
Towards Designing and Learning Piecewise Space-Filling Curves
Jiangneng Li

Nanyang Technological University

Singapore

jiangnen002@e.ntu.edu.sg

Zheng Wang

Nanyang Technological University

Singapore

zheng011@e.ntu.edu.sg

Gao Cong

Nanyang Technological University

Singapore

gaocong@ntu.edu.sg

Cheng Long

Nanyang Technological University

Singapore

c.long@ntu.edu.sg

Han Mao Kiah

Nanyang Technological University

Singapore

hmkiah@ntu.edu.sg

Bin Cui

Peking University

Beijing, China

bin.cui@pku.edu.cn

ABSTRACT
To index multi-dimensional data, space-filling curves (SFCs) have

been used to map the data to one dimension, and then a one-

dimensional indexing method such as the B-tree is used to index the

mapped data. The existing SFCs all adopt a single mapping scheme

for the whole data space. However, a single mapping scheme often

does not performwell on all the data space. In this paper, we propose

a new type of SFC called piecewise SFCs, which adopts different

mapping schemes for different data subspaces. Specifically, we pro-

pose a data structure called Bit Merging tree (BMTree), which can

generate data subspaces and their SFCs simultaneously and achieve

desirable properties of the SFC for the whole data space. Further-

more, we develop a reinforcement learning based solution to build

the BMTree, aiming to achieve excellent query performance. Ex-

tensive experiments show that our proposed method outperforms

existing SFCs in terms of query performance.

PVLDB Reference Format:
Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah,

and Bin Cui. Towards Designing and Learning Piecewise Space-Filling

Curves. PVLDB, 16(9): 2158 - 2171, 2023.

doi:10.14778/3598581.3598589

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/gravesprite/Learned-BMTree.

1 INTRODUCTION
A space-filling curve (SFC) is a way to map a multi-dimensional

data point x to a value 𝑣 , which can be represented by a mapping

function 𝑇 : x ↦→ 𝑣 . It has been widely used for multi-dimensional

indexing, and the idea is to first map multi-dimensional data points

to values (which are one-dimensional) and then use those indexing

methods that have been developed for one-dimensional data, such

as conventional B-Tree [1] and recent learned indexes [4, 5, 14,

22], to index the mapped values. This has been exploited both

in the literature [7, 8, 16, 39, 47, 51, 53] and by various database

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.

doi:10.14778/3598581.3598589

(10)(11)

11012

𝐱 = (10!, 11!)

𝑣"! = 1101!

P# = XYXY
(10)(11)

10112

𝑣"" = 1011!

P$ = XXYY
(10)(11)

11102

𝑣"# = 1110!

P! = XYYX

Figure 1: Bit Merging Pattern (BMP), P𝑍 (XYXY) is the BMP of
Z-curve, XXYY (C-curve) and XYYX are two other BMPs.
systems such as PostgreSQL [29], Amazon DynamoDB [44], Apache

HBase [30], etc.

There are extensive studies on designing SFCs, such as the Z-

curve [32–34], C-curve [11], and Hilbert curve [11, 12, 25, 26]. The

Z-curve, for example, adopts a mapping scheme called bit inter-
leaving [41], which first converts the dimensions of input data to

bit strings (e.g., in Figure 1, it converts data point x = (2, 3) into
its corresponding binary strings with 2 bits for each dimension:

(102, 112)). The bit interleaving then merges bits alternatively from

different bit strings to form an SFC value (in Figure 1, the bit in-

terleaving adopts the XYXY merging scheme, which merges the bit

strings XX and YY to the SFC value XYXY, e.g., mapping x to 11012).
However, one common problem is that each type of SFC has its

own fixed mapping scheme/function, which cannot be adjusted to

fit with different datasets. The choice of an SFC for a dataset will

significantly affect the query performance, and no single SFC can

dominate the performance on all datasets and query workloads. To

design a new SFC to fit with the data and query workload properties,

QUILTS [31] extends bit interleaving by considering other ways

of merging bit strings (e.g., instead of merging bits following XYXY,
we can merge bits by following XXYY or XYYX to generate different

SFC values, as described in Figure 1). Each pattern of merging bits

is called a bit merging pattern (BMP), and each BMP can describe a

different SFC (refer to Section 2 for details). QUILTS evaluates all the

candidate SFCs described by BMPs based on a given workload and

data, and selects the optimal one using heuristic methods. Figure 2

illustrates the high-level idea of QUILTS, where it selects a curve

that corresponds to the Z-curve from a set of candidate SFCs, based

on a query workload and data.

QUILTS makes the first attempt to utilize data and query work-

load property to select an optimal SFC. However, like other SFCs,

QUILTS applies a single BMP for the entire data space. Optimal

SFCs may differ for different data subspaces. For example in Fig-

ure 2, Z-curve works best for queries with 2 × 2 blue rectangles,
while C-curve is optimal for the query with a 1× 4 yellow rectangle.

2158

https://doi.org/10.14778/3598581.3598589
https://github.com/gravesprite/Learned-BMTree
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598589
https://www.acm.org/publications/policies/artifact-review-and-badging-current

No single SFC can achieve the best performance for both types of

queries. Another issue of QUILTS is that it does not provide an

effective way of generating and evaluating candidate SFCs. The

heuristic rules used by QUILTS are designed for very specific types

of window queries (e.g., with a fixed area) and do not fit with gen-

eral query processing scenarios where a workload includes more

than one query type (with different areas or aspect ratios). For

example, a heuristic rule used by QUILTS assumes that grid cells

intersecting with a query should be continuous in the SFC order,

which may not hold for queries with different aspect ratios (which

are explained in Section 3.1).

To address the limitation of an SFCwith a single BMP, i.e., a single

mapping scheme, our idea is to design different BMPs for different

subspaces based on the data and query workload property, aiming

to optimize the query performance. The SFC designed according

to our idea will comprise multiple BMPs, each corresponding to a

subspace, and we call the resulting SFC a piecewise SFC. Figure 2
illustrates an example of piecewise SFCs, where we choose Z-curve

for the left half subspace and C-curve for the right half subspace,

thus achieving the optimal performance for both blue and yellow

query rectangles (which needs 12 cell scans).

Z-curve

C-curve…

Other SFCs
described by BMPs

QUILTS
Rank curves (from
best to worst) with
cost metric:

(1)Z-curve
(2)C-curve…

Piecewise SFC

(1) Use Z-curve for
the left subspace
(2) Use C-curve for
the right subspace

Z-curve

A piecewise SFC

Figure 2: Comparison between QUILTS and a piecewise SFC
example, where the green cells are scanned (14 for QUILTS
and 12 for the piecewise SFC) for queries in the blue and
yellow dashed rectangles.

To design piecewise SFCs, we address the following three chal-

lenges. First, it is a new and open problem of how to design effective

BMPs for different subspaces. We propose a novel idea of seamlessly

integrating the subspace partitioning and BMP generation. We de-

velop the Bit Merging Tree (BMTree) to recursively generate both

subspaces and the corresponding BMPs. In the BMTree, (1) each

node represents a bit from one selected dimension for BMPs, and

its value (0 or 1) plays the roles of partitioning data at the node into

two child nodes, and (2) each leaf node represents a subspace, and

the sequence of bit string from the root to the leaf node represents

the BMP for the subspace.

Second, the piecewise SFC design makes it challenging to guaran-

tee two desirable properties of the overall mapping function: mono-

tonicity [17] and injection. Monotonicity is a desirable property

for designing window query algorithms. Intuitively, monotonicity

property will guarantee that the SFC values of data points in a

query rectangle fall in the range of the SFC values formed by two

boundary points of the query rectangle. Combining different SFCs

for different subspaces to obtain a final SFC for the whole space

may lead to the risk of breaking the monotonicity property. Simi-

larly, it may also lead to the injection violation, i.e., the mapping

function may not return a unique mapped value for each input. We

construct the BMTree in a principled way such that the two desired

properties are guaranteed (details can be found in Section 3.3).

Third, to address the limitation of heuristic algorithms in the SFC

design, we propose to model building the BMTree as a Markov de-

cision process (MDP) [38], aiming to develop data driven solutions

to designing suitable BMPs for different subspaces. Specifically, we

define the states, actions, and rewards signals of the MDP frame-

work to build the BMTree such that the piecewise SFCs modeled by

the BMTree can optimize the query processing performance. We

leverage the reinforcement learning technique, Monte Carlo Tree

Search (MCTS) [3], to learn a performance-aware policy and avoid

local optimal. To improve the performance, we design a greedy

action selection algorithm for the MCTS algorithm. Moreover, to

improve the training efficiency, we define a metric called ScanRange
as a proxy of the query processing performance (e.g., query latency

and I/O cost) and use ScanRange for defining the reward signals.

In summary, we conclude our main contributions as follows:

(1) We propose the idea of piecewise SFCs for designing SFCs,

which allows to design different BMPs for different subspaces by

considering the data and query workload property. To the best of

our knowledge, the idea is new in the literature.

(2) To design piecewise SFCs, we propose the BMTree to partition

the data space into subspaces and generate a BMP for each sub-

space. We prove that the piecewise SFC represented by a BMTree

satisfies two properties, namely injection and monotonicity, which

are important for designing query processing algorithms.

(3) To build the BMTree, we develop an RL based solution by mod-

eling BMP design as a decision making process, and design a MCTS

based BMTree construction algorithm. We design a greedy based

action selection algorithm to guide MCTS. We also develop the

ScanRange metric to efficiently measure the window query perfor-

mance on an SFC, which speeds up the reward computing during

the learning procedure. To the best of our knowledge, this is among

the first learning based approaches for designing an SFC.

(4) We integrate our learned SFCs into the classic database index

B+ Tree in PostgreSQL, and compare with baseline SFCs on the

querying performance under PostgreSQL.We also apply our learned

SFCs to a learned spatial index RSMI [39]. Experimental results

under both settings consistently show our method outperforms the

baselines in terms of the query performance.

2 PROBLEM STATEMENT & PRELIMINARIES
2.1 Problem Definition
Let D denote a database, where each data point x ∈ D has 𝑛

dimensions, denoted by x = (𝑑1, 𝑑2, . . . , 𝑑𝑛). For the ease of under-
standing, we consider a 2-dimensional data point x = (𝑥,𝑦), and
can be easily extended to 𝑛 dimensions. x can be converted to bit

strings as: x = ((𝑥1𝑥2 . . . 𝑥𝑚)2, (𝑦1𝑦2 . . . 𝑦𝑚)2). where each 𝑥𝑖 , 𝑦 𝑗
(1 ≤ 𝑖, 𝑗 ≤ 𝑚) are 0 or 1 (i.e., 𝑥𝑖 , 𝑦 𝑗 ∈ {0, 1}) and𝑚 is the length of bit

string, which is dependent on cardinality of dimension 𝑥 and𝑦. Take

x = (4, 5) for example, it can be converted to x = (1002, 1012). In
previous studies on SFC based multidimensional indexes [1, 41, 43],

values of data points are typically mapped to fine-grained grid cells

2159

for discretization. SFCmaps x into a scalar value 𝑣 (called SFC value)

with a mapping function 𝑇 (x) → 𝑣 . An SFC value 𝑣 can be used as

the key value of data x to determine the order of x in D.

Problem 1 (SFC Design). Given a databaseD and a query work-
load 𝑄 , we aim to develop a mapping function 𝑇 , which maps each
data point x ∈ D into an SFC value 𝑣 , s.t. with an index structure
(e.g., B+ Tree) built on the SFC values of data points in D, the query
performance (e.g., I/O cost and querying time) on 𝑄 is optimized.

Apart from database D, the SFC problem takes as input (1) a

query workload 𝑄 and (2) an index structure. We follow the previ-

ous work [31, 39] and generate window query workloads with three

different distributions, including uniform (UNI), Gaussian (GAU), and
skew (SKE) distributions. We adopt B+Tree and RSMI [21], which

represent classic and learning-based index structures, respectively.

2.2 Preliminaries on SFC
We present two desired properties for a mapping function𝑇 — injec-
tion and monotonicity. We then describe the curve design methods

in the Z-curve and Quilts, which also satisfy these properties.

Injection.1 An SFC design is expected to satisfy the property

named injection, which guarantees a unique mapping from x to 𝑣 .

This is to ensure that SFC value 𝑣 can be used as a key value of x
for ordering data and indexing. It is defined as follows.

Definition 2.1 (Injection). Given a function 𝑇 : x→ 𝑣 , 𝑇 is injec-

tive if x maps to a unique value 𝑣 , s.t. ∀x1 ≠ x2,𝑇 (x1) ≠ 𝑇 (x2).

The injection property is desirable for an index to narrow the search

space for better query performance. Consider an extreme situation

where all data points map to the same value. Then an index based

on the SFC values cannot narrow the search space for a query.

Monotonicity. The monotonicity [17] is defined as follows.

Definition 2.2 (Monotonicity). Given two 𝑛-dimensional data

points (denoted as x′ and x′′), whose SFC values are denoted as

𝑇 (x′) and 𝑇 (x′′). When a mapping function 𝑇 holds monotonicity,

if 𝑑′
𝑖
≥ 𝑑′′

𝑖
is satisfied for ∀𝑖 ∈ [1, 𝑛], it always has 𝑇 (x′) ≥ 𝑇 (x′′).

Maintaining monotonicity is a desirable property for mapping

data points to SFC values as explained below. Given a 2-dimensional

window query represented by its minimum (bottom-left corner)

and maximum (top-right corner) points (i.e., q𝑚𝑖𝑛 = (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛),
q𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥)). Let P = {(𝑥,𝑦) | 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 ≤
𝑦 ≤ 𝑦𝑚𝑎𝑥 } denotes the query results bounded by the query window.
If the monotonicity property holds, the result points in P are within

the range bounded by the SFC values of q𝑚𝑖𝑛 and q𝑚𝑎𝑥 . This is

because for any data point p ∈ P, whose SFC value 𝑇 (p) always
holds that 𝑇 (q𝑚𝑖𝑛) ≤ 𝑇 (p) ≤ 𝑇 (q𝑚𝑎𝑥). The property is desirable

since it enables us to design simple and efficient algorithms for

processing a window query by checking data points whose SFC

values are within the bounded range only; Otherwise, the algorithm

does not work. For example, the Hilbert curve and its variants [11,

25, 26] do not satisfy the monotonicity property, which makes it

hard to identify the scanning range for a window query in the space

of their SFC values and requires maintaining additional structure

to design more complicated algorithms [15].

1
This property is defined on discretized input. No injection is guaranteed in continuous

space since no bijection mapping exists between R and R𝑛 [37].

Computing SFC values in Z-curve [32–34] and QUILTS [31].
Both Z-curve andQUILTS guarantee the injection andmonotonicity

properties. Figure 1 examplifies how the Z-curve and QUILTS map

a data point x to a scalar SFC value 𝑣 . The curve design in the

Z-curve and QUILTS are presented as follows.

The SFC value of x in the Z-curve is computed via bit interleaving,

which generates a binary number consisting of bits (0 or 1) filled

alternatively from each dimension’s bit string. The Z-curve value

of a 2-dimensional data point x is computed by function 𝑇𝑧 :

𝑇𝑧 (x) = (𝑥1𝑦1𝑥2𝑦2 . . . 𝑥𝑚𝑦𝑚)2 (1)

It assumes that all dimensions have the same bit string length,

and the zero-padding technique is usually applied to fit the length

equally by padding zeros at the head of each bit string.

QUILTS generalizes the bit interleaving pattern of the Z-curve

to more general bit merging pattern, each of which represents a

way of merging bits. We take two-dimensional data for example,

QUILTS defines a bit merging pattern as follows.

Definition 2.3 (Bit Merging Pattern). A bit merging pattern (BMP)

is a string P of length 2𝑚 over the alphabet {X, Y} s.t. it contains
exactly𝑚 X’s and𝑚 Y’s. Given a P = 𝑝1𝑝2 . . . 𝑝2𝑚 , the SFC described

by P is defined as follows. We set

𝑇P (x) = (𝑏1𝑏2 . . . 𝑏2𝑚)2 (2)

according to the following rule: (1) Since P contains exactly𝑚 X’s,
we let 𝐼 = {𝑖1, . . . , 𝑖𝑚} be the list of ordered indices such that 𝑝𝑖ℓ = X.
Then we set 𝑏𝑖ℓ = 𝑥ℓ for 1 ≤ ℓ ≤ 𝑚. (2) Similarly, for the value of 𝑦,

we consider 𝐽 = { 𝑗1, . . . , 𝑗𝑚} where 𝑝 𝑗ℓ = Y, and assign 𝑏 𝑗ℓ the bit

value of 𝑦ℓ . For example, given the BMP P = XXYY, the value of data
point x computed by 𝑇P is 𝑇P (x) = (𝑥1𝑥2𝑦1𝑦2)2. Notice that both 𝑥

and 𝑦 are subsequences of 𝑇P (x).

SFCs represented with different BMPs form an SFCs set. QUILTS

considers this set and selects the optimal SFC evaluated on a given

query workload as the output curve. We prove the monotonicity

property of SFCs with BMPs, which guarantees the monotonicity

property of our method in Section 3.5.

Lemma 2.4 (Monotonicity of SFCs with BMPs). An SFC with
a BMP achieves the monotonicity property.

Proof. The detailed proof is given in [19]. □

3 PROPOSED SOLUTION
3.1 Motivations and Challenges
Motivation 1: Piecewise SFC design. QUILTS and earlier SFCs

based on BMPs only use one BMP to compute SFC values for all

data points, which may not perform well for query processing.

Example 3.1. Figure 3 shows a 4 × 4 grid space, where the green

and yellow dashed rectangles represent two window queries 𝑄1

(horizontal) and 𝑄2 (vertical), respectively. The red lines repre-

sent the ordering of grid cells w.r.t. three SFCs. Take SFC-1 for

example, whose P1 = XYYX and the computed value for input

x = ((𝑥1𝑥2)2, (𝑦1𝑦2)2) is 𝑇P1 (x) = (𝑥1𝑦1𝑥2𝑦2)2. Note that in SFC-1,

𝑥1 is put as the first bit in the combined bit string, and thus any

data point with 𝑥1 = 0 (which resides in the left half of Figure 3 (a))

will have a smaller mapped value than any data point with 𝑥1 = 1

2160

(which resides in the right half of Figure 3(a)). We label the grid

ids based on the mapped values of grid cells computed by the SFC

curves. As discussed in Section 2.2, a typical algorithm first locates

the grid ids on the minimum (bottom-left corner) and the maximum

(top-right corner) points of a query window.

Different SFCs will result in accesses of different grid cells for

answering the two window queries 𝑄1 and 𝑄2. (1) With SFC-1, to

answer query𝑄1, we scan the range from the minimum point (grid

7) to the maximum point (grid 8), resulting in 2 grid scans. For 𝑄2,

the grid ids for the minimum and maximum points are 13 and 15,

respectively. Hence we need 3 grid scans ranging from grid 13 to

15. (2) With SFC-2 (P2 = XYXY), we need 3 grid scans (from grid 6

to 8) for 𝑄1 and 2 grid scans (from grid 13 to 14) for 𝑄2.

In the example, SFC-1 performs better for 𝑄1 while SFC-2 is

better for 𝑄2. A natural idea is whether we can combine the ad-

vantages from the two BMPs of SFC-1 and SFC-2, i.e., we use XYYX
to organize the data at the left hand side and XYXY to organize the

data at the right hand side. The design will result in a piecewise SFC,
shown as SFC-3 in Figure 3(c). With SFC-3, we need 2 grid scans for

both𝑄1 and𝑄2, where the scanning ranges for𝑄1 and𝑄2 are from

grid 7 to 8 (similar to SFC-1), and grid 13 to 14 (similar to SFC-2).

This example motivates the need of designing a piecewise SFC.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

𝑄! 𝑄"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

𝑄! 𝑄"

1 2

3 4

5 6

7 8

9

10

11

12

13

14

15

16

𝑄! 𝑄"

(a) SFC-1 (XYYX) (b) SFC-2 (XYXY) (c) SFC-3 (piecewise SFC)

grid scans: 2 for𝑄1 , 3 for𝑄2 grid scans: 3 for𝑄1 , 2 for𝑄2 grid scans: 2 for𝑄1 , 2 for𝑄2

Figure 3: Motivation for piecewise SFC, SFC-1 is described by
the BMP XYYXwhile SFC-2 by XYXY. In contrast, SFC-3 (ours) is
described by two BMPs: left by XYYX and right by XYYX, where
the green shade highlights the scanned grids .

Motivation 2: Learning based method for SFC design. Classic
SFCs (Z-curve, Hilbert curve, etc.) are based on a single scheme

and fail to utilize database instance to design the SFC. In contrast,

QUILTS proposes to utilize the given database and query workload

to evaluate and select an SFC from an SFC set in which each SFC is

described by a BMP. However, QUILTS does not directly evaluate

SFC w.r.t. query performance but uses heuristic rules to generate

candidate SFCs. The heuristic rules will select BMPs such that the

resulted grid cells intersecting with a query would be continuous in

the curve order, which achieves fewer grid scans. These heuristics

only work for query workload containing limited types of window

queries (e.g., with the same aspect ratio), and are not effective under

general situations (where more than one query type with different

aspect ratios and region areas exist). Due to these limitations, it

calls for more principled solutions to utilize database and query

workload for generating and selecting an SFC, and learning-based

methods would be promising for the purpose.

Challenges. Piecewise SFC design brings up three main challenges

as discussed in Introduction. (1) How to partition the space and de-

sign an effective BMP for each subspace? The piecewise SFC design

needs to consider both space partitioning and BMP generation. (2)

How to design piecewise SFCs such that two desirable properties,

monotonicity and injection, hold? Combining different SFCs for

different subspaces to obtain a piecewise SFC for the whole space

may lead to the risk of breaking the properties. For instance, two

data points with distinct BMPs in a piecewise SFC may end up with

identical SFC values. (3) How to design a data-driven approach to

build the BMTree, given a database and query workload?

3.2 Solution Overview
Bit Merging Tree (BMTree) for Piecewise SFC Design. To

address the first challenge, we propose a novel way of seamlessly

integrating the subspace partitioning and BMP generation by build-

ing the BMTree, a binary tree models a piecewise SFC. Each node of

BMTree is filled with a bit from a dimension. The filled bit partitions

the space into two subspaces corresponding to two child nodes.

The left branch is the subspace where data points have a bit value

of 0 and the right branch with 1. The BMTtree partitions the whole

data space into subspaces, each corresponding to a leaf node with

its BMP being the concatenated bit sequence from the root to the

leaf node. We present the BMTree structure in Section 3.3.

Furthermore, the BMTree mechanism guarantees that the gener-

ated piecewise SFC satisfies the two properties, which addresses

the second challenge. We prove the piecewise SFC represented by

a BMTree satisfies both monotonicity and injection in Section 3.5.

RL-based Algorithm for Constructing a BMTree. To address

the third challenge, we design a learning-based method that learns

from data and query to build the BMTree. We model the building of

BMTree as a Markov decision process [38]. The process of building

a BMTree comprises a sequence of actions to select bits for tree

nodes with a top-down order. To learn effective policy for building

the BMTree, we propose a new approach to integrating a greedy

policy into the Monte Carlo Tree Search (MCTS) framework [3].

Specifically, we develop a greedy policy that is used to select an

action to fill a bit for each node to build a tree. For each node, the

greedy policy chooses the bit that achieves the most significant

reward among all the candidate bits. Afterwards, we apply the

greedy policy as a guidance policy and use MCTS to optimize the

BMTree with the objective of providing good query performance

and avoiding local optimum. We present the proposed solution in

Section 3.4 and the time complexity analysis in Section 3.5.

3.3 Bit Merging Tree (BMTree)
We proceed to present how to develop a piecewise SFC, modeled

by Bit Merging Tree (BMTree), which is a binary tree.

Designing a BMP. To design a BMP P, we need to decide which

character (X or Y in the two-dimensional case) is filled in each

position of P. A left-to-right design procedure decides the filling

characters in the order from 𝑝1 to 𝑝2𝑚 . The key to the BMP design

is to have a policy deciding which dimension (X or Y) to fill into

each position of P.
Designing piecewise SFC with multiple BMPs.We next discuss

piecewise SFC design. As discussed in Section 3.1, one challenge of

designing a piecewise SFC is how to tackle two subtasks that are

mixed together, namely subspace partitioning and BMP design for

each subspace. It is also challenging to guarantee that the piecewise

2161

(01)(01)

00112

𝑣𝐚 = 0011"

P# = XYXY
(10)(01)

10012

𝑣𝐛 = 1001"

P" = XXYY

𝑆# 𝑆"

𝐚 = (01", 01") 𝐛 = (10", 01")

𝑥# = 0 𝑥# = 1

(a) A piecewise SFC.

𝑥!

𝑦! 𝑥"

𝑥" 𝑥" 𝑦! 𝑦!

𝑦" 𝑦" 𝑦" 𝑦" 𝑦" 𝑦" 𝑦" 𝑦"

𝐚 𝐛

0

0

1

0011" 1001"

P! = XYXY
P" = XXYY

1

1

0

0

1

(b) The BMTree.
Figure 4: (a) An example of a piecewise SFC, which comprises
two BMPs P1 and P2 for computing values of data points a
and b. (b) A BMTree that combines the two BMPs.

SFC comprising different BMPs for different subspaces still satisfies

both injection and monotonicity properties. To address the chal-

lenges, we propose a novel solution to simultaneously generating

the subspaces and designing BMPs for subspaces.

We follow the left-to-right BMP design, and start with an empty

string P. For example, if we fill X in the first position of P, bit 𝑥1 will
be filled to 𝑏1 position of P; Then the whole data space is partitioned
into two subspaces w.r.t. the value of bit 𝑥1, where one subspace

corresponds to 𝑥1 = 0 and the other corresponds to 𝑥1 = 1. This

partitioning enables us to separately design different BMPs for the

two subspaces. Note that the BMPs for each subspace will share X
as the first character, but can have distinct filling choices for the

next 2𝑚 − 1 characters. By recursively repeating this operation, we

fill in the subsequent characters for each BMP for each subspace,

thus generating multiple subspaces each with a different BMP. An

elegant perspective of our idea is that we integrate the subspace

partitioning and BMP generation seamlessly.

Example 3.2. An example of piecewise SFC is given in Figure

4a, where dimension 𝑥 and 𝑦 are bit strings of length 2. First, X is
selected, and then the whole space is partitioned w.r.t. value of bit

𝑥1 into two subspaces where subspace 𝑆1 corresponds to 𝑥1 = 0 and

𝑥1 = 1 is for subspace 𝑆2. Next, we separately design BMPs for 𝑆1
and 𝑆2, where all BMPs under 𝑆1 share the first bit 𝑥1 = 0 and BMPs

under 𝑆2 share the first bit 𝑥1 = 1. We generate two example BMPs:

P1 = XYXY for 𝑆1 and P2 = XXYY for 𝑆2. Finally, we get a piece-

wise SFC that comprises 𝑇P1 for 𝑆1 and 𝑇P2 for 𝑆2. This piecewise

SFC represents the function: 𝑇 (x) =
{︃
(𝑥1𝑦1𝑥2𝑦2)2 if 𝑥1 = 0

(𝑥1𝑥2𝑦1𝑦2)2 if 𝑥1 = 1

.

Therefore, if a data point a is located in 𝑆1, we will apply 𝑇P1 to

compute SFC value; otherwise, if data b is in 𝑆2, 𝑇P2 is applied.

To facilitate the process of designing piecewise SFCs, we pro-

pose the Bit Merging Tree (BMTree) structure, which is used to

simultaneously partition the space and generate BMPs. Figure 4b

shows the corresponding BMTree for the example piecewise SFC

in Figure 4a. Since the example piecewise SFC is developed with

only 2 BMPs, the left subtree of the root node shares P1 while the
right subtree shares P2. Next, we present the BMTree.

Bit Merging Tree (BMTree). A BMTree is a binary tree modeling

a piecewise SFC 𝑇T, and is denoted by T. The depth of a BMTree T
equals the length of a BMP, denoted by 2𝑚 for the 2-dimensional

space. Every node of T corresponds to a bit of 𝑥𝑖 or 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑚.

The left (resp. right) child denotes the subspace with bit value 0

(resp. 1). Each path from the root node to a leaf node represents a

BMP for the subspace of the leaf node, which is the concatenation

of all the bits of the nodes in the path. The SFC value𝑇T (x) of a data
point x is computed by traversing a path of 𝑇 as follows. We start

from the root node, and for each traversed node, denoted by 𝑥𝑖 , if

𝑥𝑖 = 0, we visit the left child node; otherwise go to the right child.

When we reach a leaf node, the corresponding BMP of the traversed

path is used to compute for 𝑇T (x). The green path in Figure 4b is

the path traversed for point a, which represents BMP P1 while the
blue path traversed for b represents P2.

Algorithm 1: BFS BMTree Construction Algorithm

input :Decision Policy 𝜋 ;

output :Constructed T;
1 Initial queue 𝐻.𝑝𝑢𝑠ℎ(N𝑟𝑜𝑜𝑡); /* push root node */

2 while 𝐻 ≠ ∅ do
3 N← 𝐻.𝑝𝑜𝑝 ();
4 B = {(𝑑𝑖 , 𝑖𝑛𝑑𝑖) : all bits available to 𝑁 };
5 (𝑑 𝑗 , 𝑖𝑛𝑑 𝑗) ← 𝜋 (B);
6 Assign (𝑑 𝑗 , 𝑖𝑛𝑑 𝑗) to N;

7 𝐻.𝑝𝑢𝑠ℎ(N.𝑙𝑒 𝑓 𝑡, N.𝑟𝑖𝑔ℎ𝑡); /* add children */

8 end
9 return T

To construct a BMTree, we develop a breadth-first construction

algorithm (Algorithm 1) to fill bits to BMTree’s nodes. The algorithm

fills bits into BMTree level by level, consistent with the left-to-right

BMP design. Under a n-dimensional space, we note (𝑑𝑖 , 𝑖𝑛𝑑) for
the bit in dimension 𝑑𝑖 with index 𝑖𝑛𝑑 . In the algorithm, a queue 𝐻

is initialized with the root node (line 1). The algorithm iteratively

pops node N from the queue (line 3). We use B to record the bits

that can be used to fill N (line 4), where bit 𝑑𝑖 is available if less than
𝑚 𝑑𝑖 ’s have been filled to N’s corresponding BMP. Then a learned

policy (to be introduced in Section 3.4) will decide which bit to fill

(line 5). After filling a bit for N (line 6), the child nodes of N will be

pushed into 𝐻 if N is not a leaf node (line 7).

3.4 MCTS based BMTree Construction
This subsection is to present our solution to Line 4 of Algorithm 1,

i.e., learning a decision policy. It is difficult to design heuristic meth-

ods to construct the BMTree to optimize the querying performance

for a workload on a database instance. This could be observed from

QUILTS that uses the heuristic rules for workload containing spe-

cific types of window queries only, and fails to directly optimize

query performance. In contrast, we propose a reinforcement learn-

ing (RL) based method for learning a decision policy that builds the

BMTree to optimize the querying performance directly.

To allow an RL policy to construct the BMTree, we model the

BMTree construction as aMarkov decision process (MDP). Then, we

design a BMTree construction framework with a model-based RL

method namedMonte Carlo Tree Search (MCTS). Unlike traditional

algorithms such as greedy or A*, MCTS is an RL approach that

demonstrates superior exploration-exploitation balance, mitigating

the issue of local optimum. MCTS is well-suited for our problem,

2162

X Y

X

S1:X, V1 S2:Y, V2

Root

S4:XX, V4S3:XY, V3

S5:XXYY, V5 S6:XYYX, V6

Rollouts on the policy tree

S7 S8 S9 S10

S1:X, V1’ S2:Y, V2

Root

S4:XX, V4S3:XY, V3’

S5:XXYY, V5’ S6:XYYX, V6’

S7 S8 S9 S10: V10

(4) backpropagation

X Y

X

X Y Y X

MCTS Action Selection for Constructing One Level of BMTreeInput
Partially constructed BMTree

Reward Generator

Rew = %SRZ q, D − SRT(q, D)
!∈#

Output

node to be filled path selection value backpropagation

current state

BMTree constructed one
level deeper

Choose(S3)
= S6: XYYX, V6’

Select Action

(1) selection and (2) expansion

(3) simulation

repeat rollout

SR

Figure 5: Workflow of Monte Carlo Tree Search Based BMTree construction.

and offers stable performance without extensive parameter tuning,

compared with other RL algorithms such as PPO [42].

Figure 5 shows the workflow of the MCTS based BMTree con-

struction framework. We define one action that RL takes to be a

series of bits that fill a level of nodes in the BMTree, and the nodes

of the next level are then generated. The action space size exponen-

tially grows with the node number. It becomes difficult for RL to

learn a good policy with an enormous action space size. To address

this, we design a greedy action selection algorithm, which helps

to guide MCTS to search for good actions. Moreover, we design a

metric named ScanRange to speed up reward computing.

BMTree construction as Decision Process. We proceed to illus-

trate how we model the BMTree construction as a MDP in detail,

including states, actions, transitions and reward design.

• States. Each partially constructed BMTree structure T is repre-

sented by a state to map each tree with its corresponding query per-

formance. The state of a BMTree is represented with the bits filled to

the BMTree’s nodes. For example, in Figure 5, the current (partially

constructed) BMTree’s state is represented as T = {(1 : X), (2 : XY)},
where X and XY are bits filled to nodes in level 1 and level 2.

•Actions. Consider a partially constructed BMTree T that currently
has 𝑁 nodes to be filled. We define the actions as filling bits to these

nodes. We aim to learn a policy that decides which bit to be filled

for each node. Furthermore, the policy also decides if the BMTree

will split the subspace of one tree node. If the policy decides to

split, the tree node will generate two child nodes based on the filled

bit b, and the action is denoted as b with an underline; Otherwise,

the tree node only generates one child node, which corresponds to

the same subspace as its parent, the action is denoted as b. During
the construction, the policy will assign bits to all 𝑁 nodes. The

action is represented as 𝐴 = {𝑎1, . . . , 𝑎𝑁 }, 𝑎𝑖 = (b𝑖 , 𝑠𝑝𝑖), where b𝑖
denotes the bit for filling node 𝑛𝑖 , and 𝑠𝑝𝑖 denotes whether to split

the subspace. Given T with 𝑁 nodes to be filled, the action space

size is (2𝑛)𝑁 where 𝑛 is the dimension number, and the factor of 2

comes from the decision of whether to split the subspace.

• Transition. With the selected action 𝐴 for unfilled nodes in T, the
framework will construct T based on 𝐴. The transition is from the

current partially constructed BMTree T to the newly constructed

tree T′, denoted as T′ ← 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(T, 𝐴). In our framework, we

start from an empty tree, and construct the BMTree level by level

during the decision process. Each time the action generated by the

policy will fill one level of BMTree nodes (starting from level 1) and

generate nodes one level deeper.

• Rewards Design. After T is transited into T′, we design the reward
that reflects the querying performance of T′ to evaluate the good-

ness of action 𝐴. One might consider executing queries using the

corresponding BMTree to see how well the SFC helps to decrease

the I/O cost. However, it is time-consuming. To this end, we propose

a metric named ScanRange (SR), which reflects the performance

of executing a window query and can be computed efficiently. We

construct the reward based on the 𝑆𝑅 of T′.
Computing Rewards Efficiently. 𝑆𝑅 is calculated as follow. Given

a BMTree T, we randomly sample data points from D with a sam-

pling rate 𝑟𝑠 . Then, the sampled data points are sorted according to

their SFC values. To compute SFC values on a partially constructed

BMTree, we apply a policy extended from the Z-curve to the unfilled

portions of the BMP in each subspace. Sorted data points are then

evenly partitioned into
𝑟𝑠 |D |
|𝐵 | blocks, where |𝐵 | denotes # of points

per block. For a given window query 𝑞 represented by its minimum

point q𝑚𝑖𝑛 and maximum point q𝑚𝑎𝑥 , we first calculate the SFC

value of the minimum (resp. maximum) point as 𝑣𝑚𝑖𝑛 = 𝑇T (q𝑚𝑖𝑛)
(resp. 𝑣𝑚𝑎𝑥 = 𝑇T (q𝑚𝑎𝑥)). Then, the blocks that 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 fall

into are denoted as 𝐼𝐷𝑚𝑖𝑛 and 𝐼𝐷𝑚𝑎𝑥 . We calculate the 𝑆𝑅 of 𝑞

given T and D as 𝑆𝑅T (𝑞,D) = 𝐼𝐷𝑚𝑎𝑥 − 𝐼𝐷𝑚𝑖𝑛 . The calculation of

SR is much cheaper than executing queries.

We develop a reward generator based on the defined 𝑆𝑅. We take

the performance of the Z-curve as a baseline. Given the dataset D
and a query workload Q. The generator sorts the data points based
on their SFC values, and compute the reward as:

𝑅𝑒𝑤 =
∑︂
𝑞∈Q
(𝑆𝑅Z (𝑞,D) − 𝑆𝑅T (𝑞,D)) (3)

Intuitively, the reward is positive if the BMTree constructed by

the policy achieves a lower SR than the Z-curve. This aligns with

our objective to minimize the SR. We normalize the reward by

dividing the reward of the Z-curve.

Example 3.3. We give an example of how the decision process

works in Figure 5. The partially constructed BMTree is represented

with the bits filled to different levels, denoted by T = {(1 : X), (2 :
XY)} where each tuple is the bits filled to the corresponding BMTree

level. The learned policy selects the action 𝐴 = XYYX. The next

level of the BMTree is constructed based on 𝐴. The reward signal

is computed based on the performance of the one level deeper

constructed BMTree. The BMtree will continue to be input for

building the next level.

2163

We proceed to present the proposed MCTS framework, including

a BMTree 𝑇 under construction, a policy tree that keeps updating,

and a reward generator that generates the reward based on T.
Policy Tree. MCTS [3, 54] is a model-based RL method. The high-

level idea of MCTS is to search in a tree structure, where each

node of the tree structure denotes a state. Given the current state,

the objective of MCTS is to find the optimal child node (i.e., the

next state) that potentially achieves an optimal reward. The tree

structure is named policy tree [54], and we define it as follows:

Definition 3.4 (Policy Tree). The policy tree is to model the en-

vironment. Each node of the policy tree corresponds to a state (or

a partially constructed BMTree). Moreover, every node stores: (1)

action 𝐴 transits the parent BMTree to itself and (2) a reward value

that reflects the goodness for choosing the node. The root node of

the policy tree corresponds to an empty BMTree, and each path of

the policy tree from the root node to the leaf node corresponds to

a decision procedure of constructing a BMTree.

Rollouts. To choose an action, MCTS first checks the reward that

different action choices can achieve. To achieve this, MCTS will

make several attempts in which it simulates several paths in the

policy tree and then checks if the attempted path results in a good

performance. MCTS then updates the policy tree based on the simu-

lations, named rollout. A rollout consists of four phases: (1) selection,

which selects the attempted path corresponding to a BMTree con-

struction procedure, (2) expansion, which adds the unobserved state

node to the policy tree, (3) simulation, which tests the selection’s the

performance, and (4) backpropagation, which updates the reward

value. We proceed to present our design of the four steps.

(1) Selection. The selection step aims to select a path in the pol-

icy tree that potentially achieves good performance. Starting from

the current state S𝑡 with the initialized path: Path = {S𝑡 }, we
first check if all child nodes have been observed in the previous

rollouts. If there are unobserved nodes, we choose one of them

and add it to the path. Otherwise, we apply the Upper Confidence

bounds applied to Trees (UCT) action selection algorithm [13] to

select a child node, which balances the exploration and exploita-

tion. Specifically, UCT selects the child node with the maximum

value 𝑣𝑢𝑐𝑡 =
V𝑡+1

𝑛𝑢𝑚 (S𝑡+1) +𝑐 ·
√︂

ln(𝑛𝑢𝑚 (S𝑡))
𝑛𝑢𝑚 (S𝑡+1) , S𝑡+1 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(S𝑡 , 𝐴),

where V𝑡+1 is the reward value of the child node S𝑡+1 transited

from S𝑡 by action 𝐴; 𝑛𝑢𝑚(S𝑡+1) and 𝑛𝑢𝑚(S𝑡) denote the times

of observing node S𝑡+1 and node S𝑡 during rollouts; 𝑐 is a factor

defaulted as 1. The selected node S𝑡+1 is then added to the path:

Path = {S𝑡 → S𝑡+1}. The selection step continues until the last

node of Path is an unobserved node. It then returns the Path for
the next step.

(2) Expansion. In the expansion step, the unobserved nodes in Path

are added to the policy tree. The times of observing each node S𝑡
in Path, denoted by 𝑛𝑢𝑚(S𝑡), is recorded for the UCT algorithm.

(3) Simulation. We simulate the performance of the selected Path
by constructing the BMTree based on the actions stored in the

nodes of the path. The constructed BMTree is then input to the

reward generator to compute the ScanRange metric.

(4) Backpropagation. In this step, we update the value of each node

in Path. We apply the maximum value update rule, which updates

the value of a state S𝑡 with the maximum reward it could gain from

simulation, computed by V′𝑡 = max(V𝑡 , 𝑅𝑒𝑤), where V𝑡 is the old
value of state S𝑡 , 𝑅𝑒𝑤 is the reward gained during the simulation

and V′𝑡 is the updated value.

Example 3.5. In the example of MCTS rollout in Figure 5, State

S3 corresponds to the input partially constructed BMTree. During

the rollouts, we select path {S3 → S6 → S10} in the selection step.

It then expands the new observed state S8 to the policy tree in the

expansion step. We construct the BMTree based on the selected

path and compute ScanRange. In the backpropagation step, the

values of S3, S6 and S10 are then updated whose values are in red

color, based on the ScanRange computed in S10.

After the rollouts procedure, the algorithm selects the action

with the highest reward value, and BMTree T is then constructed

correspondingly. In the example, S6 is selectedwith the largest value
V′
6
compared with other child nodes. It then returns the action XYYX

as the action to build the BMTree one level deeper.

Greedy Action Selection. We design the greedy action selection

(GAS) algorithm for the selection step in rollouts, which is to help

MCTS find potential good action for a partially constructed BMTree.

Given T with 𝑁 nodes to be filled, GAS generates an action 𝐴𝑔 by

greedily assigning a bit to each BMTree node which achieves the

minimum ScanRange compared with other bits when T is filled

with that bit. The algorithm is given in Algorithm 2.

In GAS, we first initialize an empty action list 𝐴𝑔 and invoke

function 𝑁𝑜𝑑𝑒2𝐹𝑖𝑙𝑙 (T) to extract all unfilled nodes from T (lines

1–2). Then we select a bit for each node (lines 3–7). In each iteration,

we invoke function 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐵𝑖𝑡𝑠 to extract all bits that can be used

to fill a node Node. Then we select the best bit b that minimizes

ScanRange (line 5), construct the BMTree w.r.t. the selected bit (line

6), and append the selected bit b to 𝐴𝑔 (line 7). During the selection

step, if the state S𝑔 transited by the greedy selected action 𝐴𝑔 has

never been observed, MCTS will select S𝑔 and add it to the path.

Algorithm 2: Greedy Action Selection (GAS)

input :a BMTree T, a reward generator Env;
output :Generated action 𝐴𝑔 for T;

1 Initial empty action list 𝐴𝑔 = {};
2 Nodes← 𝑁𝑜𝑑𝑒𝑠2𝐹𝑖𝑙𝑙 (T) ;
3 for Node ∈ Nodes do
4 Bits = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐵𝑖𝑡𝑠 (Node) ;
5 b = argmax

b𝑖

(𝑆𝑅 (T, b𝑖 , Env)), b𝑖 ∈ Bits;

6 T← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (T, b);
7 𝐴𝑔 .append(b) ;

8 end
9 return 𝐴𝑔

MCTS based BMTree construction algorithm. Algorithm 3 out-

lines the MCTS-based BMTree constructing algorithm. It initializes

an empty BMTree (line 1) and a policy tree (line 2). Then it con-

structs a reward generator based on D and Q (lines 3–4). It then

constructs the BMTree level by level (lines 5–15). It does rollouts

(lines 6–10), including the path selection based on the BMTree T′,
the path expansion, the reward simulation, and reward generator

Env and the backpropagation which updates the corresponding

node’s value. The algorithm then chooses the best action 𝐴 (line

2164

12) and constructs T′ based on 𝐴 (line 13). If the current partially

constructed BMTree is not better (line 14), we stop digging deeper.

We set up a max depth 𝑀 (line 5) and a rollout number 𝑅𝑂 (line 6).

Algorithm 3:MCTS based BMTree constructing algorithm

input :A 𝑛-dimensional dataset D and a training workload Q;
output :Trained BMTree T;

1 Reset an empty BMTree T′ ;

2 Initial the policy tree with an root state node ;

3 D𝑠 = sample(D) ;
4 Construct Env based on D𝑠 and Q;
5 for 𝑑𝑒𝑝𝑡ℎ from 0 to𝑀 do
6 for 𝑟𝑜𝑙𝑙𝑜𝑢𝑡 from 0 to 𝑅𝑂 do
7 Path = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (T′) ;
8 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 (Path) ;
9 Rew = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (T′, Path, Env) ;

10 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 (Path, Rew) ;
11 end
12 𝐴 = 𝑐ℎ𝑜𝑜𝑠𝑒 (T′) ;
13 T′ ← 𝐴𝑐𝑡𝑖𝑜𝑛 (T′, 𝐴) ;
14 T← T′ if T′ performs better than T; otherwise break;

15 end
16 return T

3.5 Analysis and Discussion
Injection Analysis. To prove the injection property of BMTree,

we consider a 2-step proof. First, we prove BMTree maps an input

with only one output. Then, we prove no two different inputs will

have the same SFC value.

Proof. (1) Given an input x, the BMTree computes 𝑇T (x) by
traversing a path from the root node to a leaf node. Based on the

observation, each x only have one path, which corresponds to one

BMP and corresponding one value. (2) Given two inputs x, x′, two
conditions should be considered. i) If x, x′ share the same path,

which indicates that x, x′ share the same BMP. We notice that each

BMP stored in the BMTree itself is injective. Thus, x and x′ have
the same value if and only if x = x′; ii) if x and x′ have distinct
paths, which indicates that x and x′ are associated with different

BMPs in T. Based on the BMTree, we know that paths traversed by

x and x′ share the first several nodes (at least the root node) until
they branch at a specific node. Then one route to the left child node

and the other to the right. Let 𝑑 denote the depth of the branch

node. Then, P is used to compute 𝑇T (x) and P′ for 𝑇T (x′) share the
same first 𝑑 bits, while 𝑇T (x) has a different bit value as 𝑇T (x′) at
the 𝑑𝑡ℎ bit, i.e., 0 for one and 1 for the other one. Based on that,

𝑇T (x) ≠ 𝑇T (x′) is confirmed and thus guarantees the injection. □

Monotonicity Analysis.Given x and x′ satisfying𝑑𝑖 ≥ 𝑑′
𝑖
for each

dimension 1 ≤ 𝑖 ≤ 𝑛 and a BMTree T, we prove that𝑇T (x) ≥ 𝑇T (x′).
We discuss two cases in terms of the paths of x and x′, i.e., whether
they share the same path on the BMTree or not.

Proof. (1) When x and x′ share the same path, i.e., they corre-

spond to the same BMP in𝑇 . Monotonicity inherits from the shared

pattern (Lemma 2.4). (2) When x and x′ correspond to different

paths, these two inputs will share a portion of their paths and de-

part into different branches at the branch node. Assume the branch

node is at the depth 𝑑 , which means value 𝑇T (x) and 𝑇T (x′) have
the same first 𝑑 bits, and they hold for distinct value at the 𝑑𝑡ℎ bit.

To show the monotonicity, i) we first show the value corresponding

to the path branching to right side must be larger than the value

corresponding to the path branching to left side. ii) we then show

𝑇T (x) corresponding to the right path and 𝑇T (x′) corresponding
to the left side. This is because at the 𝑑𝑡ℎ bit, it tracks the same

dimension and the same bit index from x and x′, respectively. Given
the condition that 𝑥𝑖 > 𝑦𝑖 satisfied for all dimension 𝑖 , we must

have the bit is 1 (right) for the x and 0 (left) for the x′. Therefore,
ii) holds. Based on i) and ii), we conclude 𝑇T (x) > 𝑇T (x′). □

Time Complexity Analysis. We provide time complexities for

SFC value computation and MCTS-based BMTree construction.

The time complexity for computing the SFC value of x using the

constructed BMTree is 𝑂 (𝑀), where𝑀 is the length of 𝑇T (x). This
complexity is comparable to other SFCs described by BMPs.

For BMTree construction, the complexity of Algorithm 3 is

𝑂 (𝑀 · (𝑁 + |D𝑠 | (𝑀 + log |D𝑠 |) + |Q|)), where 𝑁 is the child node

size of the policy tree, |D𝑠 | and |Q| correspond to the size of sam-

pled data and query workload. It takes at most 𝑀 actions to con-

struct the BMTree. In each step of choosing an action, the selection

step is bounded by child node size𝑂 (𝑁); the simulation time corre-

sponds to the computation of ScanRange, which takes 𝑂 (𝑀 · |D𝑠 |)
for SFC value computing,𝑂 (|D𝑠 | ·log(|D𝑠 |) to sort data, and𝑂 (|Q|)
to compute ScanRange for each query.

Handling updates. In the presence of insertion, the BMTree can

still be applied as the mapping function to compute SFC values

for new data points. In the experiment, we observe that the query

performance on indexes built on the SFC values from the BMTree is

insensitive to moderate shifts in data and query distribution. How-

ever, in the case of a sharp change in query distribution, a retraining

of the BMTree is recommended to maintain its performance.

Optimizing other queries. This paper focuses on optimizing

window queries. However, other queries, e.g., 𝑘NN queries, can also

be included in the optimization objective as part of the workload.

We will empirically evaluate if window queries and 𝑘NN queries

can be optimized together.

4 EVALUATION
The experiment aims to evaluate: (1) proposed piecewise SFCmethod

vs. existing SFCs when applied for SFC-based indexes vs. other in-

dexes, (2) BMTree under different settings (e.g., varying data, query

size, distribution shift, dimensionality, aspect ratio), (3) compo-

nents of BMTree by evaluating different BMTree variants, and (4)

suitability of ScanRange (𝑆𝑅) as an I/O replacement.

4.1 Experimental Setup
Datasets. We conduct experiments on both synthetic and two real

datasets. For synthetic datasets, we generate data points in the 2-

dimensional data space with a granularity size of 2
20 × 220, which

follow either uniform distribution (denoted as UNI) or Gaussian dis-

tribution (denoted as GAU). Real data OSM-US contains about 100

millions of spatial objects in the U.S. extracted from OpenStreetMap

2165

API [28], and TIGER [27] contains 2.3 millions of water areas in

north America cleaned by SpatialHadoop [6].

Query workload.We follow [31, 39] to generate query workloads.

We generate different types of window queries, and each type of

queries has a fixed area selected out of {230, 232, 234} and a fixed

aspect ratio selected out of {4, 1, 1/4}; Each workload comprises

multiple types of queries, which have different combinations of

areas and ratios. In addition, we generate query with different

distributions by following work like [5, 39], including the uniform

distribution (denoted as UNI) and the Gaussian distribution (denoted
as GAU). We also generate the skewed workload (denoted as SKE), in
which queries follow Gaussian distributions with different 𝜇 values.

Index structures. To evaluate the performance of the proposed

piecewise SFC compared with the existing SFCs, we integrate

piecewise SFC and baseline SFCs into both traditional indexes and

learned index structures. First, we integrate piecewise SFC (and

baseline SFCs) into the PostgreSQL database system and a built-

in B+ Tree variant in PostgreSQL is employed with SFC values

as key values. Second, we use a learned spatial index, RSMI [21],

to compare the performance of piecewise SFC and baseline SFCs

when they are used in RSMI. Here, the B+ Tree of PostgreSQL is

a disk based index and the released implementation of RSMI [21]

is memory based. We choose them to evaluate the performance of

piecewise SFC under different scenarios. We also combine BMTree

into ZM [47], another SFC-based learned index, to further demon-

strate BMTree’s applicability.

SFC Baselines.We choose the following SFC methods as our base-

lines. (1) Z-curve [25, 43]; (2) Hilbert Curve [26]; (3) QUILTS [31].

Evaluation metrics. For experiments conducted with PostgreSQL,

we use the I/O cost (I/O) recorded by PostgreSQL system and Query

Latency (QL). For experiments under RSMI, we report the node

access number of its tree structure and QL for a fair comparison by

following [9, 21].

Table 1: Experiment Parameters.
Parameters Value

Data GAU UNI OSM-US TIGER

Query GAU SKE UNI
Sampling rate 0.01 0.025 0.05 0.075 0.1

Training 𝑄 100 500 1000 1500 2000

Max depth 1 5 10 15 20

Parameter settings. Table 1 lists the parameters used in our ex-

periments, and the default settings are in bold. We set the rollout

number in MCTS at 10 by default. The max depth is the depth of

BMTree built via the RL model; the sampling rate (0.05 by default)

is the rate of sampling training data for computing the ScanRange.

Evaluation platform. We train the BMTree with PyTorch 1.9,

Python 3.8. The experiments are conducted on an 80-cores server

with an Intel(R) Xeon(R) Gold 6248 CPU@2.50GHz 64.0GB RAM,

no GPU resource is leveraged to train the model.

4.2 Experimental Results
4.2.1 Effectiveness study. This experiment is to compare the ef-

fectiveness of the learned piecewise SFC in query processing with

other SFCs under both PostgreSQL and RSMI environments. We

also compare optimized SFC-based index with other indexes. For

each experiment, we use 1000 windows queries, which are ran-

domly generated by following respective distributions for training,

and another 2000 different window queries for evaluation, which

are generated by following the same distribution.

Results on PostgreSQL. Figure 6a and Figure 6b show the I/O and

QL on window queries. To ensure PostgreSQL conducts indexscan
during querying, both the bitmapscan and seqscan in PostgreSQL

are disabled.We do not include the Hilbert curve for this experiment

since the Hilbert curve requires additional structure and dedicated

algorithm for returning accurate results for window queries, and

PostgreSQL does not support them for the Hilbert curve.

We observe the proposed BMTree consistently outperforms the

baselines in all the combinations of data and query distributions

in terms of both I/O and QL. Between the two baselines, QUILTS

performs worse for SKE workload and performs similarly as the

Z-curve for UNI workload and GAU workload. This is because our
query workload contains queries with different aspect ratios (e.g., 4

and 1/4), rather than queries with similar aspect ratio as it is used

in QUILTS [31]. QUILTS can only choose queries with a particular

aspect ratio to optimize, and thus results in poor performance for

queries with different aspect ratios. BMTree outperforms Z-curve

by 5.2%–39.1% (resp. 7.7%–59.8%, 6.3%–29.8% and 25.1%–77.8%) in

terms of I/O on UNI (resp. GAU, OSM-US and TIGER) dataset across

different types of workloads. The results in terms of QL are consis-

tent with those of I/O. BMTree’s superior performance is because

(1) BMTree is able to generate piecewise SFCs to handle distinct

query distribution , and (2) BMTree is equipped with effective learn-

ing technique to generate BMPs and subspaces. We notice that

under the UNI workload BMTree outperforms Z-curve by 25.1%

on TIGER while it only outperforms Z-curve slightly on the other

three datasets. This is as expected: Under a uniform query work-

load, BMTree can only make use of data distribution, but not query

distribution, to optimize the performance; TIGER is very skewed

and BMTree can capture the skewed data feature of TIGER.

Results on RSMI. The original RSMI [39] uses the Hilbert curve,

and we include it as a baseline for this experiment as RSMI returns

approximate results for all curves. All the curves achieve compa-

rable recall (99.5% or above) using RSMI’s algorithms for window

queries. Figures 7a and 7b show the node access number and QL

for all the curves using RSMI. We observe that BMTree consistently

outperforms all the baselines. For example, BMTree outperforms

the Z-curve by 18.2%–29.0% (resp. 13.7%–28.4%, 13.5%–26.5%, and

2.8%–25.3%) in terms of node access number on UNI (resp. GAU, US-

OSM, and TIGER) dataset. We also observe that the Hilbert curve

achieves similar performance with BMTree on GAU dataset, which

could be attributed to its good toleration to the skewness [49].

Comparing with other indexes.We compare the performance of

two SFC-based indexes, RSMI and ZM, with baseline indexes includ-

ing (1) two R-tree variants: STR [18] and R* Tree [2]; and (2) two

partition-based methods: Grid-File and Quad-Tree. For RSMI and

ZM, we consider both its original version and its combination with

BMTree. We adopt the same setting (in memory, and with the same

node size) for all indexes for a fair comparison. Figure 8 reports the

results of QL. We observe that the original ZM (called “ZM”) per-

forms comparably with STR and R* Tree and outperforms Grid-File

and Quad-Tree for most of the cases. The ZM with BMTree (called

2166

UNI SKE GAU UNI SKE GAU
0

0.5

1

×103

UNI GAU

I/O Cost

Z-curve QUILTS BMTree

UNI SKE GAU
0

2

4

6

8

×104

OSM-US
UNI SKE GAU

1

2

×103

TIGER
(a) I/O Cost

UNI SKE GAU UNI SKE GAU
0

1

2

×104

UNI GAU

Query Latency (µs)

Z-curve QUILTS BMTree

UNI SKE GAU
0

0.5

1

1.5
×106

OSM-US
UNI SKE GAU

0

2

4

×104

TIGER
(b) Query Latency

Figure 6: Results under PostgreSQL, where the first and the second lines under the x bar denote the query and data distribution.

UNI SKE GAU UNI SKE GAU
0

1

2

3

×102

UNI GAU

Node Access

Z-curve Hibert QUILTS
BMTree

UNI SKE GAU
0

1

2

×104

OSM-US
UNI SKE GAU

0

0.5

1

1.5

2

×102

TIGER
(a) Node Access

UNI SKE GAU UNI SKE GAU
0

2

4

6
×102

UNI GAU

Query Latency (µs)

Z-curve Hibert QUILTS
BMTree

UNI SKE GAU
0

2

4

×104

OSM-US
UNI SKE GAU

0

0.5

1

1.5

2
×102

TIGER
(b) Query Latency

Figure 7: Results using RSMI learned index structure.
STR R* Tree Grid Quad-Tree ZM ZM+BMTree RSMI RSMI+BMTree

UNI SKE GAU UNI SKE GAU
0

100

200

300

400

UNI GAU

Query Latency (µs)

UNI SKE GAU
0

1

2

3
×104

OSM-US
UNI SKE GAU

0

2

4

6

8
×102

TIGER
Figure 8: Performance of different indexes.

“ZM+BMTree”) outperforms the R-tree variants and partition-based

methods in most cases, especially under the SKE workload.

UNI GAU OSM-US TIGER

0

50

100

150

I/O Cost Ratio (%)

Z-curve QUILTS BMTree

(a) I/O Cost
UNI GAU OSM-US TIGER

0

50

100

150

Query Latency Ratio (%)

Z-curve QUILTS BMTree

(b) Query Latency
Figure 9: Performance of 𝑘NN queries.

0% 25% 50% 75% 100%
200

300

400

500

600

Percentage of kNN training queries

Window Query I/O Cost

Z-curve BMTree

(a) Window Query I/O

0% 25% 50% 75% 100%

78

80

82

84

Percentage of kNN training queries

kNN Query I/O Cost

Z-curve BMTree

(b) 𝑘NN Query I/O
Figure 10: Optimization of window query & 𝑘NN query.

Effect on 𝑘NN queries. The piecewise SFC is learned to optimize

window queries. To see whether it has negative influence on the

performance of the 𝑘NN queries. We generate 1,000 𝑘NN query

points following the data distribution, and we apply the 𝑘NN al-

gorithm [39] in PostgreSQL, with 𝑘 set at 25. We report the I/O

and QL ratios in Figure 9a and 9b, which are the ratio of results of

different curves divided by the result of the Z-curve. We observe

BMTree is comparable with the baselines: BMTree performs slightly

better than the baselines on GAU and OSM-US while the Z-curve

is slightly better on UNI and TIGER. Therefore, although the piece-

wise SFC is optimized for window queries, the performance of the

𝑘NN query is not compromised.

Optimizing window query and 𝑘NN query. We evaluate the

performance when window queries and 𝑘NN queries are optimized

together. To optimize our BMTree method for 𝑘NN queries, we

convert 𝑘NN queries into window queries by following [39] and

include them in the training workload. We then vary the weight of

the objective based on 𝑘NN queries relative to window queries from

0% to 100% during training. Figure 10a reports the window query

I/O and Figure 10b reports the 𝑘NN query I/O. We observe that as

the weight increases, the window query I/O tends to increase while

the 𝑘NN query I/O tends to decrease. We also observe that when

weight is between 25% and 75%, the performance of the window

query only mildly degrades, while the performance of 𝑘NN query

is better than that based on Z-curve. The results show the potential

of our method to optimzie two types of queries together.

Table 2: Analysis on the generated BMTree.
Dataset UNI GAU OSM-US TIGER

Workload UNI SKE GAU UNI SKE GAU UNI SKE GAU UNI SKE GAU

#P 47 26 39 26 28 51 48 29 32 36 19 28

top-1 %D 6.2 17.2 6.2 17.2 12.1 8.1 9.2 12.1 18.7 39.6 40.1 44.0

top-10 %D 37.5 73.4 44.9 73.4 77.9 54.7 52.8 72.3 73.9 99.6 99.9 99.9

Z-curve (%) 0 0 0 0 0 0 0 0 0 0 0 0

C-curve (%) 0 0 2.0 0 0 0 3.2 9.1 15.2 0 0 0

4.2.2 Understanding piecewise SFCs. To understand the piecewise

SFCs and their effectiveness, we perform the following analysis.

Analysis of generated BMTree. Each generated BMTree has at

most 1024 paths decided by the trained RL agent when we set the

Max Depth at 10 during training. Therefore, each BMTree encodes

at most 1024 distinct BMPs. However, multiple paths may share the

same BMP. Table 2 shows the number of distinct BMPs (#𝑃). It also

shows the percentage of the data that the top-k BMPs cover (top-k

%D, we consider top-1 and top10). We also report the percentage

2167

of two typical patterns, Z-curve and C-curve, among the BMPs

in the BMTree. We observe: (1) For each dataset, the number of

patterns (#P) in BMTrees varies significantly across the different

workloads. Usually no single pattern can dominate the data space.

(2) The Z-curve(%) and C-curve(%) take a small portion among the

returned BMPs in BMTrees. (3) On the SKEworkload, our algorithm
tends to generate more distinct BMPs for different subspaces on

UNI, GAU, and US-OSM datasets, while no single BMP dominates.

Effectiveness of the piecewise design. To evaluate the effective-

ness of our piecewise design, we vary the split depth from 0 to 10.

When it is 0, MCTS returns a single BMP, but not a piecewise SFC.

Table 3 gives the result under default settings. We observe that a

single BMP performs much worse than piecewise SFCs, and Scan-

Range further drops when the splitting granularity of subspaces

increases, i.e., more piecewise BMPs are generated.

Table 3: The effect of split depths.
Split depth 0 2 5 8 10

ScanRange 939.6 562.3 524.6 520.7 519.1

Training Time (min) 16.3 21.3 35.7 105.4 133.9

4.2.3 Varying settings. We evaluate BMTree’s performance under

various settings: dataset/query size, distribution shifting, dimen-

sionality, and window aspect ratio.

0.1510 20 50 100 150

0.1

0.5

1

·105

Dataset Size (million)

I/O Cost

Z-curve

QUILTS

BMTree

(a) I/O Cost

0.1510 20 50 100 150

0

500

1,000

1,500

Dataset Size (million)

Query Latency (s)

Z-curve

QUILTS

BMTree

(b) Query Latency
Figure 11: Performance vs dataset size.

Scalability of learned SFCs. To evaluate the scalability of BMTree,

we evaluate the performance of the SFCs by varying data size from

0.1 to 150 million. We construct the BMTree based on the 1 million

data, and the others follow the default settings. The result is shown

in Figure 11. We observe that the BMTree displays a linear trend

for the I/O and QL when data size increases. We observe similar

trends for baselines.

0.01 0.05 0.1 0.15 0.2
500

520

540

560

0

100

200

300

400

Data Sampling Rate

SR Time (s)

ScanRange Training Time

Figure 12: Varying data sam-
pling size.

100 500 1,000 1,500 2,000
0

200

400

600

800

0

100

200

300

Training #𝑄

SR Time (s)

ScanRange Training Time

Figure 13: Varying training
#𝑄 .

Effect of training data and query size. We evaluate the effect

of the sizes of training data and query on 𝑆𝑅 and training time. (1)

Varying data sampling rate. To vary the training data size, we vary

the data sampling rate from 0.01 to 0.2. Figure 12 shows that 𝑆𝑅

decreases as the data sampling rate increases. This is because a

higher sampling rate would result in a more reliable reward, and

thus our model is expected to perform better. In addition, with the

increase of the sampling rate, the training time per episode grows

as expected. There is a trade-off between accuracy and training

efficiency. (2) Varying training query size (#𝑄). We vary #𝑄 from

100 to 2,000. Figure 13 shows that with the increase of #𝑄 , BMTree

tends to achieve better 𝑆𝑅. However, 𝑆𝑅 is relatively stable after

#𝑄 is greater than 1,000. Training time increases linearly with #𝑄 ,

which is consistent with the time complexity analysis.

0 25 50 75 100
0

500

1,000

Number of new data points (×104)

I/O Cost

Z-curve QUILTS BMTree

(a) Data distribution shift

0% 25% 50% 75% 100%

400

600

800

Percentage of queries following GAU

I/O Cost

Z-curve QUILTS BMTree

(b) Query distribution shift
Figure 14: Performance under data & query distribution shift.

Effect of distribution shifting.We evaluate the effect of data and

query distribution shifts on the performance of the SFCs. For the

data distribution shift, we insert different number of data points

following the GAU distribution to the dataset following UNI, and

report the I/O in Figure 14a. For the query distribution shift, we

train the model by using queries following the SKE distribution and

then test the model with different percentages of queries following

the GAU distribution, and report the I/O in Figure 14b. We observe

that with the shift of data distribution, BMTree still performs much

better than Z-curve and QUILTS. Although its performance deterio-

rates under the shift of query distribution, BMTree still outperforms

Z-curve and QUILTS, especially when the shift is mild.

Effect of higher dimensionality. To evaluate the effect of di-

mensionality on the effectiveness of the learned SFC, we vary the

dimensionality from 2 to 6 on the dataset following both uniform

and normal distributions. BMTree consistently outperforms the

baselines and saves up to 54% of I/O cost compared with the best

baseline Z-curve. This demonstrates that our method generalizes

well on data with more than 2 dimensions. Due to the space limit,

the detailed results can be found in [19].

Effect of varying query aspect ratio and selectivity. (1) We

evaluate the performance of BMTree by varying query aspect ratios

from {4 ,
1

4
} to {128 ,

1

128
}. (2) We vary query selectivity from 0.0001%

to 1% and observe that the improvement of BMTree is subtle under

very small query range. See the details in [19].

Effect of max depth. We evaluate the effect of the max depth

parameter which is the depth of BMTree that are built using RL.

We vary the max depth from 1 to 20. The result shows that as the

max depth increases, 𝑆𝑅 drops and then tends to be stable after 10.

Due to the space limit, the detailed results are in [19].

4.2.4 Evaluating BMTree variants. We analyze four BMTree vari-

ants: BMTree-Data Driven (with dataset only), BMTree-noGAS

(no GAS algorithm included), BMTree-greedy (pure greedy), and

BMTree-LMT (with limited BMPs). Results are in Figure 15.

(1) BMTree-DD.We evaluate the performance of BMTree when

query workload is not available. We generate training queries for

BMTree by following the dataset’s distribution. In Figure 15, we

observe that BMTree-DD performs comparably with BMTree on

the UNI workloads for all datasets. However, on the SKE workload,

BMTree performs much better in general. (2) BMTree-noGAS.We

evaluate the effectiveness of GAS algorithm. We observe a perfor-

mance drop compared with the MCTS using GAS and this demon-

strates the usefulness of GAS. (3) BMTree-greedy. We apply GAS

for all action selections and build a purely greedy based BMTree.

2168

We observe that MCTSwith GAS outperforms both BMTree-noGAS

and BMTree-greedy. This indicates a synergistic improvement of

MCTS over GAS. (4) BMTree-LMT. To evaluate the superiority of

considering all BMPs, we designed a baseline BMTree in which only

Z-curve and C-curve are allowed to be assigned to the subspaces,

denoted as BMTree-LMT. We observe a significant improvement of

BMTree over using Z-curve and C-curve alone, which demonstrates

the necessity of considering all BMPs.

UNI SKE GAU UNI SKE GAU UNI SKE GAU UNI SKE GAU

50

100

UNI GAU OSM-US TIGER

I/O Cost Ratio (%)

BMTree BMTree-DD BMTree-noGAS BMTree-greedy

BMTree-LMT

Figure 15: I/O Cost on BMTree Variants.

4.2.5 Effectiveness of SR. We propose 𝑆𝑅 to replace the actual I/O

for training, aiming to accelerate the training. We report that com-

puting 𝑆𝑅 is 20× faster than executing queries under PostgreSQL

and 100× faster than RSMI since RSMI needs to train before exe-

cuting queries, demonstrating the efficiency advantage of 𝑆𝑅. We

then evaluate if the 𝑆𝑅 metric is consistent with query performance

of different indexes. Table 4 shows the results of 𝑆𝑅 with the SKE
query workload and UNI (or GAU) data. We report the correspond-

ing I/O cost (𝐼𝑂𝐵) under PostgreSQL as well as node access number

(𝑁𝐴𝑅) under RSMI. We observe that the 𝑆𝑅 value is consistent with

𝐼𝑂𝐵 and 𝑁𝐴𝑅 , showing that optimizing 𝑆𝑅 is a good replacement

for 𝐼𝑂𝐵 and 𝑁𝐴𝑅 in optimizing BMTree.

Table 4: SR vs 𝐼𝑂𝐵 (resp. 𝑁𝐴𝑅)

Query + Data SKE + UNI SKE + GAU

Metric 𝐼𝑂𝐵 𝑁𝐴𝑅 𝑆𝑅 𝐼𝑂𝐵 𝑁𝐴𝑅 𝑆𝑅

Z-curve 453.9 154.0 1020 301.0 87.7 657

Hilbert curve / 175.5 944 / 63.1 656

QUILTS 633.1 175.5 857 342.4 80.8 690

BMTree 271.5 123.1 569 120.8 62.8 182

5 RELATEDWORK
Space-FillingCurves.Many SFCs have been developed. C-curve [11]

organizes the data points dimension-by-dimension. Z-curve [32–

34] and Hilbert curves [11, 12, 25, 26] are widely applied in index

design. Despite the success of these SFCs in many applications, they

do not consider data distribution and query workload. QUILTS [31]

is proposed to consider data distribution and query workload in

designing the mapping function of SFCs. All these SFCs, including

QUILTS, adopt a single mapping scheme, which may not always be

suitable for the whole data space and query workload as illustrated

in Section 1. In this paper, we propose the first piecewise SFC, in

which we design different mapping functions for different data

subspaces by considering both data distribution and query work-

load. Furthermore, we propose a method based on reinforcement

learning to learn SFCs to directly optimize the performance.

Space-Filling Curves based Index Structures. SFCs can be used

for indexing multi-dimensional data points with the mapped values,

and this is widely adopted by DBMS. SFCs are also essential for

recent works on learned multi-dimensional indexes [39, 47, 52].

Specifically, ZM [47] combines a Z-curve with a learned index,

namely RMI [14]. RSMI [39] applies the Hilbert curve together with

a learned index structure for spatial data. Pai et al. [35] present

preliminary results on the instance-optimal Z-index based on the

Z-curve that adapts to the data and workload. SFC-based indexes

can also be applied for data skipping [40, 45, 50], which aims to

partition and organize data into data pages such that querying

algorithms only access pages that are relevant to a query. SFC-based

approach [30] maps a multidimensional data point to a scalar value

based on a SFC, and then uses the B+ Tree or range-partitioned key

value store (e.g., H-base) for partitioning and organizing data.

Analysis on Space-Filling Curves. There are studies [23–26, 31,
49] that evaluate SFCs. Mokbel et al. [23–25] discuss the charac-

teristics of good SFCs. Moon et al. [26] propose clustering number,

which represents the number of disk seeks during query processing.

Xu et al. [49] prove that the Hilbert curve is a preferable SFC with

a low clustering number. Nishimura et al. [31] propose cohesion

cost, which evaluates how good SFCs could cluster data.

Reinforcement Learning for building trees. Our method of

generating SFC is based on reinforcement learning techniques [3,

10, 46, 48]. There are several recent studies [9, 20, 50] on applying

the RL techniques to generate tree structures. Yang et al. [50] con-

struct the Qd-tree for partitioning data into blocks on storage with

Proximal Policy Optimization (PPO) networks [42]. Gu et al. [9]

propose to utilize RL to construct the R-tree for answering spatial

queries [32, 36], and Neurocuts [20] constructs a decision tree based

on the RL agent. These RL designs are not suitable for our task of

learning piecewise SFCs and our design of RL models is based on

MCTS and is different from the designs in these studies.

6 CONCLUSION
In this paper, we study the Space-Filling Curve Design problem and

propose constructing piecewise SFCs that adopt different mapping

schemes for different data subspaces. Specifically, we propose the

BMTree for maintaining multiple bit merging patterns, in which

every path corresponds to a BMP. We further propose to construct

the BMTree in a data-drivenmanner via reinforcement learning.We

conduct extensive experiments on both synthetic and real datasets

with different query workloads. The results verify that our piece-

wise SFCs are consistently superior over existing SFCs, especially

when data or (and) queries have a certain degree of skewness.

ACKNOWLEDGMENTS
This study is partially supported by Singtel Cognitive and Arti-

ficial Intelligence Lab for Enterprises (SCALE@NTU), which is

a collaboration between Singapore Telecommunications Limited

(Singtel) and Nanyang Technological University (NTU) that is sup-

ported by A*STAR under its Industry Alignment Fund. This study

is also supported, in part, by the the Ministry of Education (MOE),

Singapore, under its Academic Research Fund (Tier-2 grant MOE-

T2EP20221-0015 and MOE-T2EP20221-0013), and National Natural

Science Foundation of China (NSFC No. 61832001 and U22B2037).

Any opinions, findings and conclusions expressed in this material

are those of the author(s) and do not reflect the views of MOE.

2169

REFERENCES
[1] Rudolf Bayer. 1997. The Universal B-Tree for Multidimensional Indexing: general

Concepts. In Worldwide Computing and Its Applications, International Conference,
WWCA ’97, Tsukuba, Japan, March 10-11, 1997, Proceedings (Lecture Notes in
Computer Science), Vol. 1274. Springer, 198–209. https://doi.org/10.1007/3-540-

63343-X_48

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles. In Proceedings of the 1990 International Conference on Management of
Data, Atlantic City, SIGMOD Conference 1990, NJ, USA, May 23-25, 1990. ACM
Press, 322–331. https://doi.org/10.1145/93597.98741

[3] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,

Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo

Tree Search Methods. IEEE Trans. Comput. Intell. AI Games 4, 1 (2012), 1–43.

https://doi.org/10.1109/TCIAIG.2012.2186810

[4] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
ACM, 969–984. https://doi.org/10.1145/3318464.3389711

[5] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.

Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed

Workloads. Proc. VLDB Endow. 14, 2 (2020), 74–86. https://doi.org/10.14778/

3425879.3425880

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce

framework for spatial data. In 31st IEEE International Conference on Data Engi-
neering, ICDE 2015, Seoul, South Korea, April 13-17, 2015. IEEE Computer Society,

1352–1363. https://doi.org/10.1109/ICDE.2015.7113382

[7] Christos Faloutsos. 1988. Gray Codes for Partial Match and Range Queries. IEEE
Trans. Software Eng. 14, 10 (1988), 1381–1393. https://doi.org/10.1109/32.6184

[8] Christos Faloutsos and Shari Roseman. 1989. Fractals for Secondary Key Re-

trieval. In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania,
USA. ACM Press, 247–252. https://doi.org/10.1145/73721.73746

[9] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, ZhengWang, and ShengWang. 2021.

The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data. CoRR
abs/2103.04541 (2021). arXiv:2103.04541 https://arxiv.org/abs/2103.04541

[10] Shiyue Huang, Yanzhao Qin, Xinyi Zhang, Yaofeng Tu, Zhongliang Li, and Bin

Cui. 2023. Survey on performance optimization for database systems. Sci. China
Inf. Sci. 66, 2 (2023). https://doi.org/10.1007/s11432-021-3578-6

[11] H. V. Jagadish. 1990. Linear Clustering of Objects with Multiple Atributes. In

Proceedings of the 1990 International Conference on Management of Data, SIGMOD
Conference 1990, Atlantic City, NJ, USA, May 23-25, 1990. ACM Press, 332–342.

https://doi.org/10.1145/93597.98742

[12] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Christoph

Anneser, Eleni Tzirita Zacharatou, Harish Doraiswamy, Peter A. Boncz, Thomas

Neumann, and Alfons Kemper. 2020. Adaptive Main-Memory Indexing for High-

Performance Point-Polygon Joins. (2020), 347–358. https://doi.org/10.5441/002/

edbt.2020.31

[13] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.

In Machine Learning: ECML 2006, 17th European Conference on Machine Learning,
Berlin, Germany, September 18-22, 2006, Proceedings (Lecture Notes in Computer
Science), Vol. 4212. Springer, 282–293. https://doi.org/10.1007/11871842_29

[14] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. ACM, 489–504. https://doi.org/10.1145/3183713.3196909

[15] Jonathan K. Lawder and Peter J. H. King. 2001. Querying Multi-dimensional

Data Indexed Using the Hilbert Space-filling Curve. SIGMOD Rec. 30, 1 (2001),
19–24. https://doi.org/10.1145/373626.373678

[16] Ken C. K. Lee, Wang-Chien Lee, Baihua Zheng, Huajing Li, and Yuan Tian. 2010.

Z-SKY: an efficient skyline query processing framework based on Z-order. VLDB
J. 19, 3 (2010), 333–362. https://doi.org/10.1007/s00778-009-0166-x

[17] Ken C. K. Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. 2007. Approach-

ing the Skyline in Z Order. In Proceedings of the 33rd International Conference on
Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007. ACM,

279–290. http://www.vldb.org/conf/2007/papers/research/p279-lee.pdf

[18] Scott T. Leutenegger, J. M. Edgington, and Mario Alberto López. 1997. STR: A

Simple and Efficient Algorithm for R-Tree Packing. In Proceedings of the Thir-
teenth International Conference on Data Engineering, ICDE 1997, Birmingham, UK,
April 7-11, 1997. IEEE Computer Society, 497–506. https://doi.org/10.1109/ICDE.

1997.582015

[19] Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, and Bin Cui.

2023. Towards Designing and Learning Piecewise Space-Filling Curves (Technical

Report). (2023), 1–15. https://github.com/gravesprite/Learned-BMTree/blob/

main/BMTree_technical_report.pdf

[20] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet classi-

fication. In Proceedings of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM 2019, Beijing, China, August 19-23, 2019. ACM, 256–269.

https://doi.org/10.1145/3341302.3342221

[21] Guanli Liu. 2020. Released RSMI Code. https://github.com/Liuguanli/RSMI.

[22] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned

Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13. https://doi.org/10.14778/3421424.

3421425

[23] Mohamed F. Mokbel and Walid G. Aref. 2001. Irregularity in Multi-Dimensional

Space-Filling Curves with Applications in Multimedia Databases. In Proceedings
of the 2001 ACM CIKM International Conference on Information and Knowledge
Management, Atlanta, Georgia, USA, November 5-10, 2001. ACM, 512–519. https:

//doi.org/10.1145/502585.502671

[24] Mohamed F Mokbel and Walid G Aref. 2003. On query processing and optimality

using spectral locality-preserving mappings. In International Symposium on
Spatial and Temporal Databases. Springer, 102–121.

[25] Mohamed F. Mokbel, Walid G. Aref, and Ibrahim Kamel. 2003. Analysis of

Multi-Dimensional Space-Filling Curves. GeoInformatica 7, 3 (2003), 179–209.
https://doi.org/10.1023/A:1025196714293

[26] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis

of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Trans. Knowl.
Data Eng. 13, 1 (2001), 124–141. https://doi.org/10.1109/69.908985

[27] n.d. 2022. TIGER/Line Shapefiles. https://www.census.gov/geographies/

mapping-files/time-series/geo/tiger-line-file.html. [Online; accessed 3-May-

2023].

[28] n.d. 2023. OpenStreetMap. http://www.openstreetmap.org/. [Online; accessed

3-May-2023].

[29] n.d. 2023. PostGis. https://postgis.net/docs/using_postgis_dbmanagement.html.

[Online; accessed 3-May-2023].

[30] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011. MD-

HBase: A Scalable Multi-dimensional Data Infrastructure for Location Aware

Services. In 12th IEEE International Conference on Mobile Data Management,
MDM 2011, Luleå, Sweden, June 6-9, 2011, Volume 1. IEEE Computer Society, 7–16.

https://doi.org/10.1109/MDM.2011.41

[31] Shoji Nishimura and Haruo Yokota. 2017. QUILTS: Multidimensional Data

Partitioning Framework Based on Query-Aware and Skew-Tolerant Space-Filling

Curves. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM,

1525–1537. https://doi.org/10.1145/3035918.3035934

[32] Jack A. Orenstein. 1986. Spatial Query Processing in an Object-Oriented Database

System. In Proceedings of the 1986 International Conference on Management of
Data, SIGMOD Conference 1986, Washington, DC, USA, May 28-30, 1986. ACM
Press, 326–336. https://doi.org/10.1145/16894.16886

[33] Jack A. Orenstein. 1989. Redundancy in Spatial Databases. In Proceedings of
the 1989 International Conference on Management of Data, SIGMOD Conference
1989, Portland, Oregon, USA, May 31 - June 2, 1989. ACM Press, 295–305. https:

//doi.org/10.1145/67544.66954

[34] Jack A. Orenstein and T. H. Merrett. 1984. A Class of Data Structures for Associa-

tive Searching. In Proceedings of the Third ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, April 2-4, 1984, Waterloo, Ontario, Canada. ACM,

181–190. https://doi.org/10.1145/588011.588037

[35] Sachith Gopalakrishna Pai, Michael Mathioudakis, and Yanhao Wang. 2022.

Towards an Instance-Optimal Z-Index. In 4th International Workshop on Applied
AI for Database Systems and Applications (AIDB@ VLDB2022).

[36] Varun Pandey, Alexander van Renen, Andreas Kipf, and Alfons Kemper. 2021.

How Good Are Modern Spatial Libraries? Data Sci. Eng. 6, 2 (2021), 192–208.
https://doi.org/10.1007/s41019-020-00147-9

[37] Giuseppe Peano. 1890. Sur une courbe, qui remplit toute une aire plane. Math.
Ann. 36, 1 (1890), 157–160. https://doi.org/10.1007/BF01199438

[38] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley. https://doi.org/10.1002/9780470316887

[39] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively

Learning Spatial Indices. Proc. VLDB Endow. 13, 11 (2020), 2341–2354. http:

//www.vldb.org/pvldb/vol13/p2341-qi.pdf

[40] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David

Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,

Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni Schiefer,

David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with

BLU Acceleration: So Much More than Just a Column Store. Proc. VLDB Endow.
6, 11 (2013), 1080–1091. https://doi.org/10.14778/2536222.2536233

[41] Hanan Samet. 2006. Foundations of multidimensional and metric data structures.
Academic Press.

[42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

arXiv:1707.06347 http://arxiv.org/abs/1707.06347

2170

https://doi.org/10.1007/3-540-63343-X_48
https://doi.org/10.1007/3-540-63343-X_48
https://doi.org/10.1145/93597.98741
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1109/32.6184
https://doi.org/10.1145/73721.73746
https://arxiv.org/abs/2103.04541
https://doi.org/10.1007/s11432-021-3578-6
https://doi.org/10.1145/93597.98742
https://doi.org/10.5441/002/edbt.2020.31
https://doi.org/10.5441/002/edbt.2020.31
https://doi.org/10.1007/11871842_29
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/373626.373678
https://doi.org/10.1007/s00778-009-0166-x
http://www.vldb.org/conf/2007/papers/research/p279-lee.pdf
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1109/ICDE.1997.582015
https://github.com/gravesprite/Learned-BMTree/blob/main/BMTree_technical_report.pdf
https://github.com/gravesprite/Learned-BMTree/blob/main/BMTree_technical_report.pdf
https://doi.org/10.1145/3341302.3342221
https://github.com/Liuguanli/RSMI
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.1145/502585.502671
https://doi.org/10.1145/502585.502671
https://doi.org/10.1023/A:1025196714293
https://doi.org/10.1109/69.908985
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
http://www.openstreetmap.org/
https://postgis.net/docs/using_postgis_dbmanagement.html
https://doi.org/10.1109/MDM.2011.41
https://doi.org/10.1145/3035918.3035934
https://doi.org/10.1145/16894.16886
https://doi.org/10.1145/67544.66954
https://doi.org/10.1145/67544.66954
https://doi.org/10.1145/588011.588037
https://doi.org/10.1007/s41019-020-00147-9
https://doi.org/10.1007/BF01199438
https://doi.org/10.1002/9780470316887
http://www.vldb.org/pvldb/vol13/p2341-qi.pdf
http://www.vldb.org/pvldb/vol13/p2341-qi.pdf
https://doi.org/10.14778/2536222.2536233
http://arxiv.org/abs/1707.06347

[43] Tomás Skopal, Michal Krátký, Jaroslav Pokorný, and Václav Snásel. 2006. A

new range query algorithm for Universal B-trees. Inf. Syst. 31, 6 (2006), 489–511.
https://doi.org/10.1016/j.is.2004.12.001

[44] Zack Slayton. 2017. Z-Order Indexing for Multifaceted Queries in Amazon

DynamoDB. https://aws.amazon.com/blogs/database/z-order-indexing-for-

multifaceted-queries-in-amazon-dynamodb-part-1/.

[45] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. 2014. Fine-

grained partitioning for aggressive data skipping. In International Conference on
Management of Data, SIGMOD Conference 2014, Snowbird, UT, USA, June 22-27,
2014. ACM, 1115–1126. https://doi.org/10.1145/2588555.2610515

[46] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an
introduction. MIT Press. https://www.worldcat.org/oclc/37293240

[47] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for

Spatial Queries. In 20th IEEE International Conference onMobile DataManagement,
MDM 2019, Hong Kong, SAR, China, June 10-13, 2019. IEEE, 569–574. https:

//doi.org/10.1109/MDM.2019.00121

[48] Sai Wu, Ying Li, Haoqi Zhu, Junbo Zhao, and Gang Chen. 2022. Dynamic Index

Construction with Deep Reinforcement Learning. Data Sci. Eng. 7, 2 (2022),

87–101. https://doi.org/10.1007/s41019-022-00186-4

[49] Pan Xu and Srikanta Tirthapura. 2014. Optimality of Clustering Properties

of Space-Filling Curves. ACM Trans. Database Syst. 39, 2 (2014), 10:1–10:27.

https://doi.org/10.1145/2556686

[50] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,

Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.

2020. Qd-tree: Learning Data Layouts for Big Data Analytics. In Proceedings of
the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM, 193–208.

https://doi.org/10.1145/3318464.3389770

[51] Man Lung Yiu, Yufei Tao, and Nikos Mamoulis. 2008. The Bdual -Tree: indexing
moving objects by space filling curves in the dual space. VLDB J. 17, 3 (2008),
379–400. https://doi.org/10.1007/s00778-006-0013-2

[52] Zhou Zhang, Peiquan Jin, Xiao-Liang Wang, Yan-Qi Lv, Shouhong Wan, and

Xike Xie. 2021. COLIN: A Cache-Conscious Dynamic Learned Index with High

Read/Write Performance. J. Comput. Sci. Technol. 36, 4 (2021), 721–740. https:

//doi.org/10.1007/s11390-021-1348-2

[53] Liang Zhou, Chris R. Johnson, and Daniel Weiskopf. 2021. Data-Driven Space-

Filling Curves. IEEE Trans. Vis. Comput. Graph. 27, 2 (2021), 1591–1600. https:

//doi.org/10.1109/TVCG.2020.3030473

[54] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A Learned

Query Rewrite System using Monte Carlo Tree Search. Proc. VLDB Endow. 15, 1
(2021), 46–58. https://doi.org/10.14778/3485450.3485456

2171

https://doi.org/10.1016/j.is.2004.12.001
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://doi.org/10.1145/2588555.2610515
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1109/MDM.2019.00121
https://doi.org/10.1109/MDM.2019.00121
https://doi.org/10.1007/s41019-022-00186-4
https://doi.org/10.1145/2556686
https://doi.org/10.1145/3318464.3389770
https://doi.org/10.1007/s00778-006-0013-2
https://doi.org/10.1007/s11390-021-1348-2
https://doi.org/10.1007/s11390-021-1348-2
https://doi.org/10.1109/TVCG.2020.3030473
https://doi.org/10.1109/TVCG.2020.3030473
https://doi.org/10.14778/3485450.3485456

	Abstract
	1 Introduction
	2 PROBLEM STATEMENT & PRELIMINARIES
	2.1 Problem Definition
	2.2 Preliminaries on SFC

	3 Proposed solution
	3.1 Motivations and Challenges
	3.2 Solution Overview
	3.3 Bit Merging Tree (BMTree)
	3.4 MCTS based BMTree Construction
	3.5 Analysis and Discussion

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

