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ABSTRACT
In many real-world database systems, a large fraction of the data

is represented by strings: sequences of letters over some alphabet.

This is because strings can easily encode data arising from different

sources. It is often crucial to represent such string datasets in a

compact form but also to simultaneously enable fast pattern match-

ing queries. This is the classic text indexing problem. The four

absolute measures anyone should pay attention to when designing

or implementing a text index are: (i) index space; (ii) query time;

(iii) construction space; and (iv) construction time. Unfortunately,

however, most (if not all) widely-used indexes (e.g., suffix tree, suffix

array, or their compressed counterparts) are not optimized for all

four measures simultaneously, as it is difficult to have the best of

all four worlds. Here, we take an important step in this direction

by showing that text indexing with locally consistent anchors (lc-

anchors) offers remarkably good performance in all four measures,

when we have at hand a lower bound ℓ on the length of the queried

patterns — which is arguably a quite reasonable assumption in

practical applications. Specifically, we improve on the construction

of the index proposed by Loukides and Pissis, which is based on

bidirectional string anchors (bd-anchors), a new type of lc-anchors,

by: (i) designing an average-case linear-time algorithm to compute

bd-anchors; and (ii) developing a semi-external-memory implemen-

tation to construct the index in small space using near-optimal work.

We then present an extensive experimental evaluation, based on

the four measures, using real benchmark datasets. The results show

that, for long patterns, the index constructed using our improved

algorithms compares favorably to all classic indexes: (compressed)

suffix tree; (compressed) suffix array; and the FM-index.
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1 INTRODUCTION
In many real-world database systems, including bioinformatics sys-

tems [83], Enterprise Resource Planning (ERP) systems [75], or
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Business Intelligence (BI) systems [88], a large fraction of the data

is represented by strings: sequences of letters over some alphabet.

This is because strings can easily encode data arising from differ-

ent sources such as: nucleic acid sequences read by sequencing

machines (e.g., short or long DNA reads); natural language text gen-

erated by humans (e.g., description or comment fields); or identifiers

generated by machines (e.g., URLs, email addresses, IP addresses).

Given the ever increasing size of such datasets, it is crucial to rep-

resent them compactly [14] but also to simultaneously enable fast

pattern matching queries. This is the classic text indexing prob-

lem [23, 46, 78]. More formally, text indexing asks to preprocess

a string 𝑆 of length 𝑛 over an alphabet Σ of size 𝜎 , known as the

text, into a compact data structure that supports efficient pattern

matching queries; i.e., decide if a pattern 𝑃 occurs or not in 𝑆 or

report the set of all positions in 𝑆 where an occurrence of 𝑃 starts.

1.1 Motivation and Related Work
A considerable amount of algorithmic research has been devoted

to text indexes over the past decades [5, 6, 22, 26, 28, 35, 44, 48, 57,

59, 68, 72, 76, 89]. This is mainly due to the fact that myriad string

processing tasks (see [2, 46] for comprehensive reviews) require

fast access to the substrings of 𝑆 . These tasks rely on such text

indexes, which typically arrange the suffixes of 𝑆 lexicographically

in an ordered tree or in an ordered array. The former is known as

the suffix tree [89] and the latter is known as the suffix array [72].

These are classic data structures, which occupy Θ(𝑛) words of
space (or, equivalently, Θ(𝑛 log𝑛) bits) and can count the number

of occurrences of 𝑃 in 𝑆 in Õ(|𝑃 |) time
1
. The time for reporting is

O(1) per occurrence for both structures. Thus, if a pattern 𝑃 occurs

occ times in 𝑆 , the total query time for reporting is Õ(|𝑃 | + occ).
From early days, and in contrast to the traditional data struc-

ture literature, where the focus is on space-query time trade-offs,

the main focus in text indexing has been on the construction
time. That was until the breakthrough result of Farach [26], who

showed that suffix trees (and thus suffix arrays, indirectly) can be

constructed in O(𝑛) time when Σ is an integer alphabet of size

𝜎 = 𝑛O(1) . After Farach’s result, more and more attention had

been given to reducing the space of the index via compression tech-

niques. This is due to the fact that, although the space is linear in

the number of words, there is an O(log𝜎 𝑛) factor blowup when we

consider the actual text size, which is𝑛⌈log𝜎⌉ bits. This factor is not
negligible when 𝜎 is considerably smaller than 𝑛. For instance, the

space occupied by the suffix tree of the whole human genome, even

with a very efficient implementation [62] is about 40GB, whereas

the genome occupies less than 1GB. To address the above issue,

Grossi and Vitter [44] and Ferragina and Manzini [28], and later

Sadakane [84], introduced, respectively, the compressed suffix array

1
The Õ ( ·) notation suppresses polylogarithmic factors.
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(CSA), the FM-index, and the compressed suffix tree (CST). These
data structures occupy O(𝑛 log𝜎) bits, instead of O(𝑛 log𝑛) bits,
at the expense of a factor of O(log𝜖 𝑛) penalty in the query time,

where 𝜖 > 0 is an arbitrary predefined constant. These indexes have

the dominant role in some of the most widely used bioinformatics

tools [63–65]; while mature and highly engineered implementa-

tions of these indexes are available through the sdsl-lite library of

Gog et al. [38].

Nowadays, as the data volume grows rapidly, construction
space is as well becoming crucial for several string processing

tasks [6, 60]. Suffix arrays can be constructed in optimal time using

O(1) words of extra space with the algorithm of Franceschini and

Muthukrishnan [32] for general alphabets or with the algorithms

of Goto [41] or Li et al. [66] for integer alphabets. Extra refers

to the required space except for the space of 𝑆 and the output.

Grossi and Vitter’s [44] original algorithm for constructing the

CSA takes O(𝑛 log𝜎) time using O(𝑛 log𝑛) bits of construction
space. Hon et al. [48] showed an O(𝑛 log log𝜎)-time construction

reducing the construction space to O(𝑛 log𝜎) bits. More recently,

Belazzougui [5] and, independently, Munro et al. [76], improved

the time complexity of the CSA/CST construction to O(𝑛) using
a construction space of O(𝑛 log𝜎) bits. Very recently, Kempa and

Kociumaka [60] have presented a new data structure that occupies

O(𝑛 log𝜎) bits, can be constructed in O(𝑛 log𝜎/
√︁
log𝑛) time using

O(𝑛 log𝜎) bits of construction space, and has the same query time

as the CSA and the FM-index.

This completes the four absolute measures anyone should pay

attention to when designing or implementing a text index: space

(index size); query time; construction time; and construction space.

Unfortunately, however, most (if not all) widely-used indexes are

not optimized for all four measures simultaneously, as it is difficult

to have the best of all four worlds; e.g.:

The suffix array [72] supports very fast pattern matching

queries; it can be constructed very fast using very little

construction space; but then it occupies Θ(𝑛 log𝑛) bits of
space and that in any case.
The CSA [44], the CST [84], or the FM-index [28] occupy

O(𝑛 log𝜎) bits of space; they can be constructed very fast

using O(𝑛 log𝜎) bits of construction space; but then they

answer pattern matching queries much less efficiently than

the suffix array.

1.2 Our Contributions
The purpose of this paper is to show that text indexing with locally
consistent anchors (lc-anchors, in short) offers remarkably good

performance in all four measures, when we have at hand a lower

bound ℓ on the length of the queried patterns. This is arguably a

quite reasonable assumption in practical applications. For instance,

in bioinformatics [50, 67, 90], the length of sequencing reads (pat-

terns) ranges from a few hundreds to 30 thousand [67]. Even when

at most 𝑘 errors must be accommodated for matching, at least one

out of 𝑘 +1 fragments must be matched exactly. In natural language

processing, the queried patterns can also be long [86]. Examples

of such patterns are queries in question answering systems [45],

description queries in TREC datasets [3, 10], and representative

phrases in documents [73]. Similarly, a query pattern can be long

when it encodes an entire document (e.g., a webpage in the context

of deduplication [47]), or machine-generated messages [51].

Informally, given a string 𝑆 and an integer ℓ > 0, the goal is

to sample some of the positions of 𝑆 (the lc-anchors), so as to

simultaneously satisfy the following:

• Property 1 (approximately uniform sampling): Every frag-

ment of length at least ℓ of 𝑆 has a representative position

sampled. This ensures that any pattern 𝑃 , |𝑃 | ≥ ℓ , will not
be missed during search.

• Property 2 (local consistency): Exact matches between frag-

ments of length at least ℓ of 𝑆 are preserved unconditionally

by having the same (relative) representative positions sam-

pled. This ensures that similarity between similar strings

of length at least ℓ will be preserved during search.

Loukides and Pissis [68] have recently introduced bidirectional
string anchors (bd-anchors, in short), a new type of lc-anchors. The

set Aℓ (𝑆) of bd-anchors of order ℓ of a string 𝑆 of length 𝑛 is the

set of starting positions of the leftmost lexicographically smallest

rotation of every length-ℓ fragment of 𝑆 (see Section 2 for a formal

definition). The authors have shown that bd-anchors are O(𝑛/ℓ)
in expectation [68, 69] and that can be constructed in O(𝑛) worst-
case time [68]. Loukides and Pissis have also proposed a text index,

which is based onAℓ (𝑆) and occupies linear extra space in the size

|Aℓ (𝑆) | of the sample; the index can be constructed in Õ(𝑛) time

and can report all occ occurrences of any pattern 𝑃 of length |𝑃 | ≥ ℓ
in 𝑆 in Õ(|𝑃 | + occ) time (see Section 2 for a formal theorem). The

authors of [68] have also implemented their index and presented

some very promising experimental results (see also [69]).

We identify here two important aspects for improving the con-

struction of the bd-anchors index: (i) for computing the set Aℓ (𝑆),
which is required to construct the index, Loukides and Pissis im-

plement a simple Θ(𝑛ℓ)-time algorithm, because their O(𝑛)-time

worst-case algorithm seems too complicated to implement and un-

likely to be efficient in practice [68]; (ii) their index construction
implementation uses Θ(𝑛) construction space in any case, which is

much larger than the expected size |Aℓ (𝑆) | = O(𝑛/ℓ) of the index.
Here, we improve on the construction of the index proposed by

Loukides and Pissis [68] by addressing these aspects as follows:

• We design a novel average-case O(𝑛)-time algorithm to

computeAℓ (𝑆). To achieve this, we use minimizers [82, 85],

another well-known type of lc-anchors, as anchors, to com-

puteAℓ (𝑆) after carefully setting the sampling parameters.

We employ longest common extension (LCE) queries [59]

on 𝑆 to compare anchored rotations (i.e., rotations of 𝑆 start-

ing at minimizers) of fragments of 𝑆 efficiently. The fact

that minimizers are O(𝑛/ℓ) in expectation lets us realize

the average-case O(𝑛)-time computation of Aℓ (𝑆).
• We propose a semi-external-memory implementation to

construct the index in small space using near-optimal work

when the set of bd-anchors is given.We first computeAℓ (𝑆)
usingO(ℓ) space using the aforementioned algorithm. Then

we show that if we haveAℓ (𝑆) in internal memory and the

suffix array of 𝑆 in external memory, it suffices to scan the

suffix array sequentially to deduce the information required

to construct the index thus using O(ℓ + |Aℓ (𝑆) |) space.
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We present an extensive experimental evaluation using real

benchmark datasets. First, we show that our new algorithm for

computing Aℓ (𝑆) is more than two orders of magnitude faster as ℓ

increases than the simple Θ(𝑛ℓ)-time algorithm, while using a very

similar amount of memory. We then go on to examine the index

construction based on the above four measures. The results show

that, for long patterns, the index constructed using our improved

algorithms compares favorably to all classic indexes (implemented

using sdsl-lite): (compressed) suffix tree; (compressed) suffix ar-

ray; and the FM-index. For instance, our index offers about 30%

faster query time, for all ℓ ∈ [16, 1024], compared to the suffix ar-

ray (which performs best among the competitors in this measure),

while occupying up to two orders of magnitude less space. Also, our

index occupies up to 8 times less space, for ℓ = 1024, compared to

the FM-index (which performs best among the competitors in this

measure), while being up to one order of magnitude faster in query

time. As another example, our index on the full human genome

occupies 16MB for ℓ = 2
14

and answers queries more than 32 times

faster than the FM-index, which occupies more than 1GB.

1.3 Other Related Work
The connection of lc-anchors to text indexing and related applica-

tions is not new. The perhaps most popular lc-anchors in practical

applications are minimizers, which have been introduced indepen-

dently by Schleimer et al. [85] and by Roberts et al. [82] (see Sec-

tion 2 for a definition). Although minimizers have been mainly used

for sequence comparison [50], Grabowski and Raniszewski [42]

showed how minimizers can be used to sample the suffix array –

see also [21], which uses an alphabet sampling approach. Another

well-known notion of lc-anchors is difference covers, which have

been introduced by Burkhardt and Kärkkäinen [15] for suffix array

construction in small space (see also [70]). Difference covers play

also a central role in the elegant linear-time suffix array construc-

tion algorithm of Kärkkäinen et al. [57]; and they have been used in

other string processing applications [9, 17]. Another very powerful

type of lc-anchors is string synchronizing sets, which have been

recently proposed by Kempa and Kociumaka [59] for construct-

ing, among others, an optimal data structure for LCE queries (see

also [25]). String synchronizing sets have applications in design-

ing sublinear-time algorithms for classic string problems [18, 19],

whose textbook linear-time solutions rely on suffix trees.

1.4 Paper Organization
In Section 2, we present the necessary definitions and notation,

a brief overview of classic text indexes, as well as some existing

results on minimizers and bd-anchors. In Section 3, we present a

brief overview of the index proposed by Loukides and Pissis [68]. In

Section 4, we improve the construction of this index by presenting:

(i) our fast algorithm for bd-anchors computation (see Section 4.1);

and (ii) the index construction in small space using near-optimal

work (see Section 4.2). In Section 5, we provide the full details of

our implementations, and in Section 6, we present our extensive

experimental evaluation. We conclude this paper in Section 7.

2 PRELIMINARIES
An alphabet Σ is a finite set of elements called letters; we denote
by 𝜎 the size |Σ| of Σ. A string 𝑆 = 𝑆 [1] . . . 𝑆 [𝑛] = 𝑆 [1 . . 𝑛] is a
sequence of letters over some alphabet Σ; we denote by |𝑆 | = 𝑛

the length of 𝑆 . The fragment 𝑆 [𝑖 . . 𝑗] of 𝑆 is an occurrence of the
underlying substring 𝑃 = 𝑆 [𝑖 . . 𝑗]. We also write that 𝑃 occurs at

position 𝑖 in 𝑆 when 𝑃 = 𝑆 [𝑖 . . 𝑗]. A prefix of 𝑆 is a fragment of 𝑆 of

the form 𝑆 [1 . . 𝑗] and a suffix of 𝑆 is a fragment of 𝑆 of the form

𝑆 [𝑖 . . 𝑛]. Given a string 𝑆 and an integer 1 ≤ 𝑖 ≤ |𝑆 |, we define

𝑆 [𝑖 . . |𝑆 |]𝑆 [1 . . 𝑖 − 1] to be the 𝑖th rotation of 𝑆 . Given a string 𝑆 of

length 𝑛, we denote by
←−
𝑆 the reverse 𝑆 [𝑛] . . . 𝑆 [1] of 𝑆 .

Text Indexing

Preprocess: A string 𝑆 of length 𝑛 over an integer alphabet of

size 𝜎 = 𝑛O(1) .
Query: Given a string 𝑃 of length𝑚, report all positions 𝑖 ⇐⇒
𝑃 = 𝑆 [𝑖 . . 𝑖 +𝑚 − 1].

Classic Text Indexes. For a string 𝑆 of length 𝑛 over an ordered

alphabet of size 𝜎 , the suffix array SA[1 . . 𝑛] stores the permuta-

tion of {1, . . . , 𝑛} such that SA[𝑖] is the starting position of the 𝑖th

lexicographically smallest suffix of 𝑆 . The standard application of

SA is text indexing, in which we consider 𝑆 to be the text: given any

string 𝑃 [1 . .𝑚], known as the pattern, the suffix array of 𝑆 allows us

to report all occ occurrences of 𝑃 in 𝑆 using only O(𝑚 log𝑛 + occ)
operations [72]. We perform binary search in SA resulting in a

range [𝑠, 𝑒) of suffixes of 𝑆 having 𝑃 as a prefix. Then, SA[𝑠 . . 𝑒 − 1]
contains the starting positions of all occurrences of 𝑃 in 𝑆 . The

SA is often augmented with the LCP array [72] storing the length

of longest common prefixes of lexicographically adjacent suffixes

(i.e., consecutive entries in the SA). In this case, reporting all occ
occurrences of 𝑃 in 𝑆 can be done in O(𝑚 + log𝑛 + occ) time by

avoiding to compare 𝑃 with suffixes of 𝑆 from scratch during binary

search [72] (see [22, 30, 79] for subsequent improvements). The

suffix array occupies Θ(𝑛) space and it can be constructed in O(𝑛)
time for an integer alphabet of size 𝜎 = 𝑛O(1) [26]. Given SA of 𝑆 ,

we can compute the LCP array of 𝑆 in O(𝑛) time [58].

Given a set F of strings, the compacted trie of these strings is
the trie obtained by compressing each path of nodes of degree one

in the trie of the strings in F , which takes O(|F |) space [74]. Each
edge in the compacted trie has a label represented as a fragment of

a string in F . The suffix tree of 𝑆 , which we denote by ST(𝑆), is the
compacted trie of the suffixes of 𝑆 [89]. Assuming 𝑆 ends with a

unique terminating symbol, every leaf in ST(𝑆) represents a suffix

𝑆 [𝑖 . . 𝑛] and is decorated by index 𝑖 . The set of indices stored at the

leaf nodes in the subtree rooted at node 𝑣 is the leaf-list of 𝑣 , and we
denote it by 𝐿𝐿(𝑣). Each edge in ST(𝑆) is labelled with a nonempty

substring of 𝑆 such that the path from the root to the leaf annotated

with index 𝑖 spells the suffix 𝑆 [𝑖 . . 𝑛]. The substring of 𝑆 spelled by

the path from the root to node 𝑣 is the path-label of 𝑣 , and we denote
it by 𝐿(𝑣). Given any pattern 𝑃 [1 . .𝑚], ST(𝑆) allows us to report all
occ occurrences of 𝑃 in 𝑆 using only O(𝑚 log𝜎 + occ) operations.
We simply spell 𝑃 from the root of ST(𝑆) (to access edges by the

first letter of their label, we use binary search) until we arrive (if

possible) at the first node 𝑣 such that 𝑃 is a prefix of 𝐿(𝑣). Then
all occ occurrences (starting positions) of 𝑃 in 𝑆 are 𝐿𝐿(𝑣). The
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suffix tree occupies Θ(𝑛) space and it can be constructed in O(𝑛)
time for an integer alphabet of size 𝜎 = 𝑛O(1) [26]. To improve the

query time to the optimal O(𝑚 + occ) we can use randomization to

construct a perfect hash table [33] for accessing edges by the first

letter of their label in O(1) time.

Let 𝑆 be a string of length 𝑛. Given two integers 1 ≤ 𝑖, 𝑗 ≤ 𝑛,
we denote by LCP𝑆 (𝑖, 𝑗) the length of the longest common prefix

(LCP) of 𝑆 [𝑖 . . 𝑛] and 𝑆 [ 𝑗 . . 𝑛]. When 𝑆 is over an integer alphabet

of size 𝜎 = 𝑛O(1) , we can construct a data structure in O(𝑛/log𝜎 𝑛)
time that answers LCP𝑆 (𝑖, 𝑗) queries in O(1) time [59].

Lc-anchors. Given a string 𝑆 of length 𝑛, two integers𝑤,𝑘 > 0,

and the 𝑖th length-(𝑤 + 𝑘 − 1) fragment 𝐹 = 𝑆 [𝑖 . . 𝑖 +𝑤 + 𝑘 − 2]
of 𝑆 , the (𝑤,𝑘)-minimizers of 𝐹 are defined as the positions 𝑗 ∈
[𝑖, 𝑖 +𝑤) where a lexicographically minimal length-𝑘 substring of 𝐹

occurs [82]. The setM𝑤,𝑘 (𝑆) of (𝑤,𝑘)-minimizers of 𝑆 is defined

as the set of (𝑤,𝑘)-minimizers of each fragment 𝑆 [𝑖 . . 𝑖 +𝑤 +𝑘 − 2],
for all 𝑖 ∈ [1, 𝑛 −𝑤 − 𝑘 + 2].

Example 2.1 (Minimizers). Let 𝑆 = aacaaacgcta and𝑤 = 𝑘 = 3.

We consider fragments of length𝑤 + 𝑘 − 1 = 5. The first fragment

is aacaa. The lexicographically minimal length-𝑘 substring is aac,
starting at position 1, so we add position 1 toM3,3 (𝑆). The second
fragment is acaaa. The lexicographically minimal length-𝑘 sub-

string is aaa, starting at position 4, so we add position 4 toM3,3 (𝑆).
The third fragment, caaac, and fourth fragment, aaacg, have aaa
as the lexicographically minimal length-𝑘 substring, soM3,3 (𝑆)
does not change. The fifth fragment is aacgc. The lexicographically
minimal length-𝑘 substring is aac, starting at position 5, and so we

add position 5 toM3,3 (𝑆). The sixth fragment is acgct. The lexico-
graphically minimal length-𝑘 substring is acg, starting at position

6, and so we add position 6 toM3,3 (𝑆). The seventh fragment is

cgcta. The lexicographically minimal length-𝑘 substring is cgc,
starting at position 7, and so we add position 7 toM3,3 (𝑆). Thus
M3,3 (𝑆) = {1, 4, 5, 6, 7}.

Lemma 2.2 ([91]). If 𝑆 is a string of length 𝑛, randomly generated
by a memoryless source over an alphabet of size 𝜎 ≥ 2 with identical
letter probabilities, then the expected size ofM𝑤,𝑘 (𝑆) is O(𝑛/𝑤) if
and only if 𝑘 ≥ log𝜎 𝑤 + O(1).

Lemma 2.3 ([68]). For any string 𝑆 of length 𝑛 over an integer
alphabet of size 𝑛O(1) and integers 𝑤,𝑘 > 0, the setM𝑤,𝑘 can be
computed in O(𝑛) time.

Loukides and Pissis defined bidirectional anchors (bd-anchors)

as an alternative notion of lc-anchors [68].

Definition 2.4 (Bidirectional anchor). Given a string 𝐹 of length

ℓ > 0, the bidirectional anchor (bd-anchor) of 𝐹 is the lexicograph-

ically minimal rotation 𝑗 ∈ [1, ℓ] of 𝐹 with minimal 𝑗 . The set of

order-ℓ bd-anchors of a string 𝑆 of length 𝑛 > ℓ , for some integer

ℓ > 0, is defined as the set Aℓ (𝑆) of bd-anchors of 𝑆 [𝑖 . . 𝑖 + ℓ − 1],
for all 𝑖 ∈ [1, 𝑛 − ℓ + 1].

Example 2.5 (Bd-anchors). Let 𝑆 = aacaaacgcta and ℓ = 5. We

consider fragments of length ℓ = 5. The first fragment is aacaa.
We need to consider all of its rotations and select the leftmost

lexicographically minimal. All rotations of aacaa are: aacaa, acaaa,
caaaa, aaaac, and aaaca. We thus select aaaac, which starts at

position 4, and add position 4 to A5 (𝑆). The second fragment is

acaaa. All rotations of acaaa are: acaaa, caaaa, aaaac, aaaca, and
aacaa. We thus select aaaac, which starts at position 4, and so we

do not need to add position 4 toA5 (𝑆). The third fragment is caaac.
All rotations of caaac are: caaac, aaacc, aacca, accaa, and ccaaa.
We thus select aaacc, which starts at position 4, and so we do not

need to add position 4 to A5 (𝑆). The fourth fragment is aaacg,
which is also the lexicographically minimal rotation. This rotation

starts at position 4, and sowe do not need to add position 4 toA5 (𝑆).
The fifth fragment is aacgc, which is also the lexicographically

minimal rotation. This rotation starts at position 5, and so we add

position 5 toA5 (𝑆). The sixth fragment is acgct, which is also the

lexicographically minimal rotation. This rotation starts at position

6, and so we add position 6 to A5 (𝑆). The seventh fragment is

cgcta. The lexicographically minimal rotation of this fragment is

acgct, which starts at position 11, and so we add position 11 to

A5 (𝑆). Thus A5 (𝑆) = {4, 5, 6, 11}.

The bd-anchors notion was also parameterized by Loukides et

al. [69] according to the following definition.

Definition 2.6 (Reduced bidirectional anchor). Given a string 𝐹 of

length ℓ > 0 and an integer 0 ≤ 𝑟 ≤ ℓ − 1, we define the reduced
bidirectional anchor of 𝐹 as the lexicographically minimal rotation

𝑗 ∈ [1, ℓ − 𝑟 ] of 𝐹 with minimal 𝑗 . The set of order-ℓ reduced bd-

anchors of a string 𝑆 of length 𝑛 > ℓ is defined as the set Aℓ,𝑟 (𝑆)
of reduced bd-anchors of 𝑆 [𝑖 . . 𝑖 + ℓ − 1], for all 𝑖 ∈ [1, 𝑛 − ℓ + 1].

Informally, when using the reduced bd-anchor mechanism, we

neglect the 𝑟 rightmost rotations from the sampling process.

Example 2.7 (Reduced bd-anchors). Let 𝑆 = aacaaacgcta, ℓ = 5,

and 𝑟 = 1. Recall from Example 2.5 that A5 (𝑆) = {4, 5, 6, 11}. To
see the difference between bd-anchors and reduced bd-anchors,

consider the seventh (last) fragment of length ℓ = 5 of 𝑆 . This

fragment is cgcta and its rotations are: cgcta, gctac, ctacg, tacgc,
and acgct. The lexicographically minimal rotation is acgct and

this is why 11 ∈ A5 (𝑆). In the case of reduced bd-anchors we are

asked to neglect the 𝑟 = 1 rightmost rotations, and so the only

candidates are: cgcta, gctac, ctacg, and tacgc. Out of these, the
lexicographicallyminimal rotation is cgcta, which starts at position
7, and this is why A5,1 (𝑆) = {4, 5, 6, 7}.

Lemma 2.8 ([68, 69]). If 𝑆 is a string of length 𝑛, randomly gen-
erated by a memoryless source over an alphabet of size 𝜎 ≥ 2 with
identical letter probabilities, then, for any integer ℓ > 0, the expected
size of Aℓ,𝑟 (𝑆) with 𝑟 = ⌈4 log ℓ/log𝜎⌉ is in O(𝑛/ℓ).

Lemma 2.9 ([68, 69]). For any string 𝑆 of length 𝑛 over an integer
alphabet of size 𝑛O(1) and integers ℓ > 0, 𝑟 ≥ 0, the set Aℓ,𝑟 (𝑆) can
be computed in O(𝑛) time.

3 THE INDEX
Loukides and Pissis [68] proposed the following text index, which

is based on (reduced [69]) bd-anchors. Fix string 𝑆 of length 𝑛

over an integer alphabet of size 𝑛O(1) as well as ℓ (and 𝑟 ). Given
Aℓ,𝑟 (𝑆) we construct two compacted tries: one for strings 𝑆 [𝑖 . . 𝑛],
for all 𝑖 ∈ Aℓ,𝑟 (𝑆), which we denote by T𝑅

ℓ,𝑟
(𝑆); and one for strings

←−−−−−−
𝑆 [1 . . 𝑖], for all 𝑖 ∈ Aℓ,𝑟 (𝑆), which we denote by T𝐿

ℓ,𝑟
(𝑆). We also
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(a) The Iℓ,𝑟 (𝑆) index for 𝑆 = aacaaacgcta, ℓ = 5, and 𝑟 = 1.

a

a c

. . .

. . .

4 75 6

7

4

6

5
a

c
a caa$

a

1 2 3 4

1

2

3

4

. . .

. . .

a a $

T R
`,r(S)

T L
`,r(S)

c

c

. . .
a c

. . .

(b) Querying 𝑃 = acaaa.

Figure 1: Let 𝑆 = aacaaacgcta, ℓ = 5, and 𝑟 = 1. We have that A5,1 (𝑆) = {4, 5, 6, 7}, and thus the indexed suffixes and reversed
suffixes of 𝑆 are as shown in (a). Assume that we have a query pattern 𝑃 = acaaa. We first find the reduced bd-anchor of
𝑃 [1 . . ℓ] for ℓ = 5 and 𝑟 = 1, which is 𝑗 = 3: the minimal lexicographic rotation is aaaac. We then split 𝑃 in

←−−−−−−
𝑃 [1 . . 3] = aca and

𝑃 [3 . . |𝑃 |] = aaa, and search
←−−−−−−
𝑃 [1 . . 3] = aca in T𝐿

ℓ,𝑟
and 𝑃 [3 . . |𝑃 |] = aaa in T𝑅

ℓ,𝑟
. The search induces a rectangle, which encloses all

the occurrences of 𝑃 in 𝑆 , as shown in (b). Indeed, 𝑃 = 𝑆 [2 . . 5] = acaaa: the fragment 𝑆 [2 . . 5] is anchored at position 4.

construct a 2D range reporting data structure [16] over |Aℓ,𝑟 (𝑆) |
points (𝑥,𝑦), where 𝑥 is the lexicographic rank of 𝑆 [𝑖 . . 𝑛] and 𝑦 is

the lexicographic rank of

←−−−−−−
𝑆 [1 . . 𝑖], for all 𝑖 ∈ Aℓ,𝑟 (𝑆). Upon a query

𝑃 of length |𝑃 | ≥ ℓ , we find the (reduced) bd-anchor of 𝑃 [1 . . ℓ],
say 𝑗 , which gives 𝑃 [ 𝑗 . . |𝑃 |] and

←−−−−−−
𝑃 [1 . . 𝑗]. We search the former in

T𝑅
ℓ,𝑟

and the latter in T𝐿
ℓ,𝑟
. This search induces a rectangle (inspect

Figure 1, for an example), which we use to query the 2D range

reporting data structure. The reported points are all occurrences

of 𝑃 in 𝑆 . We denote the resulting index by Iℓ,𝑟 (𝑆). Loukides and
Pissis showed the following result [68, 69].

Theorem 3.1 ([68, 69]). Given any string 𝑆 of length 𝑛 over an
integer alphabet of size 𝑛O(1) and integers ℓ > 0, 𝑟 ≥ 0, the index
Iℓ,𝑟 (𝑆) occupies O(|Aℓ,𝑟 (𝑆) |) extra space and reports all occ occur-
rences of any pattern 𝑃 of length |𝑃 | ≥ ℓ in 𝑆 in Õ(|𝑃 | + occ) time.
Moreover, the index Iℓ,𝑟 (𝑆) can be constructed in Õ(𝑛) time.

Extra refers to the 𝑛⌈log𝜎⌉ bits required to store 𝑆 . Alternatively
one could use𝑛𝐻0 (𝑆)+𝑜 (𝑛𝐻0 (𝑆))+𝑜 (𝑛) bits without any penalty [4,
7], where 𝐻0 (𝑆) is the zeroth-order entropy of 𝑆 . Note that the same

index can be constructed for any lc-anchors; e.g., for minimizers.

4 IMPROVING THE INDEX
In this section, we improve the construction of the index Iℓ,𝑟 (𝑆)
(Theorem 3.1) focusing on two practical aspects: (i) the fast compu-

tation of reduced bd-anchors (see Section 4.1); and (ii) the index con-
struction in small space using near-optimal work (see Section 4.2).

With small, we mean space that is close to the index size.

4.1 Computing Bd-anchors in Linear Time
Recall that the first step to construct the Iℓ,𝑟 (𝑆) index is to com-

pute the set Aℓ,𝑟 (𝑆) of reduced bd-anchors of 𝑆 . Loukides and

Pissis [68, 69] showed a worst-case linear-time algorithm to com-

puteAℓ,𝑟 (𝑆) (Lemma 2.9). Although this algorithm is optimal in the

worst case, it seems quite complex to implement and it is unlikely

to be efficient in practice. The worst-case linear-time algorithm

for computing Aℓ,𝑟 (𝑆) relies on a data structure introduced by

Kociumaka in [61]. The latter data structure relies heavily on the

construction of fusion trees [34], and hence it is mostly of theoretical

interest: it is widely accepted that naïve solutions can bemore practi-

cal than such sophisticated data structures – see [24] and references

therein. That is why Loukides and Pissis have instead proposed and

implemented a simple Θ(𝑛ℓ)-time algorithm to compute Aℓ,𝑟 (𝑆)
in their experiments [68]. Here we give a novel average-case linear-

time algorithm to computeAℓ,𝑟 (𝑆). In the worst case, the algorithm
runs in O(𝑛ℓ) time as the simple algorithm from [68] does.

Main idea. We use (𝑤,𝑘)-minimizers as anchors to compute re-

duced bd-anchors of order ℓ after carefully setting parameters 𝑤

and 𝑘 . We employ LCP𝑆 (𝑖, 𝑗) queries to compare anchored rotations

(i.e., rotations of 𝑆 starting at (𝑤,𝑘)-minimizers) of fragments of 𝑆

efficiently. The fact that (𝑤,𝑘)-minimizers are O(𝑛/ℓ) in expecta-

tion lets us realize O(𝑛) time on average.

Let us start with the following simple fact.

Fact 1. For any string 𝐹 of length ℓ > 0, the reduced bd-anchor
of 𝐹 , for any 1 ≤ 𝑟 ≤ ℓ − 1, is an (ℓ − 𝑟, 𝑟 + 1)-minimizer of 𝐹 .

Proof. Let 𝑗 be the reduced bd-anchor of 𝐹 : the lexicographi-

cally minimal rotation of 𝐹 with minimal 𝑗 ∈ [1, ℓ−𝑟 ]. By definition,
𝐹 [ 𝑗 . . |𝐹 |] is of length at least 𝑟 + 1 and there cannot be another 𝑗 ′

such that 𝐹 [ 𝑗 ′ . . 𝑗 ′+𝑟 ] is lexicographically smaller than 𝐹 [ 𝑗 . . 𝑗 +𝑟 ].
Since ℓ = 𝑤 + 𝑘 − 1 =⇒ 𝑤 = ℓ − 𝑟 , 𝑗 is an (ℓ − 𝑟, 𝑟 + 1)-minimizer

of 𝐹 . □
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Figure 2: Illustration of Lemma 4.2.

Example 4.1 (Cont’d from Example 2.7). The setM𝑤,𝑘 (𝑆) of min-

imizers for𝑤 = ℓ−𝑟 = 4 and 𝑘 = 𝑟 +1 = 2 isM4,2 (𝑆) = {1, 4, 5, 6, 7}.
Since any reduced bd-anchor for ℓ = 5 and 𝑟 = 1 is a (4, 2)-
minimizer of 𝑆 , A5,1 (𝑆) = {4, 5, 6, 7} ⊆ M4,2 (𝑆) = {1, 4, 5, 6, 7}.

In particular, Fact 1 implies that, for any string 𝑆 of length 𝑛 and

integers 𝑤,𝑘 > 0, the set of (𝑤,𝑘)-minimizers in 𝑆 is a superset

of the set of reduced bd-anchors of order ℓ = 𝑤 + 𝑘 − 1 with

𝑟 = 𝑘 − 1. Thus, we will use (𝑤,𝑘)-minimizers (computed by means

of Lemma 2.3) to compute reduced bd-anchors by setting𝑤 = ℓ − 𝑟
and 𝑘 = 𝑟+1. The following lemma is crucial for the efficiency of our

algorithm. The main idea is to use LCP queries to quickly identify

suitable substrings (of the input rotations) that are then compared,

in order to determine the lexicographically smallest rotation.

Lemma 4.2. For any string 𝐹 and two positions 𝑖 and 𝑗 on 𝐹 , we can
determine which of the rotations 𝑖 or 𝑗 is the smaller lexicographically
in the time to answer three LCP𝐹 queries and three letter comparisons.

Proof. Assume without loss of generality that 𝑖 < 𝑗 (inspect

Figure 2). We first ask for the length 𝜆1 of the LCP of 𝐹 [𝑖 . . |𝐹 |]
and 𝐹 [ 𝑗 . . |𝐹 |]. If 𝜆1 < |𝐹 | − 𝑗 + 1, then we simply compare letters

𝐹 [𝑖 +𝜆1] and 𝐹 [ 𝑗 +𝜆1] to find the answer. If 𝜆1 = |𝐹 | − 𝑗 + 1 (see top
part (a)), we ask for the length 𝜆2 of the LCP of 𝐹 [𝑖 + 𝜆1 . . |𝐹 |] and
𝐹 . If 𝜆2 < 𝑗 − 𝑖 , then we simply compare letters 𝐹 [𝑖 + 𝜆1 + 𝜆2] and
𝐹 [1+𝜆2] to find the answer. If 𝜆2 = 𝑗−𝑖 (see middle part (b)), we ask

for the length 𝜆3 of the LCP of 𝐹 and 𝐹 [ 𝑗 − 𝑖 + 1 . . |𝐹 |]. If 𝜆3 < 𝑗 − 𝑖 ,
then we simply compare letters 𝐹 [1 + 𝜆3] and 𝐹 [ 𝑗 − 𝑖 + 1 + 𝜆3] to
find the answer. Otherwise, rotation 𝑖 of 𝐹 is equal to rotation 𝑗 of

𝐹 (see bottom part (c)). □

We next use Lemma 4.2 as a building block to obtain Lemma 4.3,

the main lemma used by our algorithm.

Lemma 4.3. Let 𝐷 be a string of length |𝐷 | ≥ ℓ , for some integer
ℓ > 0. Let 𝐴 be a set of 𝑑 positions on 𝐷 such that for every range
[𝑖, 𝑖 + ℓ − 1] ⊆ [1, |𝐷 |], 1 ≤ 𝑖 ≤ |𝐷 | − ℓ + 1, there exists at least one
element 𝑗 ∈ 𝐴 : 𝑗 ∈ [𝑖, 𝑖 + ℓ − 1]. Given a data structure for answering
LCP𝐷 queries in O(1) time, we can find the minimal lexicographic
rotation 𝑗 in every length-ℓ fragment of 𝐷 , such that 𝑗 ∈ 𝐴 and 𝑗 is
minimal in O(𝑑 |𝐷 |) total time.

Proof. First we sort the elements of𝐴 in increasing order using

radix sort in O(|𝐷 |) time. Then for every fragment 𝐹 = 𝐷 [𝑖 . . 𝑖 +
ℓ − 1] of length ℓ of 𝐷 , 𝑖 ∈ [1, |𝐷 | − ℓ + 1], we consider pairs of
elements from 𝐴 that are in [𝑖, 𝑖 + ℓ − 1]. We can consider these

|F | = `

min

min

min

D

Figure 3: Illustration of three applications of Lemma 4.2 on
𝐹 . We mark the elements of 𝐴 in red circles.

`

|F | = 2`

· · ·
· · ·

d1 = 4 d3 = 5

d2 = 3

Figure 4: Illustration of the decomposition of 𝑆 . We mark the
(𝑤,𝑘)-minimizers in red circles.

pairs from left to right because the elements of 𝐴 have been sorted.

For any two elements, we perform an application of Lemma 4.2,

which takes O(1) time, and maintain the leftmost lexicographically

minimal rotation. Inspect Figure 3.

Since we have at most |𝐷 | length-ℓ fragments in 𝐷 and at most

𝑑 − 1 pairs that we consider per fragment, the total time to process

all fragments is O(𝑑 |𝐷 |). □

Theorem 4.4. Given a string 𝑆 of length 𝑛, randomly generated by
a memoryless source over an alphabet Σ of size 𝜎 ≥ 2 with identical
letter probabilities, and an integer ℓ > 0, the expected number of
reduced bd-anchors of order ℓ for 𝑟 = ⌈4 log ℓ/log𝜎⌉ in 𝑆 is O(𝑛/ℓ).
Moreover, if Σ is an integer alphabet of size 𝜎 = 𝑛O(1) , Aℓ,𝑟 (𝑆) can
be computed in O(𝑛) time on average.

Proof. The first part is merely Lemma 2.8 from [69].

For the second part, we employ the so-called standard trick to

conceptually decompose 𝑆 in 𝑞 fragments 𝐹 each of length |𝐹 | = 2ℓ

overlapping by ℓ positions (apart perhaps from the last one). Inspect

Figure 4. We computeM𝑤,𝑘 (𝑆) for𝑤 = ℓ −𝑟 and 𝑘 = 𝑟 +1. This can
be done in O(𝑛) time by Lemma 2.3 [68]. We also construct an LCP𝑆
data structure in O(𝑛) time [59]. Let us denote by 𝑑𝑖 the number

of (𝑤,𝑘)-minimizers in the 𝑖th fragment 𝐹𝑖 of 𝑆 as per the above

“decomposition” of 𝑆 . We apply Lemma 4.3 with 𝐷 = 𝐹𝑖 , 𝑑 = 𝑑𝑖
and 𝐴 = M𝑤,𝑘 (𝐹𝑖 ). This takes 𝑑𝑖 |𝐹𝑖 | = O(𝑑𝑖 ℓ) time. Note that

𝑞 = Θ(𝑛/ℓ). Then the total work of the algorithm, by Lemma 4.3, is

bounded on average by:
𝑛 + ℓ𝑑1 + ℓ𝑑2 + . . . + ℓ𝑑𝑞 = 𝑛 + ℓ (𝑑1 + 𝑑2 + . . . + 𝑑𝑞)
≤ 𝑛 + 2ℓ · M𝑤,𝑘 (𝑆) = O(𝑛).
The last inequality holds by the fact that the fragments overlap

by ℓ positions, which means that 𝑑𝑖 will generally be considered

twice (see Figure 4), and by Lemma 2.2, which gives an expected

asymptotic upper bound on the number of (𝑤,𝑘)-minimizers in 𝑆 .

The algorithm is correct by Fact 1. □

In the worst case (e.g., 𝑆 = a𝑛),M𝑤,𝑘 (𝑆) = Θ(𝑛), and so the

algorithm of Theorem 4.4 takes Θ(𝑛ℓ) time.
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4.2 Index Construction in Small Space
A straightforward implementation of the index Iℓ,𝑟 (𝑆) requires
Θ(𝑛) space in any case. In particular, this is because the SA and

LCP array of 𝑆 (and

←−
𝑆 ) are required for: (i) the implementation of

Lemma 2.3 [68]; and (ii) the construction of T𝑅
ℓ,𝑟
(𝑆) and T𝐿

ℓ,𝑟
(𝑆) [68].

However, the size of Iℓ,𝑟 (𝑆) can be asymptotically smaller than

Θ(𝑛). In fact, by Theorem 3.1 the size of Iℓ,𝑟 (𝑆) is O(|Aℓ,𝑟 (𝑆) |),
which is expected to be O(𝑛/ℓ). Note that |Aℓ,𝑟 (𝑆) | = Ω(𝑛/ℓ) in
any case [68], so we cannot hope for less memory. The goal of this

section is to show that we can construct Iℓ,𝑟 (𝑆) efficiently using

only O(ℓ + |Aℓ,𝑟 (𝑆) |) space (and external memory). (Note that in

practical applications ℓ does not exceed 𝑛/ℓ and so ℓ is negligible.)

In the standard external memory (EM) model [87], with internal

memory (RAM) size𝑀 and disk block size 𝐵, the standard I/O com-

plexities are: scan(𝑛) = 𝑛/𝐵, which is the complexity of scanning

𝑛 elements sequentially; and sort(𝑛) = (𝑛/𝐵) log𝑀/𝐵 (𝑛/𝐵), which
is the complexity of sorting 𝑛 elements [87]. Semi-EM model is a

relaxation of the EM model, in which we are allowed to store some

of the data in internal memory [1]. We proceed in four steps: In Step

1, we compute the setAℓ,𝑟 (𝑆) using O(ℓ) extra space; in Step 2, we

compute the SA and LCP array of 𝑆 (and
←−
𝑆 ) in the EM model using

existing algorithms; in Step 3, we construct T𝑅
ℓ,𝑟
(𝑆) and T𝐿

ℓ,𝑟
(𝑆) in

the semi-EMmodel (by havingAℓ,𝑟 (𝑆) in internal memory); in Step

4, we construct the 2D range reporting data structure in internal

memory using existing algorithms. We next describe in detail how

every step is implemented using near-optimal work.

Step 1. We make use of O(ℓ) extra space. Specifically, we use
Theorem 4.4 to construct Aℓ,𝑟 (𝑆) via considering fragments of 𝑆

of length 2ℓ (apart perhaps from the last one), overlapping by ℓ

positions, without significantly increasing the time. If the size of

the alphabet of a fragment 𝐹 is not polynomial in ℓ (i.e., 𝐹 consists

of large integers with respect to |𝐹 |), we use Õ(ℓ) time instead of

O(ℓ) by first sorting the letters of 𝐹 , and then assigning each letter

to a rank in {1, . . . , 2ℓ} accordingly. This clearly does not affect the

lexicographic rank of rotations. Thus the total time to construct

Aℓ,𝑟 (𝑆) is Õ(𝑛) on average: there are O(𝑛/ℓ) fragments and each

one is processed in Õ(ℓ) time. We finally implement Aℓ,𝑟 (𝑆) as a
perfect hash table, denoted byHℓ,𝑟 (𝑆), which we keep in RAM. This

is done in O(|Aℓ,𝑟 (𝑆) |) time supporting O(1)-time look-ups [33].

Step 2. We compute the SA and LCP array of 𝑆 in external mem-

ory using 𝑀 words of internal memory and disk block size 𝐵. To

this end we can use existing algorithms, which compute the two

arrays simultaneously [12, 57]; these algorithms are optimal with

respect to internal work O(𝑛 log𝑀/𝐵 (𝑛/𝐵)) and I/O complexity

O((𝑛/𝐵) log𝑀/𝐵 (𝑛/𝐵))—see also [52–56]. We also compute the SA

and LCP array of

←−
𝑆 , the reverse of 𝑆 , analogously.

Step 3. In this step we will construct the two compacted tries

T𝑅
ℓ,𝑟
(𝑆) and T𝐿

ℓ,𝑟
(𝑆) with the aid of four arrays, each of size |Aℓ,𝑟 (𝑆) |:

RSA; RLCP; LSA; and LLCP. Specifically, RSA (Right SA) stores a
permutation of Aℓ,𝑟 (𝑆) such that RSA[𝑖] is the starting position of

the 𝑖th lexicographically smallest suffix of 𝑆 with RSA[𝑖] ∈ Aℓ,𝑟 (𝑆).
RLCP[𝑖] array (Right LCP array) stores the length of the LCP of

RSA[𝑖−1] and RSA[𝑖]. LSA and LLCP array are defined analogously

for

←−
𝑆 . Let us show howwe construct RSA and RLCP array; the other

case for LSA and LLCP array is symmetric. To compute these arrays

we use the SA and the LCP array of 𝑆 constructed in Step 2. We scan

the SA and the LCP array of 𝑆 sequentially and sample them using

the hash tableHℓ,𝑟 (𝑆) constructed in Step 1. Let us suppose that

we want to sample the 𝑘th value after reading SA[𝑖] and LCP[𝑖].
This is possible using O(1) words of extra memory. If SA[𝑖] is in
Hℓ,𝑟 (𝑆), which we check in O(1) time, we set RSA[𝑘] = SA[𝑖].
It is also well known that for any 𝑖1 < 𝑖2 the length of the LCP

between 𝑆 [SA[𝑖1] . . 𝑛] and 𝑆 [SA[𝑖2] . . 𝑛] is the minimum value

lying in LCP[𝑖1 + 1], . . . , LCP[𝑖2]. Since we scan also the LCP array

simultaneously, we maintain the value we need to store in RLCP[𝑘].
Finally we increment 𝑘 and 𝑖 by one. Scanning RSA and RLCP array

takes O(𝑛/𝐵) I/Os. Using RSA and RLCP array we can construct

T𝑅
ℓ,𝑟
(𝑆) in O(|Aℓ,𝑟 (𝑆) |) time using a folklore algorithm (cf. [58]).

We construct T𝐿
ℓ,𝑟
(𝑆) analogously from LSA and LLCP array.

Step 4. By using RSA and LSA, we construct the 2D range re-

porting data structure in Õ(|Aℓ,𝑟 (𝑆) |) time using O(|Aℓ,𝑟 (𝑆) |)
space [8, 16, 36, 71].

This completes the construction. Indeed, we have shown how to

construct Iℓ,𝑟 (𝑆) in near-optimal work using only O(ℓ + |Aℓ,𝑟 (𝑆) |)
space and external memory. Let us remark that Steps 2-3 can be

implemented in Õ(𝑛) time usingO(|Aℓ,𝑟 (𝑆) |) space assuming read-

only random access to 𝑆 [13, 37, 49, 81]. The reason we focus on

the (semi-)EM approach is because it is much more developed

implementation-wise [12, 52, 54] than sparse suffix sorting.

5 IMPLEMENTATIONS
In this section, we provide the full details of our implementations,

which have all been written in C++. In addition to the classic text

indexes referred to in Section 1, we have considered the r-index [35],

a text index, which performs specifically well for highly repetitive

text collections. We did not consider: (i) the suffix tree, as it is not

competitive at all with respect to space; or (ii) sampling the suffix

array with minimizers [42], as their number is generally greater

than (reduced) bd-anchors; see the results of [68, 69]. As our focus

is on algorithmic ideas (not on low-level code optimization) and to

ensure fairness across different implementations, we have re-used

the same algorithm or code whenever it was possible. Although

many other engineered implementations for classic text indexes ex-

ist, e.g. [39] for FM-index or [11] for suffix array, we have based our

implementations on sdsl-lite [38] as much as possible for fairness:

SA: The suffix array was constructed using the divsufsort
class, written by Yuta Mori, as included in sdsl-lite. To
report all occurrences of a pattern, we implemented the

algorithm of Manber and Myers [72] that uses as well the

LCP array [58] augmented with a succinct RMQ data struc-

ture [31] (rmq_succinct_sct class).
CSA: The CSA was constructed using the csa_sada class of

sdsl-lite. To report all occurrences of a pattern, we used the
SA method.

CST: The CST was constructed using the cst_sct3 class [80]
of sdsl-lite. To report all occurrences of a pattern, we tra-
verse the tree (see Section 2) by using its supported func-

tionality.

2123



FM-index: The FM-indexwas implemented using the csa_wt
class of sdsl-lite. To report all occurrences of a pattern, the

supported count and locate methods of sdsl-lite were

used.

r-index: The open-source implementation of the r-index [35]
was used. The binary ri-build was used to build the in-

dex using the divsufsort class of the sdsl-library and

ri-locate used to report all occurrences of a pattern.

BDA-compute: We implemented the average-case linear-time

algorithm for computing the set of reduced bd-anchors as

described in Section 4.1. To improve construction space,

we implemented the algorithm in fragments as described

in Step 1 of the space-efficient algorithm presented in Sec-

tion 4.2. The implementation takes the fragment length 𝑏

as input. We call these fragments blocks henceforth.
BDA-index I: The constructionwas implemented using Steps

1 to 4 as described in Section 4.2. For Step 2, we used the

pSAscan algorithm of Kärkkäinen et al. [55] to construct

the SA in EM and the EM-SparsePhi algorithm of Kärkkäi-

nen and Kempa [54] to compute the LCP array in EM. For

Step 3, instead of constructing the compacted tries, we used

the arrays LSA, LLCP, RSA, and RLCP directly. The LLCP
and RLCP arrays were augmented each with an RMQ data

structure. For Step 4, we implemented the 2D range report-

ing data structure of Mäkinen and Navarro [71]. To report

all occurrences of a pattern, we implemented the algorithm

of Loukides and Pissis [68] (see Section 3).

BDA-index II: The constructionwas implemented using Steps

1 to 3 as in BDA-index I. Unlike BDA-index I, however, no
2D range reporting data structure was used (Step 4). We in-

stead used the bidirectional search algorithm presented by

Loukides and Pissis in [68]. This algorithm reports all occur-

rences of a pattern 𝑃 , by first searching for either 𝑃 [ 𝑗 . . |𝑃 |]
or

←−−−−−−
𝑃 [1 . . 𝑗] using the four arrays, where 𝑗 is the (reduced)

bd-anchor of 𝑃 [1 . . ℓ]; and then using letter comparisons

to verify the remaining part of candidate occurrences. This

index was the most efficient one in practice in [68]; note,

however, the query time of this index is not bounded.

6 EXPERIMENTS
6.1 Experimental Setup
We considered five datasets (texts) from the Pizza&Chili corpus [27]
– see Table 1 for their characteristics. We generated patterns of

length 16, 32, 64, 128, 256, 512, and 1024, for all datasets, with

500,000 patterns created per length. The patterns were generated

by selecting occurrences uniformly at random from the datasets. We

also considered the Homo sapiens genome (version GRCh38.p14),

which we denote by HUMAN. Its length 𝑛 is 3,136,895,129 and the

alphabet size 𝜎 is 30. We generated patterns of length 64, 256, 1,024,

4,096, and 16,384 for HUMAN with 500,000 patterns created per

length. Similar to the datasets of Table 1, these patterns were gener-

ated by selecting occurrences uniformly at random from HUMAN.

The experiments ran on an Intel Xeon Gold 648 at 2.5GHz with

192GB RAM. All programs were compiled with g++ version 9.4.0
at the -O3 optimization level. Our code and datasets are freely

available at https://github.com/lorrainea/BDA-index.

Table 1: Datasets characteristics.

Dataset Length 𝑛 Alphabet size 𝜎

DNA 200,000,000 15

PROTEINS 200,000,000 24

XML 200,000,000 94

SOURCES 200,000,000 224

ENGLISH 200,000,000 221

Parameters. For BDA-compute, BDA-index I and BDA-index II,
we set ℓ to the pattern length, 𝑏 to 25K (unless stated otherwise),

and 𝑟 to ⌈4 log ℓ/log𝜎⌉; we set 𝑀 (RAM) to Θ( |Aℓ,𝑟 |) as this is
anyway the final size of index Iℓ,𝑟 (𝑆).

Measures. Four measures were used: index size; query time; con-

struction space; and construction time (see Section 1). To measure

the query and construction time, the steady_clock class of C++
was used with the elapsed time measured in nanoseconds (ns). To

measure the index size for each implementation as accurately as

possible, the data structures required for querying the patterns were

output to a file in secondary memory. The text size was not counted

as part of the index size for any implementation. The construction

space was measured by recording the maximum resident set size in

kilobytes (KB) using the /usr/bin/time -v command.

Results. In Sections 6.2 to 6.7 we present the results for the

datasets of Table 1. In Section 6.8 we present the results for the

HUMAN dataset but only for the FM-index, the r-index, and the

BDA-index I and II (all the other indexes were not competitive).

6.2 Computing Bd-anchors
Figure 5 shows the time required to compute the reduced bd-

anchors for the five datasets of Table 1. The Θ(𝑛ℓ) line represents
the simple Θ(𝑛ℓ)-time algorithm of [68]. The results show that for

all five datasets, all 𝑏 values, and all ℓ values, BDA-compute outper-
forms the Θ(𝑛ℓ)-time implementation. In particular, BDA-compute
becomes more than two orders of magnitude faster as ℓ increases.
As suggested by Theorem 4.4, the runtime of BDA-compute should
not be affected by ℓ in the case of a uniformly random input string.

Even if our datasets are real and thus not uniformly random, we

observe that the runtime of BDA-compute in Figure 5 is not af-

fected too much by the value of ℓ ; an exception to this is the case

of SOURCES, which is explained by the fact that this dataset, in

particular, is very far from being uniformly random, which is as-

sumed by our theoretical findings. Specifically, in this dataset, the

number of (𝑤,𝑘)-minimizers is much larger than what is expected

on average with increasing ℓ . Thus, more ties need to be broken

(Lemma 4.3), and this is why the runtime increases with ℓ . Never-

theless, even in this bad case, BDA-compute is up to 8× faster than

the implementation of the simple Θ(𝑛ℓ)-time algorithm [68].

Figure 6 shows the space required to construct the reduced bd-

anchors for the five datasets of Table 1. For all datasets, all 𝑏 values,

and all ℓ values, BDA-compute performs similarly to the Θ(𝑛ℓ)-
time implementation, using just slightly more space as 𝑏 increases.

This is expected because the latter implementation uses only Θ(ℓ)
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space [68] and 𝑏 ≫ ℓ in our experiments. These space-time results

establish the practical usefulness of our Theorem 4.4.

6.3 Index Size
Figure 7 shows the index size for the five datasets of Table 1 when

using the implementations of Section 5. As expected, the index size

of BDA-index I and II decreases with increasing ℓ . Notably, for all

datasets and ℓ ≥ 64, BDA-index I and II are smaller than all other

indexes except for the FM-index. When ℓ ≥ 512, BDA-index I and
II outperform all indexes for all datasets.

6.4 Query Time
Figure 8 shows the average query time for all datasets when using

the implementations of Section 5 with ℓ = |𝑃 |. For all datasets and
|𝑃 | ≥ 64, BDA-index I and II are up to several orders of magnitude
faster than the compressed indexes, especially for large alphabets,

which is consistent with the observations made in [29, 40]. Notably,

for all datasets and ℓ values, BDA-index I and II are even faster than

the SA. FM-index did not finish for |𝑃 | = 16 within 24 hours for

XML. CST did not finish within 24 hours for |𝑃 | ≥ 64, in the case

of SOURCES and ENGLISH.

6.5 Index Construction Space
Figure 9 shows the index construction space required for the five

datasets of Table 1 when using the implementations of Section 5.

As expected, the construction space required by BDA-index I and II
decreases with increasing ℓ . For all datasets and ℓ values, BDA-index
II outperforms BDA-index I (as expected). Notably, for all datasets
when ℓ ≥ 128, BDA-index I and II outperform all other indexes.

6.6 Index Construction Time
Figure 10 shows the time required to construct the index for the five

datasets of Table 1 when using the implementations of Section 5.

We set 𝑏 = 25K for BDA-index I and II. For all datasets and ℓ values,
BDA-index I and II outperform CSA and are outperformed by the

FM-index, SA, r-index, and CST. This is, however, expected due to

the construction of SA and LCP array in EM. BDA-index I and II
are around 8× slower than the fastest to construct FM-index.

6.7 Index Construction in Internal Memory
Figure 11 shows the index construction space required for the five

datasets of Table 1 when using an internal memory implementation

to compute the SA and LCP array for BDA-index I and II. We set

𝑏 = 25K for both BDA-index I and II. The results generally show that

BDA-index I and II are outperformed by the existing indexes. This

is, however, expected; it in fact highlights the motivation for this

work and, in particular, one of our main contributions: the index

construction in small space. As mentioned in Section 4.2, if one

would like to have a near-linear-time construction in small space

using only internal memory, sparse suffix sorting could be directly

employed to replace the current external-memory construction.

Figure 12 shows the time required to construct the index for the

five datasets of Table 1 when using an internal memory implemen-

tation to compute the SA and LCP array for BDA-index I and II.
We set 𝑏 = 25K for BDA-index I and II. The results generally show

that as ℓ increases BDA-index I and II become competitive to the

existing indexes (expected). An exception to this is with SOURCES

(see Section 6.2 for an explanation).

Figure 13 shows the time required to construct BDA-index I and
II for the five datasets of Table 1 for varying size of internal memory.

An internal memory size ranging from 128MB to 2048MB was used.

We set 𝑏 = 25𝐾 and ℓ = 128 for both implementations. The results

show that in general for all datasets, the construction time decreases

as the size of the internal memory used increases.

6.8 The Four Measures on Human Genome
Figure 14a shows the index size for HUMANwhen using BDA-index
I, BDA-index II, FM-index and r-index. The index size occupied by

BDA-index I and II decreases with increasing ℓ . For all ℓ , BDA-
index I and II are smaller than r-index; and, for ℓ ≥ 256, BDA-
index II is smaller than FM-index. For ℓ = 2

14
, BDA-index I and

II take about 16MB, while FM-index and r-index take 1GB and

16GB, respectively. Figure 14b shows the average query time for

HUMAN when using BDA-index I, BDA-index II, FM-index and

r-index with ℓ = |𝑃 |. As |𝑃 | increases, BDA-index I and II become

more than one order of magnitude faster than the FM-index and
r-index. For all |𝑃 |, BDA-index II is faster than the FM-index and
r-index and likewise for BDA-index I when |𝑃 | ≥ 256. Figure 14c

shows the index construction space for HUMAN when using BDA-
index I, BDA-index II, FM-index and r-index. The construction space
required by BDA-index I and II decreases with increasing ℓ . For all

ℓ , BDA-index II requires less space than the FM-index and r-index
and likewise for BDA-index I when ℓ ≥ 256. Figure 14d shows

the time required to construct the index for HUMAN when using

BDA-index I, BDA-index II, FM-index and r-index. We set 𝑏 = 130𝐾

for BDA-index I and II. For all ℓ , BDA-index I and II are around 8×
and 4× slower than the FM-index and r-index, respectively.

The presented results highlight the scalability of our algorithms

as well as the superiority of BDA-index I and II for long patterns.

7 DISCUSSION
We have shown that our implementation of the bd-anchors index

should be the practitioners’ choice for long patterns. When ℓ ≥ 512,

our index outperforms all indexes for all datasets in terms of index

size. When ℓ ≥ 64, our index outperforms all indexes for all datasets

in terms of query time. When ℓ ≥ 128, our index outperforms

all indexes for all datasets in terms of construction space. The

construction time of our index is between 4 and 8× slower than

the state of the art. However, we believe that this does not make

our index less practical; the construction time of the bd-anchors

index can be improved in practice in at least two ways, which we

describe below as future work (see the Future work paragraph).

An obvious criticism against our index is that its theoretical

guarantees rely on the average-case model and on the assumption

that we have at hand a lower bound on ℓ . First, we have shown, using

real-world datasets (and not using synthetic uniformly random

ones), that our index generally outperforms the state of the art

for long patterns, which is the main claim here. Second, in most

real-world applications we can think of, we do have a lower bound

on the length of patterns (see Section 1.2). For example, in long-

read alignment, this bound is in the order of several hundreds.

Last, the state-of-the-art compressed indexes also have a crucial
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(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 5: Elapsed time to construct the set of reduced bd-anchors (seconds in log-scale) for varying ℓ (log-scale).

(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 6: Space required to construct the set of reduced bd-anchors (MB in log-scale) for varying ℓ (log-scale).

(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 7: Size of different indexes (MB in log-scale) for varying ℓ (log-scale).

(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 8: Average time for pattern matching (nanoseconds in log-scale) for varying |𝑃 | (log-scale).
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(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 9: Space required to construct different indexes (MB in log-scale) for varying ℓ (log-scale) when using external memory.

(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 10: Elapsed time to construct different indexes (seconds in log-scale) for varying ℓ (log-scale) when using external
memory.

(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 11: Space required to construct different indexes (MB in log-scale) for varying ℓ (log-scale) when using internal memory.

(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 12: Elapsed time to construct different indexes (seconds in log-scale) for varying ℓ (log-scale) when using internal
memory.
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(a) DNA (b) PROTEINS (c) XML (d) SOURCES (e) ENGLISH

Figure 13: Elapsed time to construct BDA-index I and II (seconds in log-scale) using varying sizes of internal memory (MB in
log-scale) for ℓ = 128.

(a) (b) (c) (d)

Figure 14: (a) Size of different indexes (MB in log-scale) for HUMAN and varying ℓ (log-scale). (b) Average time for pattern
matching (nanoseconds in log-scale) on HUMAN and for varying |𝑃 | (log-scale). (c) Space required to construct different indexes
(MB in log-scale) for HUMAN and varying ℓ (log-scale). (d) Elapsed time to construct different indexes (seconds in log-scale) for
HUMAN and varying ℓ (log-scale).

assumption, which is implicit and thus oftentimes largely neglected.

The assumption is that the size 𝜎 of the alphabet is much smaller

than the length 𝑛 of the text. In the worst case, i.e., when 𝜎 =

Θ(𝑛), the state-of-the-art compressed indexes have no advantage

compared to the suffix array: they occupy 𝑛 log𝜎 = Θ(𝑛 log𝑛) bits.
Another obvious criticism against our index is that its construc-

tion relies on the semi-external memory model, whereas all other

indexes we compare against are constructed in internal memory.

This is not an issue though as a practitioner would mostly care

about how each implementation performs in practice. The fact that

our construction relies on the semi-external memory model merely

means that a reasonable amount of disk space should be utilized.

To get rid of the semi-external memory model in our construction,

it suffices to replace the construction of the suffix array in external

memory with an efficient sparse suffix sorting algorithm; and this

would (probably) only make our construction faster.

Finally, as mentioned in Section 5, although many other engi-

neered implementations for classic text indexes exist, e.g. [39] for

FM-index or [11] for suffix array, we have based our implementa-

tions on sdsl-lite as much as possible for fairness. Likewise, in the

implementation of our index, we have used sdsl-lite as much as pos-

sible, and no particular low-level code optimization was conducted.

Future Work. Our immediate goal is to improve the construction

time of the bd-anchors index in the following two ways. In our

current implementation, we use the standard lexicographic order to

compute minimizers. However, for an alphabet size 𝜎 , there are 𝜎!

lexicographic orders that we could choose from. For large alphabets,

like the one in SOURCES, a different lexicographic order could result

in significantly fewer minimizers, and thus in a significantly faster

bd-anchors computation. Second, as mentioned above, given the set

of bd-anchors, we could replace the suffix array external-memory

construction with an existing sparse suffix sorting algorithm.
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