
VeriBench: Analyzing the Performance of Database Systems with
Verifiability

Cong Yue
National University of Singapore

yuecong@comp.nus.edu.sg

Meihui Zhang
Beijing Institute of Technology
meihui_zhang@bit.edu.cn

Changhao Zhu
Beijing Institute of Technology

zhuchanghao@bit.edu.cn

Gang Chen
Zhejiang University

cg@zju.edu.cn

Dumitrel Loghin
National University of Singapore

dumitrel@comp.nus.edu.sg

Beng Chin Ooi
National University of Singapore

ooibc@comp.nus.edu.sg

ABSTRACT

Database systems are paying more attention to data security in
recent years. Immutable systems such as blockchains, verifiable
databases, and ledger databases are equipped with various veri-
fiability mechanisms to protect data. Such systems often adopt
different threat models, and techniques, therefore, have different
performance implications compared to traditional database systems.
So far, there is no uniform benchmarking tool for evaluating the
performance of these systems, especially at the level of verification
functions. In this paper, we first survey the design space of the
verifiability-enabled database systems along five dimensions: threat
model, authenticated data structure (ADS), query processing, verifi-
cation, and auditing. Based on this survey, we design and implement
VeriBench, a benchmark framework for verifiability-enabled data-
base systems. VeriBench enables a fair comparison of systems
designed with different underlying technologies that share the
client-side verification scheme, and focuses on design space explo-
ration to provide a deeper understanding of different system design
choices. VeriBench incorporates micro- and macro-benchmarks
to provide a comprehensive evaluation. Further, VeriBench is de-
signed to enable easy extension for benchmarking new systems
and workloads. We run VeriBench to conduct a comprehensive
analysis of state-of-the-art systems comprising blockchains, ledger
databases, and log transparency technologies. The results expose
the weaknesses and strengths of each underlying design choice,
and the insights should serve as guidance for future development.

PVLDB Reference Format:

Cong Yue, Meihui Zhang, Changhao Zhu, Gang Chen, Dumitrel Loghin,
and Beng Chin Ooi. VeriBench: Analyzing the Performance of Database
Systems with Verifiability. PVLDB, 16(9): 2145 - 2157, 2023.
doi:10.14778/3598581.3598588

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/yc1111/VeriBench.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.
doi:10.14778/3598581.3598588

1 INTRODUCTION

The advancement of Information Technology has determined many
organizations to adopt digital transformation and shift their core
business to the cloud. Digitalization helps organizations in im-
proving their business model, enhance collaboration, and increase
productivity. However, such digitization also increases the exposure
to various threats from internal and external adversaries such as
tampering of data, ill-intended content, or actions from malicious
collaborators. Hence, there is an increasing demand to protect data
security in modern database systems.

A wide range of systems has been equipped with verifiability
to protect their data. Such systems have various focuses and use
different techniques. Verifiable databases [7, 8, 29, 38, 42, 43] guar-
antee the correctness of query execution and protect the latest state
of the database by adopting verifiable computing. The computa-
tion is offloaded to an untrusted server, which will execute and
generate verifiable results by using cryptographic techniques. The
advantage of this approach is that the client will have a constant
proof size and lightweight verification burden. However, the server
runs expensive cryptographic computations. Certificate transparen-
cies [17, 18, 23, 32] store the keys and certificates, therefore, they
focus on the data content and modified history. Merkle trees [24]
are constructed over the data to detect any tampering after the data
is stored. They expose simple storage API, and are not suitable for
update-intensive tasks. Blockchains [5, 10, 37] serve as secure trans-
action systems, protect both the data and the entire history, and
ensure the serializability of the transactions. Blockchains maintain
a sequence of hash-chained blocks, and the integrity is guaranteed
by replicating the blocks using a Byzantine fault tolerant protocol
(e.g., PBFT [9]). Despite the strong security guarantee offered by the
blockchains, they suffer from low performance due to the expensive
consensus protocols.

In recent years, ledger databases [4, 6, 39, 40] have gained trac-
tion due to features such as protecting the integrity of data, history
and query results. A ledger database maintains data or logs in the
form of an append-only ledger, which can generate proofs for users
to verify the integrity. Compared to conventional databases, a ledger
database has three main advantages. First, it provides efficient ver-
ification. The users only need to maintain a cryptographic hash,
called digest, of the ledger and the integrity check can be performed
by comparing the digest against the reproduced hash computed
from the proof. Second, it reduces the surface of misbehavior. Since
the ledger is immutable, all historical data are protected by the
digest. Adversaries cannot tamper with history without changing

2145

https://doi.org/10.14778/3598581.3598588
https://github.com/yc1111/VeriBench
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598588
https://www.acm.org/publications/policies/artifact-review-and-badging-current

the hashes. Third, it can be publicly verified. Everyone can verify
the integrity of the data or the log with the ledger. Compared to
blockchains, ledger databases offer high performance without the
performance bottleneck at the consensus layer. Ledger databases
are therefore suitable for maintaining financial transactions, logistic
orders, and healthcare data where the integrity of data evolution
history and proof of data lineage are important.

Despite the fact that many verifiability-enabled database systems
have been designed and implemented in recent years, there is no
uniform benchmarking tool to systematically and fairly evaluate ex-
isting systems. Traditional database benchmarks such as TPC [21]
and YCSB [11] do not consider the verifiability-related features
of the systems, therefore, only provide an overall evaluation of
the performance. The effects of verifiability-specific design choices
are unknown or require extensive adaptation to evaluate. Existing
blockchain benchmarking frameworks such as Caliper [19] and
BlockBench [14] focus on the consensus and smart contract exe-
cution, and cannot be used by other systems that do not support
smart contracts. Therefore, it is necessary to build a benchmarking
framework for verifiability-enabled database systems.

To build such a benchmarking framework, we have to consider
three key system issues of verifiability-enabled database systems.
First, we need to consider the design space and evaluate the effects
of design choices on performance. Second, the behavior of different
systems can vary significantly. For example, Amazon Quantum
Ledger Database (QLDB) [4], blockchains, transparency logs, and
some verifiable databases provide on-demand verification. On the
other hand, GlassDB [40], Litmus [38], and Concerto [7] enforce
continuous verification during the transaction processing. Third,
GlassDB, LedgerDB [39], SQL Ledger [6], and Concerto adopt de-
ferred verification, where verification is performed after a time
period with a batch of data. All the systems have to be evaluated in
a systematic manner that is compatible with different scenarios.

In this paper, we propose VeriBench, a benchmarking frame-
work for verifiability-enabled database systems. We address the first
key issue by conducting a survey on the design space covered by
existing systems. We categorize the design of verifiability-enabled
database systems based on five components, namely threat model,
authenticated data structure (ADS), query processing, verification
and auditing. We discuss the design choices of each component and
subsequently design VeriBenchwith verification-aware workloads.
Specifically, we include micro-benchmarks to evaluate performance
impact on single component, and macro-benchmarks adapted from
a key-value benchmark (YCSB) and two OLTP benchmarks (Small-
Bank and TPC-C) for system-level performance. Lastly, we conduct
extensive experiments on existing systems to illustrate the strengths
and weaknesses of each design and system, which should be useful
for the future development of verifiability-enabled database systems.

In summary, we make the following contributions.

• We analyze the design space of verifiability-enabled database
systems along five dimensions: threat model, authenticated data
structures, query processing, verification, and auditing. We dis-
cuss how existing systems fit in the design space.

• We implement VeriBench, an open-source benchmarking frame-
work for verifiability-enabled database systems which can be used
directly or extended to evaluate newly proposed databases.

• We conduct extensive benchmarking and performance analy-
sis of QLDB [4], LedgerDB [39], SQLLedger [6], GlassDB [40],
Merkle2 [18], and Confidential Consortium Framework (CCF)
[31]. Our results pinpoint the performance bottlenecks of existing
verifiability-enabled database systems, and show the advantages
of various design choices.

2 DESIGN SPACE ANALYSIS

2.1 State-of-the-art Systems

Amazon Quantum Ledger Database (QLDB) [4] is a ledger data-
base managed in a centralized way by Amazon, on its Amazon Web
Services (AWS) cloud. QLDB keeps two tables, one for the current
states and another one for the history of the states, as shown in
Figure 1. These tables are connected to an append-only ledger im-
plemented with a Merkle tree [24]. This tree contains the hashes
of all the states and it is updated every time there is a change in
a state’s value. This enables instant verification at the expense of
lower performance. QLDB does not support external auditors.

LedgerDBwas developed as a research project [39] and it is now
offered as a service by Alibaba on its cloud [1]. LedgerDB keeps
a Merkle tree that is updated in batches using a method called
batch-Accumulated Merkle Tree (bAMT). Furthermore, the copy-
on-write technique is used to append transactions, thus, reducing
the contention in the ledger layer. Skip list indexes (clue indexes)
are built over the keys, where the size of each such index is stored in
a leaf of a Merkle Patricia Trie (MPT), as shown in Figure 2. A skip
list element points to the ledger-stored transaction that modified
the corresponding key. LedgerDB implements CFT and workload
balancing using a master-workers architecture for its distributed
version. It supports auditors and implements deferred verification.

SQLLedger [6] is part of Microsoft SQL Server and it is offered
as a service on the Microsoft Azure cloud [26]. It uses Microsoft SQL
Server at the storage layer on top of which two tables are stored,
one for the ledger and one for the history of the states (or rows).
The ledger consists of blocks and each block contains two types
of Merkle trees, as shown in Figure 3. The first type is constructed
over all the transactions captured in the block. The second Merkle
tree type keeps track of the rows updated by a transaction. Hence,
the leaves of the transaction Merkle tree store the root hash of
the row Merkle trees. SQLLedger implements deferred verification,
where clients can send batches of verification requests after the
operations are completed. It also supports auditors.

GlassDB [40] is a distributed ledger database system proposed
in a recent research project. The system partitions the data into dif-
ferent shards and adopts two-phase commit (2PC) to guarantee the
atomicity of cross shards transactions. It applies replication to toler-
ate node failures. As shown in Figure 4, each shard has a transaction
manager, a verifier, and ledger storage. GlassDB introduces a two
level POS-tree [41] as the authenticated data structure to improve
the efficiency of data access and proof generation. In particular,
the lower level POS-tree builds on top of the database states in
lexical order, while the upper level POS-tree builds over the entire
history root hashes of the lower level POS-tree in chronological
order. GlassDB adopts asynchronous ledger updates and batching
of transactions to accelerate transaction processing, and applies a
deferred verification approach to further improve verification.

2146

Txn1
•Operation
•Data
•Metadata

Txn2
•Operation
•Data
•Metadata

Txn3
•Operation
•Data
•Metadata

Txn4
•Operation
•Data
•Metadata

Current State History

Indexed Tables

Merkle Tree

Figure 1: QLDB architecture

Prev Hash

Digest
···

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Digest MPT Root

Sequence Sequence

MPT Root

ca

cap

cat

ca

p

t

3

3

T1 T2 T3 T4

1 3 4

1 2 3

Merkle Patricia Trie batch-Accumulated Merkle Tree Clue Indexes

Figure 2: LedgerDB architecture

Confidential Consortium Framework (CCF) [25, 31] (previ-
ously known as Coco Framework) is an open-source permissioned
(private) blockchain project developed byMicrosoft. CCF consists of
both public tables and private tables to store data and configurations
in key-value format. Like other blockchain systems, CCF persists
the history of the key-value data in a tamper-proof encrypted ledger
that is protected by Merkle trees. This ledger enables the replay of
the state transitions. However, the integrity of each operation on
the states is guaranteed by the execution inside a trusted execution
environment (TEE). Figure 5 shows the architecture of CCF. All
nodes run the same application inside a TEE enclave. Changes are
applied to the storage when a majority of the nodes reach agree-
ments. The fully replicated ledger guarantees stronger security
consumption with higher performance costs.

Merkle
2 [18] is a research project that designs a transparency log

system for low-latency and secure public key storage. As shown in
Figure 6, it combines chronological Merkle trees and prefix Merkle
trees to obtain the append-only property and to execute the id-
based query with low costs, by storing the prefix tree roots in the
internal nodes of the chronological trees. The server maintains a
chronological forest and periodically publishes the digests to the
auditors. Users have to request the digests from the auditors to
verify the integrity of the query results.

Next, we describe the design choices made by these systems
in five key directions, namely, threat model, authenticated data
structure (ADS), query processing, verification, and auditing. A
summary of these design choices is presented in Table 1.

2.2 Threat Model

There are two main threat models adopted by verifiability-enabled
database systems. Firstly, decentralized systems such as blockchains
assume they run on fully replicated machines hosted by multiple
parties. Each node may behave in a Byzantine manner. These sys-
tems have the strongest security assumption on tolerating at most
𝑓 Byzantine failures with 3𝑓 + 1 replicas while behaving correctly
with the help of Byzantine fault tolerant (BFT) protocols, such
as PBFT [9]. However, the BFT protocols are costly in terms of
execution time and communication, and they do not scale well.

The second threat model assumes a single-party service provider,
which can be compromised. The adversaries have full control of the
host machine, including altering the network messages and tam-
pering with the data contents. Users can detect any misbehaviour
instead of preventing it. This model is adopted by certificate trans-
parencies, ledger databases, and verifiable databases with different

use cases. Certificate transparencies protect their data and history
from being tampered once stored. Ledger databases verify the cor-
rectness of transactions in addition to the data contents. Verifiable
databases offer a similar guarantee as ledger databases, except they
only protect the current state of the database.

Distributed ledger databases and verifiable databases implement
CFT replication to tolerate node failures, in contrast to typical
blockchains that use BFT consensus protocols. CCF design [31]
supports both CFT and BFT replication, but the currently available
implementation [25] only supports CFT.

2.3 Authenticated Data Structures

2.3.1 Ledger. The ledger is the key data structure of blockchains,
certificate transparencies, and ledger databases. The ledger is usu-
ally a Merkle tree variance. For example, blockchains [5] construct
Merkle trees over the world state and transactions for validation.
QLDB builds a Merkle tree over the hashes of the transactions as
shown in Figure 1. SQLLedger [6] constructs a Merkle tree over
the modified data for each transaction, and another Merkle tree
over the transaction entries batched in a block. The root hash of
the latter Merkle tree is stored in the block entry with the previous
block entry’s hash to form a hashed chain as shown in Figure 3.
LedgerDB [39] adopts a batched accumulated Merkle tree, which
employs copy-on-write when new transactions are appended to
reduce the contention as shown in Figure 2. To improve the effi-
ciency of verification for the latest versions, Merkle2, as illustrated
in Figure 6, constructs a forest of full Merkle trees over the data in
chronological order, and each internal node stores the root hash of
a prefix tree built over the data in lexical order. GlassDB replaces
the Merkle trees with a two-level POS-trees [41]. A POS-tree is
built on top of the database states in lexical order, while the second
POS-tree is built over the entire history in chronological order.

2.3.2 Chronological Order vs. Lexical Order. Systems such as QLDB,
LedgerDB, SQLLedger, and CCF construct ADS over data in chrono-
logical or transaction order. The ADS is used only for integrity proof,
and separate index structures are required to query the data. This
causes two problems: (1) updating and proof generation become
slower when the ADS grows larger, and (2) it requires additional
protection of the indexes, e.g., LedgerDB uses a Merkle Patricia
Trie (ccMPT) to protect its clue indexes, while the index tables in
QLDB and SQLLedger are not hash-protected, leading to the inabil-
ity to guarantee that the value is the latest. In contrast, systems like
GlassDB, Trillian, CONIKS, and Merkle2 embed additional Merkle
tree-based ADS in lexical order, thus, protecting the indexes.

2147

Merkle tree for transactions
Merkle tree for updated rows

Prev Hash ··· Txn MT Root··· ···

Database Ledger Ledger Tables

Ledger Table History Table

User_Id
Timestamp

Row MT Root

Request

Ledger View

Database
Digest Storage

Ledger Table History Table

Ledger View

Figure 3: SQLLedger architecture

Ledger Storage

Digest Digest Data Block with sequence number i (Snapshot)

Index Node Copy-on-write index node (with newer version)

DataRoot 0 DataRoot 1 DataRoot 2

Digest

DataRoot n

…

…

Verifier

Ta
sk

 q
ue

ue

Verifier
threads

TM

Tx
n

qu
eu

e Ledger Storage

T1 T2 T3 Tn

K1 K2 K3 K4 K5

Txn
threads

Persist
thread

Transactions in
chronological

order

Data in
lexical order

Figure 4: GlassDB architecture

TEE Enclave

Node NodeGovernance
Transaction

UserConsortium
Member

Business
Transaction

Data Store

Tamper-proof
Ledger

Node

Figure 5: CCF architecture

Auditor

C A D B

Chronological
Forest
Prefix Tree

Server

User
Verifier

Application

Auditor
Database

Digests

H (left | right | prefix_root)

B DA B C D

Digests

···

Figure 6: Merkle
2
architecture

2.4 Query Processing

2.4.1 Abstraction. Key-value vs. relational. These are the two
main data abstraction models used by modern databases. In conse-
quence, verifiability-enabled database systems support one of the
two models. QLDB [4] and SQLLedger [6] employ relational data
abstraction by building additional relational tables and views on
top of the ledger. Users can query the data through SQL queries.
However, the tables and views are not hash protected, and therefore,
they may be tampered or simply return stale data. As shown in
Table 1, other systems expose key-value data abstractions. While it
is possible to build a relational database on top of a key-value store,
additional protection is required for indexing and query, which may
cause significant overhead.

Non-transactional vs. transactional. Typical database sys-
tems provide transactional abstraction with ACID properties. Veri-
fiable databases and ledger databases follow this design decision.
Blockchains, which target exchanging digital assets or general busi-
ness logic, also provide transactional abstraction. Certificate trans-
parency logs, such as Merkle2, serving as storage for public keys
and certificates, only expose non-transactional abstraction.

2.4.2 Batching. The update of a ledger is costly since it entails
cryptographic hash derivation, and incurs high contention, espe-
cially at the root node, affecting the implementation of parallelism.
QLDB and Merkle2 implement the ledger update after each indi-
vidual operation. To reduce the cost of hash derivation and miti-
gate the read/write contention against proof generation operations,
LedgerDB updates its ADS in batches of transactions and adopts
copy-on-write when updating the ADS. SQLLedger constructs an
individual Merkle tree for each transaction and block, making it
contention-free when appending new blocks to the ledger. Similar
to LedgerDB, SQLLedger batches multiple transactions in a block to
reduce the overhead of calculating block-level hashes. In GlassDB,

the transactions from a batch that update the same keys are ar-
ranged in a sequence of blocks, based on the number of times the
keys are updated. Copy-on-write is applied to reduce contention.
Likewise, blockchains batch transactions into one block to increase
the throughput. They use either a predefined size or block time to
control the size of the batch. Since the bottleneck for blockchain
is consensus protocol, the larger the block size, the higher the
throughput and latency, and vice versa.

2.4.3 Data partitioning. In the distributed setup of verifiability-
enabled database systems, data partitioning (or sharding) is often
used to improve the performance. It reduces the burden on each
node and increases the parallelism. However, an atomic commit
protocol needs to be applied to guarantee the ACID properties
of distributed transactions. The scalability of such protocol and
partitioning strategy is essential to performance.

2.5 Verification

To guarantee the integrity of data and query results, verifiability-
enabled database systems provide proofs that can be publicly verified
by the users or third-party verifiers for each request. The proofs
typically consist of a digest which is a hash summary of the database
states and a proof generated from ADS. The client, upon receiving
the proof, can reproduce the digest. Then, it verifies data integrity
by comparing the original and reproduced digests.

2.5.1 On-demand vs. continuous. Verification can be categorized
into on-demand and continuous according to different user scenarios.
QLDB, SQLLedger, and CCF only expose on-demand verification
API, i.e., they will perform the verification when users specifically
request or find any inconsistencies. However, such verification can-
not guarantee the system is always in a consistent state. It may
continue operating with the incorrect states and incur significant

2148

Table 1: Design space characterization of state-of-the-art verifiability-enabled database systems.

Design Dimension Sub-dimension QLDB [4] LedgerDB [39] SQLLedger [6] GlassDB [40] CCF [31] Merkle
2 [18]

Threat Administration centralized centralized centralized centralized decentralized centralized
Model Fault Tolerance CFT CFT CFT CFT CFT / BFT single-node

Authenticated Ledger Merkle Tree Merkle Tree Merkle Tree POS-tree Merkle Tree Merkle Tree
Data Structures Order chronological chronological chronological hybrid chronological hybrid

Abstraction relational key-value relational key-value key-value key-value
Query transactional transactional transactional transactional transactional non-transactional

Processing Ledger Update individual batch batch batch batch individual
Partitioning partitioning partitioning partitioning partitioning no partitioning no partitioning

Verification on-demand deferred on-demand deferred on-demand deferred
Auditing user auditor auditor auditor user auditor

loss if verification is not performed timely. In contrast, LedgerDB,
GlassDB, and Merkle2 implicitly call the verification API during
transaction processing to ensure every transaction is executed cor-
rectly and the system is in a correct state. To achieve this, the
systems need to perform extensive verification operations that will
impact the performance.

For continuous verification, it is expected that providing proof for
each operation is costly. LedgerDB and GlassDB return a promise
containing the data and block sequence the data resides to the client
for future verification on the completion of an operation. The ADS is
updated asynchronously. The client can batch the proof generation
request and verification process for higher performance. However,
there is a trade-off between performance and security: there is
a verification time window when the integrity of data could be
temporarily violated. In CCF, the proof can be generated only after
the nodes reach consensus and commit a block. Merkle2, instead,
updates the ADS immediately and delegates the verification to a
background verifier process.

2.6 Auditing

Systems such as certificate transparencies (e.g., Merkle2), GlassDB,
LedgerDB, and SQLLedger rely on auditors to check the consistency
of the ledger and detect malicious behaviors. The auditors will
rebuild the ledger based on the logs returned by the system, and
compare the digest of the rebuilt ledger with the digest returned
by the system. Auditors will notify the users if any mismatch is
found. The auditing process is typically expensive. Any third-party
entities or powerful users can play the role of the auditor. The
systems require at least one honest auditor so that any malicious
behaviours can be detected and notifications can be sent to the users.
QLDB and CCF do not rely on auditors to check the consistency of
the ledger. Consequently, users have to check the consistency of
the ledger if required. In fact, typical blockchains rely on the users
(or miners) to verify the ledger.

3 VERIBENCH

In this section, we describe the design and implementation of
VeriBench, our benchmarking framework for verifiability-enabled
database systems.

3.1 Architecture

As shown in Figure 7, VeriBench consists of a configuration loader,
a workload interface, a database adapter, a benchmark driver, and

a log analyzer. The configuration loader loads the parameters of
the benchmarks. The workload interface defines task generation
and execution API. The database adapter connects to the target
database system under evaluation through generic database APIs.
The benchmark driver runs the benchmarks with the configura-
tion loader, workload interface, and database adapter. It logs the
performance statistics, which will be processed by the log analyzer
to obtain the final results. To improve its usability and generality,
VeriBench only exposes generic interfaces defined in the workload
interface and database adapters.

3.2 API

In this section, we describe the API of the workload generator
and database adapter. Users can include customized workloads and
verifiability-enabled database systems by inheriting these interfaces.
First, we describe the API of the workload generator as follows.

NextTask(conf) is a function that takes the workload config-
uration as input and generates the next task including the opera-
tion type and a list of parameters. The configuration usually con-
tains the ratio, distribution, and ranges of operations, keys and val-
ues. For example, a configuration of SmallBank workload includes
𝐷 (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚, 𝐷 (𝑎𝑐𝑐𝑜𝑢𝑛𝑡) = 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚, 𝑅(𝑎𝑐𝑐𝑜𝑢𝑛𝑡) =

[0, 50000], 𝑅(𝑎𝑚𝑚𝑜𝑢𝑛𝑡) = [0, 500], where 𝐷 is the distribution,
and 𝑅 is the range. The interface returns the generated tasks, e.g.,
< 𝑆𝑒𝑛𝑑𝑃𝑎𝑦𝑚𝑒𝑛𝑡, 1, 2, 100 >, which represents account 1 paying
$100 to account 2.

ExecuteTransaction(task, db) is a function that takes the
task generated by NextTask and the database adapter, db, as the
input and returns the status of execution. The inherited function
implemented by the user shall execute the transaction with a se-
quence of Put, Get, and Verify operations provided by the data-
base adapter.

Next, we introduce the API of the database adapter. Depending
on the database under evaluation, the database adapter may be
implemented in different programming languages.

Put(keys, values) defines the operation to update or insert
a list of keys and values in the database. It will return the proof
optionally for databases that do not support deferred verification.

Get(keys) defines the operation to get the values of a list of keys
from the database. It will return the proof optionally for databases
that do not support deferred verification.

Verify(keys, block_seqs) is for deferred verification, where
a batch of keys could be verified together. The parameters represent
a list of keys and the block sequences where the keys are located.

2149

Driver

Workload

Database

Experiment

Workload
Interface

Workload
Generator

Config Loader

D
atabase A

dapter

YCSB SmallBank TPC-C

L
og A

nalyzer

Reports

QLDB LedgerDB GlassDB Merkle2

...

...

VeriBench

Figure 7: VeriBench architecture

ADS

 Range
 Provenance
o UpdateHeavy

 Throughput
 Latency
 Storage

Query Processing

 YCSB
 TPCC
 SmallBank
o BlockTime

 Throughput
 Latency

Auditing

o Audit  Latency

Verification

o Delay
o Security

 Throughput
 Security

level

Figure 8: Workloads and metrics of each component

Table 2: Configuration parameters used by VeriBench.

Category Parameter

Workload 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑡𝑦𝑝𝑒 , 𝑐𝑜𝑛𝑓 𝑖𝑔_𝑝𝑎𝑡ℎ, 𝑖𝑛𝑖𝑡_𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ
Database 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒_𝑛𝑎𝑚𝑒 , 𝑑𝑏_𝑐𝑜𝑛𝑓 𝑖𝑔_𝑝𝑎𝑡ℎ

Benchmark 𝑛_𝑠ℎ𝑎𝑟𝑑 , 𝑛_𝑟𝑒𝑝𝑙𝑖𝑐𝑎 ,𝑛_𝑐𝑙𝑖𝑒𝑛𝑡 , 𝑛_𝑡ℎ𝑟𝑒𝑎𝑑
𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑟𝑎𝑡𝑒 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑙𝑎𝑦, 𝑏𝑙𝑜𝑐𝑘_𝑡𝑖𝑚𝑒

The inherited function shall get the proofs from the database, verify
the proofs, and return the verification result.

Verify(proof) is for immediate verification, where the input
proof can be obtained from the Get and Put operations. The inter-
face returns the verification result.

Begin() is the initialization function for interactive transactions.
Users can set a transaction context within this function such as
transaction ID or timestamp. A sequence of Get(.) and Put(.)
functions can be called after this.

Commit() defines the commit operation for interactive transac-
tions. It is called after a sequence of Get(.) and Put(.) operations.
It optionally returns the promise in case of deferred verification.

StoredProcedure(type, params) is used when the target data-
base under evaluation does not expose interactive transaction API.
For example, the transactions are defined as smart contracts in a
blockchain and stored procedures in CCF. The StoredProcedure(.)
function takes the transaction type and list of parameters as in-
put, and executes the transaction logic accordingly. The function
optionally returns a promise in case of deferred verification.

To extend VeriBench with a new workload, users need to imple-
ment the NextTask and ExecuteTransaction. To support a new
database, users need to implement the Put, Get, and Verify.

3.3 Implementation

Configuration Loader is responsible for loading all experiment-
related configurations at runtime. It reads the parameters from the
command line and configuration files. The configurations include
workload configurations, database configurations, and experiment
configurations. The detailed configurations are shown in Table 2.

Workload Interface defines the workload’s operations, parame-
ters, generation, data initialization, and execution logic. The detailed
API can be found in Section 3.2. VeriBench provides default work-
load implementations for YCSB, TPC-C, and SmallBank. Users can

easily add customized workloads by implementing the interfaces.
The workload can be initialized with an optional configuration file,
specifying any workload-specific parameters such as the number
of warehouses for TPC-C, the number of accounts for SmallBank,
etc. The parameters are then used in generating the workload and
executing the queries.

Database Adapter defines common database operations, trans-
action semantics, and verification logic. The full API list can be
found in Section 3.2. To implement a database adapter for a new
system, users need to build a wrapper class containing the original
database client, and implemented the defined API by calling the
client functions. For systems that adopt deferred verification, an
empty promise interface is provided. This is because the promises
across systems can differ significantly. Therefore, users need to
define their own data structure and deferred verification logic.

Benchmark Driver is executed by all the client processes. To
start the benchmark execution, the driver first initializes the work-
load and database adapter with the given configurations. It spawns
threads to generate the workload at the specified request rate. The
generated tasks are stored in a queue. Next, the driver spawns a
query execution thread, which continuously fetches the task at the
beginning of the queue and calls the database adapter to process the
query. In the case of online verification, VeriBench enforces the
invocation of the𝑉𝑒𝑟𝑖 𝑓 𝑦 (.) function after each query execution. In
the case of deferred verification, VeriBench spawns a verification
thread, which periodically invokes the 𝑉𝑒𝑟𝑖 𝑓 𝑦 (.) function with a
promise as input.

Log Analyzer collects and processes the logs from all the nodes,
after all benchmark drivers finished the execution. Measurements
are taken and logged before and after the query execution and
verification. The log analyzer aggregates all these measurements
and calculates the corresponding metrics for each workload.

3.4 Metrics

Throughput. The overall throughput of verifiability-enabled data-
base systems is measured to evaluate the performance of query and
transaction execution.

Latency. VeriBench measures three types of latency. First, we
measure the end-to-end latency of the systems to evaluate the
query and transaction execution. Second, we measure the client
verification latency to evaluate the efficiency of the proofs generated
by the ADS. Lastly, we evaluate the latency of verification and

2150

Table 3: Security Level.

Level Description Requirement

Level 1 Verifiable Read (1) Inclusion proof

Level 2 Verifiable Write (1) Inclusion proof
(2) Append-only proof

Level 3 Verifiable Transaction

For each transaction
(1) Inclusion proof
(2) Append-only proof
(3) Current-value proof

Level 4 Secure Transaction Protect transaction and data

auditing requests to evaluate the efficiency of ADS. For deferred
and batched verification, we further count the number of keys being
verified for each verification request to evaluate the efficiency of
batching.

Scalability. For distributed setups, we measure the throughput
and latency with an increasing number of nodes to evaluate how the
systems scale out. Similarly, for decentralized setups, we measure
the throughput and latency with increasing replicas to evaluate the
network message overhead.

Storage.We measure the storage consumption of verifiability-
enabled database systems to evaluate the space efficiency of different
authenticated data structures and techniques.

Security.We assess the security of verifiability-enabled database
systems by categorizing them into four security levels as shown in
Table 3.
• Level 1. The databases support verifiable read operations. Inclu-

sion proofs are generated to prove the existence of data in the
entire history.

• Level 2. The databases support verifiable write operations. The
systems are required to generate the inclusion proofs and append-
only proofs to verify the correctness of updated data and validate
the updated digest, respectively.

• Level 3.The databases support verifiable transactions. To achieve
this, the databases must verify (1) the data in the read set is the
latest, (2) the data in write set exists in the new database state,
and (3) the states before and after the transaction are consecutive.
Databases must support continuous verification to guarantee all
transactions are committed correctly.

• Level 4. While databases in the former levels detect the mali-
cious behaviors, databases in this level aims to prevent malicious
behaviors from happening by using consensus protocols such as
PBFT and proof-of-work, or secure hardware such as Intel SGX
and Keystone Enclave.

3.5 Workloads

To facilitate a comprehensive evaluation of verifiability-enabled
database systems, we include macro-benchmarks adapted from well-
known key-value store and OLTP benchmarks, as well as micro-
benchmarks targeting the design choices described in Section 2.
Due to space limitations, in this paper, we focus on OLTP work-
loads since these are the primary target of the verifiability-enabled
database systems. In future work, we will add OLAP workloads and
verifiability-enabled database systems that are optimized for OLAP

to VeriBench. Note that users can easily extend VeriBench with
more workloads following the API described in Section 3.2.

3.5.1 Macro-benchmark workloads.
YCSB [11] is extensively used to evaluate key-value stores, be

it on-premise or on the cloud. We use it in VeriBench to evaluate
verifiability-enabled database systems that expose key-value abstrac-
tions. To work with verifiability-enabled database systems, we adapt
the original workload to enable verification for each operation. For
the systems adopting continuous verification, the verification phase
is already incorporated in the query execution. On the other hand,
for systems only adopting on-demand verification, we enforce the
invocation of 𝑉𝑒𝑟𝑖 𝑓 𝑦 (.) for the key involved in each operation.

SmallBank [3] is a light-weight OLTP workload. There are two
tables in our SmallBank workload, namely saving and checking,
to simulate bank services such as querying balances, depositing
and transferring money, and amalgamating assets among bank
accounts. Each transaction consists of two to four read and write
operations. Similarly, we implement all six transaction types in the
context of verifiable databases, i.e., each transaction will return the
corresponding proof to verify the integrity of the execution.

TPC-C [21] is a more computation-heavy OLTP workload sim-
ulating transactions in e-commerce and supply-chain systems. In
VeriBench, we optimize the schema for key-value database sys-
tems by separating the update-heavy columns from the read-only
columns. This significantly reduces the unnecessary conflicts caused
by the key-value representation during transaction processing.
Moreover, this still guarantees the serializability. Similarly to Small-
Bank, VeriBench enforces integrity verification after the commit
of each TPC-C transaction.

Range query is implemented in VeriBench to evaluate the
effectiveness of indexing. This workload queries a random range
of keys. In our experiments, the queried keys follow a uniform
distribution. Besides the corresponding values, we also request a
promise, which is used later to validate the integrity of the ledger.

Provenance is used to evaluate the ability of a system in provid-
ing data provenance. Data provenance shows the historical versions
of one entry (key) and its origin. It can be used in application-level
data audits and it represents an important way to maintain the
integrity of data entries. We evaluate data provenance by issuing
read-only queries that fetch the latest k versions of a specified key.
If k is greater than the total number of historical versions, the entire
trace of data alterations is returned.

3.5.2 Micro-benchmark workloads.
Verification workload is used to evaluate the efficiency of ver-

ification functions including deferred verification and batching.
We generate batches of read and write operations, respectively,
and test the performance of verification under different delay and
block time. UpdateHeavy workload is used to evaluate the update
performance and storage consumption of the ADS in the target
verifiability-enabled database systems. Audit workload is used to
evaluate the cost of auditing. It contains sequentially generated
block sequence numbers, which will be assigned to auditors to per-
form the audit. Security workload is used to validate whether the
requirements of each security level, as defined in Table 3, are ful-
filled by the systems. For inclusion proof, we initialize the databases
with 1,000 keys and then perform get operations on random keys.

2151

Lastly, we issue verification requests on the keys with tampered
values. Databases need to detect all errors to pass the test. For
current-value proof, we initialize the databases with 1,000 keys,
where each key has two versions of values. We conduct the verifi-
cation with the latest digest and the first version value. Databases
need to detect all stale data to pass the test. For append-only proof,
we first initialize the databases with 1,000 keys and request for a
digest 𝑑 . We then reload the database with a different set of keys
and get a digest 𝑑′. Lastly, we conduct verification using 𝑑 and 𝑑′.
The verification should detect that 𝑑 is not a prefix of 𝑑′.

4 EVALUATION

In this section, we use VeriBench to benchmark six state-of-the-art
verifiability-enabled database systems, namely, QLDB, LedgerDB,
SQLLedger, GlassDB, CCF, and Merkle2. The systems represent
different design choices and have varied backgrounds. QLDB [4] and
SQLLedger [6] are commercial ledger database systems offered by
Amazon Web Services and Microsoft, respectively. LedgerDB [39]
is an industrial prototype of a ledger database implemented by
Alibaba. GlassDB is a high-performance ledger database system
from a recent research project [40]. CCF [31] is a permissioned
blockchain framework built byMicrosoft for high available and high
performance applications. Lastly, Merkle2 [18] is a transparency
log system for low-latency and secure public key and certificate
storage. We evaluate the systems with both the macro-benchmarks
and micro-benchmarks described in Section 3.5.

4.1 Implementation

Ledger Databases. We use the source code of QLDB, LedgerDB,
SQLLedger, and GlassDB provided by the GlassDB paper [40].
QLDB, LedgerDB, and SQLLedger are commercial systems with
closed-source code. As the performance of these systems offered
as cloud services may be affected by factors such as hardware and
software configurations and policies, we choose the open-source
re-implementation to compare the four systems in the same envi-
ronment to preclude the performance impact of engineering opti-
mizations, and therefore, facilitate a fair comparison. The data is
partitioned according to the hash of a key. 2PC is used to ensure
atomicity during the commit. Each partition is replicated to mul-
tiple nodes using the Viewstamp Replication Protocol for failure
recovery. Each partition maintains a separate ledger to provide
verifiability. The systems use different ledger structures according
to their designs. The implementation of QLDB and SQLLedger omit
the SQL layer, which brings additional overhead. Instead, they pro-
vide a key-value store data abstraction. All systems are implemented
in C++ and use protobuf and libevent for serialization and commu-
nication, respectively. The systems are integrated with VeriBench
using the interactive transactional API. LedgerDB, SQLLedger, and
GlassDB implement the deferred verification API, while QLDB im-
plements the online verification API. Though the original QLDB
and SQLLedger adopts on-demand verification, we enforce continu-
ous verification for QLDB and SQLLedger by calling the verification
function after each transaction.

CCF is an open-source [25] framework provided byMicrosoft, al-
lowing users to build applications on it with decentralized trust and
centralized computation. To integrate it with VeriBench, we build

a key-value store application. CCF allows users to invoke applica-
tion endpoints through HTTP requests, and a transaction is created
for all atomic interactions with the application states within each
endpoint invocation. Therefore, CCF is integrated with VeriBench
through the stored procedure API, with all workload execution
functions defined as endpoints in CCF. CCF adopts on-demand
verification. In our experiments, we partition the verification tasks
based on the commit sequence and let the clients verify collectively.

Merkle
2 code [35] is provided with the original paper [18]. The

system allows clients to search and append public keys for users.
In YCSB, the key is a user and the value is the public keys to be
appended. Merkle2 stores the master key of each user in memory
for verification purposes. Consequently, each VeriBench client
can only deal with a fixed set of users. To run the benchmark with
multiple clients, we partition the workload based on key ranges.
Merkle2 is implemented in Go. To integrate it with VeriBench, we
build a static library from the Go code to be used by a C++ client.
We only implement the 𝑃𝑢𝑡 (.) and𝐺𝑒𝑡 (.) API, as it exposes the key-
value abstraction. The verification is performed asynchronously by
a separate verifier server.

Hereinafter, we use the names of these six systems when refer-
ring to the performance of the above implementations.

4.2 Experimental Setup

All experiments are conducted on a cluster of 32 nodes. Each node
is equipped with a 10-core 3.7GHz Intel Xeon W-1290P CPU, each
core supporting HyperThreading, 128GB RAM, and 2TB SSD. The
nodes run Ubuntu Server 20.04 operating system and are connected
to each other with 1Gbps bandwidth network. Clients and servers
are started on different machines to avoid local data contention. For
each experiment, we first load the system with initial data. After the
system becomes stable, we run each experiment for two minutes.
We repeat each experiment five times and present the average.

4.3 Macro Benchmarks

4.3.1 YCSB. We use three YCSB workloads to evaluate the system
performance: (1) a read-heavy workload, consisting of 80% read
operations and 20% write operations, (2) a balanced workload, con-
sisting of 50% read operations and 50% write operations, and (3) a
write-heavy workload, consisting of 20% read operations and 80%
write operations.

Performance on a single node. Since Merkle2 only supports
a single-node setup and key-value abstraction, we use YCSB to
evaluate the system performance on a single node. For the rest
of the systems, to fit into the single-node setup, we disable the
replication and set the number of partitions to one. We start 120
VeriBench clients to execute the queries at a request rate ranging
from 1,600 to 16,000 requests per second.

We first run the balanced workload and depict the results in
Figure 9a, 9b, and 9c. Figure 9a shows the throughput of the sys-
tems. We observe that ledger database systems outperform CCF and
Merkle2 due to the efficiency in verification. GlassDB performs the
best among the ledger databases. In particular, it outperforms QLDB,
SQLLedger, and LedgerDB by up to 3×, 2.2×, and 1.5×, respectively.
GlassDB, LedgerDB, and SQLLedger outperform QLDB since they

2152

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF
Merkle2

(a) Throughput for balanced workload

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16

La
te

nc
y(

m
s)

(x103) Request/s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF
Merkle2

(b) Latency for balanced workload

 0

 50

 100

 150

 200

 250

Read Write Verify

La
te

nc
y

(m
s)

QLDB
LedgerDB

SQLLedger
GlassDB

CCF
Merkle2

(c) Per-operation Latency

for balanced workload

 0

 5

 10

 15

 20

Read heavy Balanced Write heavy

(x
10

3)
 T

ra
ns

ac
tio

n/
s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF
Merkle2

(d) Throughput for

read-write workloads

Figure 9: Single-node performance for YCSB uniform workloads

asynchronously update their ledgers to reduce the cost on the crit-
ical path. Furthermore, they all use batching when updating the
ledgers. In particular, LedgerDB appends new transactions to the
end of the ledger and periodically updates the Merkle trees once
for all new transactions. SQLLedger batches all new transactions
in one block, and periodically appends the block to the Merkle tree.
GlassDB batches non-overlapping keys from new transactions and
creates the blocks by version. The verification process in CCF is less
efficient as it requires the client to send an HTTP request for every
commit. Merkle2 suffers from synchronous ledger updates and a
significant amount of hashes to be calculated during verification.
Hence, it has the lowest throughput. Figure 9b shows the overall
latency of the systems. The results are consistent with those for
throughput. The latency remains constant after reaching the peak
because admission control is applied to the clients.

We further measure the end-to-end latency for each type of
query, namely, read, write, and verification. Due to the deferred
verification, the latency of the verification query depends on the
number of keys verified in one batch. Therefore, we record the av-
erage verification latency per key and show the results in Figure 9c.
Moreover, QLDB and Merkle2 run implicit verification, hence, their
verification latency cannot be measured from the user’s side. The
verification overhead is included in the read and write latency for
these systems. We observe that the read latency of Merkle2 is low
(0.63ms) because it does not include verification, while its write
latency is two orders of magnitude higher because it involves the up-
dating and verification of the Merkle tree. CCF suffers from the ver-
ification overhead that is two orders of magnitude higher compared
to the batch verification adopted by LedgerDB, and SQLLedger, and
GlassDB. This is because verification is done individually for each
transaction and the cost of the HTTP requests is very high. While
the average number of keys in the verification batch is around 100
for LedgerDB, SQLLedger, and GlassDB.

Next, we measure the throughput with read-heavy, balanced,
and write-heavy workloads. The results are shown in Figure 9d. For
GlassDB and SQLLedger, the throughput increases with workloads
containing higher percentage of write operations. This is because
the two systems are designed to optimize the write operation by
only updating a minimum amount of data during the commit. They
defer the more expensive ledger update to an asynchronous thread.
Specifically, GlassDB only appends to the write-ahead log and keeps
the data temporarily in memory when committing write operations.
Similarly, SQLLedger writes the log and updates the indexes during

the write operation. The rest of the systems need to update the en-
tire or part of the ledger, and therefore, their throughput decreases
with higher percentage of write operations.

Performance on multiple nodes.We then evaluate the per-
formance of QLDB, LedgerDB, SQLLedger, GlassDB, and CCF on
multiple-node setups. All systems are deployed with three replicas
unless specifically elaborated. For QLDB, LedgerDB, SQLLedger,
and GlassDB the data is partitioned across 16 shards in our setup.
We start 160 VeriBench clients, where each client has a request
rate in the range of 16,000 to 196,000 requests per second.

We first evaluate the systems using the balanced workload with
uniform distribution (Zipf factor is 0). Figure 10a shows the through-
put of the systems. Compared with the single-node experiments,
the performance gap between ledger database systems and CCF
becomes larger. This is because the performance of ledger databases
improves significantly with data partitioning, while the through-
put degrades for CCF with replication enabled. GlassDB outper-
forms QLDB, SQLLedger, and LedgerDB by up to 1.9×, 1.5×, and
1.3× respectively. It outperforms CCF by two orders of magni-
tude. Figure 10b shows the average latency for each operation. It
has similar trends as the single-node latency. The average veri-
fication batch sizes are around 600, 300, and 1000 for LedgerDB,
SQLLedger, and GlassDB, respectively. We then run the experi-
ments with read-heavy, balanced, and write-heavy workloads and
present the throughput in Figure 10d. Similar to single node results,
GlassDB and SQLLedger achieve higher throughput when the per-
centage of write operations is higher since they are optimized for
write operations. The rest of the systems have lower throughput
for workloads with higher write percentages.

Next, we vary the number of nodes from 2 to 16 to test the scala-
bility of the systems. As shown in Figure 10c, all ledger database
systems are able to scale linearly up to 16 nodes, which indicates
that the systems incur little overhead when distributing the data
and using the atomic commit protocol (2PC). On the contrary, the
performance of CCF drops as more nodes are deployed, since the
system needs to replicate the data to more nodes.

We measure the impact of data conflicts on the performance
by varying the Zipf factor from 0 to 1.5, and present the results
in Figure 11. A higher Zipf factor indicates a higher possibility of
operating on the same key, and hence, having update conflicts. CCF
is not included due to its very low performance. We observe that
the throughput of all systems drops and the latency increases as
there are more aborts.

2153

 0

 50

 100

 150

 200

 20 40 60 80 100 120 140 160 180 200

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(a) Throughput for balanced

workload on 16 nodes

10-1

100

101

102

103

read write verify

La
te

nc
y

(m
s)

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(b) Per-operation latency for

balanced workload on 16 nodes

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(c) Scalability for

balanced workload

 0

 50

 100

 150

 200

 250

Read heavy Balanced Write heavy

(x
10

3)
 T

ra
ns

ac
tio

n/
s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(d) Throughput for

read-write workloads

Figure 10: Multi-node performance for YCSB uniform workloads

 0

 50

 100

 150

 200

 250

0 0.6 0.9 1.2 1.5

(x
10

3)
 T

ra
ns

ac
tio

n/
s

Zipf

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.6 0.9 1.2 1.5

A
bo

rt
 r

at
e

Zipf

QLDB
LedgerDB
SQLLedger
GlassDB
CCF

(b) Abort rate

Figure 11: Performance for YCSB zipfian workloads

 0

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140 160 180

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(a) Throughput

10-1

100

101

102

103

104

Amalgate

Get balance

Update balance

Update saving

Send payment

Write check

La
te

nc
y

(m
s)

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(b) Average latency breakdown

Figure 12: SmallBank performance on 16 nodes

4.3.2 SmallBank. Next, we use SmallBank, an OLTP workload, to
evaluate the performance of the systems. Before the experiments
start, we initialize the systems with 200,000 accounts from 100,000
users with a fixed amount of money. The experiments are then
conducted by uniformly generating and dispatching six types of
transactions to the systems, namely, amalgamate, get balance, up-
date balance account, update saving account, send payment, and
write check. We run the experiments with request rates ranging
from 16,000 to 196,000 requests per second. The results are shown
in Figure 12. We omit the scalability results since they have similar
trends with the YCSB experiments.

Figure 12a shows the throughput of the systems. Compared with
the YCSB results, the throughput of the systems running SmallBank
workloads is up to 1.6× lower due to multiple operations done per
transaction. Moreover, the systems reach the peak throughput at a
lower request rate, since the server execution time for each trans-
action includes data access, conflict checking, and other operations.
GlassDB achieves the highest throughput, outperforming QLDB,
SQLLedger, LedgerDB, and CCF by up to 3×, 1.7×, 1.2×, and two
orders of magnitude respectively.

Figure 12b shows the latency of each type of transaction. The
transaction types amalgamate and send payment incur higher la-
tency compared to the other four types due to more operations
involved, i.e., both transactions have two read and two write op-
erations. CCF latency is relatively constant since the key-value
store is kept in memory. Its high latency stems from the expensive
replication and verification.

4.3.3 TPC-C. We further evaluate the systems with TPC-C, a
more computation-heavy OLTP workload. We generate the TPC-C

workloads with five warehouses and let the systems load around
2,550,000 initial records into all the tables. VeriBench runs all five
TPC-C transaction types, namely, new order, payment, order status,
delivery, and stock level. These five types account for 42%, 42%, 4%,
4%, and 4% of the total number of transactions, respectively. The
transaction requests are sent at rates ranging from 3,200 to 36,000
requests per second. The results are shown in Figure 13.

Figure 13a shows the throughput of the systems. The results
are in line with previous experiments, but the peak throughput
is 7× lower compared to SmallBank. This is expected, as TPC-C
transactions are more computation-heavy and incur more con-
flicts compared to SmallBank. GlassDB achieves the highest per-
formance, with 2.3×, 1.3×, 1.6×, and 30× higher throughput than
QLDB, LedgerDB, SQLLedger, and CCF, respectively. CCF, benefit-
ing from using stored procedures, has a smaller performance gap
with the ledger databases since the transactions in TPC-C often
contain multiple dependencies.

Figure 13b shows the average latency of each type of transac-
tion. The delivery and stock level transactions incur higher latency
because of the higher number of dependencies in the transactions.
Moreover, the higher number of operations per transaction leads to
multiple round trips for systems implementing interactive transac-
tions, such as the four ledger database systems. The latency remains
constant for CCF since the transactions are executed as stored pro-
cedures with one round trip.

4.3.4 Range Workload. We conduct the experiment with a dataset
consisting of 100,000 keys and continuously sending range queries
to the server. We measure the performance of queries under small,
medium, and large ranges, which have average sizes of 10, 100,

2154

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(a) Throughput

10-1

100

101

102

103

104

New Order
Payment

Order Status
Delivery

Stock Level

La
te

nc
y

(m
s)

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(b) Average latency breakdown

Figure 13: TPC-C performance on 16 nodes

10-1

100

101

102

10 100 1000

(x
10

3)
 T

ra
ns

ac
tio

n/
s

Range Size

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(a) Throughput, 16 nodes

10-1

100

101

102

103

104

105

Range Verification

La
te

nc
y

(m
s)

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(b) Latency

Figure 14: Range workload performance on 16 nodes

and 1000, respectively. The throughput is presented in Figure 14a.
GlassDB has the highest throughput. In particular, it outperforms
QLDB, LedgerDB, SQLLedger, and CCF by up to 33×, 2.2×, 4.1×, and
more than two orders of magnitude, respectively. The performance
of QLDB drops significantly as the range size increases because
it only exposes verification API for a single key, which results
in overwhelming proofs. Figure 14b shows the latency for each
operation under the small range. We observe that the latency of
CCF for range operation is 50× higher than its latency for YCSB
read operation. It is because the CCF framework does not provide
the ordered scan of its built-in key-value store. Hence, users have
to scan the entire store.

4.3.5 Provenance Workload. To conduct this experiment, we ini-
tialize each key of the dataset with 10 history versions on average.
We let the clients continuously send provenance queries to get all
history versions of a key. The results are shown in Figure 15. The
throughput of GlassDB is 1.4×, 1.1×, and 1.2× higher than that
of QLDB, LedgerDB, and SQLLedger, respectively. We observe a
larger gap between GlassDB and CCF, i.e. around three orders of
magnitude, compared with normal put and get operations. This
is because CCF only allows users to fetch one historic state for
each endpoint invocation. Consequently, the clients need to send
multiple requests to get the entire history of a key.

4.4 Micro Benchmarks

4.4.1 Delay. We first evaluate how deferred verification and asyn-
chronous ADS update help in improving the system performance.
We vary the verification delay from 10ms to 1280ms and fix the
block time to 10ms. We run the YCSB balanced workload with uni-
form distribution on the systems that support deferred verification,
namely, LedgerDB, SQLLedger, and GlassDB. The results, presented
in Figure 16a, show that the throughput of all systems increases
as the delay time increases. This is because with larger delay time,
the clients will batch more keys for each verification request while
sending fewer requests. Consequently, the systems benefit from
batching of proof generation and verification.

Next, we evaluate the effect of asynchronous updates by varying
the block time from 10ms to 1280ms and fixing the verification
delay to 1280ms. From figure 16b, we observe that the systems
achieve higher throughput with larger block time, especially in the
interval [0, 200]ms. This is due to batch update: with larger batches,
the systems are able to append more keys to the ADS and compute
the cryptographic functions in one round, therefore, improving the

efficiency. Furthermore, since SQLLedger and GlassDB are designed
to perform minimum tasks for write operations, they benefit more
from batching. The throughput improves by 1.3× and 2.4× for
GlassDB and SQLLedger respectively when the block time increases
from 10ms to 1280ms. On the contrary, LedgerDB creates the block
entries of the ledger during each transaction commit, therefore, a
higher block time leads less improvements.

4.4.2 Auditing. For systems that incorporate auditors to help check
the consistency of the ADS, we evaluate the cost of the audition
process by measuring the verification time per block. We run the
experiment with SQLLedger, LedgerDB, and GlassDB because they
expose explicit auditor API to users. The experiment is conducted
with 16 nodes and 160 clients using YCSB balanced workload. We
start an audit client executing audit tasks every second. To fairly
compare the systems, we set the same block time of 10ms. The
results are shown in Figure 17. LedgerDB incurs the highest audit
latency, since the verification of its clue indexes is costly. The clue
indexes are a set of skip-list trees with the leaf nodes being the
transactions containing specific search keys in chronological order.
LedgerDB needs to verify the total number of leaf nodes in each
clue index through aMerkle Patricia Trie. After that, each leaf needs
to be verified using the Merkle tree built on the ledger. GlassDB
exhibits the lowest audit latency due to its efficient ledger structure,
which also serves as the search tree. Therefore, it is easy to batch
the proof and no additional ADS is required to protect the indexes.

4.4.3 Storage. Lastly, we measure the storage of the systems to
evaluate the space efficiency of ADS. We initialize the systems
with an increasing number of records from 10,000 to 160,000, and
measure the space consumption. As shown in Figure 18, GlassDB
is the most space-efficient due to a smaller ADS and aggressive
batching algorithm. While QLDB has the highest storage consump-
tion because it updates the ledger for every operation, resulting in
overwhelming metadata.

4.4.4 Security. In this section, we assess the security of the systems
according to the security levels defined in Section 3.4. QLDB passes
the test for inclusion proof but does not provide append-only proof,
therefore, has a security level of 1. Merkle2 and SQL Ledger achieve
security levels of 2 by passing the inclusion and append-only proof
tests. LedgerDB and GlassDB pass all inclusion proof, current-value
proof, and append-only proof tests. Therefore, their security levels
are 3. CCF updates the fully replicated ledger in a trusted execution
environment, and therefore, has a security level of 4.

2155

 0

 5

 10

 15

 20

 25

 30

 35

 10 15 20 25 30 35 40 45 50

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(a) Throughput

10-1

100

101

102

103

104

105

Provenance Verification

La
te

nc
y

(m
s)

QLDB
LedgerDB

SQLLedger
GlassDB

CCF

(b) Average latency breakdown

Figure 15: Provenance workload performance on 16 nodes

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200

(x
10

3)
 T

ra
ns

ac
tio

n/
s

Delay (ms)

LedgerDB SQLLedger GlassDB

(a) Impact of delay

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200

(x
10

3)
 T

ra
ns

ac
tio

n/
s

Delay (ms)

LedgerDB SQLLedger GlassDB

(b) Impact of block time

Figure 16: Performance influence of delay and block time.

4.5 Discussion

From the experimental results, we observe that the design choices
affect the performance and security of verifiability-enabled database
systems to different degrees.

From the performance aspect, partitioning the data into multiple
machines has the highest impact and improves performance by
more than one order of magnitude. Next, we highlight the impact
of batching and deferred verification. As an example, we note the
performance gap between QLDB and the other ledger databases.
Lastly, the ADS could affect the performance in different degrees
depending on its efficiency.

From the security aspect, the threat model is the most impor-
tant design choice, followed by verification, and ADS. Systems that
adopt a threat model with Byzantine actors are the most secure
by preventing malicious behavior from happening. They typically
do this by employing secure hardware (trusted execution envi-
ronments) or Byzantine fault-tolerant protocols. Next, there are
systems that provide a strong security guarantee by verifying the
integrity immediately after each operation. In contrast, systems
with deferred verification leave a vulnerability window that may
temporarily violate the security guarantee. On-demand verification
does not guarantee the updates of data, which has the worst secu-
rity guarantee. Lastly, there is the security provided by the ADS,
which generally protects data from tampering. A more effective
ADS also protects the indexes of data. This could further enhance
the security guarantee by offering a current-value proof.

5 RELATEDWORKS

We observe a research trend in exploring the fusion design be-
tween blockchains and traditional databases [2, 15, 22, 27, 33] to
obtain both data verifiability and auditability, and effective query
processing. Some of the systems try to build databases’ query pro-
cessing engines on top of blockchain layers, however, such systems
merely reach a high throughput due to the congenital limitation of
blockchains. On the other hand, ledger databases [4, 6, 39] adopt
ledger structures from blockchains to build verifiable databases.
Such systems usually remove the expensive BFT consensus in
blockchains, thus, they are more competent in processing OLTP
workloads with high efficiency.
Blockchain benchmarking frameworks. BlockBench [14] is one
of the first frameworks to comprehensively evaluate blockchains.
Hyperledger Caliper [19] is another widely-used blockchain bench-
marking framework, supporting a range of blockchain systems such

100

101

102

103

LedgerDB SQLLedger GlassDB

La
te
nc
y(
m
s)

Figure 17: Auditing latency

 0

 50

 100

 150

 200

 250

1 2 4 8 16

S
to

ra
ge

(M
B

)

(x104) #Records

QLDB
LedgerDB

SQLLedger
GlassDB

CCF
Merkle2

Figure 18: Storage usage

as Hyperledger Fabric [5], Ethereum [37], and FISCO BCOS [28].
However, they are more focused on consensus and smart contracts.
Traditional database benchmarking tools. There is a wide range
of performance benchmarks [11–13, 16, 20, 21, 30, 34] for database
systems designed for different purposes and handling different
types of data. Vieira et al [36] evaluates the security of databases
from general aspects. In contrast, our work focuses on the verifi-
ability of databases and evaluates the performance and security
impact.

6 CONCLUSIONS

With the increasing digitization of businesses and cloud hosting,
there have been increasing demands for transactional systems to be
verifiable and auditable. Various commercial verifiability-enabled
database systems have been designed to meet the demands by sup-
porting the integrity of data, history, and query results. In this
paper, we conducted a survey on the design of such state-of-the-art
systems. We then proposed VeriBench a framework for bench-
marking verifiability-enabled database systems with both macro-
and micro-benchmarks. Our extensive performance study identified
various bottlenecks and their possible causes. We hope that this
study and the open-source benchmarking framework will facilitate
further development in this area.

ACKNOWLEDGMENTS

This research is supported by theNational Research Foundation, Sin-
gapore under its Emerging Areas Research Projects (EARP) Funding
Initiative. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore. The
work of Meihui Zhang is supported by National Natural Science
Foundation of China (62072033).

2156

REFERENCES

[1] AlibabaCloud. 2022. LedgerDB. https://www.alibabacloud.com/product/ledgerdb
[2] Lindsey Allen et al. 2019. Veritas: Shared Verifiable Databases and Tables in the

Cloud. In CIDR. 1–9.
[3] MohammadAlomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The Cost

of Serializability on Platforms That Use Snapshot Isolation. In ICDE. 576–585.
[4] Amazon. 2019. Amazon Quantum Ledger Database. https://aws.amazon.com/

qldb/
[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In EuroSys. 1–15.

[6] Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Ros-
ales Aceves, Reilly Wong, Jason Anderson, and Jakub Szymaszek. 2021. SQL
Ledger: Cryptographically Verifiable Data in Azure SQL Database. In SIGMOD.
2437–2449.

[7] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng,
Vineet Pandey, and Ravi Ramamurthy. 2017. Concerto: A High Concurrency
Key-Value Store with Integrity. In SIGMOD. 251–266.

[8] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. 2011. Verifiable Dele-
gation of Computation over Large Datasets. In CRYPTO. 111–131.

[9] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
OSDI.

[10] ConsenSys. 2020. ConsenSys/quorum: A permissioned implementation of Ethereum
supporting data privacy. https://github.com/ConsenSys/quorum

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In SoCC. 143–154.

[12] Akon Dey, Alan D. Fekete, Raghunath Nambiar, and Uwe Röhm. 2014. YCSB+T:
Benchmarking web-scale transactional databases. In ICDE. 223–230.

[13] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. PVLDB 7, 4 (2013), 277–288.

[14] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
SIGMOD. 1085–1100.

[15] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy. 2019. BlockchainDB - A Shared Database on Blockchains.
PVLDB 12, 11 (2019), 1597–1609.

[16] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: towards an industry standard
benchmark for big data analytics. In SIGMOD. 1197–1208.

[17] Google. 2020. Certificate Transparency. https://www.certificate-transparency.
org/.

[18] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and Re-
luca Ada Popa. 2021. Mekle2: a low-latency transparency log system. In SP.
285–303.

[19] Hyperledger. 2022. Hyperledger Caliper. https://www.hyperledger.org/use/
caliper

[20] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardt, Hassan Chafi, Mihai Capota, Narayanan Sundaram,
Michael J. Anderson, Ilie Gabriel Tanase, Yinglong Xia, Lifeng Nai, and Peter A.
Boncz. 2016. LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis
on Parallel and Distributed Platforms. PVLDB 9, 13 (2016), 1317–1328.

[21] Scott T. Leutenegger and Daniel Dias. 1993. A Modeling Study of the TPC-C
Benchmark. In SIGMOD. 22–31.

[22] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy
McConaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and Alberto
Granzotto. 2018. BigchainDB: A Scalable Blockchain Database. (2018). https:

//www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
[23] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and

Michael J. Freedman. 2015. CONIKS: Bringing Key Transparency to End Users.
In Usenix Security. 383–398.

[24] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology. 369–378.

[25] Microsoft. 2022. The Confidential Consortium Framework. https://github.com/
microsoft/CCF

[26] Microsoft. 2022. Ledger overview. https://archive.ph/mvXCt
[27] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jayachandran. 2019.

Blockchain Meets Database: Design And Implementation Of A Blockchain Rela-
tional Database. PVLDB 12, 11 (2019), 1539–1552.

[28] FISCO open-source working group. 2022. FISCO BCOS. http://www.fisco-
bcos.org/

[29] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:
Nearly Practical Verifiable Computation. In SP. 238–252.

[30] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López,
Garth Gibson, Adam Fuchs, and Billie Rinaldi. 2011. YCSB++ benchmarking
and performance debugging advanced features in scalable table stores. In SOCC.
1–14.

[31] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro,
Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cedric Fournet, Matthew
Kerner, Sid Krishna, Julien Maffre, Thomas Moscibroda, Kartik Nayak, Olga
Ohrimenko, Felix Schuster, Roy Schuster, Alex Shamis, Olga Vrousgou, and
Christoph M. Wintersteige. 2019. CCF: A Framework for Building Confidential
Verifiable Replicated Services. https://github.com/microsoft/CCF/blob/main/CCF-
TECHNICAL-REPORT.pdf

[32] Mark Ryan. 2014. Enhanced certificate transparency and end-to-end encrypted
mail. In NDSS.

[33] Felix Martin Schuhknecht, Ankur Sharma, Jens Dittrich, and Divya Agrawal.
2019. ChainifyDB: How to Blockchainify any Data Management System. http:
//arxiv.org/abs/1912.04820

[34] Rebecca Taft, Manasi Vartak, Nadathur Rajagopalan Satish, Narayanan Sundaram,
Samuel Madden, and Michael Stonebraker. 2014. GenBase: a complex analytics
genomics benchmark. In SIGMOD. 177–188.

[35] UCB. 2021. MerkleSquare. https://github.com/ucbrise/MerkleSquare
[36] M. Vieira and H. Madeira. 2005. Towards a security benchmark for database

management systems. In DSN. 592–601.
[37] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.
[38] Yu Xia, Xiangyao Yu, Matthew Butrovich, Andrew Pavlo, and Srinivas Devadas.

2022. Litmus: Towards a Practical Database Management System with Verifiable
ACID Properties and Transaction Correctness. In SIGMOD. 1478–1492.

[39] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and
Wenyuan Yan. 2020. LedgerDB: A Centralized Ledger Database for Universal
Audit and Verification. PVLDB 13, 12 (2020), 3138–3151.

[40] Cong Yue, Tien Tuan Anh Dinh, Zhongle Xie, Meihui Zhang, Gang Chen,
Beng Chin Ooi, and Xiaokui Xiao. 2023. GlassDB: An Efficient Verifiable Ledger
Database System Through Transparency. PVLDB 16, 6 (2023), 1359–1371.

[41] Cong Yue, Zhongle Xie, Meihui Zhang, Gang Chen, Beng Chin Ooi, Sheng Wang,
and Xiaokui Xiao. 2020. Analysis of Indexing Structures for Immutable Data. In
SIGMOD. 925–935.

[42] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over
Dynamic Outsourced Databases. In SP. 863–880.

[43] Zhiwei Zhang, Xiaofeng Chen, Jin Li, Xiaoling Tao, and Jianfeng Ma. 2019.
HVDB: a hierarchical verifiable database scheme with scalable updates. Journal
of Ambient Intelligence and Humanized Computing 10, 8 (2019), 3045–3057.

2157

https://www.alibabacloud.com/product/ledgerdb
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/
https://github.com/ConsenSys/quorum
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://www.hyperledger.org/use/caliper
https://www.hyperledger.org/use/caliper
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
https://github.com/microsoft/CCF
https://github.com/microsoft/CCF
https://archive.ph/mvXCt
http://www.fisco-bcos.org/
http://www.fisco-bcos.org/
https://github.com/microsoft/CCF/blob/main/CCF-TECHNICAL-REPORT.pdf
https://github.com/microsoft/CCF/blob/main/CCF-TECHNICAL-REPORT.pdf
http://arxiv.org/abs/1912.04820
http://arxiv.org/abs/1912.04820
https://github.com/ucbrise/MerkleSquare

	Abstract
	1 Introduction
	2 Design Space Analysis
	2.1 State-of-the-art Systems
	2.2 Threat Model
	2.3 Authenticated Data Structures
	2.4 Query Processing
	2.5 Verification
	2.6 Auditing

	3 VeriBench
	3.1 Architecture
	3.2 API
	3.3 Implementation
	3.4 Metrics
	3.5 Workloads

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Macro Benchmarks
	4.4 Micro Benchmarks
	4.5 Discussion

	5 Related Works
	6 Conclusions
	Acknowledgments
	References

