
What Modern NVMe Storage Can Do, And How To Exploit It:
High-Performance I/O for High-Performance Storage Engines

Gabriel Haas
Technische Universität München

gabriel.haas@tum.de

Viktor Leis
Technische Universität München

leis@in.tum.de

ABSTRACT
NVMe SSDs based on flash are cheap and offer high throughput.
Combining several of these devices into a single server enables
10 million I/O operations per second or more. Our experiments
show that existing out-of-memory database systems and storage
engines achieve only a fraction of this performance. In this work,
we demonstrate that it is possible to close the performance gap
between hardware and software through an I/O optimized storage
engine design. In a heavy out-of-memory setting, where the dataset
is 10 times larger than main memory, our system can achieve more
than 1 million TPC-C transactions per second.

PVLDB Reference Format:
Gabriel Haas and Viktor Leis. What Modern NVMe Storage Can Do, And
How To Exploit It:
High-Performance I/O for High-Performance Storage Engines. PVLDB,
16(9): 2090 - 2102, 2023.
doi:10.14778/3598581.3598584

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/leanstore/leanstore/tree/io.

1 INTRODUCTION
Flash performance. In the past decade, flash SSDs have displaced
magnetic disks as the default persistent storage medium for oper-
ational database systems. More recently, the SATA interface has
been replaced by PCIe/NVMe, which unlocked previously unprece-
dented storage throughput: using four PCIe 4.0 lanes, a single SSD
can achieve more than one million random I/O Operations Per
Second (IOPS) and a bandwidth of 7GB/s. Because modern com-
modity servers have up to 128 PCIe lanes per socket, a single-socket
server can easily host 8 (or more) SSDs at full bandwidth. The trend
of ever-increasing storage bandwidths will continue: servers with
PCIe 5.0 are already available and corresponding SSDs with 12GB/s
per device have been announced. This means that arrays of NVMe
SSDs are approaching DRAM bandwidth.
Flash capacity. SSDs not only have high throughput, they are
also cheap: after a decade of stagnating DRAM prices and rapidly
decreasing flash prices, enterprise-grade SSDs cost less than $200
per TB, which is about 10-50 times cheaper than DRAM. We can
illustrate this through an example where we have a total server

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.
doi:10.14778/3598581.3598584

system I/O capability: 12.5M IOPS

LeanStore (baseline)
RocksDB

WiredTiger
PostgreSQL

MySQL

3.5x gap

0

2.5M

5M

7.5M

10M

12.5M

1 500 1000 1500 2000

threads
lo

o
k
u

p
s
/s

Figure 1: Out-of-memory performance for random lookups
in 100GB database with 10GB buffer pool and 8 enterprise-
grade SSDs.

budget of $15,000. For half that budget, one can configure a reason-
able server, e.g., 64 core CPU, 512GB of RAM, and fast networking.
The remaining budget can be invested into additional DDR4 RAM
modules or PCIe 4.0 NVMe SSDs, resulting in the following two
configurations:

RAM SSD
capacity bandwidth capacity bandwidth

config RAM 2.5 TB 150GB/s – –
config SSD 0.5 TB 150GB/s 8×4 TB 56GB/s

These configurations illustrate that spending more money on SSDs
rather than RAM results in a much larger capacity (32 TB instead
of 2.5 TB). This observation has also been made by public cloud
providers: AWS offers instances with 8 (i3en) and Azure with 10
(Lsv2) NVMe flash SSDs. Given that alternative storage technologies
such as Optane did not achieve commercial success and were con-
sequently discontinued, we believe that flash will remain the only
viable option for storing large datasets in a cost-efficient manner.
Performance gap of existing systems. In terms of their basic
architecture, DBMSs for flash are similar to disk-based designs:
they rely on a buffer pool cache, page-based storage, and B-trees or
LSM-trees for indexing. Several modern storage engines, including
RocksDB [36] and our LeanStore [1, 26] system, explicitly claim to
be optimized for flash storage. However, as Figure 1 shows, existing
out-of-memory systems are not capable of exploiting the perfor-
mance of modern NVMe arrays. In the experiment, we measure the
performance of 5 systems for a simple random read benchmark on
a 64-core AMD server with 8 Samsung PM1733 SSDs. According

2090

https://www.acm.org/publications/policies/artifact-review-and-badging-current

to their specification, each of these SSDs can perform 1.5M ran-
dom 4KB reads per second, and consequently one would expect to
achieve 8×1.5M=12M lookups/s for this simple workload. In fact,
we find that the best system only achieves 3.6M lookups/s – a 3.5×
gap. For the more complex and write-intensive TPC-C, we find
an even bigger performance gap of 4.7× between what modern
NVMe drives can do, and what existing systems achieve. As we
show in this paper, fully exploiting flash storage requires carefully
co-designing the storage engine with the flash NVMe SSDs.
Research questions and paper outline. Our high-level goal of
closing this performance gap can be broken down into the following
research questions:

• Q1: Can arrays of NVMe SSDs achieve the performance
promised in the hardware specifications?

• Q2: Which I/O API (pread/pwrite, libaio, io_uring) should
be used? Is it necessary to rely on kernel-bypassing (SPDK)?

• Q3: Which page size should storage engines use to get good
performance while minimizing I/O amplification?

• Q4: How to manage the parallelism required for high SSD
throughput?

• Q5: How to make a storage engine fast enough to be able
to manage tens of millions of IOPS?

• Q6: Should I/O be performed by dedicated I/O threads or
by each worker thread?

To answer these questions, we first perform an experimental study
of the hardware characteristics of NVMe flash storage in Section 2.
Based on the findings, we derive implications for high-performance
storage engines. Section 3 then presents a blueprint for an I/O
backend that can fully exploit NVMe arrays.
System integration and techniques.We integrated the techniques
proposed in this paper into LeanStore, an open source storage en-
gine prototype. LeanStore was designed with SSDs in mind and
already applies several important I/O-related optimizations recom-
mended in earlier work [13], including a fast buffer pool, file system
bypassing using O_DIRECT, and fsync batching. This baseline ver-
sion is the starting point of this paper and is sufficient to exploit a
single NVMe SSD, but, as Figure 1 shows, not 8 of them.
Unprecedented performance. The new version of LeanStore is
the first system that is able to fully close the gap. Admittedly our
techniques are more carefully engineered than totally new, yet
together they result in a practical system design with few config-
uration parameters that achieves unprecedented out-of-memory
performance. We also believe the findings and techniques in this
paper are applicable to most other storage engines and database
systems.
Results. We evaluate our design in Section 4. On a server with
64 cores and 8 SSDs, the resulting system indeed achieves 12.5M
lookups per second for the random lookup workload. On the much
more challenging TPC-C benchmark with a 400GB buffer pool and
a 4 TB dataset, LeanStore executes over 1M TPC-C transactions per
second. For a 20 TB dataset, we still achieve 0.4M transactions/s. For
all workloads, the machine becomes I/O bound if there are enough
concurrent user requests – as one would expect for workloads
where the dataset is much larger than the buffer pool.

0

2.5M

5M

7.5M

10M

12.5M

1 2 4 6 8

#SSDs

th
ro

u
g

h
p

u
t
[I
O

P
S

]

0

2.5M

5M

7.5M

10M

12.5M

0 25 50 75 100

reads [%]

th
ro

u
g

h
p

u
t
[I
O

P
S

]

(a) drive scalability (b) read/write mix

Figure 2: Drive scalability for random reads and impact of
read/write mix (SPDK, 8 SSDs, 4KB pages, freshly initialized
with 10TB data, 60 second runs).

2 WHAT MODERN NVME STORAGE CAN DO
In this section, we present the result of a series of micro-benchmarks
that provide us with the necessary background on how to fully
exploit modern storage. All experiments were performed on a 64-
core AMD Zen 4 server with 8 × 3.8 TB Samsung PM1733 SSDs.
Details on the experimental hardware and software setup can be
found in Section 4.1.

2.1 Drive Scalability
Drive scalability. According to the hardware specification sheet,
our Samsung PM1733 SSDs are capable of performing 1.5M I/O
operations per second (IOPS) for random 4KB reads. Hence, with
8 drives, we should achieve the remarkable number of 12M IOPS.
Figure 2 shows that the throughput indeed scales perfectly with
the number of drives used. We actually achieve slightly more than
expected, namely 12.5M IOPS or 1.56M IOPS per SSD.
Read/writemix. Transactional workloads are oftenwrite-intensive,
and it is well known that SSDs have asymmetric read/write speed.
As Figure 2b shows, with random writes on an empty SSD our hard-
ware setup achieves 4.7M IOPS. Note that SSD write performance
depends on the internal state of the SSD and the write duration. In
the worst case of a full SSD and prolonged writing, the throughput
will be lower; the data sheet specifies the worst-case, per-drive
random write throughput at 135 k IOPS. For OLTP systems, mixed
read/write workloads are more common. As Figure 2b shows, with
10% (25%) writes we measured 8.9M (7.0M) IOPS. These micro-
benchmarks show that modern NVMe storage provides an excellent
foundation for transactional systems, which often require many
random I/O operations.

2.2 The Case for 4KB Pages
Page size tradeoffs. In contrast to byte-addressable persistent mem-
ory, access to flash happens at page granularity. Many database
systems use larger pages sizes such as 8 KB (PostgreSQL, SQL Server,
Shore-MT), 16 KB (MySQL, LeanStore), or even 32 KB (WiredTiger)
as their default. In LeanStore, we observed that for in-memory
workloads, larger page sizes generally improve performance, which
is why we originally chose 16 KB [26]. A second benefit of a larger
page size is that it reduces the number of distinct entries in the
buffer pool and therefore leads to less cache management overhead.

2091

0

0.5M

1M

1.5M

2M

1 4 16 64

th
ro

u
g

h
p

u
t
[I
O

P
S

]

0

2

4

6

1 4 16 64

b
a

n
d

w
id

th
 [
G

B
/s

]

0

20

40

60

80

100

1 4 16 64

la
te

n
c
y
 [
u

s
]

page size log scale [KB]

(a) IOPS (b) throughput (c) latency

Figure 3: Impact of page size on IOPS, bandwidth, and latency
for random reads (SPDK).

However, the big downside of larger pages is I/O amplification on
out-of-memory workloads. With 16 KB pages, for example, reading
or writing 100 Byte records results in an I/O amplification of 160×.
A smaller page size of 4 KB would reduce amplification by 4×.
Better go small (but not too small). For data center grade SSDs,
we found that the sweet spot for the page size is 4 KB, as it allows
for the highest random-read performance and lowest latency. Fig-
ure 3 shows that it is possible to achieve almost the full bandwidth
(6 GB/s) with 4 KB pages and random reads. This is only 8% slower
than the maximum bandwidth of 6.5 GB/s that can be achieved
with larger pages (or sequential access). Looking at the latency for
different page sizes in Figure 3, one can observe that the latency
generally increases with page size and has its minimum at 4 KB.
Technically, NVMe allows even smaller pages – down to 512 bytes.
For write amplification this would be even better, but our results
show that using smaller pages than 4KB significantly decreases
performance1. In fact, a smaller page size actually results in worse
IOPS and latency on our SSDs, as can be seen in Figure 3. This
is due to higher overhead in the flash translation layer, together
with the fact that the flash hardware internally is not optimized
for 512 byte pages2. We argue that the gains from lower latency
and I/O amplification make 4 KB pages the best choice for systems
that optimize for out-of-memory performance. However, to benefit
from such a small page size in terms of performance, the DBMS
must be able to deal with the resulting high buffer pool and I/O
management work. In fact, most DBMS will not benefit just from
using smaller pages because I/O throughput is not the limiting
factor (c.f., Section 4.2).

2.3 SSD Parallelism
SSD parallelism. Internally, SSDs are highly parallel devices, with
multiple channels connecting to independent flash dies. Getting
enough I/O requests to the SSD can be difficult, as it requires a
large number of simultaneous requests for high performance. Flash
random read latency is on the order of 100microseconds, which
is 100× faster than disk, but still 1000× slower than DRAM. With
synchronous accesses (i.e., sending a new I/O request only after the
previous one is completed) this would result in a meager 10k IOPS
(or 40MB/s). Thus, to get good throughput from SSDs, one has to
1This is quite different from Optane SSDs, which are based on Phase Change Memory
rather than flash, and therefore offer lower latencies with very small pages sizes [40].
2Internally, SSDs have larger physical register sizes.

0

2.5M

5M

7.5M

10M

12.5M

1 1000 2000 3000 4000

I/O depth

th
ro

u
g

h
p

u
t
[I
O

P
S

]

Figure 4: Random read throughput with 4KB pages depend-
ing on number of outstanding I/Os (SPDK).

exploit their internal parallelism by asynchronously scheduling
many concurrent I/O requests. Figure 4 shows the relation between
IO-depth, i.e., the number of simultaneously outstanding I/O re-
quests on all 8 SSDs, and overall throughput.We can see that around
1000 concurrent I/O requests, i.e., more than 100 per device, are
necessary to get decent performance, and 3000 to fully saturate the
system. One of the main challenges for a database system exploiting
NVMe arrays is managing these high numbers of I/O requests.

2.4 I/O Interfaces
Modern operating systems offer several interfaces for storage I/O.
Here, we discuss themost common I/O libraries on Linux. In the end,
all interfaces end up doing the same for NVMe drives: take the I/O
requests and place them into the NVMe submission queues that are
used by the host system to communicate with SSDs. When the SSD
has completed any requests, it will write completion events to the
completion queue and, if interrupts are used, notify the host. The
libraries differ in how requests are submitted and how completed
operations are reaped.
Blocking POSIX interface. The classic and most common way
of doing I/O on Linux is by using POSIX system calls like pread
and pwrite. POSIX calls for file operations are usually used in
a blocking fashion, where a single I/O request is submitted at a
time. The kernel will then block the user thread until the request is
handled by the drive. This is shown in Figure 5a.
libaio: traditional asynchronous interface. libaio is an asynchro-
nous I/O interface that allows the submission of multiple requests
with one system call. This saves context switches between user and
kernel mode, and allows a single thread to perform multiple I/O
operations simultaneously. As Figure 5b illustrates, I/O requests are
submitted in a non-blocking fashion through io_submit(), which
immediately returns, and the program has to poll for completions
with get_events().
io_uring: modern asynchronous interface. io_uring [38] is the
designated successor to libaio. io_uring implements a new generic
asynchronous interface to the kernel that can be used for storage,
but also for networking. As Figure 5c shows, it is based on shared
queues between kernel and user-space. Multiple requests can be
added to the submission queue, andwith a single io_uring_enter()
system call the kernel can be notified of the available requests. In-
side the kernel, an I/O request will essentially go through the same
abstraction layers (file system, cache, block device layer, etc.) as

2092

SSD

Kernel

NVMe
Queue-Pair

pread()

(a) POSIX

SSD

Kernel

NVMe
Queue-Pair

io_submit()

Prepared
I/O-requests

get_events()

(b) libaio

SSD

Kernel

prep peek

shared
ring-buffer

enter*

kernel
worker*

enter**

NVMe
Queue-Pair

(c) io_uring

SSD

User-space

read() process()

NVMe
Queue-Pair

(d) SPDK

Figure 5: Comparison of Linux storage I/O interfaces.

with the other kernel interfaces. After going through all these ker-
nel layers, the request will end up in an NVMe submission queue.
Linux also implements a submission queue polling mode (SQPOLL)
where the kernel spawns kernel-worker threads (marked with * in
the figure) to poll the submission queue. In this mode, at the cost
of additional kernel worker threads, no system calls are required.
Polling I/O completions. For all interfaces discussed so far, the
default way of notifying the host about completed I/O events is hard-
ware interrupts. With io_uring, it is possible to disable interrupts
(IOPOLL). Using this mode, the application must poll completion
events (marked with ** in the figure) from the completion queue.
Avoiding interrupts can reduce latency and CPU overhead in sit-
uations with high IOPS. With I/O polling, the io_uring_enter()
system call is also used to poll on the NVMe completion queue.
When SQPOLL is set, I/O polling is handled by a kernel worker
thread and completions can be reaped directly from user space
without requiring a system call.
User-space I/O with SPDK. Intel’s Storage Performance Devel-
opment Kit (SPDK) is a set of libraries and tools used for high-
performance storage applications [39]. Specifically, the SPDKNVMe
driver, which is the user-space driver for NVMe SSDs, is relevant
for us. As Figure 5d illustrates, to communicate with an NVMe SSD,
SPDK directly allocates the NVMe queue pairs (for submission and
completion) in the user space. Submitting I/O requests is therefore
as simple as writing a request into a ring buffer in memory and
notifying the SSD that there are new requests available through
another write. SPDK does not support interrupt-driven I/O and
completions always have to be polled from the NVMe completion
queue. SPDK completely bypasses the operating system kernel,
including the block device layer, file systems, and the page cache.

2.5 A Tight CPU Budget
Available CPU cycles. The experiments in Section 2.1 show that
modern storage hardware is capable of achieving tens of millions

SPDK io_uring

(poll) libaio

io_uring

0

2.5M

5M

7.5M

10M

12.5M

1 2 4 8 16 32 64

threads

th
ro

u
g

h
p

u
t

[I
O

P
S

]

Figure 6: Random read throughput (measured with our cus-
tom I/O benchmarking tool, without request batching).

of IOPS. Managing that many requests becomes an important task
for the database system and can take up a significant amount of
CPU time. To get a feeling about the available CPU budget for
handling 12M I/O operations per second, consider the following
back-of-the-envelope calculation: Using the specification for our
AMD CPU we get a CPU budget of 13k cycles per I/O operation
(2.5 GHz × 64 cores / 12M IOPS).
CPU impact of I/O libraries. In the microbenchmark shown in
Figure 6, we measured the throughput achievable with a varying
number of threads. The figure shows that with libaio and io_uring
(interrupt based), the full bandwidth cannot be reached. With 32
threads, the maximum throughput is 10M IOPS, with most of the
time being spent in the kernel. With io_uring in poll mode, the
results are better: with 16 threads one can get close to the full
throughout. Note that to achieve these numbers we had to disable
most operating system features, such as the file system, RAID, and
the OS page cache [13]. In the microbenchmark, SPDK achieves far
better results and is capable of reaching the full bandwidth with
only three threads. However, the use of user-space I/O has major
implications for users and on the design of the I/O backend, which
we will discuss later in the paper.
fio can be the bottleneck. The experiments shown in Figure 6 were
measured with a custom benchmarking tool. We also executed the
same benchmarks with the standard I/O benchmarking tool fio [2]
and, surprisingly, got worse results. In particular, fio’s implementa-
tion of interrupt-based I/O cannot achieve the full bandwidth with
random 4KB reads. The fact that a specialized I/O benchmarking
tool can become a bottleneck indicates that achieving high I/O
throughput in full-blown database systems is difficult.
Every cycle counts. Our experiments show that, unless we use
SPDK (which is not always a practical choice), around half of the
available CPU cores are consumed by the OS just for submitting
and reaping I/O requests. Coming back to our back-of-the-envelope
calculation, this leaves us with only 6500 cycles for all remaining
DBMS work. This includes query processing work, index traver-
sal, concurrency control, logging, buffer manager overhead, page
eviction, and scheduling. Note that our calculation assumes perfect
multi-core scalability for all DBMS components, i.e., the budget
shrinks if scalability is less than perfect.

2093

User Tasks

SSD 1

SSD 3
Eviction

DBMS Worker Threads

Req.

8 M/s
>1000

reads

free pages async writes
outstanding
I/O operations

8 M/s

8 M/s ~2 M/s

>1000 simult.
10 M/s

>1000 simult.

SSD 2

(Section 3.2)

(Section 3.3)

(Section 3.4)
I/O Backend

Figure 7: Design overview illustrating request-level, CPU-
level, and SSD-level parallelism.

2.6 Implications for High-Performance Storage
Engines

The gap. Our high-performance storage engine LeanStore has
specifically been designed for NVMe SSDs. In contrast to older
systems, it is not CPU bound and scales well on multi-core CPUs.
However, as Figure 1 shows, it achieves only 3.6M IOPS in a situ-
ation where 12.5M IOPS should be possible. The experiments in
this section allow us to pinpoint where this 3.5× gap comes from.
Not enough parallelism. LeanStore differentiates between page-
provider and worker threads. Page-provider threads are responsible
for the eviction strategy and for writing dirty pages. To achieve
decent performance in heavy out-of-memory workloads, multiple
page-provider threads are required to find enough cold pages for
eviction. Worker threads are responsible for handling user queries,
with each query running exclusively in its own operating system
thread. Since worker threads use synchronous read operations
(pread) to handle buffer manager page faults, a context switch to
the kernel is required with every request. The thread will then be
blocked until the I/O request is completed. As we saw, SSDs require
many concurrent I/O operations to be saturated – hence, thousands
of worker threads are necessary. To achieve the performance shown
in Figure 1, the 32 page provider threads had to be isolated from
worker threads, to get enough CPU time and not become the bottle-
neck. Page provider threads are pinned to CPU cores and workers
can freely use all other CPU cores as scheduled by the kernel.
Oversubscription problems. This means that thousands of worker
threads are now competing over the remaining CPU cores, which
leads to very high context switching overhead. After starting 500-
1000 threads, all CPU cores are running at 100% load, with most
time spent in the kernel. Running the system with such high over-
subscription is neither efficient nor robust.
Summary. The experiments in this section demonstrate that mod-
ern NVMe storage offers tremendous capabilities. However, getting
close to these hardware limits is non-trivial even in microbench-
marks (as evidenced by the fio bottleneck), and is a major challenge
in full-blown storage engines. We also found that 4 KB pages offer
the best trade-off between random IOPS, throughput, latency, and
I/O amplification. However, such a small page size stresses the I/O
backend even more.

3 HOW TO EXPLOIT NVME STORAGE: AN
I/O-OPTIMIZED STORAGE ENGINE DESIGN

Exploiting NVMe arrays. In this section, we describe a storage
engine design that can exploit the full potential of modern stor-
age devices. As our starting point, we use a baseline version of
LeanStore. As Figure 1 shows, this version of LeanStore is faster
than other systems, but is not capable of fully exploiting NVMe ar-
rays. Note that simply switching to 4 KB pages and polled I/O alone
will not achieve much, as one will immediately run into software
bottlenecks. High out-of-memory performance requires changes
throughout the entire system.
Parallelism is the problem. At a high level, the main challenge
we face is the parallelism of modern hardware: First, we have par-
allelism at the request level, which may either directly come from
user queries or from the DBMS itself (e.g., through intra-query
parallelism or prefetching). Second, we have dozens or hundreds –
but not thousands – of CPU cores of a modern server. Third, we
have 1000+ I/O operations outstanding at any point to keep SSDs
busy.

3.1 Design Overview and Outline
The solution is to embrace parallelism in every part of the system.
Figure 7 shows a high-level view of our system and the parallelism
it has to handle. Going from left to right in the figure, we see
that everything starts with concurrent requests. To manage all
these requests, we employ cooperative multitasking where tasks
are scheduled by the DBMS in user-space as described in Section 3.2.
All these I/O requests eventually result in a very high demand for
free pages (e.g., 8M/s in the figure). This demand must be satisfied
by an efficient page replacement algorithm and asynchronous dirty
page writing. In Section 3.3, we argue that these CPU-intensive
tasks should be integrated into the worker threads. Finally, the I/O
backend connects the DBMS with the storage hardware using one
of the I/O libraries introduced earlier. Section 3.4 discusses several
models for how to connect worker requests to the hardware. All
this work is done in parallel by a limited number of CPU cores.
Since the overall CPU budget is limited, every component involved
must be heavily optimized and implemented in a scalable fashion.
These optimizations are described in Section 3.5.

3.2 DBMS-Managed Multitasking
The problem with high oversubscription.Most database systems
run queries in independent threads and use synchronous I/O re-
quests (i.e., pread) to handle page faults. In this design, to keep
the SSDs busy there must be more than 1000 threads running si-
multaneously for user requests only. If queries take significant
amounts of CPU time fewer I/O requests are generated and even
more threads are necessary. Even large servers do not have thou-
sands of cores, which means that a synchronous I/O causes extreme
oversubscription and poor performance due to context switching
overhead.
Lightweight tasks. To avoid oversubscription, we use lightweight
cooperative threads that are managed by the database system in
user-space. This reduces the context switching overhead and allows
the system to be fully in control of scheduling without kernel inter-
ference. In this design, which is illustrated in Figure 8, the system

2094

User Tasks
channel

Worker Thread 1
Scheduler I/O Backend

Eviction
I/O Submit/Poll SSD 1

SSD 2

SSD 3

Incoming
Requests

User Tasks
channel

Worker Thread 2
Scheduler I/O Backend

Eviction
I/O Submit/Poll

Incoming
Requests

Figure 8: Design overview. The system is handling many
incoming requests in parallel. Worker threads are running
these requests cooperatively as tasks, while also taking care
of page eviction, I/O submission, and polling.

starts as many worker threads as there are hardware cores avail-
able in the system. Each of these workers runs a DBMS-internal
scheduler that executes these lightweight threads, which we call
tasks. To implement user-space task switching, we use the Boost
context library [22], specifically fcontext. Thereby, a task switch
costs only around ~20 CPU cycles, instead of several thousand for
a kernel context switch. This enables cheap and frequent context
switches deep in the call stack, and makes it fairly easy to port
existing code bases to this new design.
Cooperative multitasking. Conceptually, Boost contexts are non-
preemptive user-space threads. Tasks therefore need to yield control
periodically back to the scheduler. In our cooperative multitasking
design, this happens whenever a user query encounters a page fault,
runs out of free pages, or when the user task is completed. Further,
to prevent a worker from being stalled due to latching, we modified
all3 latches to eventually yield to the scheduler as well.
Non-blocking I/O. Using non-preemptive tasks means that block-
ing I/O requests (i.e., pread) cannot be used, as it would block the
whole worker thread. Instead, we switch to a design where worker
threads use non-blocking I/O interfaces, such as libaio, io_uring,
or SPDK, to submit requests asynchronously. When the task en-
counters a page fault, the I/O request will be submitted to the I/O
backend and the corresponding task will yield execution back to
the scheduler. Each worker can therefore have multiple outstanding
I/O requests. When an I/O is finished, the worker will (eventually)
jump to the corresponding task. This makes running thousands of
queries simultaneously as lightweight user-space threads feasible.

3.3 Background Work Through System Tasks
Page eviction is crucial. Database systems are not only running
user queries, but also performance-critical tasks such as page evic-
tion. Once the system runs out of free pages because the page
replacement algorithm is too slow, the system will stall. The same
will happen if dirty pages cannot be written out fast enough.
3This includes latches protecting pages as well as internal DBMS data structures.

21 3
lookup()

lookup()
calculate()
update()

runTask()
submitIO()
eviction()
pollIO()

scheduler task

transaction/treescheduler

user task 1

(on user task 1)

user task 2

traverseTree()
pageFault()

pushIO()

yield()

buffer manager

resume task
run other tasks

polled
completion

jump to scheduler ctx

task.state=IOdone
pushReady(task)

ioComplete()

task.state=waitIO
4

6

5

78

9

Figure 9: Exemplary sequence of events in a worker thread
when handling a page fault in a user task.

The burden of background threads. For efficiency reasons, the
original LeanStore version evicts and writes pages in batches. This
is done by background threads called page providers [15]. With
millions of page evictions and hence I/O operations per second,
multiple such threads are needed. The downside of background
threads is that it is hard to know how many of them are needed, in
particular when workloads change.
Backgroundwork as tasks.We switched to a completely asynchro-
nous and non-blocking model. Since our new approach is already
using tasks to run user queries, we run background work as (sys-
tem) tasks as well. This removes the necessity to have background
threads, and page eviction can instead be run directly on worker
threads. Another advantage is that worker threads do not stall wait-
ing for free pages due to page providers being too slow. Instead,
workers naturally start spending more CPU time on eviction if the
system starts running out of free pages. This is implemented by
checking whether there are enough free pages on every context
switch. As an optimization, eviction is then run directly in the main
context (instead of a separate system task).
Example. Figure 9 shows an example illustrating how worker
threads execute tasks. Each worker continuously runs a loop 1
alternating between running tasks, submitting I/O, page eviction,
and polling for I/O completions. When the scheduler decides to run
a user task 2 it will create the necessary context and pass control
to the specific task. In the example, user task 1 is a lookup in the
B-Tree. Traversing the tree, the lookup might encounter a node
that is not available in the buffer pool. This triggers a page fault 3 ,
in which an I/O request is set up and pushed to the I/O backend.
The task state is set to waitIO and execution yields back to the
scheduler running on the main context. The task remains blocked
until the page fault is resolved. Back in the worker thread loop, the
scheduler will trigger the submission 5 of the I/O request to the
SSD4. Next, the replacement strategy will check if there are enough
free pages available and, if necessary, run page eviction routines.
Lastly, the I/O backend will be polled for completions. The worker

4Our implementation submits each I/O immediately. One could also implement a
batching heuristic that tries to collect several requests and submit them in a batch.

2095

Worker 2

q-pair

(b) SSD Assignment
Worker 1

SSD 1 SSD 2

synchronization
or message

passing

Tasks Tasks

q-pair

(a) Dedicated I/O Threads
Worker 1 I/O thread

q-pairq-pair

SSD 1 SSD 2

synchronization

or message
passing

Tasks

Worker 1

q-pairq-pair

Worker 2
(c) All-to-All Model

q-pairq-pair

SSD 1 SSD 2

Tasks Tasks

Figure 10: I/O model comparison. We use the all-to-all model, which does not require message passing between threads.

thread will then continuously loop 6 through these jobs. After-
wards, user task 2, consisting only of CPU work, is executed 7 .
This task can run to completion as long as it does not encounter any
page faults or blocked latches. When the task is finished, the sched-
uler code will resume, and at some point the previously-submitted
I/O request will be completed. The I/O backend will run the callback
associated with the request 8 , set the task state to IOdone (i.e.,
ready) and push the task back into the ready queue. The task can
then be resumed 9 : the page fault is resolved and the tree traversal
of user task 1 continues.

3.4 Managing I/O
Unified I/O abstraction. Our I/O backend supports all major asyn-
chronous I/O libraries (libaio, io_uring, and SPDK) and implements
a low-overhead RAID0-like abstraction (data striping) that logically
combines multiple SSDs to one logical device. Implementing RAID0
in the DBMS rather than relying on the Linux software RAID im-
plementation improves performance (cf. Figure 13) and enables
a uniform interface across all I/O libraries, including SPDK. The
backend also abstracts away the details of how to perform I/O oper-
ations asynchronously. There are two open questions regarding I/O
management: First, should there be dedicated I/O threads that are
solely responsible for handling I/O, or should worker threads han-
dle both user tasks and I/O? Second, should a thread be responsible
only for handling one SSD or should all threads access all SSDs?
I/Omodels. In theDedicated I/O Threadsmodel (Figure 10a), worker
threads cannot directly access the SSDs, but have to communicate
with I/O threads that handle all I/O. This requires some form of
message passing between worker threads and I/O threads for every
I/O operation. This can be implemented in user-space, or in essence
this is what io_uring using SQPOLL mode does, just that the I/O
threads are kernel workers. The SSD Assignment (Figure 10b) model
is inspired by I/O microbenchmarks that assign SSDs to specific
threads. Again, message passing is needed – in this case, between
worker threads. In the All-to-All model (Figure 10c), every worker
can access every SSD without requiring message passing. This
includes both reads from user tasks and writes from the background
writer. Models a and b have the advantage that they simplify request
batching, require fewer memory-mapped I/O (MMIO) calls, and
need fewer polling calls. For kernel I/O libraries, this can result in a
reduction in context switching and allows for higher peak efficiency
in microbenchmarks. Nevertheless, as we discuss below, we believe
that the all-to-all model is the best option.

assigned
all-to-all

assigned
all-to-all

io_uring poll libaio

1 2 4 8 16 32 64 1 2 4 8 16 32 64
0

2.5M

5M

7.5M

10M

12.5M

threads

th
ro

u
g

h
p

u
t
[I
O

P
S

]

Figure 11: Random read performance of all-to-all and as-
signed SSD models (random reads, 4KB pages).

Problems with dedicated I/O threads. For similar reasons as dis-
cussed in Section 3.3, dedicated background threads for I/O have
major downsides. One could consider using a single thread for
handling all I/O. However, a single thread can only achieve 630k
(libaio, io_uring) to 820k (io_uring poll) IOPS. We run experiments
with io_uring uisng SQPOLL as dedicated I/O threads, but this actu-
ally decreased performance and efficiency. This is the case because
kernel workers take up CPU cores that could otherwise be used
by worker threads. Further adjusting the number of I/O threads
is difficult and highly dependent on the workload. Just like page
eviction, a better approach is to handle I/O work directly as part of
the scheduler loop on our worker threads.
SSD assignment model. Microbenchmark implementations often
assign each SSD to one specific thread to improve cache locality and
reduce polling. This means that a system with 8 SSDs would also
require at least 8 threads. In microbenchmarks, dedicated assign-
ment works well as each thread only generates I/O operations for
the assigned SSD. A real system, however, would require message
passing between the threads, involving some kind of synchroniza-
tion. Nevertheless, this downside may be justifiable if it results in
significantly better I/O performance. To find out whether that is the
case, we implemented the SSD assignment and all-to-all models in
a microbenchmark. As Figure 11 shows, both approaches achieve
similar performance. We therefore adopt the all-to-all model.
Robust all-to-all communication through I/O channels. The
NVMe queue pair abstraction is specifically designed with multi-
ple threads in mind. Every thread can have its own queue pair to
every SSD. A similar design can be used with libaio and io_uring.
Therefore, our I/O backend implements an I/O channel abstraction
that encapsulates implementation differences. Every worker has
one I/O channel that handles I/O requests to all SSDs, without

2096

synchronizing with other threads. This is an efficient and robust
solution, as it does not require any additional message passing or
synchronization. All worker threads have the same responsibilities
and no thread has special roles. This symmetry also means that
LeanStore can be efficiently run on a single CPU core.

3.5 CPU Optimizations and Scalability
CPU can be a bottleneck. Conceptually, the techniques introduced
above largely solve the problem of managing I/O. However, because
traditionally I/O has always rightly been considered to be slow, the
I/O path of most systems is less optimized than in-memory parts of
the systems. Once the system becomes capable of scheduling mil-
lions of IOPS, the CPU often becomes the performance bottleneck.
In the following, we describe a number of optimizations that we
had to implement in LeanStore to finally become I/O bound.
Scalability. In the original LeanStore design a single global lock [26]
was used to protect in-flight I/O operations and the cooling stage
from concurrent access. The LeanStore paper [26] argues that this
global lock is not a scalability bottleneck, because it is only re-
quired on the cold path and even with fast SSDs, an I/O operation is
still much more expensive than the lock acquisition. With modern
NVMe SSDs, this global lock quickly becomes the performance
bottleneck. To resolve it, the replacement strategy and the I/O man-
ager both get independent locks. To avoid contention on these
locks, they are logically partitioned by pageId. Hence, every thread
can still access all pages but lock contention is reduced. This also
means that multiple threads can be used effectively for page evic-
tion, which drastically improves out-of-memory performance. The
numbers measured in Figure 1 for LeanStore already include this
optimization, and we use it as our baseline in the evaluation. To
really make LeanStore even more scalable, page eviction and I/O
path have to be streamlined. Page eviction was adapted to shorten
critical sections and remove locking with lock free data structures
where necessary. Further, all memory allocations were removed,
and hot code paths had to be micro-optimized.
Streamlined eviction. In the original LeanStore version, page evic-
tion was done in two phases. In the first phase, random pages are
picked and added to the cooling queue. Pages that are accessed
while in the cooling stage are removed from it. In the second phase,
pages from the end of the cooling queue are evicted. In both phases
it is necessary to access the parent node to update the cooling tag
in the swizzled pointer. LeanStore does not employ parent pointers,
as this simplifies the latching protocol significantly. Without parent
pointers, every access to the parent requires a tree traversal from
the root node (findParent()). When running the system out of
memory with millions of evicted pages per second, this frequent
tree traversal takes a significant amount of cycles (>10% of total
CPU time). To reduce this overhead, we introduced optimistic par-
ent pointers in nodes that are checked for validity when accessed.
With this feature, most findParent() calls can be saved and per-
formance increases significantly.

4 EVALUATION
In this section, we first compare the complete design implemented
in LeanStore with RocksDB and WiredTiger. In an ablation study
that starts with the original (baseline) LeanStore version, we then

show howmuch each of the techniques and optimizations proposed
in this paper contribute to overall performance. Then, we shift our
focus on data scalability before performing a detailed comparison
of the different I/O libraries.

4.1 Experimental Setup
Hardware. The experiments were performed on a Linux (5.19) ma-
chine with an AMD EPYC 7713 Milan CPU with 64 cores / 128
threads, which has 128 PCIe 4.0 lanes. The system has 512GB of
DRAM and 8 × Samsung PM1733 SSDs with 3.84 TB each. As we
have shown in the introduction, every SSD is capable of achiev-
ing 1.5M I/O operations per second. When using all SSDs simul-
taneously this performance cannot be reached if the IOMMU is
enabled in the kernel parameters, hence we have it disabled with
amd_iommu=off. All experiments are run on all 8 SSDs with our
RAID 0 implementation in LeanStore. The SSDs are erased (using
blkdiscard command) before every experiment, as that is the only
state in which performance can easily be compared. It’s important
to note that performance degrades on full SSDs and with prolonged
writing due to internal write amplification. This is caused by the
SSD’s flash translation layer (FTL) performing garbage collection.
Competitors. To compare our results we choose the popular stor-
age engines RocksDB [36] (v6.15.5) and WiredTiger [30] (v3.2.1).
RocksDB is a key-value store based on LSM-trees developed and
used by Facebook. Like LeanStore, it is optimized for multi-core
CPUs and fast storage. WiredTiger is a key-value store that is used
as the default storage engine for MongoDB. It supports both LSM
and B-tree indexes. In our experiments we run it using B-trees.
Settings. To focus on I/O handling and prevent concurrency control
from becoming the bottleneck, in all systems we disable logging
and select the least available isolation level. Unless otherwise noted,
we configured all systems to use 4 KB pages. We experimented with
numerous configurations in order to identify the optimal setup
that would yield the best performance for both engines. For ex-
ample, we used the ideal number of threads in every experiment
(e.g., for RocksDB this was 1024 threads with random lookup and
64 with TPC-C). All storage engines are run without kernel page
cache (O_DIRECT). For the experiments we use TPC-C and a random
lookup benchmark with 8 byte keys and 120 byte payloads. Both
benchmarks are implemented in C++ and linked to the storage
engines.

4.2 System Comparison
TPC-C. For the first experiment, shown in Figure 12, a 16 GB buffer
pool is used for all three storage engines. We run the TPC-C work-
load with 1000 warehouses, which corresponds to about 160GB of
data. Hence, the dataset is 10× larger than the buffer pool. LeanStore
is run using its best-performing configuration with user-space
threads and SPDK as I/O backend. LeanStore achieves over a mil-
lion (1.07M) TPC-C transactions per second (tps) with 64 threads.
The other storage engines can use all 128 hardware threads, and
we use the optimal number of worker threads to achieve the best
performance. In the TPC-C workload, this was 64 threads for both
systems. RocksDB achieves around 10k tps and WiredTiger around
40k tps. TPC-C, a fairly intricate workload with lots of inserts and

2097

0

250k

500k

750k

1000k

W
ire

dT
ig
er

 3
2K

B

W
ire

dT
ig
er

 4
KB

R
oc

ks
D
B

Le
an

Sto
re

tr
a

n
s
a

c
tio

n
s
/s

TPC-C

0

2.5M

5M

7.5M

10M

12.5M

W
ire

dT
ig
er

 3
2K

B

W
ire

dT
ig
er

 4
KB

R
oc

ks
D
B

Le
an

Sto
re

lo
o

k
u

p
s
/s

random lookups

Figure 12: LeanStore vs. competitors (16GB buffer pool,
160GB data, LeanStore with SPDK, number of threads cho-
sen for highest performance in random lookups:WiredTiger:
256, RocksDB 1024, LeanStore: 64; with TPC-C: 64 for all stor-
age engines).

updates, allows LeanStore to deliver orders of magnitude higher
performance than the other engines.
Random lookups. The second experiment shows the read-
only lookup performance with uniformly-distributed keys. Here,
WiredTiger achieves 1.8M lookups per second and RocksDB 2.8M.
LeanStore achieves 13.2M lookups/s which corresponds to the full
theoretical SSD bandwidth of 12M IOPS, considering 10% of lookups
are in-memory.
Page size. In Section 2.2 we argued that 4 KB page size is the optimal
page size for fast DBMS using flash SSD arrays. To show that DBMS
actually do not benefit a lot by using these relatively small pages,
we run WiredTiger with the default 32 KB pages and as comparison
with 4KB pages. With 4KB pages the TPC-C performance only
increases from 25k to 40k tps, far away from a theoretically almost
8× higher SSD speed in IOPS. The random lookup workload smaller
pages gain even less with only 1.3M to 1.7M lookups/s.

4.3 Incremental Performance Improvements
Let us have a look at how much the different optimizations and
techniques discussed in Section 3 have increased performance. For
this, we are starting from the LeanStore version as described in the
original paper as baseline (but add the partitioning optimization
for better scalability). Step by step we add additional features: 4 KB
pages, CPU optimizations, custom RAID, user-space threads, and
SPDK for kernel by-passing. As parameters, we choose again a 10×
out-of-memory factor with 16GB buffer pool and 160GB of data
for both TPC-C and the read-only lookup workload. The results
can be seen in Figure 13.
Baseline with partitions. The original LeanStore paper [26] used
a global lock to protect the I/O stage from concurrent access. While
a single I/O partition might be good enough for mostly in-memory
workloads, in out-of-memory settings this immediately became the
bottleneck. To circumvent this, the global lock was removed and
exchanged with partitioned page eviction and I/O management, as
described in Section 3.5. We use this setting with partitions as our
baseline, like in Figure 1. The bottleneck now is the SSD bandwidth.
This can be seen in the I/O plots of Figure 13, in both benchmarks

0

250k

500k

750k

1000k

ba
se

lin
e

16
KB

+
4K

B p
ag

es

+
C
PU

 o
pt

.

+
ap

p.
 R

AID
 0

+
ta

sk
s

+
SPD

K

tr
a

n
s
a

c
tio

n
s
/s max @4KB

0

10

20

30

ba
se

lin
e

16
KB

+
4K

B p
ag

es

+
C
PU

 o
pt

.

+
ap

p.
 R

AID
 0

+
ta

sk
s

+
SPD

K

I/
O

 [
G

B
/s

]

write read
TPC-C

0

2.5M

5M

7.5M

10M

12.5M

ba
se

lin
e

16
KB

+
4K

B p
ag

es

+
C
PU

 o
pt

.

+
ap

p.
 R

AID
 0

+
ta

sk
s

+
SPD

K

lo
o

k
u

p
s
/s

max @4KB

0

10

20

30

40

50

ba
se

lin
e

16
KB

+
4K

B p
ag

es

+
C
PU

 o
pt

.

+
ap

p.
 R

AID
 0

+
ta

sk
s

+
SPD

K

I/
O

 [
G

B
/s

]

random lookups

Figure 13: Impact of different features on LeanStore perfor-
mance and I/O (16GB buffer pool, 160GBdata size, 4KBpages
(except baseline), libaio (except +SPDK)).

the throughput increases to the maximum of what the SSDs can do
with 16 KB pages. In terms of IOPS, however, the 31GB/s in TPC-C
and 53GB/s in read-only correspond to only ≈1.9M and 3.2M IOPS,
out of 6M to 12M the SSD can do with 4 KB pages. Note, that the
throughput in GB/s is slightly higher with 16KB pages than the
maximum of what the SSDs can do at 4 KB pages, as shown in the
background section.
Page size. To use the full SSD bandwidth in terms of IOPS it is
necessary to switch to a smaller page size. Hence, in the next step
we are benchmarking LeanStore with +4KB pages. As expected,
this has a big impact on TPC-C performance, which doubles to over
500k tps. This large increase is because TPC-C has a high write
percentage (≈40% of total I/O) with which the SSD bandwidth is
a lot lower compared to read-only (i.e., ≈26GB/s). Scaling down
the page size by 4× effectively quadruples the throughput in IOPS.
The read-only performance increase is more modest. IOPS are far
higher than in TPC-C even with 16KB pages, as the bottleneck is
somewhere else (Linux RAID).
CPU optimization and RAID. The discussed +CPU optimizations
increase TPC-C performance by over 30%. This directly corresponds
to the CPU time saved by the discussed micro-optimization. Simi-
larly, implementing a custom, more efficient +RAID 0 results in a
similar performance boost. In the read-only workload the perfor-
mance improvement is even higher, as the throughput numbers are
much higher than in TPC-C and the Linux md raid seems to have
a hard limit at around 15GB/s. Removing this bottleneck has an
almost 2× improvement in read-only lookup speed.

2098

400k

1.1M

0 5 10 15

0

0.5M

1M

1.5M

2M

1 25k 50k 75k 100k

data size [TB]

warehouses

T
P

C
-C

 p
e

rf
.

[t
p

s
]

read

write

total

0 5 10 15

0

10

20

30

1 25k 50k 75k 100k

data size [TB]

warehouses

I/
O

 [
G

B
/s

]

Figure 14: LeanStore out-of-memory scalability (400GB
buffer pool, 64 threads, I/O backend: SPDK).

Avoiding over-subscription. All previous experiments were run
with high thread over-subscription. The number of background
threads and workers was tuned for best performance. This was up
to 1500 worker threads and 40 isolated background threads for page
eviction. With user-space +tasks this over-subscription and tuning
is unnecessary. The removal of this context switching overhead
increases TPC-C performance by 16% and read-only by 25%.
User-space I/O. Lastly, we use kernel-bypassing for I/O using
+SPDK. In TPC-C this does not increase the performance by a
lot, as even with libaio LeanStore is approaching the maximum SSD
bandwidth (for mixed read/write workloads). Further, we used the
optimum number of threads for every setting, in case for +tasks
(1.03M tps and 10.08M lookups/s) this was 128 threads. With +spdk
(1.07M tps) it is 64 threads, as that is enough to achieve the highest
performance and fully saturate all SSDs. In the random/read-only
lookup, we are approaching a bottleneck that interrupt based I/O
seems to have on our system, limiting the throughput to about
≈10M IOPS. With SPDK (13.26M lookups/s, note: 10% of lookups
are buffered) there is no such limit and the full SSD bandwidth can
be used. In the TPC-C workload io_uring in I/O poll can achieve
the same throughput as SPDK. However, it requires more than 64
threads (1.07M tps with 128 threads). io_uring achieved slightly
less, 12.2M random lookups/s with 128 threads, showing that the
additional CPU cycles required for it are starting to matter at this
IOPS/CPU speed ratio.
No high pole in the tent. As can be seen, all optimizations and
techniques are necessary to exploit the full potential that fast NVMe
arrays offer.

4.4 Out-Of-Memory Scalability
Out-of-memory overhead. LeanStore’s in-memory performance
in comparable to main-memory database systems. For in-memory
workloads, it can achieve over 3 million TPC-C transactions per
second (128 threads). Going out-of-memory triggers a lot of addi-
tional code being called, including eviction strategy, page faults,
the whole I/O path, context switching. Naturally, performance is
going to decrease from this additional work, when CPU cycles are
limited.

1 8 16 32 64 1 8 16 32 64
0.5

0.6

0.7

0.8

0.9

1.0

CPU cores

re
la

tiv
e

pe
rfo

rm
an

ce

SPDK io_uring poll libaio io_uring

random lookups TPC-C

+30%+56%
+18%+35%

Figure 15: Performance of different I/O backends and limited
number of CPU cores (16GB buffer pool, 160GB data).

One million. Figure 14 shows the out-of-memory scalability of
LeanStore, by increasing the data set size (warehouses) with a fixed
size buffer pool of 400GB. When data fits completely in memory,
LeanStore achieves over 2 million tps with 64 threads. Going out-
of-memory, the performance gracefully degrades. In a 10× out-of-
memory setting with 25k warehouses or 4 TB of data, LeanStore
can still get to 1.1 million tps. The full I/O bandwidth (25GB/s)
provided by the 8×NVMe drives in a 56%/44% read/write setting is
used in this configuration. To demonstrate LeanStore’s ability to
scale far beyond that, we tested it with very large database size, up
to 100,000 warehouses, which corresponds to 16 TB of data, or an
out-of-memory factor of 40×. In this setting, LeanStore still achieves
400 thousand transactions per second.
Running even larger databases would technically be possible as
well. However, running the system at 40× out-of-memory is already
quite extreme. The price difference per capacity of DRAM to flash
SSDs is currently about 20×. Hence, with even larger databases it
makes sense to also budget more money for additional DRAM.

4.5 I/O Interfaces
A realistic workload. In this experiment we evaluate the different
I/O backends supported by LeanStore. Obviously the choice for
the right I/O interface depends on given constraints, e.g., is a file
system required, buffered or non-buffered I/O, can the whole device
be used exclusively by the application, etc. Our evaluation is solely
based on performance and efficiency, with LeanStore representing
a more realistic workload than I/O microbenchmarks.
Larger difference in read-only. In Section 4.3 we saw that with
TPC-C the additional step of using user-space I/O did not improve
performance substantially. Meanwhile, the difference in read-only
lookups was relatively large. This can be attributed to the fact
that the mixed read/write performance of SSDs is substantially
lower than read only (mixed: 6.7M IOPS vs. read-only: 12.5M IOPS,
flash writes are around 10× more expensive than reads). Hence,
with enough CPU cores available for the workload it is possible to
achieve saturation with every interface.
Limiting CPU cores. To show the actual CPU overhead of kernel
I/O libraries we compare them to SPDK and limit the number of

2099

1.4M 0.71M0.55M0.53M 0.57M
tps tpstpstps tps

57k 113k147k152k 141k
cycl/tx cycl/txcycl/txcycl/tx cycl/tx

0%

25%

50%

75%

100%

in-m
em

io_urin
g

io_urin
g poll

lib
aio

SPDK

re
la

tiv
e

 C
P

U
 t
im

e

other

I/O sub.

I/O poll

eviction

tx

Figure 16: Relative CPU time on database system components
with TPC-C transactions (160GB data, first bar in-memory,
others with 16GB buffer pool, 32 threads).

CPU cores in use. By doing this, we can observe the differential
impact on system performance when running on a restricted num-
ber of cores, thus revealing the efficiency of different I/O libraries.
Figure 15 shows the relative performance in read-only and TPC-C
using io_uring, libaio and SPDK, which always achieves the highest
performance. The general trend is with fewer CPU cores available
the better SPDK performs, as it is more efficient in CPU usage. For
the read-only workload SPDK is on average 60%-80% faster than
the kernel libraries. With more CPU cores available the difference
decreases to around 50%. In TPC-C the differences are smaller as the
workload is less I/O heavy compared to read-only lookups. CPU
cycles used on I/O are fewer and hence the advantage of using
SPDK is smaller. io_uring in default settings and with I/O polling
disabled is surprisingly slightly slower (≈2% on average) than libaio.
With I/O polling enable io_uring is (≈5-8%) faster than libaio.
Useable flags. io_uring offers a plethora of flags to change and
improve its behavior for specific use cases. In Section 2.4 we already
mentioned the IOPOLL flag that we have been using in the exper-
iments. It should also be noted, that to use polled I/O the kernel
nvme module has to be instructed to allocate a number of queues
for polling by setting nvme.poll_queue. Another flag that was al-
ready mentioned is SQPOLL. It eliminates the necessity for system
calls, as it creates kernel workers that poll the submission queue,
handle SSD I/O-submission and polling. We experimented with the
setting (including ATTACH_WQ, SQ_AFF), but it was not possible to
get better efficiency in terms of cycles per I/O operation. Further,
this flag again introduces hard to manage background threads that
we do not want in our design.
Fighting the kernel. At this point it is also important to note
that submit batching and reducing poll calls mostly benefit kernel
libraries. This is partially because it reduces system calls, but mostly
because the overhead to go through the kernel I/O stack (i.e., the
block layer) is high. This is currently the same for all kernel I/O
interfaces. With SPDK, batching will lower the number of MMIO
calls on the NVMe submission doorbell. However, SPDK shows
that submission and polling are actually already relatively cheap.
Saturating all SSDs in a microbenchmark with SPDK requires only
three CPU cores. A SPDK polling call only takes about 80ns (200

99%

avg

0

1000

2000

3000

4000

5000

250k 500k 750k 1000k

transactions/s

la
te

n
c
y
 [

u
s
]

TPC-C

99%

avg

0

100

200

300

400

500

2.5M 5M 7.5M 10M 12.5M

lookups/s

random lookups

Figure 17: Latency with average and 99th percentile (160GB
database, 16GB buffer pool, 63 threads, using SPDK).

cycles). Optimizing against specific kernel characteristics is not
a promising approach, especially because there is a lot of active
development going on in the Linux kernel I/O subsystem with
io_uring and for example, nvme_passthrough.

4.6 CPU Usage
The cost of not using SPDK in terms of CPU cycles is relatively high.
Figure 16 shows that in in-memory workloads all CPU time is used
for actual transactional workload. Going out of memory in the usual
setting with 1000 TPC-C warehouses and 16GB of RAM, a lot of
time is spent on eviction and I/O submission. Eviction is very similar
in all out-of memory workloads around 14%, except with SPDK it
is slightly higher (18%), as it is proportional to the transactional
share, which is higher when using SPDK. This is mainly the case
because submitting IO requests is muchmore efficient in SPDK (≈2%
vs. 16-19%). This is less a matter of the interface, but the inefficient
implementation of the I/O path in the Linux kernel (v5.19.0-26).
We run the experiment also with I/O submission batching (+3%
in throughput for kernel libraries) and with kernel mitigations
disabled (+4% with kernel parameter mitigations=off). However,
these two settings did not change the relative differences between
kernel I/O libraries.

4.7 Latency
We also measured transaction latency, employing a target trans-
action rate and exponentially distributed inter-arrival times. The
results are depicted in Figure 17. In the random lookup workload,
the latency corresponds almost entirely to I/O latency. In the TPC-C
workload, latency is much higher because each transaction requires
on average 3.5 synchronous read operations. TPC-C also includes
the asynchronous eviction of dirty pages to storage, with an aver-
age of 2.8 page writes per transaction. This contributes to higher
tail latency for reads, as they could be stalled by write operations,
which take significantly longer on flash.

5 RELATEDWORK
We are not aware of any OLTP system that can fully exploit the
capabilities of NVMe arrays. Given the low cost and high perfor-
mance of flash, there is a surprising lack of research on the topic –

2100

in particular in comparison with the amount of research on systems
optimized for main memory or persistent memory.
Initial flash bubble. Flash SSDs started to become relevant around
2008, leading to research on how to integrate them into database
systems. Research initially focused on whether flash is beneficial
for database applications [10, 24, 25]. At that time, performance
and price were still orders of magnitude away from where they are
now. Hence, flash was primarily used as a cost-efficient extension
to the main memory buffer pools [5, 17–19], or for caches of spe-
cific database service like recovery [3], multiversion storage [34],
update caching [35], or sketches [12]. Given current prices, flash
has become the primary persistent storage medium rather than an
additional layer.
Specialized hardware. NAND flash has very different physical
hardware characteristics than magnetic disks, e.g., flash does not
support in-place writes. For backwards-comparability, commercial
SSDs emulate disks using complex SSD-internal logic. This can lead
to lower-than-necessary and unpredictable performance. A separate
line of research, therefore, investigates specialized SSDs [14, 20, 37],
novel interfaces [4, 29, 32, 33], and co-designing databases and
storage hardware [9, 28] Some systems are optimized to reduce
write amplification [11], and several systems [6, 7, 16, 21, 23] have
been designed for Optane (3D Xpoint) based memory, which has
different hardware characteristics compared to flash. This work, in
contrast, is applicable to all cheap, off-the-shelf NVMe SSDs.
High-performance storage engines.There are a number of storage
engines and key-value stores optimized for flash. RocksDB [36] is
based on an LSM-Tree that is optimized for low write amplification
(at the cost of higher read amplification). RocksDB was designed
for flash storage, but at the time of SATA SSDs, and therefore
cannot saturate large NVMe arrays. The techniques we propose
in this paper are general and can be integrated into LSM-based
storage engines. Another efficient storage engine isWiredTiger [30],
which like our LeanStore system is based on B-trees. One difference
between LeanStore and WiredTiger is that the latter uses different
representations for in-memory and out-of-memory nodes. This
can save space, but the conversion between the representations
(“reconciliation”) becomes CPU expensive with fast storage devices.
High-performance key value stores. Like our approach, PA-
Tree [41] uses SPDK as an efficient asynchronous I/O library, but
it relies on a single thread and therefore cannot exploit the full
potential of NVMe arrays. Tucana [31] is a key value store based
on a 𝐵𝜖 -Tree optimized for SSD storage. However, it was built on
the premise of slow SATA SSDs and relies on mmap for I/O, which
was already deemed inadequate for NVMe-era performance [8].
KVell [27] comes closest to exploiting full NVMe array bandwidths.
Unlike LeanStore, KVell is a partitioned key value store, that does
not store keys sorted on disk. This is a big limitation for range
queries and small payloads and makes it unfit to be used as a gen-
eral purpose storage engine for DBMS. Further, even with these
limitations, KVell is not able to fully saturate large flash NVMe
arrays in their experiments. Indeed, they report being CPU bound
and achieving only 75% of the I/O capabilities on a server with
3.3M IOPS. We therefore believe that to the best of our knowledge,
LeanStore with the techniques discussed in this paper is the only
system that is currently capable of exploiting the full potential of
NVMe arrays.

6 CONCLUSIONS
In this paper, we showed what modern NVMe storage arrays can
provide and how it is possible for high-performance storage engines
to fully exploit this performance.

We can give answers to the questions posed in the introduction:

• Q1: Arrays of NVMe SSDs can achieve the performance
promised in hardware specifications. In fact, we achieved
slightly higher throughput at 12.5M IOPS with our 8×SSD
setup.

• Q2: Good performance can be achieved with all asynchro-
nous I/O interfaces. Kernel-bypassing is not essential to
achieve full bandwidth even with small pages. However, it
is more efficient in CPU usage.

• Q3: The best trade-off between random IOPS, throughput,
latency, and I/O amplification is achieved with 4 KB pages.

• Q4: To manage the high parallelism required for large
NVMe SSD arrays, the database system must employ a low
overhead mechanism to quickly jump between user queries.
To solve that we employed cooperative multitasking using
lightweight user-space threads.

• Q5: Managing workloads with tens of million IOPS makes
out-of-memory code paths hot and performance critical.
This requires scalable I/O management through partition-
ing relevant data structures to prevent contention hotspots.
The replacement algorithm has to be optimized to evict tens
of millions of pages per second

• Q6: I/O should be performed directly by worker threads. In
our design worker threads in fact perform all duties, like,
in-memory work, eviction, and I/O.This symmetric design
has conceptual advantages and allows for a more robust
system.

Hardware and software progress. The Linux kernel I/O interfaces
performed surprisingly well and were able to achieve 10M IOPS
in our benchmarks. io_uring with I/O polling enabled was the
only kernel interface that could achieve the full bandwidth of our
NVMe array. The big advantage of kernel-bypassing with SPDK is
its efficiency in terms of CPU cycles. However, SPDK also has big
disadvantages, for example, it requires root privileges and exclusive
access to the whole drive. For now, there is enough CPU time
available for the less efficient kernel interfaces. With upcoming
PCIe 5.0 SSDs this ratio between CPU cycles and I/O operations is
changing again, which might make kernel bypassing more relevant.
But kernel development is not standing still and could keep up with
this development.
Flash is King. As we have discussed in Section 1, the economic
landscape is clear: NVMe SSDs are attractive for high-performance
OLTP and will become even more relevant with further increasing
bandwidths. As more systems adapt to this economic reality, we
believe our work can serve as an important foundation.

ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 447457559.

2101

REFERENCES
[1] Adnan Alhomssi, Michael Haubenschild, and Viktor Leis. 2023. The Evolution

of LeanStore. In BTW (LNI), Vol. P-331. 259–281.
[2] Jens Axboe. 2023. fio - Flexible I/O tester. Retrieved March 1, 2023 from https:

//github.com/axboe/fio
[3] Bishwaranjan Bhattacharjee, Kenneth A. Ross, Christian A. Lang, George A.

Mihaila, and Mohammad Banikazemi. 2011. Enhancing recovery using an SSD
buffer pool extension. In DaMoN. 10–16.

[4] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The
Linux Open-Channel SSD Subsystem. In FAST. 359–374.

[5] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A.
Ross, and Christian A. Lang. 2010. SSD Bufferpool Extensions for Database
Systems. Proc. VLDB Endow. 3, 2 (2010), 1435–1446.

[6] Jiajia Chu, Yunshan Tu, Yao Zhang, and Chuliang Weng. 2020. Latte: A Native
Table Engine On Nvme Storage. In ICDE. 1225–1236.

[7] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,
Richard P. Spillane, Amy Tai, and Rob Johnson. 2020. SplinterDB: Closing
the Bandwidth Gap for NVMe Key-Value Stores. In USENIX Annual Technical
Conference. 49–63.

[8] Andrew Crotty, Viktor Leis, and Andrew Pavlo. 2022. Are You Sure You Want to
Use MMAP in Your Database Management System?. In CIDR. www.cidrdb.org.

[9] Jaeyoung Do, Ivan Luiz Picoli, David B. Lomet, and Philippe Bonnet. 2021. Better
database cost/performance via batched I/O on programmable SSD. VLDB J. 30, 3
(2021), 403–424.

[10] Ming Du, Yan Zhao, and Jiajin Le. 2009. Using Flash Memory as Storage for
Read-Intensive Database. In DBTA. 472–475.

[11] Athanasios Fevgas, Leonidas Akritidis, Panayiotis Bozanis, and Yannis
Manolopoulos. 2020. Indexing in flash storage devices: a survey on challenges,
current approaches, and future trends. VLDB J. 29, 1 (2020), 273–311.

[12] Mayank Goswami, Dzejla Medjedovic, Emina Mekic, and Prashant Pandey.
2018. Buffered Count-Min Sketch on SSD: Theory and Experiments. CoRR
abs/1804.10673 (2018).

[13] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In CIDR.

[14] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro P. Buchmann. 2015.
NoFTL for Real: Databases on Real Native Flash Storage. In EDBT. 517–520.

[15] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. 2020.
Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage
Engines. In SIGMOD Conference. ACM, 877–892.

[16] Kaisong Huang, Darien Imai, Tianzheng Wang, and Dong Xie. 2022. SSDs
Striking Back: The Storage Jungle and Its Implications to Persistent Indexes. In
CIDR.

[17] Woon-Hak Kang, Sang-Won Lee, and Bongki Moon. 2012. Flash-based Extended
Cache for Higher Throughput and Faster Recovery. Proc. VLDB Endow. 5, 11
(2012), 1615–1626.

[18] Woon-Hak Kang, Sang-Won Lee, and Bongki Moon. 2016. Flash as cache exten-
sion for online transactional workloads. VLDB J. 25, 5 (2016), 673–694.

[19] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-Suk Kee, and Moonwook
Oh. 2014. Durable write cache in flash memory SSD for relational and NoSQL
databases. In SIGMOD Conference. 529–540.

[20] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and Changwoo
Min. 2014. Supporting Transactional Atomicity in Flash Storage Devices. IEEE
Data Eng. Bull. 37, 2 (2014), 27–34.

[21] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. 2019. Reaping the
performance of fast NVM storage with uDepot. In FAST. 1–15.

[22] Oliver Kowalke. 2014. Boost Context Library. Retrieved March 1, 2023 from
https://www.boost.org/doc/libs/1_80_0/libs/context/doc/html/index.html

[23] Sangjin Lee, Alberto Lerner, André Ryser, Kibin Park, Chanyoung Jeon, Jinsub
Park, Yong Ho Song, and Philippe Cudré-Mauroux. 2022. X-SSD: A Storage
System with Native Support for Database Logging and Replication. In SIGMOD
Conference. 988–1002.

[24] Sang-Won Lee, Bongki Moon, and Chanik Park. 2009. Advances in flash memory
SSD technology for enterprise database applications. In SIGMOD Conference.
863–870.

[25] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo
Kim. 2008. A case for flash memory ssd in enterprise database applications. In
SIGMOD Conference. 1075–1086.

[26] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. 185–
196.

[27] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:
the design and implementation of a fast persistent key-value store. In SOSP.
447–461.

[28] Alberto Lerner and Philippe Bonnet. 2021. Not your Grandpa’s SSD: The Era of
Co-Designed Storage Devices. In SIGMOD Conference. 2852–2858.

[29] Leonardo Mármol, Swaminathan Sundararaman, Nisha Talagala, and Raju Ran-
gaswami. 2015. NVMKV: A Scalable, Lightweight, FTL-aware Key-Value Store.
In USENIX Annual Technical Conference. 207–219.

[30] MongoDB. 2022. WiredTiger - WiredTiger is an high performance, scalable, pro-
duction quality, NoSQL, Open Source extensible platform for Data management.
Retrieved March 1, 2023 from https://source.wiredtiger.com/

[31] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos
Bilas. 2016. Tucana: Design and Implementation of a Fast and Efficient Scale-up
Key-value Store. In USENIX Annual Technical Conference. 537–550.

[32] Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pinar Tözün. 2020. Open-
Channel SSD (What is it Good For). In CIDR.

[33] Devashish R. Purandare, Peter Wilcox, Heiner Litz, and Shel Finkelstein. 2022.
Append is Near: Log-based Data Management on ZNS SSDs. In CIDR.

[34] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan Bhat-
tacharjee. 2013. Making Updates Disk-I/O Friendly Using SSDs. Proc. VLDB
Endow. 6, 11 (2013), 997–1008.

[35] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan Bhat-
tacharjee. 2016. Exploiting SSDs in operational multiversion databases. VLDB J.
25, 5 (2016), 651–672.

[36] Meta Open Source. 2022. RocksDB - A persistent key-value store for fast storage
environments. Retrieved March 1, 2023 from http://rocksdb.org/

[37] Yanjie Tan, Huailiang Tan, Peng Zhu, Youyou Lu, and Zaihong He. 2022. Em-
bedded Transaction Support Inside SSD With Small-Capacity Non-Volatile Disk
Cache. IEEE Trans. Knowl. Data Eng. 34, 5 (2022), 2148–2163.

[38] Linux Kernel Team. 2019. Efficient IO with io_uring. Retrieved March 1, 2023
from https://kernel.dk/io_uring.pdf

[39] SPDK Team. 2023. Storage Performance Development Kit (SPDK). Retrieved
March 1, 2023 from https://spdk.io/

[40] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2020. Building blocks for persistent memory. VLDB J. 29, 6 (2020),
1223–1241.

[41] Li Wang, Zining Zhang, Bingsheng He, and Zhenjie Zhang. 2020. PA-Tree:
Polled-Mode Asynchronous B+ Tree for NVMe. In ICDE. 553–564.

2102

	Abstract
	1 Introduction
	2 What Modern NVMe Storage Can Do
	2.1 Drive Scalability
	2.2 The Case for 4KB Pages
	2.3 SSD Parallelism
	2.4 I/O Interfaces
	2.5 A Tight CPU Budget
	2.6 Implications for High-Performance Storage Engines

	3 How To Exploit NVMe Storage: An I/O-Optimized Storage Engine Design
	3.1 Design Overview and Outline
	3.2 DBMS-Managed Multitasking
	3.3 Background Work Through System Tasks
	3.4 Managing I/O
	3.5 CPU Optimizations and Scalability

	4 Evaluation
	4.1 Experimental Setup
	4.2 System Comparison
	4.3 Incremental Performance Improvements
	4.4 Out-Of-Memory Scalability
	4.5 I/O Interfaces
	4.6 CPU Usage
	4.7 Latency

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

