹𝑀𝑖

;

otherwise, 𝐹𝑀 = ∪𝑘
𝑖=1

𝐹𝑀𝑖
.

A node in a search tree can be classified as one of three categories:

a leaf in embedding class, a leaf in non-injective class, and a non-leaf
node. Unlike DAF [14], there is neither conflict class nor empty-set
class, because non-injective class includes these classes.
Definition 5.4. (Non-injective Connected Component) Sup-
pose that we have a candidate bipartite graph 𝐵𝑀 on a given partial

embedding𝑀 . Let 𝑔′ = (𝑉 (𝑔′), 𝐸 (𝑔′)) be a connected component

in 𝐵𝑀 . A connected component 𝑔′ is called non-injective connected
component if |𝐻 ′ | < |𝑉 (𝑔′) ∩ 𝑉 (𝑞) | where 𝐻 ′ is the maximum

bipartite matching in 𝑔′.
A non-injective connected component is the induced subgraph

of the vertices in that component. Thus, let 𝐵𝑀 [𝑉 (𝑔′)] denote the
non-injective connected component 𝑔′ = (𝑉 (𝑔′), 𝐸 (𝑔′)) in 𝐵𝑀 .

Example 5.2. Figure 7a and Figure 7c demonstrate blue-colored

extendable candidates and gray-colored candidates already mapped

in partial embeddings𝑀1 and𝑀2, respectively. Figure 7b and Fig-

ure 7d show candidate bipartite graphs 𝐵𝑀1
and 𝐵𝑀2

, respectively,

generated from the extendable candidates and the mapped candi-

dates. In these bipartite graphs, connected components surrounded

by purple boundaries are non-injective connected components,

i.e., 𝐵𝑀1
[𝑉1] and 𝐵𝑀2

[𝑉2] are non-injective connected components

where 𝑉1 = {𝑢3, 𝑢5, 𝑣4} and 𝑉2 = {𝑢2, 𝑢7, 𝑢9, 𝑣8, 𝑣9}.

Lemma 5.2. Given a candidate bipartite graph 𝐵𝑀 on a partial em-

bedding𝑀 of query graph 𝑞, there exists at least one non-injective

connected component in 𝐵𝑀 if and only if |𝐻 | < |𝑉 (𝑞) | where 𝐻 is

the maximum bipartite matching in 𝐵𝑀 .

By Lemma 5.2, we can obtain a non-injective connected compo-

nent 𝑔′ = (𝑉 (𝑔′), 𝐸 (𝑔′)) in candidate bipartite graph 𝐵𝑀 . We set a

failing set as follows:

𝐹𝑀 = ∪𝑥∈𝑉 (𝑔′)∩𝑉 (𝑑𝑀)𝑎𝑛𝑐𝑀 (𝑥) (1)

where 𝑎𝑛𝑐𝑀 (𝑥) denotes the set of all ancestors of 𝑥 in 𝑑𝑀 including

𝑥 itself.

Lemma5.3. For a partial embedding𝑀 that belongs to non-injective

class, 𝐹𝑀 satisfies the failure property.

Example 5.3. Partial embeddings𝑀1 and𝑀2 in Figure 6 are pruned

by bipartite matching. By Equation (1), failing sets of 𝑀1 and 𝑀2

are 𝐹𝑀1
= {𝑢1, 𝑢3, 𝑢5} and 𝐹𝑀2

= {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢7, 𝑢9}, respec-
tively. For partial embedding 𝑀 , 𝑢5 ∈ 𝐹𝑀1

and 𝑢5 ∈ 𝐹𝑀2
, and

thus 𝐹𝑀 = 𝐹𝑀1
∪ 𝐹𝑀2

according to the failing set computation of

Case (B), i.e., 𝐹𝑀 = {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢7, 𝑢9}. Since 𝑢4 ∉ 𝐹𝑀 , all sib-

lings are redundant. Therefore, we prune out the subtrees rooted

at𝑀’s siblings enclosed by a gray box in Figure 6.

6 CELL-WIDE VERIFICATION
In this section, we introduce a new technique that can reduce the

search space of backtracking based on the observation that candi-

date vertices with the same neighbors in CS lead to similar subtrees

of a search tree. For some query vertices, candidates that have the

same neighbors in CS result in the same extendable candidates,

which may generate the similar subtrees when we map those query

vertices to the extendable candidates.

Example 6.1. Figure 8a shows CS obtained from query graph 𝑞 in

Figure 2a and data graph 𝐺1 in Figure 2b. Figure 8b demonstrates

a part of search tree of backtracking in Figure 8a. Here, 𝑣3, 𝑣4, 𝑣5 ∈
𝐶 (𝑢2) have the same neighbors in the CS. Mapping𝑢2 to 𝑣3, 𝑣4, or 𝑣5
in 𝐶 (𝑢2) leads to partial embeddings𝑀𝑎 ,𝑀𝑏 , and𝑀𝑐 respectively.

Three subtrees rooted at𝑀𝑎 ,𝑀𝑏 and𝑀𝑐 are very similar.

Definition 6.1. (Cell) Given a candidate set 𝐶 (𝑢) of query vertex

𝑢 and a candidate 𝑣 ∈ 𝐶 (𝑢), cell 𝛾 (𝑢, 𝑣) is a subset of𝐶 (𝑢) such that:

• 𝑤 ∈ 𝛾 (𝑢, 𝑣) if and only if 𝑣 and𝑤 have the same set of neighbors

in CS.

Example 6.2. The cells with size more than 1 are illustrated as blue

and red boxes in Figure 8a. Candidates 𝑣3, 𝑣4, and 𝑣5 in 𝐶 (𝑢2) have
𝑣1 ∈ 𝐶 (𝑢1) and 𝑣11 ∈ 𝐶 (𝑢4) as neighbors in common (i.e., 𝛾 (𝑢2, 𝑣3)
= 𝛾 (𝑢2, 𝑣4) = 𝛾 (𝑢2, 𝑣5)). Both 𝑣10 and 𝑣4 in 𝐶 (𝑢5) are adjacent to

only 𝑣7 ∈ 𝐶 (𝑢3) and 𝑣9 ∈ 𝐶 (𝑢6) (i.e., 𝛾 (𝑢5, 𝑣4) = 𝛾 (𝑢5, 𝑣10)).
Since the candidates in a cell have the same neighbors in common,

the similar subtrees are generated no matter which candidate in the

cell is mapped in backtracking. Based on this phenomenon, we map

each query vertex to a cell when we extend a partial mapping, and

then every query vertex is eventually mapped to each candidate

in the cell (which has already been mapped to that query vertex)

when no extension is needed. This technique may considerably

reduce the search space.

Definition 6.2. (Hypermapping) Given a query graph 𝑞 and a

data graph 𝐺 , (full) hypermappingM is a mappingM : 𝑉 (𝑞) →
2
𝑉 (𝐺)

such that every 𝑢 ∈ 𝑉 (𝑞) is mapped to one of cells in 𝐶 (𝑢).

2192

𝑢1 𝑣1 𝑣12

𝑢2 𝑣8 𝑢3 𝑣4 𝑣5 𝑣6 𝑢4 𝑣13 𝑣23 𝑢5 𝑣4 𝑣5 𝑣6

𝑢6 𝑣11 𝑢7 𝑣8 𝑣9 𝑣10 𝑢8 𝑣7 𝑢9 𝑣8 𝑣9 𝑣10

(a)𝐶𝑀1

𝑢1

𝑢3
𝑢5

𝑢2
𝑢7
𝑢9
𝑢4

𝑢6
𝑢8

𝑣1
𝑣12
𝑣4
𝑣5
𝑣6
𝑣8
𝑣9
𝑣10
𝑣13
𝑣23
𝑣11
𝑣7

(b) 𝐵𝑀1

𝑢1 𝑣1 𝑣12

𝑢2 𝑣8 𝑢3 𝑣4 𝑣5 𝑣6 𝑢4 𝑣13 𝑣23 𝑢5 𝑣4 𝑣5 𝑣6

𝑢6 𝑣11 𝑢7 𝑣8 𝑣9 𝑣10 𝑢8 𝑣7 𝑢9 𝑣8 𝑣9 𝑣10

(c)𝐶𝑀2

𝑢1

𝑢3
𝑢5

𝑢2
𝑢7
𝑢9
𝑢4

𝑢6
𝑢8

𝑣1
𝑣12
𝑣4
𝑣5
𝑣6
𝑣8
𝑣9
𝑣10
𝑣13
𝑣23
𝑣11
𝑣7

(d) 𝐵𝑀2

Figure 7: Sets of extendable candidates, and candidate bipartite graphs

𝑢1 𝑣1

𝑢2 𝑣10 𝑣3 𝑣4 𝑣5 𝑢3 𝑣6 𝑣7

𝑢4 𝑣12 𝑣11 𝑢5𝑢5 𝑣3 𝑣10 𝑣4

𝑢6 𝑣8 𝑣9

𝑢7 𝑣6 𝑣13

(a) CS with cells

(𝑢1, 𝑣1)

(𝑢2, 𝑣3)
𝑀𝑎 (𝑢2, 𝑣4)

𝑀𝑏 (𝑢2, 𝑣5)
𝑀𝑐

(𝑢3, 𝑣6) (𝑢3, 𝑣7) (𝑢3, 𝑣6) (𝑢3, 𝑣7) (𝑢3, 𝑣6) (𝑢3, 𝑣7)

(𝑢5, 𝑣3)× (𝑢5, 𝑣10) (𝑢5, 𝑣4) (𝑢5, 𝑣3) (𝑢5, 𝑣10) (𝑢5, 𝑣4)× (𝑢5, 𝑣3) (𝑢5, 𝑣10) (𝑢5, 𝑣4)

(𝑢4, 𝑣11) (𝑢4, 𝑣11) (𝑢4, 𝑣11) (𝑢4, 𝑣11) (𝑢4, 𝑣11) (𝑢4, 𝑣11) (𝑢4, 𝑣11)

(𝑢6, 𝑣9) (𝑢6, 𝑣9) (𝑢6, 𝑣8) (𝑢6, 𝑣9) (𝑢6, 𝑣8) (𝑢6, 𝑣9) (𝑢6, 𝑣9)

(𝑢7, 𝑣13)

𝑀1

(𝑢7, 𝑣13)

𝑀2

(𝑢7, ∅)× (𝑢7, 𝑣13)

𝑀3

(𝑢7, ∅)× (𝑢7, 𝑣13)

𝑀4

(𝑢7, 𝑣13)

𝑀5

(b) Search tree

Figure 8: CS and search tree

Given a subset 𝑆 ⊂ 𝑉 (𝑞), a hypermapping of an induced subgraph

𝑞 [𝑆] is called a partial hypermapping.
Definition 6.3. (Extendable Candidates for Partial Hyper-
mapping) Suppose that we have a partial hypermappingM and

an unmapped query vertex 𝑢. Let 𝑝1, 𝑝2, ..., 𝑝𝑘 be the parents of 𝑢 in

𝑞𝑑 alreadymapped inM, then𝐶M (𝑢) is defined as∩𝑘𝑖 𝑁
𝑝𝑖
𝑢 (M(𝑝𝑖)),

where 𝑁𝑢
𝑢𝑐
(𝛾 (𝑢, 𝑣)) is 𝑁𝑢

𝑢𝑐
(𝑥) for any candidate vertex 𝑥 ∈ 𝛾 (𝑢, 𝑣).

Example 6.3. Search tree in Figure 9a shows extending a partial

hypermapping to find hypermappings in the CS of Figure 8a. Fig-

ure 9b illustrates CS that corresponds to the partial hypermapping

M1 in the search tree where gray-colored candidate vertices com-

pose every cell mapped inM1, and extendable candidates forM1

are blue, e.g., 𝐶M1
(𝑢4) = {𝑣11}.

In our backtracking approach, we map a vertex in a query graph

𝑞 to a candidate cell. Suppose that we are trying to extend a partial

hypermappingM.We select an extendable vertex𝑢 from unmapped

query vertices, and then we extend a partial hypermappingM to

new hypermappingM′ by mapping 𝑢 to one of cells in 𝐶M (𝑢).
We compute also the candidate bipartite graph 𝐵M′ on M′. We

backtrack if one of following two conditions (1) and (2) is satisfied.

(1) M′ is a full hypermapping.

(2) |𝐻 ′ | < |𝑉 (𝑞) | (𝐻 ′ is the maximum bipartite matching in 𝐵M′).

Suppose thatM′ is a full hypermapping (Condition (1)). Then
we try tomap each query vertex𝑢 to every possible candidate vertex

in the cell mapped to 𝑢 inM′.
Lemma 6.1. For 𝑛 sets 𝑋1, 𝑋2, ..., 𝑋𝑛 , let Π𝑖∈{1,· · · ,𝑛}𝑋𝑖 denote the
Cartesian product 𝑋1 ×𝑋2 × · · · ×𝑋𝑛 over these sets. Suppose that

a query graph 𝑞, a data graph 𝐺 , and a full hypermappingM are

given. If (𝑢𝑖 , 𝑢 𝑗) ∈ 𝐸 (𝑞), then for every 𝑣𝑥 ∈ M(𝑢𝑖) and every

𝑣𝑦 ∈ M(𝑢 𝑗), (𝑣𝑥 , 𝑣𝑦) ∈ 𝐸 (𝐺). Therefore, Π𝑢∈𝑉 (𝑞) {(𝑢, 𝑣) | 𝑣 ∈
M(𝑢)} is the set of homomorphisms of 𝑞 in 𝐺 .

By Lemma 6.1, we find homomorphisms of 𝑞 in 𝐺 by comput-

ing the Cartesian product of candidate vertices in each cell of a

full hypermappingM′. A query vertex may be mapped to two or

more distinct candidate vertices in a homomorphism. All injective

mappings among these homomorphisms are embeddings of 𝑞 in 𝐺 .

Example 6.4. Suppose that we obtained a full hypermappingM2

in Figure 9a. Cells mapped inM2 are illustrated as gray boxes in

CS of Figure 9c. In this CS, all query vertices except 𝑢2 and 𝑢5 are

mapped to cells which contain only one candidate. The combination

of each candidate in 𝐶M2
(𝑢2) = {𝑣3, 𝑣4, 𝑣5} and each candidate in

𝐶M2
(𝑢5) = {𝑣10, 𝑣4} will produce six different homomorphisms,

i.e., Π𝑢∈𝑉 (𝑞) {(𝑢, 𝑣𝑖) | 𝑣𝑖 ∈ M2 (𝑢)}. Among them, mapping 𝑢2 to

𝑣4 and mapping 𝑢5 to 𝑣4 do not lead to an injective mapping, so

2193

(𝑢1, {𝑣1})

(𝑢2, {𝑣3, 𝑣4, 𝑣5})

(𝑢3, {𝑣6}) (𝑢3, {𝑣7})

(𝑢5, {𝑣3})
M1 (𝑢5, {𝑣10, 𝑣4})

(𝑢4, {𝑣11})

(𝑢6, {𝑣8})×
M3

(𝑢4, {𝑣11})

(𝑢6, {𝑣9})

(𝑢7, {𝑣13})
M2

(a) Search tree

𝑢1 𝑣1

𝑢2 𝑣10 𝑣3 𝑣4 𝑣5 𝑢3 𝑣6 𝑣7

𝑢4 𝑣12 𝑣11 𝑢5𝑢5 𝑣3 𝑣10 𝑣4

𝑢6 𝑣8 𝑣9

𝑢7 𝑣6 𝑣13

(b)𝐶M1

𝑢1 𝑣1

𝑢2 𝑣10 𝑣3 𝑣4 𝑣5 𝑢3 𝑣6 𝑣7

𝑢4 𝑣12 𝑣11 𝑢5𝑢5 𝑣3 𝑣10 𝑣4

𝑢6 𝑣8 𝑣9

𝑢7 𝑣6 𝑣13

(c)𝐶M2

𝑢1
𝑢2

𝑢5
𝑢3

𝑢7
𝑢4

𝑢6

𝑢1
𝑢2

𝑢4

𝑢3

𝑣1
𝑣3
𝑣4
𝑣5
𝑣10
𝑣6
𝑣7
𝑣13
𝑣11
𝑣12
𝑣8
𝑣9

(d) 𝐵M3

𝑢1 𝑣1

𝑢2 𝑣10 𝑣3 𝑣4 𝑣5 𝑢3 𝑣6 𝑣7

𝑢4 𝑣12 𝑣11 𝑢5𝑢5 𝑣3 𝑣10 𝑣4

𝑢6 𝑣8 𝑣9

𝑢7 𝑣6 𝑣13

(e)𝐶M3

Figure 9: Extendable candidates, search tree, and extended candidate bipartite graph on partial hypermapping

the remaining five homomorphisms are embeddings (equivalent to

𝑀1, 𝑀2, 𝑀3, 𝑀4, and𝑀5 in the search tree of Figure 8b).

Suppose that |𝐻 ′ | < |𝑉 (𝑞) |where𝐻 ′ is themaximumbipartite
matching in 𝐵M′ (Condition (2)).We define a candidate bipartite

graph for a partial hypermapping in order to apply pruning by

bipartite matching in Section 4.

Definition 6.4. (Candidate Bipartite Graph on Partial Hy-
permapping) Given a query graph 𝑞, a data graph 𝐺 , a partial

hypermapping M, and extendable candidates sets 𝐶M . 𝐵M =

(𝑉 (𝑞),𝑉 (𝐺), 𝐸 (𝐵M)) is defined as follows.

• For 𝑢 ∈ 𝑉 (𝑞) mapped inM, there is an edge (𝑢, 𝑣) ∈ 𝐸 (𝐵M) if
and only if 𝑣 ∈ M(𝑢).

• For𝑢 ∈ 𝑉 (𝑞) notmapped inM, there is an edge (𝑢, 𝑣) ∈ 𝐸 (𝐵M)
if and only if 𝑣 ∈ 𝐶M (𝑢).

Example 6.5. Figure 9e shows the gray-colored candidate vertices

which compose the cells mapped inM3. In this CS, 𝐶M3
(𝑢7) = ∅.

Figure 9d demonstrates the candidate bipartite graph 𝐵M3
onM3

with the red-colored maximum bipartite matching. In this bipartite

graph, 𝑢7 has no incident edges as 𝐶M3
(𝑢7) = ∅. Since the size of

this maximum bipartite matching is 6 which is less than |𝑉 (𝑞) | = 7,

the partial mappingM3 is pruned out.

Algorithm 5: CellWideBacktrack𝑚 (𝑞,𝐶𝑆,M, 𝐻)
1 if |𝐻 | < |𝑉 (𝑞) | then
2 return;

3 else if |M| = |𝑉 (𝑞) | then
4 Report all embeddings in Π𝑢∈𝑉 (𝑞) {(𝑢, 𝑣) | 𝑣 ∈ M(𝑢)};
5 else
6 Select a next extendable vertex 𝑢;

7 foreach 𝑐 ∈ {𝛾 (𝑢, 𝑣) | 𝑣 ∈ 𝐶M (𝑢)} do
8 M′ ←M ∪ {(𝑢, 𝑐)};
9 ˜︁𝐻 ← {(𝑠, 𝑡) ∈ 𝐻 | 𝑠 ∉ {𝑢} ∪𝑈𝑁𝑀 (𝑢)};

10 𝐻 ′← GetMaximumMatching(𝐵M′ , ˜︁𝐻);
11 CellWideBacktrack𝑚 (𝑞,𝐶𝑆,M′, 𝐻 ′);

Search Process. Given a partial hypermappingM and the maxi-

mum bipartite matching 𝐻 of the bipartite graph 𝐵M , Algorithm 5

applies Conditions (1) and (2) of backtracking. If |𝐻 | < |𝑉 (𝑞) |, it
backtracks based on Condition (2), i.e., pruning by bipartite match-

ing) (lines 1-2). If |M| = |𝑉 (𝑞𝑑) |, we report all injective mappings

from Π𝑢∈𝑉 (𝑞𝑑) {(𝑢, 𝑣𝑖) | 𝑣𝑖 ∈ M(𝑢)} (lines 3-4). (For subgraph
search, we replace line 4 by returning the data graph and immedi-

ately terminating this procedure if there exists at least one injective

mapping in the Cartesian product.) Otherwise, we select a next

extendable vertex 𝑢 (line 6). Next, we iterate over every distinct cell

𝑐 in {𝛾 (𝑢, 𝑣) | 𝑣 ∈ 𝐶M (𝑢)}, which is the set of cells that extendable

candidates in 𝐶M (𝑢) belong to. For each cell 𝑐 , we extendM to

M′ = M ∪ {(𝑢, 𝑐)} (lines 7-8). Then a new maximum matching

𝐻 ′ of 𝐵M′ is computed, and CellWideBacktrack𝑚 is recursively

invoked with argumentsM′ and𝐻 ′ (lines 9-11). Finally, we replace
Backtrack𝑚 with CellWideBacktrack𝑚 in line 5 of Algorithm 1.

To discriminate between the verification using hypermappings

and the existing verification approach that maps a query vertex to

a candidate vertex, we refer to them as cell-wide verification and

vertex-wide verification, respectively.
We add failing sets into the implementation of the cell-wide

verification. Failing sets in the cell-wide verification are computed

exactly the same as those in the vertex-wide verification except that:

(1) an embedding is replaced by a hypermapping in the embedding

class, and (2) 𝐹M of a hypermapping𝑀 in the non-injective class

is obtained from ∪𝑥∈𝑉 (𝑔′)∩𝑉 (𝑞) 𝑎𝑛𝑐 (𝑥) where 𝑔′ = (𝑉 (𝑔′), 𝐸 (𝑔′))
is the non-injective connective component in candidate bipartite

graph 𝐵M on a partial hypermappingM.

7 PERFORMANCE EVALUATION
We evaluate the performance of the competing algorithms for sub-

graph search and subgraph matching. All the source codes were

obtained from the authors of previous papers, and they are imple-

mented in C++. Experiments are conducted on a Linux machine

with two Intel Xeon E5-2680 v3 2.5GHz CPUs and 256GB memory.

Metrics. We measure the query processing time which is the sum

of filtering time and verification time for subgraph search, or the

sum of preprocessing time (i.e., time to construct an auxiliary data

structure) and search time (i.e., time to enumerate the first 10
5

embeddings) for subgraph matching. We set a time limit of 10

minutes for each query. If an algorithm does not process a query

within the time limit, we regard the processing time of the query as

2194

10 minutes. We say that the query finished within the time limit is

solved. Each query set consists of 100 query graphs. For each query

set, we measure the average of query processing time to process

query graphs solved by at least one of the competing algorithms.

7.1 Subgraph Search
Since CFQL [42] and VEQ [21, 22] significantly outperformed exist-

ing subgraph search algorithms, we compare our subgraph search

algorithm BICES with these two algorithms.

Table 2: Characteristics of real-world datasets for subgraph
search where Σ is a set of distinct vertex labels

Dataset Average per graph

|D | |Σ | |𝑉 (𝐺) | |𝐸 (𝐺) | degree |Σ |

COLLAB 5,000 10 74 2,457 65.97 9.9

IMDB 1,500 10 13 66 10.14 6.9

PCM 200 21 377 4,340 23.01 18.9

PDBS 600 10 2,939 3,064 2.06 6.4

PPI 20 46 4,942 26,667 10.87 28.5

REDDIT 4,999 10 509 595 2.34 10.0

Real Datasets. Experiments are conducted on real-world datasets,

which are PDBS, PCM, PPI used in [13, 20, 42], IMDB, REDDIT, and

COLLAB provided by [48]. PDBS is a set of graphs that represent

DNA, RNA, and proteins. PCM is a set of protein contact maps of

amino acids. PPI is a database of protein-protein interaction net-

works. IMDB is a movie collaboration dataset. REDDIT is a dataset

of online discussion communities, and COLLAB is a scientific col-

laboration dataset. As no label information is available for IMDB,

REDDIT, and COLLAB, we randomly assigned a label out of 10

distinct labels to each vertex. The characteristics of the datasets are

summarized in Table 2.

Query Sets. We adopt two query generation methods similar to

those in previous studies, which are random walk [20, 42] and

breadth first search (BFS) [42, 45]. For each dataset D, we generate

eight query sets 𝑄𝑖𝑅 (i.e., random walk) and 𝑄𝑖𝐵 (i.e., BFS) where

𝑖 ∈ {8, 16, 32, 64} is the number of edges of a query graph. A query

graph is generated by the random walk method as follows: (1)

select a vertex uniformly at random from a randomly selected

graph 𝐺 ∈ D; (2) perform a random walk from the selected vertex

until we visit 𝑖 distinct edges, from which we extract a subgraph

with these edges. In the BFS method, we perform a BFS from the

selected vertex until we visit 𝑖 distinct edges.

Query Processing Time. Figure 10 shows the mean query pro-

cessing time of the algorithms. In general, the query processing

time increases as the number of vertices increases. BICEs outper-
forms VEQs and CFQL in most cases. BICEs is up to two orders of

magnitude faster than VEQs for COLLAB (𝑄64𝐵 in Figure 10a), and

up to three orders of magnitude faster than CFQL for IMDB (𝑄64𝐵

in Figure 10b). BICEs is marginally slower than VEQs and CFQL in

PDBS, because embeddings of these queries can be easily found by

all the algorithms, so the pruning techniques of BICEs may incur

an overhead.

Sensitivity Analysis. We evaluate the algorithms by varying sev-

eral characteristics of a set D of data graphs. We generate each

data graph𝐺 ∈ D by upscaling the smallest data graph of PPI (with

2008 edges) using Evograph [32], and assign labels to vertices based

on a power law distribution. We vary the following parameters:

CFQL VEQS BICES

100
101
102
103
104
105
106

8B 16B 32B 64B 8R 16R 32R 64R

(a) COLLAB

100
101
102
103
104
105
106

8B 16B 32B 64B 8R 16R 32R 64R

(b) IMDB

10-1
100
101
102
103
104
105
106

8B 16B 32B 64B 8R 16R 32R 64R

(c) PCM

100
101
102
103
104
105
106

8B 16B 32B 64B 8R 16R 32R 64R

(d) PDBS

100
101
102
103
104
105
106

8B 16B 32B 64B 8R 16R 32R 64R

(e) PPI

100
101
102
103
104
105
106

8B 16B 32B 64B 8R 16R 32R 64R

(f) REDDIT

Figure 10: Query processing time (ms) of the subgraph search
algorithms on real datasets

CFQL VEQS BICES

100

101

102

103

104

105

106

10 20 40 80

E
la

p
se

d
 t

im
e
 (

m
s)

Number of Labels

(a) |Σ |

100
101
102
103
104
105
106

2 4 8 16

Scale

(b) Scale

100
101
102
103
104
105
106

102 103 104 105

|D|

(c) |D |
Figure 11: Query processing time on synthetic datasets.

• The number of distinct labels in Σ: 10, 20, 40, 80
• A scaling factor 𝑠 of a data graph in D: 2, 4, 8, 16

• The number of data graphs in D: 10
2, 103, 104, 105

where 𝑠 indicates that |𝐸 (𝐺) | is 𝑠 times larger than that of the input

data graph while Evograph keeps the same statistical properties

of 𝐺 by increasing |𝑉 (𝐺) | accordingly. Similarly to the existing

work [20, 42], we set |Σ| = 20, 𝑠 = 2, and |D| = 10
3
as default; in

fact, we choose 𝑠 = 2 so that the default |𝑉 (𝐺) | corresponding to
𝑠 = 2 is larger than that of the existing work for stress testing. If

not specified, the parameters are set to their default values. We use

query sets 𝑄16 which is the union of 𝑄16𝐵 and 𝑄16𝑅 .

The query processing time of the algorithms on the synthetic

datasets is shown in Figure 11. In most cases, the order of the

algorithms from the fastest to slowest is BICES, VEQS, and CFQL.
In Figure 11a, the query processing time of BICES decreases as the
number of distinct labels increases because increasing number of

labels make the size of candidates space smaller, which reduces the

size of search space. In Figure 11b and Figure 11c, BICES generally
outperforms VEQS and CFQL. In Figure 11b, the query processing

time rises as the data graphs get larger since the time to verify a

false positive data graph can dramatically increase. In Figure 11c,

the time also rises as |D| increases, because more false positive

answers may exponentially increase the verification time.

7.2 Subgraph Matching
To evaluate the performance of our subgraph matching algorithm

BICEM, we compare it against existing subgraph matching algo-

rithms VEQM [21, 22], RapidMatch [44], RIfs [43], and GQLfs [43].
Datasets. We test the algorithms against real-world datasets of

Table 3 widely used in previous work [5, 14, 15, 28]. Yeast and

2195

Table 3: Characteristics of real datasets for subgraph match-
ing where Σ is a set of distinct vertex labels in 𝐺

𝐺 |𝑉 (𝐺) | |𝐸 (𝐺) | Avg degree |Σ |

Berkstan 685,230 6,649,470 19.41 20

DBLP 317,080 1,049,866 6.62 20

Google 875,713 4,332,051 9.87 20

Human 4,674 86,282 36.91 44

Patents 3,774,768 16,518,948 8.75 20

Yeast 3,112 12,519 8.04 71

Twitter 41,652,230 1,468,364,884 70.51 1,000

VEQM
RapidMatch

RIfs
GQLfs

BICEM

100
101
102
103
104
105
106

10S 20S 30S 40S 10N 20N 30N 40N

(a) Berkstan

100
101
102
103
104
105
106

10S 20S 30S 40S 10N 20N 30N 40N

(b) DBLP

100
101
102
103
104
105
106

50S 100S 150S 200S 50N 100N 150N 200N

(c) Google

100
101
102
103
104
105
106

10S 20S 30S 40S 10N 20N 30N 40N

(d) Human

100
101
102
103
104
105
106

50S 100S 150S 200S 50N 100N 150N 200N

(e) Patents

100
101
102
103
104
105
106

50S 100S 150S 200S 50N 100N 150N 200N

(f) Yeast

100

101

102

103

104

105

106

10S 20S 30S 40S

E
la

p
se

d
 t

im
e
 (

m
s)

10N 20N 30N 40N

(g) Twitter
Figure 12: Query processing time (ms) of the subgraphmatch-
ing algorithms on real datasets

Human are protein-protein interaction networks. Google, Berk-

stan, Patents and DBLP are obtained from Stanford Large Network

Dataset Collection [29]. Google and Berkstan represent hyperlinks

connecting webpages. Patents is a dataset of citations made by US

patents. DBLP is a co-authorship network. As no label information

is available for Google, Berkstan, Patents and DBLP, we randomly

assigned a label out of 20 distinct labels to each vertex. We also

tested our algorithm on the Twitter graph [27] with billions of

edges. We randomly assigned 1000 distinct labels.

Query Sets. We use the same experimental setting as [5] and

[14]. We generate sparse query sets 𝑄𝑖𝑆 and non-sparse query

sets 𝑄𝑖𝑁 where 𝑖 is the number of vertices in a query graph such

that 𝑖 ∈ {50, 100, 150, 200} for Yeast, Google, and Patents, and

𝑖 ∈ {10, 20, 30, 40} for the remaining datasets. Each query graph in

𝑄𝑖𝑆 and 𝑄𝑖𝑁 has the average degree ≤ 3 and > 3, respectively. A

query graph is generated as follows: (1) select a vertex uniformly

at random, (2) perform a random walk on a data graph until we

visit 𝑖 distinct vertices, and (3) extract a subgraph with the visited

vertices and some edges between these vertices.

BICEM-BM,FS,CV
BICEM-FS,CV

BICEM-CV
BICEM

100

101

102

103

104

105

106

50S 100S150S200S

E
la

p
se

d
 t

im
e
 (

m
s)

50N100N150N200N

(a) Query time (Google)

100

101

102

103

104

105

106

50S 100S150S200S

E
la

p
se

d
 t

im
e
 (

m
s)

50N100N150N200N

(b) Query time (Patents)
Figure 13: Performance gain of each technique in BICEM

BICES-BM,FS,CV
BICES-FS,CV

BICES-CV
BICES

100

101

102

103

104

105

106

8B 16B 32B 64B

E
la

p
se

d
 t

im
e
 (

m
s)

8R 16R 32R 64R

(a) Query time (PPI)

100

101

102

103

104

105

106

8B 16B 32B 64B

E
la

p
se

d
 t

im
e
 (

m
s)

8R 16R 32R 64R

(b) Query time (COLLAB)

Figure 14: Performance gain of each technique in BICES

Query Processing Time. Figure 12 shows the average query

processing time of the algorithms. BICEM generally outperforms

VEQM, which is followed by GQLfs, RIfs, and RapidMatch.
Overall, BICEM outperforms the others for DBLP, Google, Hu-

man, Patents, Yeast, and Twitter. Specifically, BICEM outperforms

RapidMatch and RIfs up to three orders of magnitude for 𝑄30𝑁

of DBLP in Figure 12b. In addition, BICEM outperforms GQLfs up
to two orders of magnitude for 𝑄40𝑆 of DBLP in Figure 12b, and

𝑄20𝑆 of Human in Figure 12d. BICEM also outperforms VEQM up

to two orders of magnitude for 𝑄30𝑆 of DBLP in Figure 12b. For

Twitter, we set a time limit of 15 minutes for each query. We could

not include RapidMatch, which spends at least 30 minutes for each

query. RIfs and GQLfs cause a memory error for some queries in

Twitter, so we exclude them from a query set for all the algorithms.

BICEM is more than 10 times faster than the rest for𝑄40𝑁 in Figure

12g. Only BICEM solves every query within the time limit.

The query processing time of the other algorithms exponentially

grows as the size of query graph increases in DBLP. On the con-

trary, BICEM takes nearly constant query processing time for DBLP

in all query sets except 𝑄40𝑁 . We attribute the good performance

of BICEM on DBLP, Google, Patents, and Yeast to the low aver-

age degree of these graphs. This may result in a small number of

extendable candidates, which can speed up bipartite matching. Ex-

ceptionally, BICEM is marginally slower than the other algorithms

in the non-sparse queries in Yeast, because these queries have small

search space so our techniques may incur an overhead.

In Berkstan, BICEM outperforms the other algorithms for 𝑄30𝑆

and 𝑄40𝑁 . Although BICEM makes fewer recursive calls than the

other algorithms due to its effective pruning techniques, it is not

the best performer for the remaining query sets. Note that Berkstan

has a high average degree and a large number of vertices. These

characteristics may lead to a large number of extendable candidates,

which results in more time to find the maximum bipartite matching

in a candidate bipartite graph.

7.3 Effectiveness of Individual Techniques
In this subsection, we run our algorithm and its variants below

to measure the performance gain achieved by each technique of

Section 4, Section 5, and Section 6.

2196

Table 4: Average ratio of the number of partial embeddings
to the number of partial hypermappings

Patents

Query 50S 100S 150S 200S 50N 100N 150N 200N

Ratio 15.45 15.16 12.66 3.25 11.64 12.76 6.61 231.41

COLLAB

Query 8B 16B 32B 64B 8R 16R 32R 64R

Ratio 1.00 1.00 1.49 52.26 1.07 100.33 352.69 −

• BICEM-BM,FS,CV (or BICES-BM,FS,CV): a baseline for compar-

ison using vertex-wide verification without pruning by bipartite

matching and without failing sets.

• BICEM-BM,CV (or BICES-BM,CV): using vertex-wide verifica-

tion with pruning by only bipartite matching.

• BICEM-CV (or BICES-CV): using vertex-wide verification with

pruning by bipartite matching and pruning by failing sets.

• BICEM (or BICES): our algorithm using cell-wide verification

with pruning by bipartite matching and pruning by failing sets.

Figure 13 shows the query processing time for subgraph match-

ing in Google and Patents, and Figure 14 shows the query processing

time for subgraph search in COLLAB and PPI.

Effectiveness of Pruning byBipartiteMatching.Overall,BICEM-

FS,CV outperforms BICEM-BM,FS,CV with respect to the query

processing time, and BICES-FS,CV outperforms BICES-BM,FS,CV

with respect to the query processing time. BICEM-BM,FS,CV is 33

times faster than BICEM-FS,CV for Google (𝑄50𝑁 in Figure 13a).

Effectiveness of Pruning by Failing Sets. The effectiveness of
our failing set computation method can be verified by the perfor-

mance gap between BICEM-FS,CV and BICEM-CV in Figure 13

and the performance gap between BICES-FS,CV and BICES-CV in

Figure 14. To be specific, BICEM-CV is more than 185 times faster

than BICEM-FS,CV for Google (𝑄50𝑆 in Figure 13a).

Effectiveness of Cell-Wide Verification. In Figure 13, BICEM
performs slightly better than BICEM-CV with respect to the query

processing time. Compared to BICES-CV, BICES is more than one

order of magnitude faster for COLLAB (𝑄16𝑅 and 𝑄64𝐵 in Figure

14b). BICES solves five queries in 𝑄64𝑅 of COLLAB, whereas the

others solve no queries within the time limit.

Compression Power of Hypermapping. To justify the effective-

ness of the cell-wide verification, we measure the ratio of the num-

ber of nodes in a search tree generated byBICEM-CV (orBICES-CV)
to the number of nodes in a search tree generated by BICEM (or

BICES) in Table 4. The ratio indicates the average number of partial

embeddings covered by a partial hypermapping, so a larger ratio is

better. The ratio increases as the size of a query graph grows. On

average, each node in the search tree of cell-by-cell backtracking

contains 231.41 and 352.69 partial embeddings for𝑄200𝑁 of Patents

and for 𝑄32𝑅 of COLLAB, respectively.

7.4 Complexity Analysis
Table 5 describes the time complexity of each step for the algo-

rithms. While RIfs has no preprocessing step to compute candidate

sets, the others take polynomial time with respect to the sizes of

𝑞 and 𝐺 in preprocessing and cell computation. Both BICE and

VEQ take 𝑂 (|𝐸 (𝑞) | |𝐸 (𝐺) |) time for preprocessing, as BICE adopts

the CS construction method of VEQ. After preprocessing, like
VEQ, BICE spends 𝑂 (Σ𝑢∈𝑉 (𝑞)deg(𝑢) · 𝑑𝑚𝑎𝑥 (𝐺) · |𝐶 (𝑢) |) time in

Table 5: Time complexities of the compared algorithms.

Subgraph matching for query graph 𝑞 in data graph𝐺

Algorithm Preprocessing Enumeration

RapidMatch 𝑂 (|𝐸 (𝑞) | |𝐸 (𝐺) |)
RIfs - Exponential to |𝑉 (𝑞) |

GQLfs 𝑂 (|𝑉 (𝑞) | |𝐸 (𝐺) |) (vertex-by-vertex mapping)

VEQM 𝑂 (|𝐸 (𝑞) | |𝐸 (𝐺) |)

BICEM 𝑂 (|𝐸 (𝑞) | |𝐸 (𝐺) |) (cell-by-cell mapping)

Subgraph search for query 𝑞 in each𝐺 ∈ D

Algorithm Filtering Verification

CFQL 𝑂 (|𝐸 (𝑞) | |𝐸 (𝐺) |) Exponential to |𝑉 (𝑞) |
VEQS 𝑂 (|𝐸 (𝑞) | |𝐸 (𝐺) |) (vertex-by-vertex mapping)

BICES 𝑂 (|𝐸 (𝑞) | |𝐸 (𝐺) |) (cell-by-cell mapping)

the worst case for the cell computation in CS. Specifically, for each

query vertex 𝑢, we compute the cells via a divide-and-conquer ap-

proach over every candidate 𝑣 ∈ 𝐶 (𝑢): for each pivot candidate

𝑣𝑛 ∈ 𝐶 (𝑢𝑛) for a neighbor 𝑢𝑛 of 𝑢, they partition elements of 𝐶 (𝑢)
into two subsets according to whether each element 𝑣 ∈ 𝐶 (𝑢)
is adjacent to the pivot in CS (refer to Lemma 4 in [22] for de-

tails). For each neighbor 𝑢𝑛 of 𝑢, there are at most 𝑑𝑚𝑎𝑥 (𝐺) neigh-
bors of 𝑣 ∈ 𝐶 (𝑢) in 𝐶 (𝑢𝑛), where 𝑑𝑚𝑎𝑥 (𝐺) is the maximum of

degrees of all 𝑣 ∈ 𝑉 (𝐺). Therefore, the number of possible pivots

is 𝑂 (deg(𝑢) · 𝑑𝑚𝑎𝑥 (𝐺)) for a fixed 𝑢 ∈ 𝑉 (𝑞) and a fixed 𝑣 ∈ 𝐶 (𝑢).
Consequently, computing cells for all 𝑢 ∈ 𝑉 (𝑞) and all 𝑣 ∈ 𝐶 (𝑢)
takes 𝑂 (Σ𝑢∈𝑉 (𝑞) deg(𝑢) · 𝑑𝑚𝑎𝑥 (𝐺) · |𝐶 (𝑢) |) time. Since subgraph

matching and subgraph search are NP-hard, backtracking (in the

enumeration step of subgraph matching or in the verification step

of subgraph search) of all the algorithms takes the time exponential

to |𝑉 (𝑞) | in the worst case. Nevertheless, BICE matches cell by cell

unlike the rest that matches vertex by vertex, which empirically

results in the performance gap between two different backtracking

frameworks.

8 CONCLUSION
To speed up subgraph search and subgraph matching, we propose

three methods that result in compact search space. We compare

our approach with existing state-of-the-art algorithms in extensive

experiments for various datasets. The experiments show that our

algorithm significantly outperforms the competitors in the query

processing time.

ACKNOWLEDGMENTS
Park was supported by Institute of Information communications

Technology Planning Evaluation (IITP) grant funded by the Ko-

rea government(MSIT) (No. 2018-0-00551, Framework of Practical

Algorithms for NP-hard Graph Problems). Kim was supported by

the research fund of Hanyang University (HY-202100000003161).

Kim was supported by Institute of Information communications

Technology Planning Evaluation (IITP) grant funded by the Korea

government(MSIT) (No.2020-0-01373, Artificial Intelligence Gradu-

ate School Program(Hanyang University)).

2197

REFERENCES
[1] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,

and Christopher Ré. 2017. Emptyheaded: A relational engine for graph processing.

ACM Transactions on Database Systems (TODS) 42, 4 (2017), 1–44.
[2] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and

S Cenk Sahinalp. 2008. Biomolecular network motif counting and discovery by

color coding. Bioinformatics 24, 13 (2008), i241–i249.
[3] Anonyme Anonyme. 2014. Subgraph Matching for Single Large Multigraphs

Subgraph Matching for Single Large Multigraphs. Ph.D. Dissertation. LIRMM.

[4] Bibek Bhattarai, Hang Liu, and H Howie Huang. 2019. Ceci: Compact embed-

ding cluster index for scalable subgraph matching. In Proceedings of the 2019
International Conference on Management of Data. 1447–1462.

[5] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient

Subgraph Matching by Postponing Cartesian Products. In Proceedings of ACM
SIGMOD. 1199–1214.

[6] Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti, and Dennis

Shasha. 2010. Enhancing graph database indexing by suffix tree structure. In

IAPR International Conference on Pattern Recognition in Bioinformatics. Springer,
195–203.

[7] Mario Cannataro and Pietro H Guzzi. 2012. Data management of protein interac-
tion networks. Vol. 17. John Wiley & Sons.

[8] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. 2017.

Challenging the time complexity of exact subgraph isomorphism for huge and

dense graphs with VF3. IEEE transactions on pattern analysis and machine
intelligence 40, 4 (2017), 804–818.

[9] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A

(Sub)Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 26, 10 (2004), 1367–1372.

[10] Raffaele Di Natale, Alfredo Ferro, Rosalba Giugno, Misael Mongiovì, Alfredo

Pulvirenti, and Dennis Shasha. 2010. Sing: Subgraph search in non-homogeneous

graphs. BMC bioinformatics 11, 1 (2010), 96.
[11] Wenfei Fan. 2012. Graph pattern matching revised for social network analysis.

In Proceedings of ICDT. 8–21.
[12] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co.

[13] Rosalba Giugno, Vincenzo Bonnici, Nicola Bombieri, Alfredo Pulvirenti, Alfredo

Ferro, and Dennis Shasha. 2013. Grapes: A software for parallel searching on

biological graphs targeting multi-core architectures. PloS one 8, 10 (2013), e76911.
[14] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin

Han. 2019. Efficient subgraph matching: Harmonizing dynamic programming,

adaptive matching order, and failing set together. In Proceedings of ACM SIGMOD.
1429–1446.

[15] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turbo iso: Towards

Ultrafast and Robust Subgraph Isomorphism Search in Large Graph Databases.

In Proceedings of ACM SIGMOD. 337–348.
[16] Wook-Shin Han, Jinsoo Lee, Minh-Duc Pham, and Jeffrey Xu Yu. 2010. iGraph: a

framework for comparisons of disk-based graph indexing techniques. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 449–459.

[17] Huahai He and Ambuj K. Singh. 2008. Graphs-at-a-time: Query Language and

Access Methods for Graph Databases. In Proceedings of ACM SIGMOD. 405–418.
[18] John E Hopcroft and Richard M Karp. 1973. An nˆ5/2 algorithm for maximum

matchings in bipartite graphs. SIAM Journal on computing 2, 4 (1973), 225–231.

[19] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and

Semih Salihoglu. 2017. Graphflow: An active graph database. In Proceedings of
the 2017 ACM International Conference on Management of Data. 1695–1698.

[20] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. 2015. Performance

and scalability of indexed subgraph query processing methods. Proceedings of
the VLDB Endowment 8, 12 (2015), 1566–1577.

[21] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and

Wook-Shin Han. 2021. Versatile Equivalences: Speeding up Subgraph Query

Processing and Subgraph Matching. In Proceedings of ACM SIGMOD. 925–937.
[22] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and

Wook-Shin Han. 2022. Fast subgraph query processing and subgraph matching

via static and dynamic equivalences. The VLDB Journal (2022), 1–26.
[23] Hyunjoon Kim, Seunghwan Min, Kunsoo Park, Xuemin Lin, Seok-Hee Hong,

and Wook-Shin Han. 2020. IDAR: Fast supergraph search using DAG integration.

Proceedings of the VLDB Endowment 13, 9 (2020), 1456–1468.
[24] Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi.

2015. Taming Subgraph Isomorphism for RDF Query Processing. Proceedings of
the VLDB Endowment 8, 11 (2015).

[25] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong,

Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. 2018. Turboflux: A fast

continuous subgraph matching system for streaming graph data. In Proceedings

of ACM SIGMOD. 411–426.
[26] Karsten Klein, Nils Kriege, and Petra Mutzel. 2011. CT-index: Fingerprint-based

graph indexing combining cycles and trees. In Proceedings of IEEE ICDE. 1115–
1126.

[27] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. 591–600.

[28] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An

In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases.

Proceedings of the VLDB Endowment 6, 2 (2012), 133–144.
[29] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[30] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by

Combining Binary and Worst-case Optimal Joins. Proceedings of the VLDB
Endowment 12, 11 (July 2019), 1692–1704.

[31] Noel M O’Boyle and Roger A Sayle. 2016. Comparing structural fingerprints

using a literature-based similarity benchmark. Journal of cheminformatics 8, 1
(2016), 1–14.

[32] Himchan Park and Min-Soo Kim. 2018. EvoGraph: an effective and efficient

graph upscaling method for preserving graph properties. In Proceedings of ACM
SIGKDD. 2051–2059.

[33] Eric Plotnick. 1997. Concept mapping: A graphical system for understanding the re-
lationship between concepts. ERIC Clearinghouse on Information and Technology

Syracuse, NY.

[34] N Pržulj, Derek G Corneil, and Igor Jurisica. 2006. Efficient estimation of graphlet

frequency distributions in protein–protein interaction networks. Bioinformatics
22, 8 (2006), 974–980.

[35] Syed Asad Rahman, Matthew Bashton, Gemma L Holliday, Rainer Schrader,

and Janet M Thornton. 2009. Small molecule subgraph detector (SMSD) toolkit.

Journal of cheminformatics 1, 1 (2009), 1–13.
[36] Xuguang Ren and JunhuWang. 2015. Exploiting vertex relationships in speeding

up subgraph isomorphism over large graphs. Proceedings of the VLDB Endowment
8, 5 (2015), 617–628.

[37] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando

Silva. 2021. A survey on subgraph counting: concepts, algorithms, and applica-

tions to network motifs and graphlets. ACM Computing Surveys (CSUR) 54, 2
(2021), 1–36.

[38] Carlos R Rivero and Hasan M Jamil. 2017. Efficient and scalable labeled subgraph

matching using SGMatch. Knowledge and Information Systems 51, 1 (2017),

61–87.

[39] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer

Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph

processing. Proceedings of the VLDB Endowment 11, 4 (2017), 420–431.
[40] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming

Verification Hardness: An Efficient Algorithm for Testing Subgraph Isomorphism.

Proceedings of the VLDB Endowment 1, 1 (2008), 364–375.
[41] Tom AB Snijders, Philippa E Pattison, Garry L Robins, and Mark S Handcock.

2006. New specifications for exponential random graph models. Sociological
methodology 36, 1 (2006), 99–153.

[42] Shixuan Sun and Qiong Luo. 2019. Scaling Up Subgraph Query Processing with

Efficient Subgraph Matching. In Proceedings of IEEE ICDE. 220–231.
[43] Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-depth

Study. In Proceedings of ACM SIGMOD. 1083–1098.
[44] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. 2020. Rapid-

Match: a holistic approach to subgraph query processing. Proceedings of the
VLDB Endowment 14, 2 (2020), 176–188.

[45] Jing Wang, Nikos Ntarmos, and Peter Triantafillou. 2017. GraphCache: a caching

system for graph queries. (2017), 13–24.

[46] Junhu Wang, Xuguang Ren, Shikha Anirban, and Xin-Wen Wu. 2019. Correct

filtering for subgraph isomorphism search in compressed vertex-labeled graphs.

Information Sciences 482 (2019), 363–373.
[47] Xifeng Yan, Philip S Yu, and Jiawei Han. 2004. Graph indexing: a frequent

structure-based approach. In Proceedings of ACM SIGMOD. 335–346.
[48] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings

of ACM SIGKDD. 1365–1374.
[49] Shijie Zhang, Shirong Li, and Jiong Yang. 2009. GADDI: Distance Index Based

Subgraph Matching in Biological Networks. In Proceedings of ACM EDBT. 192–
203.

[50] Peixiang Zhao and Jiawei Han. 2010. On Graph Query Optimization in Large

Networks. Proceedings of the VLDB Endowment 3, 1-2 (2010), 340–351.
[51] Peixiang Zhao, Jeffrey Xu Yu, and S Yu Philip. 2007. Graph indexing: Tree+

Delta>= Graph.. In Proceedings of VLDB. 938–949.
[52] Lei Zou, Lei Chen, Jeffrey Xu Yu, and Yansheng Lu. 2008. A novel spectral coding

in a large graph database. In Proceedings of EDBT. 181–192.

2198

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Related Work

	3 Overview of Our Approach
	3.1 Subgraph Matching
	3.2 Subgraph Search

	4 Pruning by Bipartite Matching
	4.1 Pruning by Bipartite Matching
	4.2 Maximum Bipartite Matching Algorithm

	5 Pruning by Failing Sets with Bipartite Matching
	6 Cell-Wide Verification
	7 Performance Evaluation
	7.1 Subgraph Search
	7.2 Subgraph Matching
	7.3 Effectiveness of Individual Techniques
	7.4 Complexity Analysis

	8 Conclusion
	Acknowledgments
	References

