
Temporal SIR-GN: Efficient and Effective Structural
Representation Learning for Temporal Graphs

Janet Layne
Boise State University, Boise, ID, USA

janetlayne@boisestate.edu

Justin Carpenter
Boise State University, Boise, ID, USA

justincarpenter836@u.boisestate.edu

Edoardo Serra
Boise State University, Boise, ID, USA

edoardoserra@boisestate.edu

Francesco Gullo
UniCredit, Rome, Italy

gullof@acm.org

ABSTRACT

Node representation learning (NRL) generates numerical vectors

(embeddings) for the nodes of a graph. Structural NRL specifically

assigns similar node embeddings for those nodes that exhibit sim-

ilar structural roles. This is in contrast with its proximity-based

counterpart, wherein similarity between embeddings reflects spa-

tial proximity among nodes. Structural NRL is useful for tasks such

as node classification where nodes of the same class share structural

roles, though there may exist a distant, or no path between them.

Athough structural NRL has been well-studied in static graphs,

it has received limited attention in the temporal setting. Here, the

embeddings are required to represent the evolution of nodes’ struc-

tural roles over time. The existing methods are limited in terms of

efficiency and effectiveness: they scale poorly to even moderate

number of timestamps, or capture structural role only tangentially.

In this work, we present a novel unsupervised approach to struc-

tural representation learning for temporal graphs that overcomes

these limitations. For each node, our approach clusters then ag-

gregates the embedding of a node’s neighbors for each timestamp,

followed by a further temporal aggregation of all timestamps. This is

repeated for (at most) d iterations, so as to acquire information from

the d-hop neighborhood of a node. Our approach takes linear time

in the number of overall temporal edges, and possesses important

theoretical properties that formally demonstrate its effectiveness.

Extensive experiments on synthetic and real datasets show su-

perior performance in node classification and regression tasks, and

superior scalability of our approach to large graphs.

PVLDB Reference Format:

Janet Layne, Justin Carpenter, Edoardo Serra, and Francesco Gullo.

Efficient and Effective Structural Representation Learning for Temporal

Graphs. PVLDB, 16(9): 2075-2089, 2023.

doi:10.14778/3598581.3598583

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/janetlayne2/Temporal-SIR-GN.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.
doi:10.14778/3598581.3598583

1 INTRODUCTION

Graphs, i.e., sets of entities (nodes) linked to one other (via edges),

have become a ubiquitous model for representing real-world data

from a plethora of domains [2, 13, 18, 33]. Graph representation

learning (or graph embedding) automates the task of assigning

elements of a graph (e.g., nodes, edges, subgraphs, entire graphs)

numerical vectors – termed embeddings or representations1 – such

that the similarity between those elements in the graph corresponds

to the similarity between their embeddings [10, 29, 84, 97]. Node

representation learning (NRL) is the term used when embeddings

are generated specifically for the graph nodes.

Importantly, the notion of similarity in NRL is not fixed; ap-

proaches can largely be understood as capturing either node prox-

imity or structural properties in their representations. Proximity-

based approaches [9, 24, 52, 68, 73, 91, 96] preserve the information

about connections between nodes, assigning similar representa-

tions for nodes close in the graph in terms of d-hop reachability,

co-occurence in a random walk, Personalized PageRank, etc. Con-

versely, structural-role similarity is concerned with information

about nodes’ neighborhood structure (Figures 1–(I)–(II)).2

NRL has been employed in several downstream tasks, including

node classification, link prediction, clustering, graph visualization,

graph alignment, and graph summarization [10, 57, 97]. Either

methodology (proximity-based or structural) is useful in certain

circumstances. As an example, structural approaches are useful for

node classification, when the node labels are not determined by

proximity/homophily, rather by isomorphic local subgraph struc-

tures. In contrast, tasks such as link prediction may benefit from

use of proximity-based methods, where connections between nodes

are preserved in node representations [28, 30, 54, 56, 57].

A temporal graph is one whose edges change over time. It is

a sequence of graph snapshots representing the nodes and edges

at specific timestamps. Temporal graphs have received consider-

able attention regarding a variety of problems [7, 20, 67, 82, 85],

including NRL [31]. Structural NRL for temporal graphs yields em-

beddings that encode the temporal evolution of the (role played

by the) nodes [31]. This temporal evolution may lead to different

1We use the two terms interchangeably throughout the paper.
2Nevertheless, the literature lacks in uniformity on this terminology. The term “struc-
tural” may refer to notions other than that of our interest. E.g., “global structural
information’’ or similar terms are used [9, 63], which correspond to higher-order
spatial proximity (i.e., proximity based on nodes’ d -hop neighborhoods), rather than
the actual structural role discussed in this work..

2075

https://www.acm.org/publications/policies/artifact-review-and-badging-current

A

B C

D

E F

A

B C

D

E F

(I) Proximity-based NRL (II) Structural NRL

A

B C

D

E F

G

H I

J

K L

t1 t2 t2 t3 t2 t2 t4 t4

(III) Temporal structural NRL

Figure 1: Illustration of various kinds of node representation learning
(NRL). Similarity in nodes’ colors denotes similarity in nodes’ embeddings.
(I) Proximity-based NRL recognizes {A, B, C} as similar, as they are physi-
cally close in the graph. The same holds for {D, E, F}. (II) Nodes {A, D} are
part of different connected components. Nonetheless, structural NRL recog-
nizes them as similar, as they have isomorphic 1-hop neighborhoods (or, as
formally explained in Section 4.2, there is an automorphism that maps A to
D, and vice versa). The same holds for {B, C, E, F}. (III) Edges are labeled
with timestamps. For simplicity, here is one timestamp per edge, but, in gen-
eral, an edge can be assigned multiple timestamps. Timestamps here come
with no particular constraints: they can be any positive real number such that
t1 < t2 < t3 < t4. Temporal structural NRL recognizes {A, D} as similar, as they
have isomorphic 1-hop neighborhoods in all the timestamps (or, as formally
explained in Section 4.2, there is a temporal automorphism that maps A to D,
and vice versa). Likewise, {G, J} are recognized as similar, as they both have
two neighbors in one timestamp, and no neighbors in the other timestamps.
Similar considerations hold for {B, E}, {C, F}, and {H, I, K, L}. Conversely, if
the temporal aspect is not considered, i.e., timestamps on edges are ignored,
very different (structural) embeddings would be yielded: {A, D, G, J} would
wrongly have identical embeddings, and {B, C, E, F, H, I, K, L} as well.

structural roles than the static case (cf. Figure 1–(III)). Thus, static

NRL approaches cannot easily be adapted to temporal graphs.

Applications. A major application of temporal structural NRL is

on any node classification task where node interactions change over

time, and node labels are not homophily-driven, rather they depend

on structural properties of the graph. For instance, classifying nodes

(users) of financial transaction graphs as (non-)fraudulent typically

relies on the the patterns of transactions issued by a user over

time [66]. Embeddings encoding the structural temporal evolution

of a graph are thus well-suited for such a fraud-detection task.

Similarly, in social-trust networks where nodes (users) express

(dis)trust opinions vs. other nodes over time, the goal is to classify

a user as trustful or not. This classification heavily relies on the

temporal structural patterns of the rating received by a user [34].

The biological domain has plenty of applications that can benefit

from temporal structural NRL. For instance, in dynamic protein-

interaction networks, classifying a protein (node) as, e.g., uncharac-

terized/verified depends on the structural patterns of temporal in-

teractions between that protein and the others in the network [19].

Further applications of temporal structural NRL include tasks

other than node classification as well. For instance, the prediction

of properties (e.g., centralities) that depend on time-varying struc-

tural characteristics of a graph, or problems like entity resolution,

alignment and summarization in temporal graphs [40, 72, 86].

Motivation. To the best of our knowledge, the prominent work

that may handle temporal structural NRL (at least to some extent)

is that by Liu et al. [41]. It employs a temporal graph neural net-

work (GNN) that is based on the notion of k-core, i.e., the maximal

subgraph whose nodes have degree at least k [4]. Apart from Liu

et al., there exist several other temporal-GNN-based methods that

can potentially (be adapted to) capture structural roles, though

they are not specifically designed for structural NRL [12, 22, 36,

38, 39, 44, 46, 50, 60, 62, 64, 78, 79, 87, 88, 98]. All such methods

(including Liu et al.’s one) have limited efficiency, as they employ

computationally-expensive models, and limited effectiveness, due to

the use of loss functions not ideally suited for structural NRL.

Contributions. In this work, we tackle the problem of structural

NRL in temporal graphs. The goal is to generate a single embedding

for every node that encodes the temporal evolution of that node’s

structural role. The target structural roles are defined based on the

adaptation of graph isomorphism to the temporal setting.

Proposed method. We design Temporal SIR-GN, a novel unsuper-

vised approach that improves upon efficiency and effectiveness of

the state of the art. Temporal SIR-GN is inspired by SIR-GN [30],

a recently-introduced efficient and effective method for structural

NRL in static graphs. Temporal SIR-GN adopts SIR-GN’s idea of it-

eratively clustering and aggregating the representations of a node’s

neighbors, which in turn emulates the well-establishedWeisfeiler-

Lehman isomorphism test [81]. The main difference between our

approach and basic SIR-GN is that the aggregation of nodes’ rep-

resentations must now consider the temporal dimension. We ac-

complish this by computing the expected number of transitions

from a cluster C to any other cluster C ′ in the temporal sequence

of embeddings. A major challenge of this temporal aggregation

is that its naïve computation takes quadratic time in the number

of timestamps. We thus derive a factorization that converts the

quadratic cost to linear, without losing exactness. Clustering and

temporal aggregation are repeated for (at most) d iterations, so as to

explore d levels of depth of the temporal structure around a node.

Benefits of the proposed method include: (i) it takes linear time in

the number of temporal edges, while the existing methods are

slower, both in terms of theoretical time complexity, and especially

in practice, due to their many additional maintenance costs; (ii) it
keeps in main memory one embedding per node, as opposed to

the state of the art, which typically needs to keep in memory one

embedding for every node and every timestamp; (iii) it is backed
by a theoretical analysis that formally shows how it preserves

key temporal-structural information; (iv) it employs no sequence-

learning models: besides enabling efficiency, this makes the method

lightweight and easy-to-implement.

Summary and roadmap. To summarize, in this work, we:

• Tackle the problem of temporal structural NRL (Section 2).

• Devise Temporal SIR-GN, a novel unsupervised approach to

temporal structural NRL that overcomes existing limitations

of efficiency and effectiveness (Section 3).

• Show how to perform temporal aggregation in Temporal SIR-

GN in linear time in the number of timestamps (Section 3.4).

• Prove theoretical properties about how Temporal SIR-GN

preserves temporal structural-role information (Section 4).

• Design testbeds to assess a method in temporal structural

NRL (Section 5). This is a contribution of per-se interest.

• Extensively test Temporal SIR-GN on both synthetic and real

datasets. Results attest its high efficiency and effectiveness

in classification and regression tasks (Sections 5.1–5.4).

Section 6 concludes the paper and discusses ideas for future work.

2076

2 PRELIMINARIES AND BACKGROUND

Let G = (V ,T , E) be a temporal graph, where V is a set of nodes,

T ⊆ R+0 is a finite set of timestamps (where a timestamp is a positive

real number), E ⊆ V × V × T is a set of temporal edges, i.e., the

set {(u,v, t)} of all node pairs u,v ∈ V and timestamps t ∈ T such

that an edge exists between u and v in t . Given a timestamp t ∈ T ,
Et = {u,v ∈ V | (u,v, t) ∈ E} and Vt = {u ∈ V | ∃(u,v) ∈ Et }
denote the set of static edges and nodes existing in t , respectively,
and Gt = (Vt ,Et) is the (graph) snapshot of t , i.e., the static graph
corresponding to the projection of G in t . Let also T (u) = {t ∈ T |
u ∈ Vt } denote the timestamps in which u ∈ V exists, and T =
|∑u ∈V T (u)|. Hereinafter, we assume G to be undirected. However,

handling directed graphs is an easy extension (cf. Section 3.5). The

main notations used in the paper are summarized in Table 1.

This temporal graph model is general enough to have edges arbi-

trarily (dis)appear over time, and be present in multiple timestamps.

2.1 Problem statement

We focus on a non-diachronic objective, i.e., generating a single

embedding for each node that encodes the evolution of that node’s

structural role over thewhole temporal graph. This differs from a di-

achronic objective [21], where computation of the final embeddings

requires producing and materializing an intermediate embedding

for all timestamps. The problem addressed in this work is:

Problem 1 (Temporal Structural NRL). Given a temporal

graph G = (V ,T , E), and a natural number h ∈ N+, compute a

real-valued matrix R ∈ R |V |×h , where every row R[u] corresponds
to the embedding (or representation) of node u, for all u ∈ V . Each
R[u] encodes the temporal evolution of the structural role of u in G.

We require the temporal structural role in Problem 1 to express

the fact that similar embeddings are assigned to nodes whose local

surrounding subgraphs (e.g., d-hop neighborhoods) are as isomor-

phic as possible. Isomorphism here is intended not only for nodes

and edges, but for the temporal dimension as well. A more detailed

yet formal discussion on the target structural roles is in Section 3.1.

2.2 State of the art and limitations

Existing approaches to temporal structural NRL are based on tem-

poral GNNs, and most employ sequence-learning models. To the

best of our knowledge, the prominent existing method that is (in

part) suited for temporal structural NRL is Liu et al.’s CTGCN [41].

It consists of a double-sequence-learning architecture, where Re-

current Neural Networks (RNNs) are nested into a Long Short-Term

Memory (LSTM). The latter has one cell per timestamp, and every

cell is composed (among others) of multiple RNNs. Each RNN pro-

cesses the k-cores of a graph snapshot. Multiple RNNs are stacked

into every LSTM cell, to capture d-hop neighborhood information.

The use of k-cores makesCTGCN able to capture structural roles, at

least to some extent. In fact, two nodes of the same (highest-order)

k-core intuitively have structurally similar neigborhoods, even if

they are far away in the graph. However, being part of the same

k-core is not always a signal of similar structural role: e.g., if the

neighbors that make two nodes belong to the same k-core are in
turn part of very different (highest-order) k-cores.

Other temporal-GNN-based approaches, though not explicitly

conceived for structural NRL, can potentially be adapted to it. In fact,

they generate embeddings by iteratively aggregating the embed-

dings of a node’s neighbors: this process may capture local isomor-

phisms, hence structural roles. Many approaches of this kind have

been devised [12, 22, 36, 39, 44, 46, 50, 60, 62, 64, 78, 79, 87, 88, 98].

They all share the same general design principle: GNNs yield indi-

vidual embeddings for every graph snapshot, and all these embed-

dings are then aggregated over time (e.g., via a sequence-learning

model). The differences between the various methods lie in the

design and combination of the individual building blocks.

Running time limitations. The time complexity of all the above

methods is mostly due to the processing of every graph snapshot

via a GNN, which overall takes Ω(d × h × (|V | × |T | +∑t ∈T Et)) =
Ω(d × h × (|V | × |T | + |E |)) time. Ω(·) is used here because it is a

lower bound, as several “hidden” steps are not included in it, such

as computing the loss function (which may be expensive, e.g., for

an unsupervised graph-reconstruction loss), or the internal steps of

a sequence-learning model (e.g., handling the internal parameters

of every cell of an LSTM). In this regard, Liu et al.’s CTGCN comes

with a specific additional (non-negligible) kmax factor, that is the

maximum number of k-cores in a snapshot (kmax = O(|V |)).
Conversely, our method takesO(d×(|E|×

√
h+T×h+ |V |×h

√
h))

time (cf. Section 4.1). This gives a theoretical speed-up that is

considerable for large |T |, as in this case T � |V | × |T |, and
√
h �

|T |. In practice, the speed-up is much more evident (cf. Section 5.3),

due to the aforementioned occult costs of the existing methods.

Storage space limitations. Excluding the input graph, the above

methods typically require O(|T | × |V | × h) space, as an embedding

for every node and every timestamp has to be materialized and

kept in memory (e.g., during backpropagation). In contrast, our

Temporal SIR-GNmethod needsO(|V | × h) space. This corresponds
to an O(|T |) improvement, which is particularly appreciable when

the number of timestamps is relatively high.

Effectiveness limitations. The notion of k-core in Liu et al.’s

CTGCN [41] allows for (implicitly) capturing structural roles. How-

ever, the two loss functions of CTGCN are not ideally suited for

structural NRL. CTGCN’s first loss function is defined as the dis-

tance between nodes’ embeddings and nodes’ features (transformed

by neural-network layers). That loss is claimed to be structural-role-

preserving, but it comes with an important conceptual limitation:

it enforces the embeddings of any two nodes to be similar merely

if their features are similar, no matter the graph topology. At the

same time, CTGCN’s second loss is based on graph reconstruction,

whose use makes the method biased towards proximity.

Similarly, the other existing temporal-GNN-based approaches [12,

38, 39, 44, 46, 50, 60, 62, 64, 78, 87, 88] employ either supervised

losses defined based on nodes’ labels or unsupervised losses based

on graph reconstruction. Both those losses are prone to learn spatial

proximity. Particularly, supervised losses enforce a node’s embed-

ding to be close to the embeddings of its majority-label neighbors.

One might utilize general structural-role-aware losses in those ar-

chitectures. Unfortunately, designing a loss of this kind is hard. To

our knowledge, the only existing attempt is aforementioned Liu

et al.’s one, which has the previously-discussed downsides.

2077

Table 1: Main notations used in this paper

General notations
G= (V,T,E) Temporal graph (V : vertices; T : timestamps; E: temporal edges)

Gt= (Vt ,Et) Graph snapshot of timestamp t
T (u) Set of timestamps in which node u exists

T ∑
u∈V |T (u) |

d Depth of exploration (i.e., max iterations of Temporal SIR-GN)

h Dimensionality of the node embeddings

R Matrix containing the node embeddings (representations)

Notations from the proposed T-SIRGN (all vectors are row vectors)
M[x] For any matrixM , the row ofM corresponding to node x

α Parameter to modulate temporal effect in the node representations

CR Matrix containing the node representations from the current iteration

D Matrix containing nodes’ description vectors (Def. 3.3)

nRep Number of distinct node representations (from the previous iteration)

c Number of clusters of node representations

CC Centers of the clusters of node representations

Γu Vector of squared Euclidean distances from node u to cluster centers

N t
u Neighborhood description vector (Def. 3.4)

CFu Cluster frequency vector (Def. 3.5)

CTu Cluster transition matrix (Def. 3.7)

Z tu Auxiliary vector to speed-up the computation of CFu
nbr (u, t) Set of neighbors of node u at timestamp t
KMeans() Function executing K-Means clustering algorithm

Distance() Function computing distances to cluster centers

MinMax() Function computing min-max normalization of a matrix

2.3 Other related works

Proximity-based NRL in static graphs has its roots in the con-

text of matrix factorization [5, 59, 70]. A modern reinterpretation of

NRL, starting from the first decade of 2000s, has comprised methods

aimed at preserving d-hop reachability, co-occurrence in a random

walk, and Personalized PageRank [9, 24, 52, 68, 73, 91, 92, 96].

Structural NRL in static graphs includes approaches based on

attributed random walks [3], diffusion wavelets [14], Gaussian em-

bedding [51], structural identity [54], graphlets [56, 58], hybrid

methods [69], and SIR-GN [30], the precursor of our approach.

Graph Neural Networks (GNNs) have been widely employed

in NRL [6, 25, 32, 61, 75, 76, 83, 89]. GNNs yield embeddings by

iteratively aggregating the embeddings of a node’s neighbors. As

such, they have the potential of capturing structural-role similarity.

Nevertheless, major obstacles for GNNs to be truly structural-role-

aware are the neighborhood-sampling trick, and the loss functions

that are not appropriate for structural NRL (cf. Section 2.2).

For a more comprehensive overview of the vast literature on

NRL in static graphs, we refer to [8, 10, 29, 57, 84, 97].

Proximity-based NRL in temporal graphs [15] includes meth-

ods that enforce embedding alignment between consecutive snap-

shots [15, 65, 90, 101], or decompose the adjacency matrices of the

snapshots [43, 93, 95], or approaches based on temporal random

walks [27, 45, 47, 48, 53, 94], temporal point processes [16, 42, 71, 99,

100, 102], causal anonymous walks (for edge embedding) [80].

3 PROPOSED METHOD: TEMPORAL SIR-GN

3.1 Design principles

Target structures and desiderata. A principled way to charac-

terize structural roles in the static setting is via the notion of graph

isomorphism [28, 89]: nodes are recognized as structurally similar

based on how much their surrounding subgraphs are isomorphic.

For this reason, here we identify our target temporal structural

patterns by adapting graph isomorphism to the temporal setting.

Definition 3.1 (Isomorphism, subgraph isomorphism, automor-

phism). An isomorphism between graphs G1 = (V1,E1), G2 =

(V2,E2) is a permutation function F : V1 → V2, i.e., a function that

assigns to each node u1 ∈ V1 one and only one node u2 ∈ V2, such
that (F (u1), F (v1)) ∈ E2 if and only if (u1,v1) ∈ E1. A subgraph

isomorphism from G to G ′ is an isomorphism between G and a

subgraph ofG ′. An automorphism inG is an isomorphism between

G and G itself. Nodes u,u ′ of G are said automorphic if there exists

an automorphism in G mapping u to u ′ (and vice versa).

Based on the above definition, nodes u and u ′ are recognized
as automorphic if they share identical degree, and all their k-hop
neighbors share identical degree, for all k = 1, . . . ,kmax (kmax

is the maximum number of hops possible from both nodes). An

automorphism for the toy graph in Figure 1-(I) is F (A)=D, F (B)=
E, F (C)=C, F (D)=A, F (E)=B, F (F)=F.

Definition 3.2 (Temporal isomorphism, subgraph isomorphism, au-

tomorphism). A temporal isomorphism between temporal graphs

G1= (V1,T1, E1),G= (V2,T2, E2) is a permutation functionF : V1 →
V2 such that, for every u ∈V1, there exists Δu ∈ (−∞,+∞) such that

(F (u),F (v), t + Δu) ∈ E2 if and only if (u,v, t) ∈ E1. A temporal

subgraph isomorphism from G to G′ is a temporal isomorphism be-

tween G and a temporal subgraph of G′. A temporal automorphism

in G is a temporal isomorphism between G and G itself. Nodes

u,u ′ of G are said temporally-automorphic if there exists a temporal

automorphism in G mapping u to u ′ (and vice versa).

Let us elaborate on the definition of temporal automorphism.

Similar considerations hold for temporal (subgraph) isomorphism.

Temporal automorphism extends the notion of automorphism to

the temporal setting by allowing automorphism to occur across

graph snapshots. Δu is the temporal shift between snapshots across

which an automorphism should hold in order to have a temporal

automorphism. Specifically, if Δu =0, for having a temporal auto-

morphism F that maps u to u ′, there must exist an automorphism

Ft that maps u to u ′ in the same snapshot occurring at timestamp

t , for all t . Instead, if Δu >0 (resp., Δu <0) the automorphism map-

ping u to u ′ is required across the snapshot at timestamp t and the

snapshot occurring an amount |Δu | of time after (resp., before) t , for
all t . For instance, assuming t1=1, t2=2, t3=3, t4=4, a temporal au-

tomorphism for the graph in Figure 1-(III) is F (A)=D, F (B)=E,
F (C) = F, F (D) = A, F (E) = B, F (F) = C, F (G) = J, F (H) = K,

F (I) = L, F (J) = G, F (K) = H, F (L) = I; with ΔA = ΔB = ΔC = 1,

ΔD=ΔE=ΔF=−1, ΔG=ΔH = ΔI=2, ΔJ=ΔK=ΔL=−2. As a key dif-

ference to the static setting, though there exists an automorphism

(ignoring timestamps) mapping B to C, no temporal automorphism

exists that maps those two nodes to one another, because they

are temporally structurally different from the perspective of their

common neighbor A (i.e., B comes after C in time).

Whenever any two nodes u and v are temporally-automorphic,

they are temporally structurally identical to each other. This is

a limit case, for which a desirable requirement is to have identi-

cal embeddings produced for u and v . More generally, the closer

two nodes are to be temporally automorphic, the more structurally

2078

A

B

C

1 2

3

1 1 2

3

1 2

X

x4

x1

x2 x3

t1 t1

t1+1

t1
t1+1

Y

y4

y1

y2 y3

t1 t1

t1
t1+1

(I) (II) (III)

Figure 2: (I) Toy temporal graph G. For simplicity, G has one timestamp
per edge (though, in general, edges may have multiple timestamps). Lettered
nodes (A, B, C) are the ones of interest. Intuitively,A is closer to be temporally-
automorphic to B than C, as A and B share two temporal neighbors, while A
and C only one. This can be better observed with the maximal temporally
isomorphic subgraphs in (II)–(III). (II) GAB: maximal temporal graph that is
temporally subgraph isomorphic to G, and such that there exist two temporal
subgraph isomorphisms F1, F2 that map the same node of GAB to A and B,
respectively. t1 is any positive real number. F1, F2 are: F1(X)=A, F1(x1)=C,
F1(x2) = 1, F1(x3) = 2, F1(x4) = B; F2(X) = B, F2(x1) = C, F2(x2) = 1, F2(x3) =
2, F2(x4) = A. (III) GAC: same as (II), but for nodes A and C. The temporal
subgraph isomorphisms F1, F2 in this case are: F1(Y)=A, F1(y1)=C, F1(y2)=
1, F1(y3)=2, F1(y4)=B; F2(Y)=C, F2(y1)=A, F2(y2)=1, F2(y3)=2, F2(y4)=B.
Δ is 1− t1 for all the nodes and temporal subgraph isomorphisms.

similar they are (cf Figure 2): we take this as our main desider-

atum in designing an algorithm for the Temporal Structural

NRL problem. In Section 4, we show that our algorithm possesses

theoretical guarantees for the limit case of temporally-automorphic

nodes, while it comes with empirical evidence in the general case.

Algorithm rationale. The proposed Temporal SIR-GN method

resembles the approach in SIR-GN [30], a method for structural

NRL in static graphs that has been shown to achieve high effec-

tiveness and efficiency. The logic underlying SIR-GN emulates the

Weisfeiler-Lehman (WL) algorithm [26, 81], a popular method de-

signed (among others) to test for graph isomorphism.WL compares

structural representations generated for nodes in separate graphs.

These representations are computed by iteratively updating the cur-

rent representations via aggregation of additional layers of nodes’

neighborhoods. Representations are stored as a multiset that is then

used as a hash for unique structures (referred to as colors). Updat-

ing is performed until the number of unique hashes is unchanged.

SIR-GN capitalizes on the aptitude of WL to capture structural in-

formation, but with important modifications. First, SIR-GN clusters

node representations to control the overall representation size; then

the probability of membership in each cluster is calculated for each

node representation. Second, rather than aggregating neighbors via

multisets and hashing, each neighbor’s representation is summed to

form nodes’ updated representations. This sum aggregation gener-

ates a node representation at iteration i wherein each component of

the vector corresponds to the expected number of i-hop neighbors

of the node that are in a specific structural cluster.

Temporal SIR-GN can be viewed as the temporal version of SIR-

GN. The idea of emulating SIR-GN, and, in turn,WL appears natural

in order to identify temporal structures resembling (sub)graph iso-

morphism. Clustering and neighbor aggregation in Temporal SIR-

GN are (mostly) borrowed from SIR-GN. A major novelty lies in

the temporal aggregation, which is not present in SIR-GN, as it

handles static graphs. This is a technically challenging step, as it in

principle requires a pairwise comparison between timestamps. In

the following, we show how to overcome this quadratic explosion.

Algorithm 1 Temporal SIR-GN

Input: Temporal graph G = (V , T , E); natural numbers d, c > 0; real number α ≥ 0

Output: Matrix R ∈ R|V |×(c2+c) containing the embeddings of all the nodes in V

1: i = 0; nRep = 0; initialize a matrix D0 ∈ R|V |×c to 1/c
2: R0 = TemporalAggregation(G, c, D0, α)
3: while i < d ∧ nRep < | {Ri[u] | u ∈ V } | do
4: nRep = | {Ri[u] | u ∈ V } |
5: Di = ClusteringNodeDescription(V , Ri , c)
6: Ri+1 = TemporalAggregation(G, c, Di , α)
7: i = i + 1
8: end while
9: R = Ri−1, if nRep ≥ | {Ri[u] | u ∈ V } |; otherwise, R = Ri

10: function ClusteringNodeDescription(V , R, c)

11: Initialize a matrix D ∈ R|V |×c to 0 � Def. 3.3
12: RN = MinMax(R)
13: CC = KMeans(RN , c) � Clustering step
14: for all u ∈ V do � Node description loop
15: Γu = Distance(RN[u], CC)
16: D[u] = (max(Γu) − Γu)/(max(Γu) −min(Γu))
17: D[u] = D[u]/sum(D[u])
18: end for
19: return D
20: end function

21: function TemporalAggregation(G, c, D, α)
22: Initialize matrix CR ∈ R|V |×(c2+c) to 0
23: for all u ∈ V do
24: Let [t1, . . . , t |T (u)|] be T (u) sorted in ascending order

25: Initialize matrixCTu ∈Rc×c and vector Z
t |T (u)|
u ∈Rc to 0

26: N
t |T (u)|
u =

∑
v∈nbr (u,t |T (u)|) D[v] ; CFu = N

t |T (u)|
u

27: for all a from |T (u) | − 1 to 1 do � Temporal aggregation loop

28: N
ta
u =

∑
v ∈nbr (u,ta) D[v] � Neighbor aggregation (Def. 3.4)

29: CFu = CFu + N
ta
u � Def. 3.5

30: Z
ta
u = e

−(ta+1−ta)
α

(
N
ta+1
u + Z

ta+1
u

)
� Lemma 3.8

31: CTu = CTu + (N ta
u)�Z ta

u � Def. 3.7; Lemma 3.9
32: end for
33: CR[u] = concatenate(flatten(CTu), CFu)
34: end for
35: return CR
36: end function

3.2 Main loop

The pseudocode of Temporal SIR-GN is shown in Algorithm 1,

while Table 1 summarizes its main notations, and Figure 3 pro-

vides an example of its execution. The algorithm takes as input a

temporal graph G = (V ,T , E), and three parameters (all explained

in more detail during the description of the algorithm):

• d ∈ N+: an upper bound on the number of iterations.

• c ∈ N+: number of clusters of node representations, which

determines the dimensionalityh of the embeddings (h=c2+c).
• α ∈ R+ modulates the impact of the temporal aggregation.

The suggested default parameters are α = 1 and d = ∞, so as to

let the method run until the stopping criterion is met. Parameter

c is set so that the resulting c2 + c embedding dimensionality is

the closest to the desired h. Specifically, one can set c to either the

largest integer such that c2+c ≤ h, or the smallest integer such that

c2 + c ≥ h, and use standard tricks if c2 + c � h. If c2 + c < h, the
embeddings can be padded with zeros. If c2 + c > h, dimensionality

reduction techniques can be employed (as done, e.g., in [14]).

The main principle of Temporal SIR-GN is to identify c clusters
of nodes’ temporal structural roles, and let the representation of

2079

Input
A

B D

C

t2 t1, t2
t3

t2 t3

c = 3, α = 1
t1 = 4
t2 = 7
t3 = 16

−→
Clustering
NodeDescription
(Alg. 1, Line 10)

Description vectors (Def. 3.3):

Node C1 C2 C3

A 0 0.3 0.7
B 0.67 0.33 0
C 0.76 0.24 0
D 0 0.88 0.12

Neighbor aggregation ↓(Alg. 1, Line 28)

Neighborhood description vectors (Def. 3.4):

Node N t1 N t2 N t3

A 0 0.88 0.12 0.67 1.21 0.12 0 0 0
B 0 0 0 0.76 0.54 0.7 0 0.88 0.12
C 0 0 0 0.67 0.33 0 0 0.88 0.12
D 0 0.3 0.7 0 0.3 0.7 1.43 0.57 0

TemporalAggregation ↓ Example for node D
(Alg. 1, Line 21) shown below

D’s cluster frequency vector (Def. 3.5): CFD= N
t1
D
+N

t2
D
+N

t3
D
= [1.43 1.17 1.4]

D’s cluster transition matrix (Def. 3.7):

CTD=

(e−(16−7) × [1.43 0.57 0]�× [0 0.3 0.7]+
+ e−(16−4) × [1.43 0.57 0]�× [0 0.3 0.7]+
+e−(7−4) × [0 0.3 0.7]�× [0 0.3 0.7])

=

[
0 5.56e-5 1.3e-4
0 4.5e-3 1.05e-2
0 1.05e-2 2.44e-2

]

↓ D’s representation (Alg. 1, Line 33):

CR[D]= [0 5.56e-5 1.3e-4 0 4.5e-3 1.05e-2 0 1.05e-2 2.44e-2 1.43 1.17 1.4]

Figure 3: Run-through example of a single iteration of Algorithm 1.

a node reflect how well its k-hop neighborhood (k ≤ d) complies

with those clusters. To accomplish this, the first step consists in

computing what we term nodes’ description vectors:

Definition 3.3 (Description vector). Given c clusters of node rep-
resentations, the description vector D[u] of a node u ∈ V is a c-
dimensional vector, where each component j represents the proba-
bility that u’s representation belongs to cluster j.

After they are initialized to 1/c (Line 1), at each iteration of the

main loop (Line 3) description vectors are (i) updated in terms of the

new clustering of node representations (Line 5), and (ii) temporally

aggregated, so as to form the actual node representations of the

current iteration (Line 6). Clustering and temporal aggregation are

executed for the lesser of either the user-input d iterations or until a

stopping criterion is met. The stopping criterion is defined as with

the WL algorithm, wherein the current number of unique node

representations (nRep) is no longer increasing. Note that nRep is

expected to increase iteration after iteration, because of increasing

heterogeneity in the clusters, and, in turn, higher variance in the

description vectors. This is in accordance with WL, and it is an

opposite phenomenon to, e.g., the classic over-smoothing issue in

GNNs [11]. The representations yielded at iteration i (Ri) are input
to iteration i + 1. Once the stopping criterion is met at iteration

k ≤ d , the representation of a node expresses the temporal evolution

of that node’s structure measured out to its k-hop neighborhood.

Next, we describe clustering and temporal aggregation.

3.3 Clustering and node description

The ClusteringNodeDescription function (Line 10) first parti-

tions the current node representations into c clusters (Line 13).

Min-max normalization (Line 12) is performed beforehand, as a

common preliminary step in clustering. As a clustering algorithm,

we employ K-Means. This can be, however, replaced with any other

algorithm that produces c cluster centers in the form of numerical

vectors. Then, the new description vectors are computed (Line 14).

Specifically, each component of the description vector D[u] of node
u equals to the squared Euclidean distance from u to any cluster

center (Line 15). These distances are in turn converted to the prob-

abilities of membership in the various clusters (Lines 16–17).

3.4 Temporal aggregation

The TemporalAggregation function (Line 21) first computes the

neighborhood description vectors (Line 28):

Definition 3.4 (Neighborhood description vector). The neighbor-

hood description vector N t
u of a nodeu ∈ V at timestamp t ∈ T (u) is a

c-dimensional vector, where each component j is the expected num-

ber of neighbors of u at timestamp t whose representation belongs

to cluster j of node representations. That is, N t
u =

∑
v ∈nbr (u,t) D[v].

The algorithm then computes the cluster frequency vector (Line 29):

Definition 3.5 (Cluster frequency vector). The cluster frequency

vector CFu of a node u ∈ V is a c-dimensional vector, where

each component j is the expected number of times cluster j ap-
pears in u’s neighborhood over all the timestamps. That is, CFu =∑
t ∈T (u)

∑
v ∈nbr (u,t) D[v] =

∑
t ∈T (u) N

t
u .

CFu will be part of the ultimate node representations (see below).

However, it contains solely information aggregated over time. We

thus complementCFu with the cluster transition matrix CTu , which
keeps track of the temporal transitions τjl among clusters, occurring

within the neighborhood of u:

Definition 3.6 (Cluster temporal transition). Given clusters j and l
of node representations, a cluster temporal transition τjl between j
and l within the neighborhood of a nodeu ∈ V is the expected num-

ber of times j is observed to come before l in time in u’s neighbor-
hood. That is,τjl =

∑
t,t ′∈T (u),t ′>t

∑
v ∈nbr (u,t)

∑
v ′ ∈nbr (u,t ′) D[v][j]

× D[v ′][l] =
∑
t,t ′ ∈T (u),t ′>t N

t
u [j] × N t ′

u [l].
The rationale of the above definition is as follows. For times-

tamps t , t ′, the expected number of times cluster j is observed in

u’s neighborhood at timestamp t and cluster l is observed in u’s

neighborhood at t ′ is N t
u [j] ×N t ′

u [l]. As τjl is the expected number

of times j is observed to come before l in time in general, here is

the sum of N t
u [j] × N t ′

u [l] over all t ′ > t . Intuitively, τjl expresses
how often a structural pattern (cluster) j within a node’s neighbors

gets to another pattern l in the future. As such, cluster temporal

transitions capture the temporal evolution of structural patterns.

To smooth the contribution of distant timestamps, we include a

time elapse term e−(t
′−t) ∈ [0, 1], which can be interpreted as the

probability that a cluster temporal transition occurs from t to t ′.
Additionally, we use a parameter α ≥ 0, explained below. This leads

to the following ultimate definition:

Definition 3.7 (Cluster transitionmatrix). Given a real valueα ≥ 0,

the cluster transition matrix CTu of a node u ∈ V is a (c × c)-
dimensional matrix, where every [j, l] component corresponds to

the cluster temporal transition τjl , weighted by e
−(t ′−t)

α :

CTu =
∑
t,t ′∈T (u), t ′>t e

−(t ′−t)
α (N t

u)�N t
′

u . (1)

2080

Ultimate node representations. The cluster transition matrix

CTu is flattened (by concatenating its rows), and further concate-

nated to the cluster frequency vector CFu . This forms the final

node representation (embedding) CR[u] of node u at the current

iteration of Temporal SIR-GN (Line 33). Specifically, CR[u] is a
(c2 + c)-dimensional vector, where the first c2 components repre-

sent the expected number of temporal transitions from each cluster

of node representations to each other cluster, within u’s neighbor-
hood. The remaining c components represent the overall expected

number of times each cluster appears in u’s neighborhood.

A large or small α makes e
−(t ′−t)

α close to 1 or 0, respectively. The

first case is equivalent to have no time elapse term at all. The second

case makes CTu = 0: this way the ultimate node representations

will contain temporally-flattened information only (due to CFu).

Linear time temporal aggregation.Anaïve computation of Equa-

tion (1) takes quadratic time in the number |T (u)| of timestamps in

which a node u exists. This may lead to unaffordable running time

for even moderate number of timestamps. Here, we show how to

shorten this computation to linear. Let [t1, . . . , t |T (u) |] be the times-

tamps in T (u) sorted in ascending order. Also, for any t ∈ T (u), let
Z t
u be a c-dimensional auxiliary vector defined as:

Z t
u =

{
0, if t = t |T (u)| ,∑
t ′∈T (u), t ′>t e

−(t ′−t)
α N t

′
u , if t < t |T (u)| .

(2)

The following lemma shows how to compute Z t
u incrementally:

Lemma 3.8. For every a = 1, . . . ,T (u) − 1, it holds that Z ta
u =

e
−(ta+1−ta)

α

(
N ta+1
u + Z ta+1

u

)
.

Proof.

Z ta
u =

∑
b=a+1, ..., |T (u) | e

−(tb−ta)
α N

tb
u {Eq. (2)}

= e
−(ta+1−ta)

α N ta+1
u +

∑
b=a+2, ..., |T (u) | e

−(tb−ta+ta+1−ta+1)
α N

tb
u

= e
−(ta+1−ta)

α N ta+1
u + e

−(ta+1−ta)
α

∑
b=a+2, ..., |T (u) | e

−(tb−ta+1)
α N

tb
u

= e
−(ta+1−ta)

α

(
N ta+1
u + Z ta+1

u

)
. �

The next further lemma shows how to express CTu in terms of Z t
u :

Lemma 3.9. It holds that CTu =
∑
t ∈T (u)(N t

u)�Z t
u .

Proof.

CTu =
∑
t,t ′ ∈T (u), t ′>t e

−(t ′−t)
α (N t

u)�N t ′
u {Eq. (1)} �

=
∑
t ∈T (u) (N t

u)�
∑
t ′ ∈T (u), t ′>t e

−(t ′−t)
α N t ′

u

=
∑
t ∈T (u) (N t

u)�Z t
u . {Eq. (2)} �

Given these lemmas, it is easily observed that Temporal SIR-GN

performs a sound linear time computation of CTu :

Theorem 3.10. Lines 30–31 of Algorithm 1 soundly compute CTu .

Proof. This section of the algorithm processes all the times-

tamps in T (u) is descending order. This way, Z ta
u can be com-

puted from Z ta+1
u (Line 30), according to Lemma 3.8 (starting from

Z
t |T (u)|
u = 0, Line 25).CTu is then computed according to Lemma 3.9

(Line 31). Note that, to compute CTu , timestamps can be processed

in any order, including the descending one used here. �

3.5 Extensions

We discuss here preliminary ideas to handle alternative settings.

Directed graphs. Separately generate representations as with the

undirected method for each node’s in and out edges, and concate-

nate both into a single representation.

Node labels/attributes. Concatenate them to the embeddings at

each iteration (use one-hot encoding, if needed). This way, they can

exert influence on the clustering, and, as such, on the embeddings.

Inductive setting. This setting refers to computing a “model” that

can be used to yield embeddings for unseen nodes, or, in the most

general case, for the nodes of an entire new temporal graph Ĝ. In
the context of Temporal SIR-GN, the model corresponds to the

vector ĈC of cluster centers that have been produced at the end of a

training execution of the algorithm on a temporal graph other than

Ĝ. To get the node embeddings of Ĝ, it suffices to run Algorithm 1

by keeping cluster centers in Line 13 fixed and set to ĈC .

Time-interval representations. By default, Temporal SIR-GN

generates embeddings that are representative of all the temporal

snapshots {Gt }t ∈T of the input temporal graph G = (V ,T , E). To
have embeddings specific for a time interval (or a set of timestamps)

T ′ ⊆ T , one can simply take the temporal graph G′ = (V , E′,T ′),
E′ = {(u,v, t) ∈ E | t ∈ T ′} composed of all the snapshots corre-

sponding to timestamps in T ′, and run the algorithm on G′.

4 ALGORITHM ANALYSIS

In this section, we analyze the proposed Temporal SIR-GN algo-

rithm, from both a theoretical and an empirical point of view.

4.1 Computational complexity

Time complexity. The ClusteringNodeDescription function

(Line 10) runs K-Means on the rows of matrix RN ∈ R |V |×(c2+c),
with number of clusters set to c . This takesO(|V | ×c3) time (by rea-

sonably assuming the number of K-Means iterations is a constant).

Then (Line 14), it computes distances between node representa-

tions and cluster centers, plus some normalization of the resulting

vectors. This again takes O(|V | × c3) time, which corresponds to

the overall time complexity of ClusteringNodeDescription.

The runtime of the TemporalAggregation function is domi-

nated by the steps at Line 28 and 31. In the former, neighbor ag-

gregation is performed, which takes, for a node u and timestamp

t , O(c × |nbr (u, t)|) time, as it sums up a number |nbr (u, t)| of c-
dimensional vectors. This is repeated for every node u and every

timestamp t ∈ T (u), which leads to overall O(∑u ∈V
∑
t ∈T (u) c ×

|nbr (u, t)|) =O(|E | × c) time. The step at Line 31 aggregates (c × c)-
dimensional matrices for every node u ∈ V and over all timestamps

t ∈ T (u), thus it takes O(T × c2) time. As a result, the overall time

complexity of TemporalAggregation is O(|E | × c + T × c2).
Altogether, ClusteringNodeDescription and TemporalAg-

gregation take O(|E | × c + T × c2 + |V | × c3). Considering that

those functions are executed for at most d iterations in the main

2081

loop of the algorithm (Line 3), and that c = O(
√
h), then the ulti-

mate time complexity of Temporal SIR-GN can be expressed as

O(d × (|E| ×
√
h +T ×h + |V | ×h

√
h)). If d and h are fixed (i.e., they

are constant), this simplifies to O(|E |), since T = O(|E |).
Space complexity. Besides the input graph, the largest data struc-

tures that the algorithm needs to keep in memory at each iteration

i are matrices (i.e., R and RN) of dimensionality |V | × (c2 + c). Thus,
the overall space complexity isO(|E | + |V | × c2) = O(|E | + |V | ×h).

4.2 Theoretical properties

Temporal SIR-GN comes with theoretical guarantees if the input

temporal graph exhibits a temporal automorphism (Definition 3.2).

Specifically, as a first theoretical property, we show that the tem-

poral aggregation step of Temporal SIR-GN guarantees equal out-

put node representations if equal description vectors for any two

temporally-automorphic nodes are used. This result is stated in

the following Theorem 4.2, and makes use of the next auxiliary

lemma, which states that the neighbors of temporally-automorphic

nodes must be in turn temporally-automorphic:

Lemma 4.1. Let F be a temporal automorphism in a temporal

graph G(V ,T , E) such that, foru,v ∈ V , F (u) = v with a certain Δu .
It holds that ∀t ∈T (u),∀x ∈nbr (u, t), ∃y ∈ nbr (v, t +Δu) : F (x) = y.

Proof. We prove the lemma by contradiction. Assume ∃t ′ ∈
T (u),x ′ ∈nbr (u, t ′) : F (x ′)=z, z �nbr (v, t ′ + Δu). Then, by defini-

tion of temporal automorphism, given edge (u,x ′, t ′), there must

exist edge (F (u),F (x ′), t ′+Δu) = (v, z, t ′+Δu). This means that

z ∈nbr (v, t ′+Δu), which contradicts the assumption. �

Theorem 4.2. Let there be a temporal graph G = (V ,T , E), if the
TemporalAggregation function of Algorithm 1 (Line 21) receives

in input a matrix D such that for any two temporally-automorphic

nodes u,v ∈ V it holds that D[u] = D[v], then CR[u] = CR[v].

Proof. If D[u]=D[v] for temporally-automorphic nodes u and

v (hypothesis), then, by Lemma 4.1, the neighbor aggregation at

Line 28 for each will result in identical vectors N tu
u = N tu+Δu

v , for

all tu ∈ T (u). A further straightforward consequence of Lemma 4.1

is that ∀tu ∈ T (u),∃tv ∈ T (v) : tv = tu + Δu , and vice versa.

This consequence along with identical N tu
u , N tu+Δu

v vectors leads

to identical summation over all the timestamps of each neighbor

aggregation (the cluster frequency vector, Line 29), i.e., CFu =∑
tu ∈T (u) N

tu
u =

∑
tu ∈T (u) N

tu+Δu
v =

∑
tv ∈T (v) N

tv
v =CFv .

Then, cluster transition matrices are computed as in Defini-
tion 3.7. As (from above) all tu ∈ T (u) differ from tv ∈ T (v) by
Δu , then e

−(t ′u−tu)
α = e

−(t ′u−tu+Δu−Δu)
α = e

−(t ′v −tv)
α . Coupling this

with the above consequence of identical N tu
u , N tu+Δu

v leads to

CTu =
∑
tu ,t

′
u ∈T (u), t ′u >tu e

−(t ′u−tu)
α (N tu

u)�N t
′
u
u =

=
∑
tu+Δu ,t

′
u+Δu ∈T (u), t ′u >tu e

−(t ′u−tu+Δu−Δu)
α (N tu+Δu

u)�N t
′
u+Δu
u =

=
∑
tv ,t

′
v ∈T (v), t ′v >tv e

−(t ′v −tv)
α (N tv

v)�N t
′
v
v =CTv . The theorem fol-

lows as CR[u]= (flatten(CTu) CFu)= (flatten(CTv) CFv)=CR[v]. �

A second property proved below regards the overall embeddings

yielded by Temporal SIR-GN, which are guaranteed to be equal for

temporally-automorphic nodes:

Theorem 4.3. Given a temporal graph G, for any two temporally-

automorphic (see Definition 3.2) nodes u,u ′ in G, the embeddings

R[u] and R[u′] computed by Algorithm 1 are equal.

Proof. We apply a proof by induction. The base case consists in

showing that any two temporally-automorphic nodesu andu ′ have
identical initial representations R0[u] = R0[u′]. In this regard, note

that D0 vector is initialized with a constant (Line 1); then, clearly,

D0
[u] = D0

[u′]. R
0 is the output of the temporal aggregation with D0

in input: then, R0[u] and R
0
[u′] must be equal by Theorem 4.2.

Now, we assume that the theorem is true for iteration i , and prove
it for iteration i+1. This can be accomplished by noticing that equal

representations Ri[u] and R
i
[u′] for temporally-automorphic nodes u

and u ′ lead to equal description vectors Di
[u] and D

i
[u′] (Line 5). In

fact, regardless of the specific cluster centers, the distance between

Ri[u], R
i
[u′] and all those centers are the same, which means that

Di
[u] and D

i
[u′] are the same too. Also, by Theorem 4.2, equal Di

[u]
and Di

[u′] lead to equal Ri+1[u] and Ri+1[u′] (Line 6).
The theorem now follows by simply observing that the final em-

beddings R[u] and R[u′] are the ones produced in the last iteration,

which must be equal like the other iterations. �

Theorem 4.3 has two important consequences. The first is that

for nodes with identical temporal structures, Temporal SIR-GN

generates identical representations. This is vital to effectively cap-

ture temporal structural roles. Note that Theorem 4.3 provides a

sufficient condition. Deriving a necessary condition too is hard, as

it would correspond to having found a polynomial-time algorithm

for the problem of Graph Isomorphism, which is still a crucial

open question in theoretical computer science [23].

The second consequence is that Temporal SIR-GN guarantees

time invariance: nodes with identical neighborhood structures and

identical intervals between timestamps have identical representa-

tions, no matter if the absolute timestamps are similar. Time invari-

ance allows a temporal NRL model to capture similarity between

events that are close in structure, but occur at different times.

4.3 Empirical properties

Although Temporal SIR-GN exhibits theoretical properties for the

limit case of temporally-automorphic nodes, deriving formal guar-

antees for the general case is not easy. This goes beyond the scope of

this work, and we defer it to the future. Instead, here we provide em-

pirical intuitions of why our algorithm is generally well-designed

for the target Temporal Structural NRL problem.

First of all, we remark that a connection between the desidera-

tum of complying with temporal structural patterns that resemble

a notion of graph isomorphism is the fact that Temporal SIR-GN

emulates theWL isomorphism test. In fact, inspired byWL, the tem-

poral aggregation in Temporal SIR-GN yields an embedding vector

where part of the components correspond to the (expected) number

a certain temporal structural pattern is exhibited in the neighbors of

a node. These are complemented with novel components represent-

ing the (expected) number of temporal transitions among patterns.

Intuitively, the closer two nodes are to be temporally automorphic,

2082

Figure 4: Static graph patterns used as a basis for the temporal graph pat-
terns underlying the synthetic datasets.

t1 t2 t3 t4 t5 [t1, t5]

Figure 5: Example of temporal graph pattern underlying the synthetic
datasets, derived from “building” the left-most static pattern in Figure 4 edge-
by-edge over a sequence of timestamps. Aggregating the temporal edges from
the [t1, t5] interval leads to the static pattern at hand.

the more they share such structural patterns, then the more similar

the components of their corresponding embedding vectors.

More in concrete, consider the following experiment. Given a

temporal graph G = (V ,T , E) and ϵ ∈ (0, 1], let Gϵ be the graph

resulting from the addition of a number ϵ |E | of random temporal

edges (u,v, t) � E,u,v ∈ V , t ∈ T to G. We generate Gϵi , for i =
0, . . . , 5, with ϵ0=0, ϵ1=0.1, . . . , ϵ5=0.5. Every Gϵi is built adding

random edges on top of Gϵi−1 . We compute Temporal SIR-GN’s

embeddings of G and all Gϵi and measure the average distance d̄ϵi
between the embedding of every node in G and the “replica” of that

node in Gϵi , for all ϵi . The rationale is as follows. Between G and

Gϵ0 there is a temporal isomorphism, as they are identical graphs.

Then, d̄ϵ0 = 0 is expected. From ϵ1 on, the temporal isomorphism

progressively disappears, due to the increasing addition of random

edges. Thus, the desideratum here is to observe d̄ϵi < d̄ϵi+1, for all
i = 0, . . . , 4. As shown in the following table (for the real dataset

DPPIN, cf. . Section 5), this is actually the case:

d̄ϵ0, ϵ0=0 d̄ϵ1, ϵ1=0.1 d̄ϵ2, ϵ2=0.2 d̄ϵ3, ϵ3=0.3 d̄ϵ4, ϵ4=0.4 d̄ϵ5, ϵ5=0.5
0 1.959 3.117 6.799 8.623 10.480

Finally, as a specific example where Temporal SIR-GN meets

the desideratum that embedding similarity reflects to which extent

the corresponding nodes are temporally automorphic, consider the

graph in Figure 2. The (12-dimensional) embeddings produced by

Temporal SIR-GN for the lettered nodes of that graph are:

R[A] 0.2 0 0.163 0 0 0 0.275 0 0.233 1.449 0 1.551

R[B] 0.065 0 0.074 0 0 0 0.108 0 0.121 0.848 0 1.151

R[C] 0 0 0 0 0 0 0 0 0 0.378 0 0.622

The distances between the embedding of node A and the embed-

dings of the other nodes are |R[A]−R[B] | = 1.5 < |R[A]−R[C] | = 2.87.

These distances comply with the size of the corresponding maximal

temporally isomorphic subgraphs (Figure 2–(I)-(II)).

5 EXPERIMENTS

In this section, we empirically evaluate efficiency and effectiveness

of the proposed Temporal SIR-GN (for short, T-SIRGN), and com-

pare it to the state of the art. Efficiency is evaluated in terms of the

Table 2: Dataset characteristics. |V |: #nodes; |T |: #timestamps; |E |: #tem-
poral edges; |E |: #non-temporal edges (i.e., #node pairs sharing at least one
temporal edge); T:

∑
u∈V |T (u) |, whereT (u) is the set of timestamps in which

node u exists; #distinct node labels (i.e., classes).

Dataset |V | |T | |E | |E | T #Labels

Synth0.0 20 280 28 27 768 27 768 54 912 24

Synth0.1 20 280 100 29 796 29 796 58 852 24

Synth0.2 20 280 100 31 824 31 824 62 792 24

Synth0.3 20 280 100 33 852 33 852 66 708 24

BrazilAir 39 300 31 354 420 354 415 446 836 12

EUAir 119 700 61 1 978 350 1 978 319 2 529 289 12

USAir 348 110 101 4 487 670 4 433 165 6 246 184 12

Hospital [1, 74] 75 9 453 32 424 1 139 50 645 4

HS [1, 17] 180 11 273 45 047 2 239 79 578 5

Bitcoin [34, 35] 5 881 35 592 35 592 35 592 71 184 2

DPPIN [19] 905 36 4 826 1 758 4 462 2

GDELT [98] 16 682 170 522 191M 191M 65M 80

Facebook [77] 4 117 10 8 029 5 143 10 226 –

AS [37] 6 828 100 1 947 704 17 364 475 765 –

UCIMsg [49] 1 899 7 22 663 13 838 4 558 –

runtime needed to generate the embeddings. Effectiveness is evalu-

ated by using the generated embeddings in a couple of downstream

machine-learning tasks, namely node classification and regression.

Datasets. We experiment with synthetic and real datasets, whose

characteristics are shown in Table 2 and described below.

Synthetic benchmark datasets. Four synthetic benchmark datasets

were generated (Synth0.0–Synth0.3). We started from the 8 static

graph structural patterns in Figure 4 (popular in the structural NRL

literature [30]), and we used them as a basis for creating temporal

patterns that ultimately compose the synthetic datasets. Specifically,

we first sort the set E of edges in a static pattern at random, so as to

yield a sequence e1, . . . , e |E | . Then, every ei = (ui ,vi) is assigned
a timestamp ti that is sampled from the set T = {1, . . . , 100}. The
result is a temporal edge (ui ,vi , ti). Timestamp sampling is with

replacement, so that the same timestamp can be assigned multiple

edges. An example of this process is illustrated in Figure 5. For

every static pattern, we considered 3 different random orderings of

its edges, and associated every ordering to a sequence of timestamps.

As a result, every static pattern yields 3 different temporal patterns,

for a total of 24 temporal patterns. Nodes’ class labels are defined

by letting a temporal pattern be representative of the (temporal)

structural role of that pattern’s nodes. Hence, each pattern was

assigned a different label, which was in turn used as a label for all

the nodes of that pattern. A node may possibly be part of multiple

patterns. However, we ensured a single label per node by setting

an ordering (at random) among patterns, and associating a node to

the label of the first pattern in the ordering that node appears in.

We repeated this process 104 times, setting different identities

for all the nodes of the generated temporal edges. This led to the

Synth0.0 dataset. We created subsequent datasets from it, each with

additional noise in the form of randomly generated temporal edges

between already existing nodes. Specifically, Synth0.1 corresponds

to 0.1 × |E0.0 | random temporal edges added, where E0.0 are the

temporal edges in Synth0.0, and so on. Note that the addition of

noise makes it possible that in Synth0.1–Synth0.3 datasets the same

pair of nodes is connected by an edge in multiple timestamps.

2083

Temporally-adapted real datasets. We took three popular static real

datasets from the air traffic domain (that are available, among oth-

ers, from [54]), and converted them to temporal versions, namely

BrazilAir, EUAir, and USAir. In these datasets, nodes, edges, and

labels represent airports, air traffic, and airport designations as

high to low traffic, respectively. Similar to our synthetic datasets,

each original static graph was used as a base structure, but tem-

porally constructed according to a time sequence. We used 3 time

sequences, and the node classes correspond to the original 4 classes,

along with the corresponding sequence, for a total of 12 ultimate

classes. This was repeated for each temporal structure 100 times.

Real labeled temporal datasets. These are real temporal graphs with

class labels on nodes. Hospital [1, 74] contains (RFIDs) contacts in

a hospital ward in Lyon, France during Dec 6th-10th, 2010, in 20-

second intervals. Node labels identify a node as a patient, medical

doctor, nurse, administrative. HighSchool (HS) [1, 17] contains con-

tacts in 5 classes in a high school in Marseilles, France during 7 days

in Nov 2012, in 20-second intervals, with node labels correspond-

ing to the class of a student. Bitcoin [34, 35] is a who-trusts-who

network of traders on the Bitcoin OTC platform (we ignore edge

weights). Timestamps represent the time of rating. Node labels

correspond to trustworthy/untrustworthy users. DPPIN [19] con-

sists of the protein-protein interactions of yeast cells through 12

stages of 3 metabolic cycles, for a total of 36 timestamps. Node la-

bels identify proteins as uncharacterized/verified. GDELT [98] is a

graph derived from the GDELT 2.0 Event DB, comprised of a record

information taken every 15 mins from news sources over 2016 to

2020. Nodes are actors, edges are events. Node labels correspond to

the country where the actor was present during that event.

Real unlabeled temporal datasets. Facebook [77] is a 3-month subset

of Facebook user interaction from a New Orleans community. The

original Facebook dataset had 9 984 snapshots, most with a single

edge only. In our experiments, we used a more meaningful version

of the dataset where we aggregate consecutive snapshots into 10

uniformly-sized bins. AutonomousSystems (AS) [37] is a communi-

cation network from Border Gateway Protocol logs. UCIMsg [49]

is a directed graph (we ignore edge directionality) of messages be-

tween users of an online community at University of California

Irvine. As with Facebook, the original UCIMsg had 59 811 snap-

shots, most with one edge only.We again here aggregated snapshots

into 7 uniformly-sized bins (as suggested in [41]).

Competitors. We involve the following state-of-the-art methods.

Liu et al.’s CTGCN [41], the most direct competitor, in three

variants: U-CTGCN-S (unsupervised, structural loss), U-CTGCN-C

(unsupervised, connectivity-preserving loss), S-CTGCN-C (super-

vised, connectivity-preserving loss).

DynGem [22], GCRN [62], TGAT [88], TGN [55] as representa-

tives of temporal-GNN-based NRL. As for GCRN, we assess both

the supervised (S-GCRN) and unsupervised (U-GCRN) versions.

DynGem, TGAT, TGN are solely unsupervised.

TIMERS [95], as a representative of proximity-based temporal

NRL approaches. This method is also strictly unsupervised.

DGI [76], NWR [69], SIR-GN [30] are tested as representatives

of (different classes of) static NRL approach: DGI is a GNN-based

method; NWR is a “hybrid” method, which combines structural and

proximity-based NRL; SIR-GN (the precursor of our T-SIRGN) is a

purely structural method. These methods are run on the flattened

input temporal graph (i.e., a static graph where an edge is drawn

between any two nodes if they share at least one temporal edge).

Within this category of competitor, we also include a version of

our T-SIRGN, termed StructuralShifted-T-SIRGN (for short, SS-

TSIRGN), where we let α approach 0. This leads to embeddings that

reflect the temporally-flattened structural aspect only (i.e., due to

cluster frequency vector CF , cf. Section 3.4). As such, SS-TSIRGN

corresponds to a static structural NRL method that is run on a

weighted flattened version of the input temporal graph (where edge

weights are the number of timestamps in which that edge appears).

For CTGCN, TGAT, TGN,DGI,NWR, SIR-GN, we use the official

public implementations [30, 41, 55, 69, 76, 88]. For the remaining

competitors, we use the implementations in the CTGCN repository.

Parameters. Unless otherwise specified, all the competitors are

tested using their default/suggested parameters. In T-SIRGN (and

SS-TSIRGN), a large d is used, so as to let it run until the stopping

criterion is met (cf. Section 3.2), while α appropriate to every

dataset and experiment was chosen (details reported case by case).

The size h of the output embeddings is set to 128 for all the methods.

For our T-SIRGN (and SS-TSIRGN), this corresponds to c = 10.

Assessment. For node classification (Section 5.1), we train a clas-

sifier using the embeddings as feature vectors and the node labels

as a target variable to be predicted. We tried Extra Trees, XGBoost,

MLP classifiers. Unless otherwise specified, the results refer to Extra

Trees. We measure accuracy (Acc) and F1 (both ∈ [0%, 100%], higher
values meaning better performance) by 5-fold cross-validation.

For regression, (Section 5.2), PageRank (PR), degree centrality

(DC), hubs and authorities (HITS), betweenness centrality (BC), and

eigenvector centrality (EC) metrics are computed for every node and

snapshot, then summed over all timestamps, to have temporally-

aggregated scores for every node. We train a regressor (Random

Forest) using the embeddings as feature vectors, and each aggre-

gated score as a target variable to be predicted (one regressor per

metric). The performance is measured in terms of coefficient of de-

termination (r2 ∈ (−∞, 1], higher values corresponding to better

performance) and mean squared error (MSE ∈ [0,+∞), lower values
corresponding to better performance), by 5-fold cross-validation.

Testing environment. For timed experiments, all methods were

run on a single machine equipped with an Intel 9900k 5GHz CPU,

64GB RAM, and an Nvidia RTX 3090 GPU with 24GB of memory.

5.1 Node classification

Table 3 shows the node classification results. On all the synthetic

datasets (Synth0.0–Synth0.3; results refer to XGBoost classifier), T-

SIRGN outperforms all other methods. T-SIRGN reaches perfectAcc
and F1 on the noise-free Synth0.0. From Synth0.1 on, noise in terms

of random temporal edges is added. Thus, T-SIRGN expectedly

shows an incremental performance decrease as the noise increases.

T-SIRGN is the best performer on the temporally-adapted datasets

too. Note that these datasets are much larger than the synthetic

ones. As such, DynGem and TGAT were not able to run in reason-

able time (i.e., within 48 hours) on two of them, while TGN was

unable to run on all such datasets due to memory constraints.

T-SIRGN consistently outperforms all static NRL methods too

(i.e., DGI, NWR, SIR-GN, SS-TSIRGN). This demonstrates that our

2084

Table 3: Node classification of our T-SIRGN vs. its competitors. Accuracy
(Acc ∈ [0%, 100%]) and F 1 ∈ [0%, 100%] assessment criteria (higher values mean
better performance). Best results in bold, second best in italic.

(a) Synthetic and temporally-adapted datasets

Method
Synth0.0 Synth0.1 Synth0.2 Synth0.3 BrazilAir EUAir USAir
Acc F 1 Acc F 1 Acc F 1 Acc F 1 Acc F 1 Acc F 1 Acc F 1

DynGem 8 2 8 2 8 2 7 2 16 11 – – – –

TIMERS 8 2 8 2 7 1 8 3 10 2 9 2 9 2

U-GCRN 6 4 6 4 6 4 6 4 12 12 11 10 11 10

S-GCRN 6 3 7 5 8 6 9 8 8 6 9 9 11 11

U-CTGCN-S 8 2 8 2 8 2 8 2 16 9 14 7 12 6

U-CTGCN-C 17 15 8 6 7 6 7 6 33 33 8 8 12 12

S-CTGCN-C 17 16 7 6 9 8 10 9 44 45 21 22 11 11

TGAT 93 93 82 83 73 74 68 69 51 51 – – – –

TGN 9 5 9 5 8 5 7 5 – – – – – –

DGI 28 24 25 22 20 18 16 15 23 23 16 16 17 16

NWR 33 30 31 30 25 25 25 25 26 26 25 25 10 10

SIR-GN 30 26 44 42 35 35 26 26 32 32 29 29 29 29

SS-TSIRGN 30 27 42 40 33 33 26 26 31 31 28 28 25 25

T-SIRGN 100 100 88 89 80 81 71 72 80 81 74 74 45 45

(b) Real labeled datasets

Method
Hospital HS Bitcoin DPPIN
Acc F 1 Acc F 1 Acc F 1 Acc F 1

DynGem 39 14 23 7 57 36 98 50

TIMERS 41 17 24 10 66 65 98 50

U-GCRN 35 19 22 22 56 49 98 50

U-CTGCN-S 41 17 24 10 57 36 98 50

U-CTGCN-C 35 20 14 13 57 49 98 50

TGAT 75 58 38 38 81 81 97 49

TGN 45 33 42 41 66 65 98 49

DGI 35 23 28 26 70 69 98 49

NWR 35 23 29 27 65 64 97 49

SIR-GN 55 37 44 42 80 80 97 49

SS-TSIRGN 35 30 48 46 80 80 97 49

T-SIRGN 52 42 48 46 85 85 98 59

datasets are effective in testing for a method’s ability to capture not

only structural, but temporal structural information.

The superiority of T-SIRGN is confirmed on the real datasets. T-

SIRGN is the best performer on Bitcoin and DPPIN. In this regard,

note that DPPIN is highly unbalanced, with the majority label

spanning the 98% of the labels. For DPPIN, thus, the Acc measure

is not really meaningful. What matters is F1, in terms of which T-

SIRGN outperforms its competitors by at least 9 percentage points.

GDELT dataset. As for GDELT, we provide here a separate dis-

cussion, as the experiment was slightly different due to the time-

varying nature of the node labels. Specifically, the graph from 2018–

19 (spanning 14k nodes, 91M temporal edges, 69k timestamps) was

used as a training set to compute a T-SIRGN’s model (cf. Section 3.5,

“Inductive setting”). Then, for each month of 2020, we (i) com-

puted embeddings based on trained T-SIRGN’s model, (ii) trained a

classifier (Extra Trees) with those embeddings, and (iii) measured F1

by a temporal 80/20 train/test split. The average F1 over all months

is 12.95%. This value is higher than the state-of-the-art one (11.9%)

reported by Zhou et al. [98] for a similar experiment. We remark

that this is a classification task with 80 classes, thus even an im-

provement of one percentage point is relevant. Zhou et al. [98]

provide a framework on which to run temporal GNNs in faster

time. They involve both TGAT and TGN, and TGN demonstrated

the highest performance on GDELT, at F1 = 11.9% (while other

methods clustered around F1 = 10-11%).

Table 4: Regression of our T-SIRGN vs. its competitors. PageRank (PR), de-
gree centrality (DC), hubs and authorities (HITS), betweenness centrality (BC),

and eigenvector centrality (EC) metrics. Coefficient of determination (r 2 ∈
(−∞, 1], higher values mean better performance), and mean squared error
(MSE ∈ [0, +∞), lower values mean better performance) assessment criteria.
Best results in bold, second best in italic.

Method
PR DC HITS BC EC

r 2 MSE r 2 MSE r 2 MSE r 2 MSE r 2 MSE

F
a
ce
b
o
o
k

DynGem -9.583 0.150 -6.195 0.109 -1.782 0.028 -1.316 0.0575 -1.407 0.0571
TIMERS -5.70 0.146 -3.551 0.107 -1.172 0.0263 -0.847 0.0555 -0.924 0.0555
U-GCRN -5.070 0.147 -3.243 0.109 -2.080 0.0288 -1.867 0.0601 -1.862 0.0596

U-CTGCN-S -9.04 0.145 -5.610 0.107 -0.574 0.0257 -0.667 0.0536 -0.607 0.0522
U-CTGCN-C -3.217 0.140 -2.126 0.102 -0.451 0.0268 -0.137 0.0489 -0.147 0.0496

TGAT 0.82 2.49e-3 0.728 2.44e-3 -0.229 4.85e-4 0.113 4.47e-3 -0.031 2.49e-3
TGN -0.104 3.05e-2 -0.0807 2.04e-2 -0.873 1.56e-3 -0.289 6.24e-3 -0.141 7.47e-3

SS-TSIRGN 0.912 1.26e-3 0.971 2.64e-4 0.0379 7.93e-3 0.306 3.46e-3 0.229 2.64e-3
T-SIRGN 0.922 1.09e-3 0.967 3.29e-4 0.112 7.02e-3 0.419 2.96e-3 0.358 2.28e-3

U
C
IM

sg

DynGem 0.267 0.0505 0.0296 0.0791 0.0055 0.0513 -0.265 0.0479 0.0423 0.0667
TIMERS 0.307 0.0509 0.0831 0.0786 0.154 0.0498 0.175 0.0453 0.076 0.0789
U-GCRN 0.0853 0.0549 0.0193 0.0775 0.136 0.0496 -0.667 0.0538 0.204 0.0618

U-CTGCN-S 0.371 0.0488 0.0512 0.0793 0.146 0.0496 0.0447 0.0454 0.135 0.065
U-CTGCN-C 0.48 0.0442 0.411 0.0622 0.403 0.0421 -0.165 0.0479 0.556 0.047

TGAT 0.425 3.103e-3 0.424 3.92e-3 0.29 3.31e-3 0.049 2.99e-3 0.391 3.1e-3
TGN -0.185 5.16e-3 -0.161 7.6e-3 -0.214 4.19e-3 -0.29 4.05e-3 -0.117 6.39e-3

SS-TSIRGN 0.538 2.11e-3 0.878 8.0e-4 0.454 1.95e-3 0.369 2.17e-3 0.720 1.55e-3
T-SIRGN 0.559 2.43e-3 0.887 7.74e-4 0.468 2.0e-3 0.241 2.22e-3 0.723 1.6e-3

A
S

DynGem -0.618 0.006 -0.63 0.006 -0.66 0.006 -2.446 0.006 -0.207 0.01
TIMERS -0.777 0.007 -0.702 0.007 -0.708 0.007 -8.55 0.006 -0.057 0.009
U-GCRN -143.3 0.011 -231.6 0.011 -179 0.011 -19622 0.01 -3.756 0.0153

U-CTGCN-S -0.07 5.45e-3 -0.0839 0.0054 -0.081 0.0054 -0.1872 0.005 -1.624 0.0136
U-CTGCN-C -0.786 0.007 -0.784 0.006 -0.824 0.007 -12.27 0.006 -0.748 0.012

TGAT -0.216 9.33e-4 -0.0491 8.05e-4 0.0752 8.83e-4 – – 0.0937 9.44e-4
TGN – – – – – – – – – –

SS-TSIRGN 0.925 6.45e-5 0.963 4.94e-5 0.952 4.78e-5 0.807 6.9e-5 0.926 5.06e-5
T-SIRGN 0.933 6.24e-5 0.956 4.49e-5 0.952 4.82e-5 0.769 6.43e-5 0.9 6.19e-5

Temporal SIR-GN took about 30 minutes on the training set.

None of the (implementations we used for the) selected competitors

could run on GDELT on our hardware. Zhou et al. report training

times on GDELT (for 2016–18) of 8 500 (TGAT) and 900 (TGN)

seconds for a single epoch, which are quite a lot, and they are anyway

achieved for implementations within their efficient framework.

5.2 Regression

Table 4 shows the results in the regression task. Note that static

NRL methods are not included here, as they run on a static version

of the graph, which differ from the temporal graphs such that com-

parison is not sensible. In general, T-SIRGN achieves r2 close to
one and/orMSE close to zero, resulting the best performer in most

cases. In the few cases where T-SIRGN is the second highest per-

former, the structurally shifted version of our method (SS-TSIRGN)

is the highest (or TGAT, in just one case). This complies with the

design principles of this experiment: SS-TSIRGN emulates temporal

aggregation in its execution, thus it is not surprising that it is good

at predicting scores aggregated over time.

5.3 Efficiency

Running times. In Figure 6, we show the runtimes of our T-

SIRGN and all its competitors (but SS-TSIRGN, as it is a variant of

T-SIRGN, thus it runs comparably to it, and the static NRL methods,

for which the comparison here is not meaningful, as these run on

static yet much smaller versions of the temporal graph with flat-

tened timestamps). We report results on the Synth0.1, BrazilAir,

EUAir, and USAir datasets, representing a full range of graph sizes,

total timestamps, and timestamps per node.

2085

(a) Synth0.1 (b) BrazilAir (c) EUAir (d) USAir

Figure 6: Runtime of the proposed T-SIRGN and its competitors on several datasets. Actual time in seconds displayed on each bar.

2M 4M 6M 8M 10M10M 10 2x105 5

(a) |V | (b) |E | (c) T

Figure 7: Effect of number of nodes (|V |), temporal edges (|E |), and T on
the running time of the proposed T-SIRGN, on random temporal graphs of
varying size and number of snapshots.

Runtimes were determined on a single machine (cf. beginning of

Section 5). The GNN-based methods (DynGem, GCRN, CTGCN)

run on a GPU, while the TIMERS implementation we use in our

experiments is a CPU multi-threaded one. For the S-CTGCN-C

method, memory constraints required usage of the CPU rather

than the GPU on USAir. TGN and TGAT were both run on a GPU,

and memory constraints prevented the completion of TGN for any

airline dataset. DynGem, U-GCRN, and U-CTGCN-C could not

terminate within 52 hours on USAir, thus we do not report their

results. For TGAT, the same happened on both EUAir and USAir.

Our T-SIRGN was tested here using a single-threaded CPU imple-

mentation. Thus, it is under adverse conditions with respect to the

competitors. Despite that, it shows exceedingly shorter runtimes,

sometimes greater than two orders of magnitude faster than others.

Scalability. We also determined the effects of nodes |V |, temporal

edges |E |, and timestamps per node (T) on T-SIRGN’s runtime on

random temporal graphs (using α = 10, d = 5). |V | was varied in

a graph with |E | = 100k , and T = 200k , while |E | was varied in a

graph with |V |=1k and T =100k . As shown in Figure 7(a)–(b), T-

SIRGN’s runtime increases sub-linearly in |V |. Also, the combined

effect of temporal edges is roughly linear, which is consistent with

time complexity analysis. Remarkably, T-SIRGN handles 10M tem-

poral edges in less than 3 minutes: this confirms its high efficiency.

We also isolated the effect ofT , using graphs with a fixed number

of nodes and edges (|V | = 1k and |E | = 100k). The number of

timestamps was varied such that T increased while the number of

temporal edges remained fixed. Figure 7(c), shows the contribution

of T to be linear, also consistent with our theoretical complexity.

5.4 Parameter analysis

We tested iterations (d), embedding size (h), and α on the Synth0.1

dataset, and plotted against runtime and accuracy (Figure 8). We

focused on our T-SIRGN, and, for parameter h, on its closest com-

petitors GCRN and CTGCN (in all variants). We did not involve

k

k

k

6

4

2 linear

(a) Depth d (b) Embedding size h (c) Parameter α

Figure 8: Runtime and accuracy (Acc) effects of parameter choice on the
Synth0.1 dataset.

any competitors for α as it is a parameter of T-SIRGN only. Also,

manipulating d in the GNN-based competitors is not trivial, as it

corresponds to the number of GNN layers (it is often hardcoded).

Figure 8-(a) shows T-SIRGN’s runtime is linear in d (consistent

with its time complexity), and maximal accuracy requires a small d .
The trend of T-SIRGN’s runtime is roughly proportional to the

square root of h (Figure 8-(b)). Accuracy is fairly stable, with the

only exception of an expected (slight) decrease when h is very low.

Varying α (Figure 8-(c)) impacts accuracy, but not runtimes. A

very small α leads to consistently lower accuracy, which complies

with the fact that α close to zero leads to a version of T-SIRGN

(SS-TSIRGN) that considers temporally-flattened information only.

6 CONCLUSION

This paper presents Temporal SIR-GN, a novel method for struc-

tural representation learning in temporal graphs, which overcomes

efficiency and effectiveness limitations of existing methods. Tempo-

ral SIR-GN performance are attested both theoretically and experi-

mentally, by an extensive evaluation on synthetic and real data.

Future work includes deriving further theoretical properties,

experimenting with the settings in Section 3.5 and with more

tasks/applications, and investigating how to handle our target tem-

poral structural patterns with temporal-GNN-based approaches.

ACKNOWLEDGMENTS

This research was funded by a National Centers of Academic Ex-

cellence in Cybersecurity grant (H98230-22-1-0300), which is part

of the National Security Agency.

2086

REFERENCES
[1] Alan A. Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck.

2008. SocioPatterns. http://www.sociopatterns.org/.
[2] Charu C. Aggarwal and Haixun Wang (Eds.). 2010. Managing and Mining Graph

Data. Advances in Database Systems, Vol. 40. Springer.
[3] Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Theodore L. Willke, Rong

Zhou, Xiangnan Kong, andHoda Eldardiry. 2022. Role-Based Graph Embeddings.
IEEE Transactions on Knowledge and Data Engineering (TKDE) 34, 5 (2022), 2401–
2415.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2011. Fast algorithms for determining
(generalized) core groups in social networks. Advances in Data Analysis and
Classification (ADAC) 5, 2 (2011), 129–145.

[5] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering. In Proc. of Conf. on Advances in
Neural Information Processing Systems (NIPS). 585–591.

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In Proc. of Int. Conf. on
Learning Representations (ICLR).

[7] Jaewook Byun, Sungpil Woo, and Daeyoung Kim. 2020. ChronoGraph: Enabling
temporal graph traversals for efficient information diffusion analysis over time.
In Proc. of IEEE Int. Conf. on Data Engineering (ICDE). 2026–2027.

[8] Hongyun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. A
Comprehensive Survey of Graph Embedding: Problems, Techniques, and Ap-
plications. IEEE Transactions on Knowledge and Data Engineering (TKDE) 30, 9
(2018), 1616–1637.

[9] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph
Representations with Global Structural Information. In Proc. of Int. Conf. on
Information and Knowledge Management (CIKM). ACM, 891–900.

[10] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin
Murphy. 2020. Machine Learning on Graphs: A Model and Comprehensive
Taxonomy. CoRR abs/2005.03675 (2020).

[11] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and Relieving the Over-Smoothing Problem for Graph Neural Networks from
the Topological View. In Proc. of AAAI Conf. on Artificial Intelligence (AAAI).
3438–3445.

[12] Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2022. GC-LSTM: graph convolu-
tion embedded LSTM for dynamic network link prediction. Applied Intelligence
(APIN) 52, 7 (2022), 7513–7528.

[13] Michele Coscia. 2021. The Atlas for the Aspiring Network Scientist. CoRR
abs/2101.00863 (2021).

[14] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
Structural Node Embeddings via Diffusion Wavelets. In Proc. of ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD), Yike Guo and Faisal
Farooq (Eds.). 1320–1329.

[15] Lun Du, YunWang, Guojie Song, Zhicong Lu, and JunshanWang. 2018. Dynamic
Network Embedding : An Extended Approach for Skip-gram based Network
Embedding. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 2086–
2092.

[16] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. 2016. Recurrent Marked Temporal Point Processes:
Embedding Event History to Vector. In Proc. of ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD). 1555–1564.

[17] Julie Fournet and Alain Barrat. 2014. Contact Patterns among High School
Students. PLOS ONE 9, 9 (2014), 1–17.

[18] Alan M. Frieze, Aristides Gionis, and Charalampos E. Tsourakakis. 2013. Al-
gorithmic techniques for modeling and mining large graphs (AMAzING). In
Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD).
1523.

[19] Dongqi Fu and Jingrui He. 2021. DPPIN: A Biological Dataset of Dynamic
Protein-Protein Interaction Networks. CoRR abs/2107.02168 (2021).

[20] Swapnil Gandhi and Yogesh Simmhan. 2020. An Interval-centric Model for
Distributed Computing over Temporal Graphs. In Proc. of IEEE Int. Conf. on
Data Engineering (ICDE). 1129–1140.

[21] Rishab Goel, Seyed Mehran Kazemi, Marcus A. Brubaker, and Pascal Poupart.
2020. Diachronic Embedding for Temporal Knowledge Graph Completion. In
Proc. of AAAI Conf. on Artificial Intelligence (AAAI). 3988–3995.

[22] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep
Embedding Method for Dynamic Graphs. CoRR abs/1805.11273 (2018).

[23] Martin Grohe and Daniel Neuen. 2021. Recent advances on the graph isomor-
phism problem. In Surveys in Combinatorics. 187–234.

[24] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning
for Networks. In Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (KDD). 855–864.

[25] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In Proc. of Conf. on Advances in Neural
Information Processing Systems (NIPS). 1024–1034.

[26] Ningyuan Teresa Huang and Soledad Villar. 2021. A Short Tutorial on The
Weisfeiler-Lehman Test And Its Variants. In Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). 8533–8537.

[27] Shixun Huang, Zhifeng Bao, Guoliang Li, Yanghao Zhou, and J. Shane Culpepper.
2020. Temporal Network Representation Learning via Historical Neighborhoods
Aggregation. In Proc. of IEEE Int. Conf. on Data Engineering (ICDE). 1117–1128.

[28] Junchen Jin, Mark Heimann, Di Jin, and Danai Koutra. 2022. Toward Under-
standing and Evaluating Structural Node Embeddings. ACM Transactions on
Knowledge Discovery from Data (TKDD) 16, 3 (2022), 58:1–58:32.

[29] Wei Jin, Yao Ma, Yiqi Wang, Xiaorui Liu, Jiliang Tang, Yukuo Cen, Jiezhong Qiu,
Jie Tang, Chuan Shi, Yanfang Ye, Jiawei Zhang, and Philip S. Yu. 2021. Graph
Representation Learning: Foundations, Methods, Applications and Systems. In
Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD).
4044–4045.

[30] Mikel Joaristi and Edoardo Serra. 2021. SIR-GN: A Fast Structural Iterative Rep-
resentation Learning Approach For Graph Nodes. https://github.com/mjoaristi/
SIR-GN. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 6
(2021), 100:1–100:39.

[31] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. Journal of Machine Learning Research (JMLR) 21 (2020),
70:1–70:73.

[32] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. of Int. Conf. on Learning Representations
(ICLR).

[33] Danai Koutra and Christos Faloutsos. 2017. Individual and Collective Graph
Mining: Principles, Algorithms, and Applications. Morgan & Claypool Publishers.

[34] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms.
In Proc. of Int. Conf. on Web Search and Data Mining (WSDM). 333–341.

[35] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In Proc. IEEE ICDM
Conf. 221–230.

[36] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic
Embedding Trajectory in Temporal Interaction Networks. In Proc. of ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). 1269–1278.

[37] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[38] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When
Temporal Graph Neural Networks Meet Temporal Personalized PageRank. Proc.
of the VLDB Endowment (PVLDB) 16, 6 (2023), 1332–1345.

[39] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In Proc. of Int. Conf.
on Learning Representations (ICLR).

[40] Shangsong Liang, Shaowei Tang, Zaiqiao Meng, and Qiang Zhang. 2021. Cross-
Temporal Snapshot Alignment for Dynamic Networks. IEEE Transactions on
Knowledge and Data Engineering (TKDE) (2021).

[41] Jingxin Liu, Chang Xu, Chang Yin, Weiqiang Wu, and You Song. 2020. K-Core
based Temporal Graph Convolutional Network for Dynamic Graphs. https://
github.com/jhljx/CTGCN. IEEE Transactions on Knowledge and Data Engineering
(TKDE) (2020).

[42] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, and Yanfang Ye. 2019. Temporal
Network Embedding with Micro- and Macro-dynamics. In Proc. of Int. Conf. on
Information and Knowledge Management (CIKM). 469–478.

[43] Jing Ma, Qiuchen Zhang, Jian Lou, Li Xiong, and Joyce C. Ho. 2021. Temporal
Network Embedding via Tensor Factorization. In Proc. of Int. Conf. on Information
and Knowledge Management (CIKM). 3313–3317.

[44] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. 2020. Stream-
ing Graph Neural Networks. In Proc. of Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR). 719–728.

[45] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2018. dynnode2vec:
Scalable Dynamic Network Embedding. In Proc. of IEEE Int. Conf. on Big Data.
3762–3765.

[46] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph
convolutional networks. Pattern Recognition 97 (2020).

[47] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Dynamic Network Embeddings: From Random
Walks to Temporal Random Walks. In Proc. of IEEE Int. Conf. on Big Data. 1085–
1092.

[48] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.
In Proc. of World Wide Web Conf. (WWW). 969–976.

[49] Tore Opsahl and Pietro Panzarasa. 2009. Clustering in weighted networks. Social
Networks 31, 2 (2009), 155–163.

[50] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
Proc. of AAAI Conf. on Artificial Intelligence (AAAI). 5363–5370.

2087

[51] Yulong Pei, Xin Du, Jianpeng Zhang, George Fletcher, and Mykola Pechenizkiy.
2020. struc2gauss: Structural role preserving network embedding via Gaussian
embedding. Data Mining and Knowledge Discovery (DAMI) 34, 4 (2020), 1072–
1103.

[52] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learn-
ing of social representations. In Proc. of ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD). 701–710.

[53] Zhenyu Qiu, Wenbin Hu, Jia Wu, Weiwei Liu, Bo Du, and Xiaohua Jia. 2020.
Temporal Network Embedding with High-Order Nonlinear Information. In Proc.
of AAAI Conf. on Artificial Intelligence (AAAI). 5436–5443.

[54] Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, and Daniel R.
Figueiredo. 2017. struc2vec: Learning Node Representations from Structural
Identity. In Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD). 385–394.

[55] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. 2020. Temporal Graph Networks for Deep
Learning on Dynamic Graphs. https://github.com/twitter-research/tgn. In ICML
2020 Workshop on Graph Representation Learning.

[56] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao,
and Yasin Abbasi-Yadkori. 2020. A Structural Graph Representation Learning
Framework. In Proc. of Int. Conf. on Web Search and Data Mining (WSDM).
483–491.

[57] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, and
John Boaz Lee. 2020. On Proximity and Structural Role-based Embeddings in
Networks: Misconceptions, Techniques, and Applications. ACM Transactions on
Knowledge Discovery from Data (TKDD) 14, 5 (2020), 63:1–63:37.

[58] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2020. Deep Inductive Graph
Representation Learning. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 32, 3 (2020), 438–452.

[59] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimensionality Reduction
by Locally Linear Embedding. Science 290, 5500 (2000), 2323–2326.

[60] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-
AttentionNetworks. In Proc. of Int. Conf. onWeb Search and DataMining (WSDM).
519–527.

[61] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2009. The Graph Neural NetworkModel. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS) 20, 1 (2009), 61–80.

[62] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured Sequence Modeling with Graph Convolutional Recurrent
Networks. In Proc. of Int. Conf. on Neural Information Processing (ICONIP). 362–
373.

[63] Blake Shaw and Tony Jebara. 2009. Structure preserving embedding. In Proc. of
Int. Conf. on Machine Learning (ICML). 937–944.

[64] Min Shi, Yu Huang, Xingquan Zhu, Yufei Tang, Yuan Zhuang, and Jianxun Liu.
2021. GAEN: Graph Attention Evolving Networks. In Proc. of Int. Joint Conf. on
Artificial Intelligence (IJCAI). 1541–1547.

[65] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal
Graphs. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 4605–4612.

[66] Michele Starnini, Charalampos E. Tsourakakis, Maryam Zamanipour, André
Panisson, Walter Allasia, Marco Fornasiero, Laura Li Puma, Valeria Ricci, Silvia
Ronchiadin, Angela Ugrinoska, Marco Varetto, andDarioMoncalvo. 2021. Smurf-
Based Anti-money Laundering in Time-Evolving Transaction Networks. In Proc.
of Europ. Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD). 171–186.

[67] Yahui Sun, Shuai Ma, and Bin Cui. 2022. Hunting Temporal Bumps in Graphs
with Dynamic Vertex Properties. In Proc. of ACM Int. Conf. on Management of
Data (SIGMOD). 874–888.

[68] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In Proc. of World
Wide Web Conf. (WWW). 1067–1077.

[69] Mingyue Tang, Pan Li, and Carl Yang. 2022. Graph Auto-Encoder via Neighbor-
hood Wasserstein Reconstruction. https://github.com/mtang724/NWR-GAE. In
Proc. of Int. Conf. on Learning Representations (ICLR).

[70] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. Science 290,
5500 (2000), 2319–2323.

[71] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. DyRep: Learning Representations over Dynamic Graphs. In Proc. of Int.
Conf. on Learning Representations (ICLR).

[72] Ioanna Tsalouchidou, Francesco Bonchi, Gianmarco De Francisci Morales, and
Ricardo Baeza-Yates. 2020. Scalable Dynamic Graph Summarization. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 32, 2 (2020), 360–373.

[73] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan V.
Oseledets, and Emmanuel Müller. 2021. FREDE: Anytime Graph Embeddings.
Proc. of the VLDB Endowment (PVLDB) 14, 6 (2021), 1102–1110.

[74] Philippe Vanhems, Alain Barrat, Ciro Cattuto, Jean-François Pinton, Nagham
Khanafer, Corinne Régis, Byeul-a Kim, Brigitte Comte, and Nicolas Voirin. 2013.

Estimating Potential Infection Transmission Routes in Hospital Wards Using
Wearable Proximity Sensors. PLOS ONE 8, 9 (2013), 1–9.

[75] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proc. of Int. Conf.
on Learning Representations (ICLR).

[76] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. https://github.com/PetarV-
/DGI. In Proc. of Int. Conf. on Learning Representations (ICLR).

[77] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. 2009.
On the Evolution of User Interaction in Facebook. In Proc. of ACM Workshop on
Online Social Networks (WOSN). 37–42.

[78] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming Graph
Neural Networks via Continual Learning. In Proc. of Int. Conf. on Information
and Knowledge Management (CIKM). 1515–1524.

[79] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang,
Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. 2021.
APAN: Asynchronous Propagation Attention Network for Real-time Temporal
Graph Embedding. In Proc. of ACM Int. Conf. on Management of Data (SIGMOD).
2628–2638.

[80] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021. In-
ductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In Proc. of Int. Conf. on Learning Representations (ICLR).

[81] B.Weisfeiler and A. A. Lehman. 1968. The reduction of a graph to canonical form
and the algebra which appears therein. Nauchno-Technicheskaya Informatsia 2,
9 (1968), 12–16.

[82] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.
2014. Path Problems in Temporal Graphs. Proc. of the VLDB Endowment (PVLDB)
7, 9 (2014), 721–732.

[83] Jun Wu, Jingrui He, and Jiejun Xu. 2019. DEMO-Net: Degree-specific Graph
Neural Networks for Node and Graph Classification. In Proc. of ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD). 406–415.

[84] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems (TNNLS) 32, 1 (2021),
4–24.

[85] Wenwen Xia, Yuchen Li, Jianwei Tian, and Shenghong Li. 2021. Forecasting
Interaction Order on Temporal Graphs. In Proc. of ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD). 1884–1893.

[86] Chengjin Xu, Fenglong Su, and Jens Lehmann. 2021. Time-aware Graph Neural
Network for Entity Alignment between Temporal Knowledge Graphs. In Proc. of
Conf. on Empirical Methods in Natural Language Processing (EMNLP). 8999–9010.

[87] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. 2019.
Spatio-Temporal Attentive RNN for Node Classification in Temporal Attributed
Graphs. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 3947–3953.

[88] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kan-
nan Achan. 2020. Inductive representation learning on temporal
graphs. https://github.com/StatsDLMathsRecomSys/Inductive-representation-
learning-on-temporal-graphs. In Proc. of Int. Conf. on Learning Representations
(ICLR).

[89] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In Proc. of Int. Conf. on Learning Representations
(ICLR).

[90] Yonghui Xu, Shengjie Sun, Huiguo Zhang, Chang’an Yi, Yuan Miao, Dong Yang,
Xiaonan Meng, Yi Hu, Ke Wang, Huaqing Min, Hengjie Song, and Chuanyan
Miao. 2022. Time-Aware Graph Embedding: A Temporal Smoothness and
Task-Oriented Approach. ACM Transactions on Knowledge Discovery from Data
(TKDD) 16, 3 (2022), 56:1–56:23.

[91] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. Fast Network
Embedding Enhancement via High Order Proximity Approximation. In Proc. of
Int. Joint Conf. on Artificial Intelligence (IJCAI). 3894–3900.

[92] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and Sourav S.
Bhowmick. 2020. Scaling Attributed Network Embedding to Massive Graphs.
Proc. of the VLDB Endowment (PVLDB) 14, 1 (2020), 37–49.

[93] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Haifeng Chen, and Wei Wang.
2017. Link Prediction with Spatial and Temporal Consistency in Dynamic
Networks. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 3343–3349.

[94] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and
Wei Wang. 2018. NetWalk: A Flexible Deep Embedding Approach for Anomaly
Detection inDynamicNetworks. In Proc. of ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD). 2672–2681.

[95] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. 2018. TIMERS:
Error-Bounded SVD Restart on Dynamic Networks. In Proc. of AAAI Conf. on
Artificial Intelligence (AAAI). 224–231.

[96] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
2018. Arbitrary-Order Proximity Preserved Network Embedding. In Proc. of ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). 2778–2786.

[97] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2022. Deep Learning on Graphs: A
Survey. IEEE Transactions on Knowledge and Data Engineering (TKDE) 34, 1

2088

(2022), 249–270.
[98] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and

George Karypis. 2022. TGL: A General Framework for Temporal GNN Training
on Billion-Scale Graphs. Proc. of the VLDB Endowment (PVLDB) 15, 8 (2022),
1572–1580.

[99] Le-kui Zhou, Yang Yang, Xiang Ren, FeiWu, and Yueting Zhuang. 2018. Dynamic
Network Embedding by Modeling Triadic Closure Process. In Proc. of AAAI
Conf. on Artificial Intelligence (AAAI). 571–578.

[100] Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. 2018. High-
Order Proximity Preserved Embedding for Dynamic Networks. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE) 30, 11 (2018), 2134–2144.

[101] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan.
2016. Scalable Temporal Latent Space Inference for Link Prediction in Dynamic
Social Networks. IEEE Transactions on Knowledge and Data Engineering (TKDE)
28, 10 (2016), 2765–2777.

[102] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In Proc. of ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). 2857–2866.

2089

