
Neighborhood-based Hypergraph Core Decomposition
Naheed Anjum Arafat

NUS
Singapore

naheed_anjum@u.nus.edu

Arijit Khan
AAU

Denmark
arijitk@cs.aau.dk

Arpit Kumar Rai
IIT Kanpur

India
arpitkr20@iitk.ac.in

Bishwamittra Ghosh
NUS

Singapore
bghosh@u.nus.edu

ABSTRACT
We propose neighborhood-based core decomposition: a novel way of
decomposing hypergraphs into hierarchical neighborhood-cohesive
subhypergraphs. Alternative approaches to decomposing hypergraphs,
e.g., reduction to clique or bipartite graphs, are not meaningful in
certain applications, the later also results in inefficient decomposi-
tion; while existing degree-based hypergraph decomposition does
not distinguish nodes with different neighborhood sizes. Our case
studies show that the proposed decomposition is more effective than
degree and clique graph-based decompositions in disease interven-
tion and in extracting provably approximate and application-wise
meaningful densest subhypergraphs. We propose three algorithms:
Peel, its efficient variant E-Peel, and a novel local algorithm: Local-
core with parallel implementation. Our most efficient parallel al-
gorithm Local-core(P) decomposes hypergraph with 27M nodes and
17M hyperedges in-memory within 91 seconds by adopting various
optimizations. Finally, we develop a new hypergraph-core model,
the (neighborhood, degree)-core by considering both neighborhood
and degree constraints, design its decomposition algorithm Local-
core+Peel, and demonstrate its superiority in spreading diffusion.

PVLDB Reference Format:
Naheed Anjum Arafat, Arijit Khan, Arpit Kumar Rai, and Bishwamittra
Ghosh. Neighborhood-based Hypergraph Core Decomposition. PVLDB,
16(9): 2061 - 2074, 2023.
doi:10.14778/3598581.3598582

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/toggled/vldbsubmission.

1 INTRODUCTION
Decomposition of a graph into hierarchically cohesive subgraphs is
an important tool for solving many graph data management prob-
lems, e.g., community detection [44], densest subgraph discovery
[14], identifying influential nodes [43], and network visualization
[1, 8]. Depending on different notions of cohesiveness, there are
several decomposition approaches: core-decomposition [9], truss-
decomposition [54], nucleus-decomposition [48], etc. In this work,
we are interested in decomposing hypergraphs, a generalization of
graphs where an edge may connect more than two entities.

Many real-world relations consist of polyadic entities, e.g., re-
lations between individuals in co-authorships [29], legislators in

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 9 ISSN 2150-8097.
doi:10.14778/3598581.3598582

1-core4-core
6-core

7-core

MTRAS~MidTn Robotic Arts Soc. Monthly Meetup
(MTRAS ~ MidTn Robotic Arts Society, 918 members)T

R Fred Edwords talk about Evolution & Creationism
(Sunday Assembly Nashville, 525 members)

August Board MeetingP1
Sep Board Meeting
(Tenn. Americans United for Separation
of Church & State, 185 members)

P2

(a) (b)

Figure 1: (a) Neighborhood-based and (b) degree-based core
decomposition of hypergraph 𝐻

parliamentary voting [11], items in e-shopping carts [56], proteins in
protein complexes and metabolites in a metabolic process [22, 25].
For convenience, such relations are often reduced to a clique graph
or a bipartite graph (§2.2). However, these reductions may not be
desirable due to two reasons. First, such reductions might not be
meaningful, e.g., a pair of proteins in a certain protein complex may
not necessarily interact pairwise to create a new functional protein
complex. Second, reducing a hypergraph to a clique graph or a bi-
partite graph inflates the problem-size [32]: A hypergraph in [57]
with 2M nodes and 15M hyperedges is converted to a bipartite graph
with 17M nodes and 1B edges. A 𝑘-uniform hypergraph with 𝑚 hy-
peredges causes its clique graph to have O(𝑚𝑘2) edges. The bipartite
graph representation also requires distance-2 core decomposition
[13, 41], which is more expensive due to inflated problem-size (§6).

To this end, we propose a novel neighborhood-cohesion based
hypergraph core decomposition that decomposes a hypergraph into
nested, strongly-induced maximal subhypergraphs such that all the
nodes in every subhypergraph have at least a certain number of
neighbors in that subhypergraph. Being strongly-induced means that
a hyperedge is only present in a subhypergraph if and only if all its
constituent nodes are present in that subhypergraph.

EXAMPLE 1 (NEIGHBORHOOD-BASED CORE DECOMPOSITION).
The hypergraph 𝐻 in Figure 1(a) is constructed based on four events
(𝑇 , 𝑅, 𝑃1, 𝑃2) from the Nashville Meetup Network dataset [7]. Each
hyperedge denotes an event, nodes in a hyperedge are participants of
that event. Two nodes are neighbors if they co-participate in an event.
We notice that Hall has 4 neighbors: Popiden, Hagler, Wallace, and
Matson. Similarly, Matson, Hagler, Jeannie, Sumner, Annie, New-
ton, Wallace, and Popiden have 13, 10, 9, 9, 6, 6, 6, and 6 neighbors,
respectively. As every node has ≥ 4 neighbors, the neighborhood-
based 4-core, denoted by 𝐻 [𝑉4], is the hypergraph 𝐻 itself. The
neighborhood based 6-core is the subhypergraph 𝐻 [𝑉6] = {𝑇, 𝑅}
because participants of 𝑇 (e.g., Newton, Annie) and 𝑅 (e.g., Matson)

2061

https://doi.org/10.14778/3598581.3598582
https://github.com/toggled/vldbsubmission
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598582
https://www.acm.org/publications/policies/artifact-review-and-badging-current

respectively have 6 and 7 neighbors in 𝐻 [𝑉6]. Finally, the neighbor-
hood based 7-core is the subhypergraph {𝑇 }.

Motivation. The only hypergraph decomposition existing in the
literature is that based on degree (i.e., number of hyperedges in-
cident on a node) [46, 50]. In degree-based core decomposition,
every node in the 𝑘-core has degree at least 𝑘 in that core. It does
not consider hyperedge sizes. As a result, nodes in the same core
may have vastly different neighborhood sizes. For instance, Hall and
Matson have 4 and 13 neighbors, respectively, yet they belong to the
same 1-core in the degree-based decomposition (Figure 1(b)). There
are applications, e.g., propagation of contagions in epidemiology,
diffusion of information in viral-marketing, where it is desirable to
capture such differences because nodes with the same number of
neighbors in a subhypergraph are known to exhibit similar diffu-
sion characteristics [36]. Indeed from a practical viewpoint, if the
infectious diseases control authority is looking for some key events
that cause higher infection spread (e.g., meeting with 6 neighbors
per participant) and hence such events need to be intervened, they
are events {𝑇, 𝑅} (nbr-6-core) as they cause meeting with at least 6
neighbors per participant. Such distinction across various events and
participants is not possible according to degree-based core decom-
position of 𝐻 . Moreover, the neighborhood based decomposition is
also logical: innermost core contains 𝑇 , which is a tech event organ-
ized by a relatively popular group with 918 members, followed by
the second innermost core containing {𝑅,𝑇 }. 𝑅 is an event organized
by a secular organization with 525 members which often discusses
religion matters. The outermost core contains two events held by a
niche social activist group with only 185 members.
Challenges. A hyperedge can relate to more than two nodes, and a
pair of nodes may be related by multiple, distinct hyperedges. Thus, a
trivial adaptation of core-decomposition algorithms for graphs to hy-
pergraphs is difficult. In the classic peeling algorithm for graph core
decomposition, when a node is removed, the degree of its neighbors
is decreased by 1: this allows important optimizations which makes
the peeling algorithm linear-time and efficient [9, 15, 47]. However,
in a neighborhood-based hypergraph core decomposition, deleting
a node may reduce the neighborhood size of its neighboring node
by more than 1. Hence, to recompute the number of neighbors of a
deleted node’s neighbor, one must construct the residual hypergraph
after deletion, which makes the decomposition polynomial-time
and expensive. Furthermore, the existing lower bound that makes
graph core decomposition more efficient [13] does not work for
neighborhood-based hypergraph core decomposition.

In the following, we also discuss the challenges associated with
adopting the local approach [42], one of the most efficient methods
for graph core decomposition to hypergraphs. In a local approach, a
core-number estimate is updated iteratively [35, 42] or in a distrib-
uted manner [45] for every node in a graph. The initial value of a
node’s core-number estimate is an upper bound of its core-number.
In subsequent rounds, this estimate is iteratively decreased based on
estimates of neighboring nodes. [42] uses ℎ-index [30] for such up-
date. They have shown that the following invariant must hold: every
node with core-number 𝑘 has ℎ-index at least 𝑘, and the subgraph
induced by nodes with ℎ-index at least 𝑘 has at least 𝑘 neighbors
per node in that subgraph. The former holds but the later may not
hold in a hypergraph, because the subhypergraph induced by nodes

4-core

6-core
7-core

5-core

4-core

5-core P2

Movement & PoliticsP1

P1

Movement & PoliticsP2

TechT
Religion and BeliefsR

(a) (b)

Figure 2: Alternative decompositions are sometimes undesirable:
(a) Core decomposition of clique graph of H and Dist-2 core
decomposition of the bipartite graph of H produce the same
decomposition. Similar events (𝑃1 and 𝑃2) are in the different
cores. (b) Bipartite graph representation of H.

with ℎ-index ≥ 𝑘 may not include hyperedges that partially contain
other nodes (§3.3). Due to those ‘missing’ hyperedges, the number
of neighbors of some nodes in that subhypergraph may drop be-
low 𝑘 , violating the coreness condition. Thus a local approach used
for computing the 𝑘-core [35, 42, 45] or (𝑘, ℎ)-core [41] in graphs
results in incorrect neighborhood-based hypergraph cores (§6.1).

Our contributions are summarized below. Novel problem and
characterization (§2). We define and investigate the novel prob-
lem of neighborhood-based core decomposition in hypergraphs. We
prove that neighborhood-based 𝑘-cores are unique and the 𝑘-core
contains the (𝑘 + 1)-core.

Exact algorithms (§3). We propose three exact algorithms with
their correctness and time complexity analyses. Two of them, Peel
and its enhancement E-Peel, adopt classic peeling [9], incurring
global changes to the hypergraph. For E-Peel, we derive novel lower-
bound on core-number that eliminates many redundant neighborhood
recomputations. Our third algorithm, Local-core only makes node-
level local computations. Even though the existing local method [42,
45] fails to correctly find neighborhood-based core-numbers in a hy-
pergraph, our algorithm Local-core applies a novel Core-correction
procedure, ensuring correct core-numbers.

Optimization and parallelization strategies (§4). We propose
four optimization strategies to improve the efficiency of Local-core.
Compressed representations for hypergraph (optimization-I) and the
family of optimizations for efficient Core-correction (optimization-
II) are novel to core-decomposition literature. The other optimiza-
tions, though inspired from graph literature, have not been adopted
in earlier hypergraph-related works. We also propose parallelization
of Local-core for the shared-memory programming paradigm.

(Neighborhood, degree)-core (§5). We define a more general
hypergraph-core model, (neighborhood, degree)-core by considering
both neighborhood and degree constraints, propose its decomposi-
tion algorithm Local-core+Peel, and demonstrate its superiority in
diffusion spread.

Empirical evaluation (§6) on real and synthetic hypergraphs
shows that the proposed algorithms are effective, efficient, and prac-
tical. Our OpenMP parallel implementation Local-core(P) decom-
poses hypergraph with 27M nodes, 17M hyperedges in 91 seconds.

2062

Applications (§7). We show our decomposition to be more effect-
ive in disrupting diffusion than other decompositions. Our greedy
algorithm proposed for volume-densest subhypergraph recovery
achieves (𝑑𝑝𝑎𝑖𝑟 (𝑑𝑐𝑎𝑟𝑑 − 2) + 2)-approximation, where hyperedge-
cardinality (# nodes in that hyperedge) and node-pair co-occurrence
(# hyperedges containing that pair) are at most 𝑑𝑐𝑎𝑟𝑑 and 𝑑𝑝𝑎𝑖𝑟 ,
respectively. If the hypergraph is a graph (𝑑𝑐𝑎𝑟𝑑 = 2), our result
generalizes Charikar’s 2-approximation guarantee for densest sub-
graph discovery [14]. Our volume-densest subhypergraphs capture
differently important meetup events compared to degree and clique
graph decomposition-based densest subhypergraphs.

2 OUR PROBLEM AND CHARACTERIZATION
Hypergraph. A hypergraph 𝐻 = (𝑉 , 𝐸) consists of a set of nodes 𝑉
and a set of hyperedges 𝐸 ⊆ 𝑃 (𝑉) \ 𝜙 , where 𝑃 (𝑉) is the power set
of 𝑉 . A hyperedge is modeled as an unordered set of nodes.
Neighbors. Neighbors 𝑁 (𝑣) of a node 𝑣 in a hypergraph 𝐻 = (𝑉 , 𝐸)
is the set of nodes 𝑢 ∈ 𝑉 that co-occur with 𝑣 in some hyperedge
𝑒 ∈ 𝐸. That is, 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | 𝑢 ≠ 𝑣 ∧ ∃ 𝑒 ∈ 𝐸 s.t 𝑢, 𝑣 ∈ 𝑒}.
Strongly induced subhypergraph [6, 16, 28]. A strongly induced
subhypergraph 𝐻 [𝑆] of a hypergraph 𝐻 = (𝑉 , 𝐸), induced by a node
set 𝑆 ⊆ 𝑉 , is a hypergraph with the node set 𝑆 and the hyperedge set
𝐸 [𝑆] ⊆ 𝐸, consisting of all the hyperedges that are subsets of 𝑆 .

𝐻 [𝑆] = (𝑆, 𝐸 [𝑆]), where𝐸 [𝑆] = {𝑒 | 𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑆 } (1)

In other words, every hyperedge in a strongly induced subhyper-
graph must exist in its parent hypergraph.

2.1 Problem Formulation
The nbr-𝑘-core 𝐻 [𝑉𝑘] = (𝑉𝑘 , 𝐸 [𝑉𝑘]) of a hypergraph 𝐻 = (𝑉 , 𝐸)
is the maximal (strongly) induced subhypergraph such that every
node 𝑢 ∈ 𝑉𝑘 has at least 𝑘 neighbours in 𝐻 [𝑉𝑘]. For simplicity, we
denote nbr-𝑘-core, 𝐻 [𝑉𝑘] as 𝐻𝑘 . The maximum core of 𝐻 is the
largest 𝑘 for which 𝐻𝑘 is non-empty. The core-number 𝑐 (𝑣) of a
node 𝑣 ∈ 𝑉 is the largest 𝑘 such that 𝑣 ∈ 𝑉𝑘 and 𝑣 ∉ 𝑉𝑘+1. The core
decomposition of a hypergraph assigns to each node its core-number.
Given a hypergraph, the problem studied in this paper is to correctly
and efficiently compute its neighborhood-based core decomposition.

2.2 Differences with Other Core Decompositions
One can adapt broadly two kinds of approaches from the literature.
Approach-1. Transform the hypergraph into other objects (e.g., a
graph), apply existing decomposition approaches [9, 13] on that ob-
ject, and then project the decomposition back to the hypergraph. For
instance, a hypergraph is transformed to a clique graph by replacing
the hyperedges with cliques, and classical graph core decomposition
[9] is applied. A hypergraph can also be transformed into a bipartite
graph by representing the hyperedges as nodes in the second parti-
tion and creating an edge between two cross-partition nodes if the
hyperedge in the second partition contains a node in the first parti-
tion. Finally, distance-2 core decomposition [13, 41] is applied. In
distance-2 core-decomposition, nodes in 𝑘-core have at least 𝑘 2-hop
neighbors in the subgraph. First, the decomposition they yield may
be different from that of ours: 𝑐 (𝑃𝑜𝑝𝑖𝑑𝑒𝑛) = 5 in both clique graph
and dist-2 bipartite graph decompositions, whereas Popiden has core-
number 4 in our decomposition. Clique graph and bipartite graph

decompositions fail to identify that the relation ⟨Popiden-Hagler⟩
should not exist without the existence of event 𝑃2, since 𝑃2 is the
only event where they co-participate. Second, the resulting decom-
position may be unreasonable: low-importance events 𝑃1 and 𝑃2 by
the same interest group are placed in different cores causing diffi-
culty in separating less-important events from more-important ones.
Third, such transformations inflate the problem size (§1). Bipartite
graph representation results in inefficient decomposition (§6.2).
Approach-2. The degree 𝑑 (𝑣) of a node 𝑣 in hypergraph 𝐻 is the
number of hyperedges incident on 𝑣 [12], i.e., 𝑑 (𝑣) = |{𝑒 ∈ 𝐸 | 𝑣 ∈
𝑒}|. Sun et al. [50] define the deg-𝑘-core 𝐻𝑑𝑒𝑔

𝑘
of a hypergraph 𝐻 as

the maximal (strongly) induced subhypergraph of 𝐻 such that every
node 𝑢 in 𝐻

𝑑𝑒𝑔

𝑘
has degree at least 𝑘 in 𝐻

𝑑𝑒𝑔

𝑘
. This approach does

not consider hyperedge sizes (§1). Therefore, it does not necessarily
yield the same decomposition as our approach (Figure 1).

2.3 Nbr-𝑘-Core: Properties
THEOREM 1. The nbr-𝑘-core 𝐻𝑘 is unique for any 𝑘 > 0.

PROOF. Let, if possible, there be two distinct nbr-𝑘-cores: 𝐻𝑘1 =

(𝑉𝑘1 , 𝐸 [𝑘1]) and 𝐻𝑘2 = (𝑉𝑘2 , 𝐸 [𝑘2]) of a hypergraph 𝐻 = (𝑉 , 𝐸).
By definition, both 𝐻𝑘1 and 𝐻𝑘2 are maximal strongly induced sub-
hypergraphs of 𝐻 . Construct the union hypergraph 𝐻𝑘 = (𝑉𝑘1 ∪
𝑉𝑘2 , 𝐸 [𝑉𝑘1 ∪𝑉𝑘2]). For any 𝑢 ∈ 𝑉𝑘1 ∪𝑉𝑘2 , 𝑢 must be in either 𝑉𝑘1 or
𝑉𝑘2 . Thus, 𝑢 must have at least 𝑘 neighbours in 𝐻𝑘1 or 𝐻𝑘2 . Since
𝐸 [𝑉𝑘1] ∪ 𝐸 [𝑉𝑘2] ⊆ 𝐸 [𝑉𝑘1 ∪𝑉𝑘2], 𝑢 must also have at least 𝑘 neigh-
bours in 𝐻𝑘 . Since 𝐻𝑘 is a supergraph of both 𝐻𝑘1 and 𝐻𝑘2 , 𝐻𝑘1 and
𝐻𝑘2 are not maximal, leading to a contradiction. □

THEOREM 2. The (𝑘 +1)-core is contained in the 𝑘-core, ∀𝑘 > 0.

PROOF. Let, if possible, for some node 𝑢 ∈ 𝑉𝑘+1, 𝑢 ∉ 𝑉𝑘 . Con-
struct 𝑆 = 𝑉𝑘 ∪ 𝑉𝑘+1. Since 𝑢 ∉ 𝑉𝑘 , but 𝑢 ∈ 𝑉𝑘+1 ⊂ 𝑆 , we get
|𝑆 | ≥ |𝑉𝑘 | + 1. It is easy to verify that every node 𝑣 ∈ 𝑆 has at least 𝑘
neighbours in 𝐻 [𝑆] and |𝑆 | > |𝑉𝑘 |. Then,𝑉𝑘 is not maximal and thus
not nbr-𝑘-core, which is a contradiction. The theorem follows. □

3 ALGORITHMS
We propose three algorithms: Our algorithms Peel and its efficient
variant E-Peel are inspired by peeling methods similar to graph core
computation [9, 13]. The algorithm Local-core is inspired by local
approaches to graph core computation [42, 45]. In the classic peeling
algorithm for graph core decomposition, when a node is removed,
the degree of its neighbors reduces by 1: this permits efficient op-
timizations and linear-time peeling algorithm [9, 15, 47]. However,
in a neighborhood-based hypergraph core decomposition, deleting
a node may reduce the neighborhood size of its neighboring node
by more than 1. Hence, to recompute the number of neighbors of a
deleted node’s neighbor, one must construct the residual hypergraph,
which makes the decomposition polynomial-time and costly. The
algorithms E-Peel and Local-core, despite being inspired by the ex-
isting family of graph algorithms, are by no means trivial adaptations.
For E-Peel, we devise a new local lower-bound for core-numbers as
the lower-bound for graph core [13] is insufficient for our purpose.
For Local-core, we show how a direct adaptation of local algorithm
[35, 42, 45] leads to incorrect core computations (§3.3 and §6.1).

2063

Algorithm 1 Peeling algorithm: Peel
Input: Hypergraph 𝐻 = (𝑉 , 𝐸)
Output: Core-number 𝑐 (𝑢) for each node𝑢 ∈ 𝑉

1: for all𝑢 ∈ 𝑉 do
2: Compute 𝑁𝑉 (𝑢) ⊲ set of neighbors of𝑢 in 𝐻 = (𝑉 , 𝐸)
3: 𝐵 [|𝑁𝑉 (𝑢) |] ← 𝐵 [|𝑁𝑉 (𝑢) |] ∪ {𝑢}
4: for all 𝑘 = 1, 2, . . . , |𝑉 | do
5: while 𝐵 [𝑘] ≠ 𝜙 do
6: Remove a node 𝑣 from 𝐵 [𝑘]
7: 𝑐 (𝑣) ← 𝑘
8: for all𝑢 ∈ 𝑁𝑉 (𝑣) do

9: Move𝑢 to 𝐵 [max
(︂
|𝑁𝑉 \{𝑣} (𝑢) |, 𝑘

)︂
]

10: 𝑉 ← 𝑉 \ {𝑣}
11: Return 𝑐

Hence, we devise hypergraph ℎ-index and local coreness constraint
and employ them to compute hypergraph cores correctly.

3.1 Peeling Algorithm
Following Theorem 2, the (𝑘 + 1)-core can be computed from the
𝑘-core by “peeling” all nodes whose neighborhood sizes are less
than 𝑘 +1. Algorithm 1 describes our peeling algorithm: Peel, which
processes the nodes in increasing order of their neighborhood sizes
(Lines 4-10). 𝐵 is a vector of lists: Each cell 𝐵 [𝑖] is a list storing
all nodes whose neighborhood sizes are 𝑖 (Line 3). When a node 𝑣
is processed at iteration 𝑘, its core-number is assigned to 𝑐 (𝑣) = 𝑘

(Line 7), it is deleted from the set of “remaining” nodes 𝑉 (Line
10). The neighborhood sizes of the nodes in 𝑣’s neighborhood are
recomputed (each neighborhood size can decrease by more than 1,
since when 𝑣 is deleted, all hyperedges involving 𝑣 are also deleted),
and these nodes are moved to the appropriate cells in 𝐵 (Lines 8-
9). The algorithm completes when all nodes in the hypergraph are
processed and have their respective core-numbers computed.

Proof of correctness. Initially 𝐵 [𝑖] contains all nodes whose neigh-
borhood sizes are 𝑖. When we delete some neighbor of a node 𝑢,
the neighborhood size of 𝑢 is recomputed, and 𝑢 is reassigned to a
new cell corresponding to its reduced neighborhood size until we
find that the removal of a neighbor 𝑣 of 𝑢 reduces 𝑢’s neighborhood
size even below the current iteration number 𝑘 (Line 9). When this
happens, we correctly assign 𝑢’s core-number 𝑐 (𝑢) = 𝑘. (1) Con-
sider the remaining subhypergraph formed by the remaining nodes
and hyperedges at the end of the (𝑘 − 1)th iteration. Clearly, 𝑢 is
in the 𝑘-core since 𝑢 has at least 𝑘 neighbors in this remaining sub-
hypergraph, where all nodes in the remaining subhypergraph also
have neighborhood sizes ≥ 𝑘. (2) The removal of 𝑣 decreases 𝑢’s
neighborhood size smaller than the current iteration number 𝑘 , thus
when the current iteration number increases to 𝑘 + 1, 𝑢 will not have
enough neighbors to remain in the (𝑘 + 1)-core.

Time complexity. Each node 𝑣 is processed exactly once from 𝐵

in Algorithm 1; when it is processed and thereby deleted from 𝑉 ,
neighborhood sizes of the nodes in 𝑣’s neighborhood are recomputed.
Assume that the maximum number of neighbors and hyperedges of
a node be 𝑑𝑛𝑏𝑟 and 𝑑ℎ𝑝𝑒 , respectively. Thus, Algorithm 1 has time
complexity O

(︁
|𝑉 | · 𝑑𝑛𝑏𝑟 · (𝑑𝑛𝑏𝑟 + 𝑑ℎ𝑝𝑒)

)︁
.

3.2 Efficient Peeling with Bounding
An inefficiency in Algorithm 1 is that it updates the cell index of
every node 𝑢 that is a neighbor of a deleted node 𝑣 . To do so, it has

Algorithm 2 Efficient peeling algorithm with bounding: E-Peel
Input: Hypergraph 𝐻 = (𝑉 , 𝐸)
Output: Core-number 𝑐 (𝑢) for each node𝑢 ∈ 𝑉

1: for all𝑢 ∈ 𝑉 do
2: Compute LB(𝑢)
3: 𝐵 [LB(𝑢)] ← 𝐵 [LB(𝑢)] ∪ {𝑢}
4: 𝑠𝑒𝑡𝐿𝐵 (𝑢) ← 𝑇𝑟𝑢𝑒

5: for all 𝑘 = 1, 2, . . . , |𝑉 | do
6: while 𝐵 [𝑘] ≠ 𝜙 do
7: Remove a node 𝑣 from 𝐵 [𝑘]
8: if 𝑠𝑒𝑡𝐿𝐵 (𝑣) then
9: 𝐵 [|𝑁𝑉 (𝑣) |] ← 𝐵 [max (|𝑁𝑉 (𝑣) |, 𝑘)] ∪ {𝑣}

10: 𝑠𝑒𝑡𝐿𝐵 (𝑣) ← 𝐹𝑎𝑙𝑠𝑒
11: else
12: 𝑐 (𝑣) ← 𝑘
13: for all𝑢 ∈ 𝑁𝑉 (𝑣) do
14: if ¬𝑠𝑒𝑡𝐿𝐵 (𝑢) then

15: Move𝑢 to 𝐵
[︂
max

(︂
|𝑁𝑉 \{𝑣} (𝑢) |, 𝑘

)︂]︂
16: 𝑉 ← 𝑉 \ {𝑣}
17: Return 𝑐

to compute the number of neighbors of 𝑢 in the newly constructed
subhypergraph. To delay this recomputation, we derive a local lower-
bound for 𝑐 (𝑢) via Lemma 1 and use it to eliminate many redundant
neighborhood recomputations and cell updates (Algorithm 2). The
intuition is that a node 𝑢 will not be deleted at some iteration 𝑘 <

the lower-bound on 𝑐 (𝑢), thus we do not require computing 𝑢’s
neighborhood size until the value of 𝑘 reaches the lower-bound on
𝑐 (𝑢). Our lower-bound is local since it is specific to each node.

LEMMA 1 (LOCAL LOWER-BOUND). Let 𝑒𝑚 (𝑣) = argmax{|𝑒 | :
𝑒 ∈ 𝐸 ∧ 𝑣 ∈ 𝑒} be the highest-cardinality hyperedge incident on
𝑣 ∈ 𝑉 . For all 𝑣 ∈ 𝑉 ,

𝑐 (𝑣) ≥ max
(︃
|𝑒𝑚 (𝑣) | − 1,min

𝑢∈𝑉
|𝑁 (𝑢) |

)︃
= LB(𝑣) (2)

PROOF. Notice that 𝑐 (𝑣) ≥ min𝑢∈𝑉 |𝑁 (𝑢) |, since all nodes in the
input hypergraph must be in the (min𝑢∈𝑉 |𝑁 (𝑢) |)-core. Next, we
show that 𝑐 (𝑣) ≥ |𝑒𝑚 (𝑣) |−1, by contradiction. Let, if possible, |𝑒𝑚 |−
1 > 𝑐 (𝑣). This implies that 𝑣 is not in the (|𝑒𝑚 | − 1)-core, denoted
by 𝐻 [𝑉|𝑒𝑚 |−1]. Consider 𝑉 ′ = 𝑉|𝑒𝑚 |−1 ∪ {𝑢 : 𝑢 ∈ 𝑒𝑚}. Clearly,
|𝑉 ′ | ≥ |𝑉|𝑒𝑚 |−1 | + 1, since 𝑣 ∉ 𝑉|𝑒𝑚 |−1, but 𝑣 ∈ 𝑒𝑚 , so 𝑣 ∈ 𝑉 ′. We
next show that 𝐻 [𝑉|𝑒𝑚 |−1] is not the maximal subhypergraph where
every node has at least |𝑒𝑚 | − 1 neighbors, which is a contradiction.

To prove non-maximality of 𝐻 [𝑉|𝑒𝑚 |−1], it suffices to show that
for any 𝑢 ∈ 𝑉 ′, 𝑁𝑉 ′ (𝑢) ≥ |𝑒𝑚 | − 1. If 𝑢 ∈ 𝑉|𝑒𝑚 |−1 ⊂ 𝑉 ′, |𝑁𝑉 ′ (𝑢) | ≥
|𝑁𝑉|𝑒𝑚 |−1 (𝑢) | ≥ |𝑒𝑚 | − 1. If 𝑢 ∈ 𝑒𝑚 , 𝑁𝑉 ′ (𝑢) ≥ 𝑁𝑒𝑚 (𝑢) = |𝑒𝑚 | − 1.

Since our premise |𝑒𝑚 | − 1 > 𝑐 (𝑣) contradicts the fact that
𝐻 [𝑉|𝑒𝑚 |−1] is the (|𝑒𝑚 | − 1)-core, |𝑒𝑚 | − 1 ≤ 𝑐 (𝑣). □

Algorithm. Our efficient peeling approach is given in Algorithm 2:
E-Peel. In Line 14, we do not recompute neighborhoods and update
cells for those neighboring nodes 𝑢 for which 𝑠𝑒𝑡𝐿𝐵 is True, thereby
improving the efficiency. 𝑠𝑒𝑡𝐿𝐵 is True for nodes for which LB() is
known, but 𝑁𝑉 () at the current iteration is unknown.

EXAMPLE 2. Figure 3(a) illustrates the improvements made
by Algorithm 2 in terms of neighborhood recomputations and cell
updates. Since LB(𝑥) = 1 and every neighbor 𝑢 ∈ {𝑎, 𝑏, 𝑐, 𝑑} has
LB(𝑢) = 5, Algorithm 2 computes 𝑐 (𝑥) before 𝑐 (𝑢). Due to the
local lower-bound-based initialization in Lines 1-4 and ascending
iteration order of 𝑘 , 𝑥 is popped before 𝑢. The first time 𝑥 is popped
from 𝐵, 𝑥 goes to 𝐵 [4] due to Line 9 and 𝑠𝑒𝑡𝐿𝐵(𝑥) is set to False

2064

4-core5-core

1-core = 2-core

Incorrectly reported
3-core

Figure 3: (a) During 𝑥’s core-number computation, Algorithm 2 does
not perform neighborhood recomputations and cell updates for 𝑥’s neigh-
bors {𝑎,𝑏, 𝑐,𝑑 }; thus saving four redundant neighborhood recomputa-
tions and cell updates. (b) For any 𝑛 > 1, the ℎ-index (Definition 2) of
node 𝑎 never reduces from ℎ

(1)
𝑎 = H(2, 3, 3, 4) = 3 to its core-number 2:

lim𝑛→∞ ℎ
(𝑛)
𝑎 = 3 ≠ core-number of 𝑎. Because 𝑎 will always have at least

3 neighbors (𝑐, 𝑑 , and 𝑒) whose ℎ-indices are at least 3. As a result, the
naïve approach reports an incorrect 3-core.

in Line 10. The next time 𝑥 is popped (also at iteration 𝑘 = 4), the
algorithm computes 𝑐 (𝑥) in Line 12. 𝑠𝑒𝑡𝐿𝐵(𝑢) is still True for 𝑢
(Lines 13-15), as the default initialization of 𝑠𝑒𝑡𝐿𝐵(𝑢) has been True
(Line 4). Hence, none of the computations in Line 15 is executed for
𝑢. Intuitively, since the 5-core does not contain 𝑥 , deletion of 𝑥 and
the yellow hyperedges should be inconsequential to computing 𝑐 (𝑢)
correctly. 𝑐 (𝑢) is computed in the next iteration (𝑘 = 5) after it is
popped and is reassigned to 𝐵 [5], and 𝑠𝑒𝑡𝐿𝐵(𝑢) becomes False.

Proof of correctness. The proof of correctness follows that of Al-
gorithm 1. When a node 𝑣 is extracted from 𝐵 [𝑘] at iteration 𝑘, we
check 𝑠𝑒𝑡𝐿𝐵(𝑣). (1) Lemma 1 ensures that, if we extract a node 𝑣

from 𝐵 [𝑘] and 𝑠𝑒𝑡𝐿𝐵(𝑣) is True, then 𝑐 (𝑣) ≥ 𝑘. In that case, we
compute the current value of 𝑁𝑉 (), where 𝑉 denotes the set of re-
maining nodes, and insert 𝑣 into the cell: 𝐵 [max (|𝑁𝑉 (𝑣) |, 𝑘)]. We
also set 𝑠𝑒𝑡𝐿𝐵(𝑣) = False, implying that 𝑁𝑉 (𝑣) at the current itera-
tion is known. (2) In contrast, if we extract a node 𝑣 from 𝐵 [𝑘] and
𝑠𝑒𝑡𝐿𝐵(𝑣) is False, this indicates that 𝑐 (𝑣) = 𝑘, following the same
arguments as in Algorithm 1. In this case, we correctly assign 𝑣’s
core-number to 𝑘, and 𝑣 is removed from 𝑉 . Moreover, for those
neighbors 𝑢 of 𝑣 for which 𝑠𝑒𝑡𝐿𝐵(𝑢) is True, implying that 𝑐 (𝑢) ≥ 𝑘 ,
we appropriately delay recomputing their neighborhood sizes.

Time complexity. Following similar analysis as in Algorithm 1,
E-Peel has time complexity O

(︁
𝛼 · |𝑉 | · 𝑑𝑛𝑏𝑟 · (𝑑𝑛𝑏𝑟 + 𝑑ℎ𝑝𝑒)

)︁
, where

𝛼 ≤ 1 is the ratio of the number of neighborhood recomputations in
Algorithm 2 over that in Algorithm 1. Based on our experimental
results in §6, E-Peel can be up to 17x faster than Peel.

3.3 Local Algorithm
Although Peel and its efficient variant E-Peel correctly computes
core-numbers, they must modify the remaining hypergraph at every
iteration by peeling nodes and hyperedges. Peeling impacts the hy-
pergraph data structure globally and must be performed in sequence.
Thus, there is little scope for making Peel and E-Peel more efficient
via parallelization. Furthermore, they are not suitable in a time-
constrained setting where a high-quality partial solution is sufficient.
We propose a novel local algorithm that is able to provide partial
solutions, amenable to optimizations, and parallelizable.
Naïve adoption of local algorithm in hypergraphs: a negative
result. Eugene et al. [42] adopt Hirsch’s index [30], popularly known
as the ℎ-index (Definition 1), to propose a local algorithm for core

computation in graphs. This algorithm relies on a recurrence relation
that defines higher-order ℎ-index (Definition 2). The local algorithm
for graph core computation starts by computing ℎ-indices of order
0 for every node in the graph. At each iteration 𝑛 > 0, it computes
order-𝑛 ℎ-indices using order-(𝑛 − 1) ℎ-indices computed in the
previous iteration, until there is no node whose h-index changes.

DEFINITION 1 (H -OPERATOR [30, 42]). Given a finite set of
positive integers {𝑥1, 𝑥2, . . . , 𝑥𝑡 },H (𝑥1, 𝑥2, . . . , 𝑥𝑡) = 𝑦 > 0, where
𝑦 is the maximum integer such that there exist at least 𝑦 elements in
{𝑥1, 𝑥2, . . . , 𝑥𝑡 }, each of which is at least 𝑦.

EXAMPLE 3 (𝐻 -OPERATOR). H(1, 1, 1, 1) = 1,H(1, 1, 1, 2) = 1,
H(1, 1, 2, 2) = 2,H(1, 2, 2, 2) = 2,H(1, 2, 3, 3) = 2,H(1, 3, 3, 3) = 3

DEFINITION 2 (ℎ-INDEX OF ORDER 𝑛 [42]). Let {𝑢1, 𝑢2, . . . , 𝑢𝑡 }
be the set of neighbors of node 𝑣 ∈ 𝑉 in graph 𝐺 = (𝑉 , 𝐸). The 𝑛-
order ℎ-index of node 𝑣 ∈ 𝑉 , denoted as ℎ (𝑛)𝑣 , is defined for any
𝑛 ∈ N by the recurrence relation

ℎ
(𝑛)
𝑣 =

{︄
|𝑁 (𝑣) | 𝑛 = 0
H

(︂
ℎ
(𝑛−1)
𝑢1 , ℎ

(𝑛−1)
𝑢2 , . . . , ℎ

(𝑛−1)
𝑢𝑡

)︂
𝑛 ∈ N \ {0}

(3)

For neighborhood-based hypergraph core decomposition via local
algorithm, we define ℎ (0)𝑣 as the number of neighbors of node 𝑣 in
hypergraph 𝐻 = (𝑉 , 𝐸) (instead of graph 𝐺). The definition of ℎ (𝑛)𝑣

for 𝑛 > 0 remains the same. However, this direct adoption of local
algorithm to compute hypergraph cores does not work. Although
one can prove that the sequence (ℎ (𝑛)𝑣) adopted for hypergraph has a
limit, that value in-the-limit is not necessarily the core-number 𝑐 (𝑣)
for every 𝑣 ∈ 𝑉 . For some node, the value in-the-limit of its ℎ-indices
is strictly greater than the core-number of that node. The reason is as
follows.H -operator acts as both necessary and sufficient condition
for computing graph cores. It has been shown that the subgraph
induced by 𝐺 [𝑆], where 𝑆 contains all neighbors 𝑢 of a node 𝑣

such that ℎ (∞)𝑢 ≥ 𝑐 (𝑣), satisfies ℎ (∞)𝑣 = 𝑐 (𝑣) [42, p.5 Theorem 1].
However, Definition 2 is not sufficient to show ℎ

(∞)
𝑣 = 𝑐 (𝑣) for a

hypergraph. Because it is not guaranteed that 𝑣 will have at least ℎ∞𝑣
neighbors in the subhypergraph 𝐻 [{𝑢 : ℎ∞𝑢 ≥ ℎ∞𝑣 }] that is reported
as the 𝑐 (𝑣)-core. So, the reported 𝑐 (𝑣)-core can be incorrect.

EXAMPLE 4. For the hypergraph in Figure 3(b), the values in-
the-limit of ℎ-indices are ℎ

(∞)
𝑎 = ℎ

(∞)
𝑐 = ℎ

(∞)
𝑑

= ℎ
(∞)
𝑒 = 3 and

ℎ
(∞)
𝑏

= 2. No matter how large 𝑛 is chosen, Equation (3) does

not help ℎ
(𝑛)
𝑎 to reach the correct core-number (=2) for 𝑎. Three

neighbors of node 𝑎, namely 𝑐, 𝑑 , and 𝑒 have their ℎ∞-values at least
3 = ℎ∞𝑣 in Figure 3(b). But, 𝑎 does not have at least 3 neighbors
in the subhypergraph 𝐻 [{𝑎, 𝑐, 𝑑, 𝑒}] = 𝐻 [{𝑢 : ℎ∞𝑢 ≥ ℎ∞𝑣 }]. Thus,
the 3-core 𝐻 [{𝑎, 𝑐, 𝑑, 𝑒}] reported by the naïve ℎ-index based local
approach is incorrect. The reason is that 𝑎 and 𝑒 are no longer
neighbors to each other in 𝐻 [{𝑎, 𝑐, 𝑑, 𝑒}] due to the absence of 𝑏.

Local algorithm with local coreness constraint. Motivated by the
observation mentioned above, we define a constraint as a sufficient
condition, upon satisfying which we can guarantee that for every
node 𝑣 , 1) the sequence of its ℎ-indices converges and 2) the value
in-the-limit ℎ (∞)𝑣 is such that 𝑣 has at least ℎ (∞)𝑣 neighbors in the
subhypergraph induced by 𝐻 [𝑢 : ℎ (∞)𝑢 ≥ ℎ

(∞)
𝑣]. The first condition

2065

Algorithm 3 Local algorithm with local coreness constraint: Local-core
Input: Hypergraph 𝐻 = (𝑉 , 𝐸)
Output: Core-number 𝑐 (𝑣) for each node 𝑣 ∈ 𝑉

1: for all 𝑣 ∈ 𝑉 do
2: ℎ̂

(0)
𝑣 = ℎ

(0)
𝑣 ← |𝑁 (𝑣) | .

3: for all 𝑛 = 1, 2, . . . ,∞ do
4: for all 𝑣 ∈ 𝑉 do
5: ℎ

(𝑛)
𝑣 ← min

(︂
H({ℎ̂ (𝑛−1)𝑢 : 𝑢 ∈ 𝑁 (𝑣) }), ℎ̂ (𝑛−1)𝑣

)︂
6: for all 𝑣 ∈ 𝑉 do
7: 𝑐 (𝑣) ← ℎ̂

(𝑛)
𝑣 ← Core-correction (𝑣, ℎ (𝑛)𝑣 , 𝐻)

8: if ∀𝑣, ℎ̂ (𝑛)𝑣 == ℎ
(𝑛)
𝑣 then

9: Terminate Loop
10: Return 𝑐

is critical for algorithm termination. The second condition is critical
for correct computation of core-numbers as discussed in Example 4.

DEFINITION 3 (LOCAL CORENESS CONSTRAINT (LCC)). Given
a positive integer 𝑘 , for any node 𝑣 ∈ 𝑉 , let 𝐻+ (𝑣) = (𝑁 + (𝑣), 𝐸+ (𝑣))
be the subhypergraph of 𝐻 such that for any 𝑛 > 0

𝐸+ (𝑣) = {𝑒 ∈ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑣) : ℎ (𝑛)𝑢 ≥ 𝑘, ∀𝑢 ∈ 𝑒 }
𝑁 + (𝑣) = {𝑢 : 𝑢 ∈ 𝑒, ∀𝑒 ∈ 𝐸+ (𝑣) } \ {𝑣} (4)

Local coreness constraint (for node 𝑣) is satisfied at 𝑘, denoted
as 𝐿𝐶𝐶𝑆𝐴𝑇 (𝑘), iff ∃𝐻+ (𝑣) with at least 𝑘 nodes, i.e., |𝑁 + (𝑣) | ≥ 𝑘.
Here, 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑣) is the set of hyperedges incident on 𝑣 .

We define Hypergraph ℎ-index based on the notion of 𝐿𝐶𝐶𝑆𝐴𝑇
and a re-defined recurrence relation for ℎ (𝑛)𝑣 .

DEFINITION 4 (HYPERGRAPH ℎ-INDEX OF ORDER 𝑛). The

Hypergraph ℎ-index of order 𝑛 for node 𝑣 , denoted as ℎ̂
(𝑛)
𝑣 , is defined

for any natural number 𝑛 ∈ N by the following recurrence relation:

ℎ̂
(𝑛)
𝑣 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|𝑁 (𝑣) | 𝑛 = 0
ℎ
(𝑛)
𝑣 𝑛 > 0 ∧ 𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (𝑛)𝑣)

max{𝑘 | 𝑘 < ℎ
(𝑛)
𝑣 ∧ 𝐿𝐶𝐶𝑆𝐴𝑇 (𝑘) } 𝑛 > 0 ∧ ¬𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (𝑛)𝑣)

(5)

ℎ
(𝑛)
𝑣 is a newly defined recurrence relation on hypergraphs:

ℎ
(𝑛)
𝑣 =

⎧⎪⎨⎪⎩ |𝑁 (𝑣) | 𝑛 = 0

min
(︂
H

(︂
ℎ̂
(𝑛−1)
𝑢1 , ℎ̂

(𝑛−1)
𝑢2 , . . . , ℎ̂

(𝑛−1)
𝑢𝑡

)︂
, ℎ̂
(𝑛−1)
𝑣

)︂
𝑛 ∈ N \ {0}

(6)

The recurrence relations in Equations (5) and (6) are coupled: ℎ̂
(𝑛)
𝑣

depends on the evaluation of ℎ (𝑛)𝑣 , which in turn depends on the

evaluation of ℎ̂
(𝑛−1)
𝑣 . Such inter-dependency causes both sequences

to converge, as proven in our correctness analysis.

Local-core (Algorithm 3) initializes ℎ
(0)
𝑣 and ℎ̂

(0)
𝑣 to |𝑁 (𝑣) | for

every node 𝑣 ∈ 𝑉 (Lines 1-2) following Equation (6) and Equa-
tion (5), respectively. At every iteration 𝑛 > 0, Algorithm 3 first com-
putes ℎ (𝑛)𝑣 for every node 𝑣 ∈ 𝑉 (Lines 4-5) following Equation (6).
In order to decide whether the algorithm should terminate at itera-

tion 𝑛 (Lines 8-9), the algorithm computes ℎ̂
(𝑛)
𝑣 using Algorithm 4.

Algorithm 4 checks for every node 𝑣 ∈ 𝑉 , whether 𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (𝑛)𝑣)
is True or False. Following Equation (5), if 𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (𝑛)𝑣) is True
it returns ℎ

(𝑛)
𝑣 ; if 𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (𝑛)𝑣) is False, a suitable value lower

than ℎ
(𝑛)
𝑣 is returned. The returned value ℎ̂

(𝑛)
𝑣 is considered as the

estimate of core-number 𝑐 (𝑣) at that iteration (Line 7). To compute

Algorithm 4 Core-correction procedure

Input: Node 𝑣, 𝑣’s hypergraph ℎ index ℎ (𝑛)𝑣 , hypergraph 𝐻

1: while ℎ (𝑛)𝑣 > 0 do

2: Compute 𝐸+ (𝑣) ← {𝑒 ∈ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑣) : ℎ (𝑛)𝑢 ≥ ℎ
(𝑛)
𝑣 , ∀𝑢 ∈ 𝑒 }

3: Compute 𝑁 + (𝑣) = {𝑢 : 𝑢 ∈ 𝑒, ∀𝑒 ∈ 𝐸+ (𝑣) } \ {𝑣}
4: if |𝑁 + (𝑣) | ≥ ℎ

(𝑛)
𝑣 then

5: return ℎ (𝑛)𝑣
6: else
7: ℎ

(𝑛)
𝑣 ← ℎ

(𝑛)
𝑣 − 1

𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (𝑛)𝑣), Algorithm 4 checks in Line 4 if the subhypergraph
𝐻+ (𝑣) = (𝑁 + (𝑣), 𝐸+ (𝑣)) constructed in Lines 2-3 contains at least
ℎ
(𝑛)
𝑣 neighbors of 𝑣 . If 𝑣 has at least ℎ (𝑛)𝑣 neighbors in the subhyper-

graph 𝐻+ (𝑣), due to Equation (5) no correction to ℎ
(𝑛)
𝑣 is required.

In this case, Algorithm 4 returns ℎ
(𝑛)
𝑣 in Line 5. If 𝑣 does not

have at least ℎ (𝑛)𝑣 neighbors in the subhypergraph 𝐻+ (𝑣) (Line 4),
𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (𝑛)𝑣) is False by Definition 3. Following Equation (5), a
correction to ℎ (𝑛)𝑣 is required. In search for a suitable corrected value
lower than ℎ

(𝑛)
𝑣 and a suitable subhypergraph 𝐻+ (𝑣), Line 7 keeps

reducing ℎ
(𝑛)
𝑣 by 1. Reduction to ℎ

(𝑛)
𝑣 causes |𝑁 + (𝑣) | to increase,

while ℎ
(𝑛)
𝑣 decreases, until the condition in Line 4 is satisfied. At

some point a suitable subhypergraph must be found.
Theorem 4 proves that the numbers returned by Algorithm 3

at that point indeed coincide with the true core-numbers. The ter-

mination condition ℎ̂
(𝑛)
𝑣 = ℎ

(𝑛)
𝑣 must be satisfied at some point be-

cause Theorem 3 proves that lim𝑛→∞ ℎ̂
(𝑛)
𝑣 = lim𝑛→∞ ℎ

(𝑛)
𝑣 ∀𝑣 ∈ 𝑉 .

EXAMPLE 5. Consider iteration 𝑛 = 1 of Algorithm 3, when
the input to the algorithm is the hypergraph in Figure 3(b). The

algorithm corrects the core-estimate ℎ (1)𝑎 = 3 to ℎ̂
(1)
𝑎 = 2 in Line 7.

Because in Line 4 of Core-correction, the algorithm finds that for
ℎ
(1)
𝑎 = 3, 𝑎 only has |𝑁 + (𝑣) | = 2 neighbors in𝐻+ (𝑣) = 𝐻 [{𝑎, 𝑐, 𝑑, 𝑒}]

thus violating the condition that |𝑁 + (𝑣) | > ℎ
(1)
𝑎 . Henceℎ (1)𝑎 needs to

be corrected to satisfy 𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (1)𝑎). In Line 7 of Core-correction,
it reduces ℎ (1)𝑎 by one. Subsequently for ℎ (1)𝑎 = 2 the subhypergraph
𝐻+ (𝑎) = 𝐻 indeed satisfies 𝐿𝐶𝐶𝑆𝐴𝑇 (ℎ (1)𝑎). This is how Algorithm 3
corrects the case of incorrect core-numbers discussed in Example 4.

3.4 Theoretical Analysis of Local-core
Proof of Correctness. Algorithm 3 terminates after a finite number
of iterations because by Theorem 3, for any 𝑣 ∈ 𝑉 , sequences (ℎ (𝑛)𝑣)
and (ℎ̂ (𝑛)𝑣) are finite and have the same limit. At the limit, ∀𝑣 ∈ 𝑉 ,

lim𝑛→∞ ℎ
(𝑛)
𝑣 = lim𝑛→∞ ℎ̂

(𝑛)
𝑣 holds and it follows from Theorem 4

that ∀𝑣 ∈ 𝑉 , lim𝑛→∞ ℎ
(𝑛)
𝑣 = lim𝑛→∞ ℎ̂

(𝑛)
𝑣 = 𝑐 (𝑣). Due to limitation

of space, proofs are given in our extended version [4].

THEOREM 3. For any node 𝑣 ∈ 𝑉 of a hypergraph 𝐻 = (𝑉 , 𝐸),
the two sequences (ℎ (𝑛)𝑣) defined by Equation (6) and (ℎ̂ (𝑛)𝑣) defined

by Equation (5) have the same limit: lim𝑛→∞ ℎ
(𝑛)
𝑣 = lim𝑛→∞ ℎ̂

(𝑛)
𝑣 .

THEOREM 4. If the local coreness-constraint is satisfied for all
nodes 𝑣 ∈ 𝑉 at the terminal iteration, the corrected ℎ-index at the
terminal iteration ℎ̂

(∞)
𝑣 satisfies: ℎ̂

(∞)
𝑣 = 𝑐 (𝑣).

2066

Algorithm 5 Optimized local algorithm: Local-core(OPT)
Input: Hypergraph 𝐻 = (𝑉 , 𝐸)
Output: Core-number 𝑐 (𝑣) for each node 𝑣 ∈ 𝑉

1: Construct CSR representations /* Opt-I */
2: for all 𝑣 ∈ 𝑉 do
3: Compute LB(𝑣) /* local lower-bounds for Opt-IV */

4: 𝑐 (𝑣) ← ℎ̂
(0)
𝑣 ← ℎ

(0)
𝑣 ← |𝑁 (𝑣) | /* core-estimate c(v) initialized for Opt-III*/

5: for all 𝑛 = 1, 2, . . . ,∞ do
6: for all 𝑣 ∈ 𝑉 do
7: if ℎ (𝑛)𝑣 > 𝐿𝐵 (𝑣) then /* Opt-IV*/

8: 𝑐 (𝑣) ← ℎ
(𝑛)
𝑣 ← min (H({𝑐 (𝑢) : 𝑢 ∈ 𝑁 (𝑣) }), 𝑐 (𝑣)) /* Opt-III*/

9: for all 𝑣 ∈ 𝑉 do
10: if ℎ (𝑛)𝑣 > 𝐿𝐵 (𝑣) then /* Opt-IV */

11: 𝑐 (𝑣) ← ℎ̂
(𝑛)
𝑣 ← Core-correction (𝑣, ℎ (𝑛)𝑣 , H) /* Opt-II & Opt-III*/

12: if ∀𝑣, ℎ̂ (𝑛)𝑣 == ℎ
(𝑛)
𝑣 then

13: Terminate Loop
14: Return 𝑐

Time complexity. Assume that Algorithm 3 terminates at itera-
tion 𝜏 of the for-loop at Line 3. Each iteration has time-complexity
O(∑︁𝑣 |𝑁 (𝑣) | (𝑑 (𝑣) + |𝑁 (𝑣) |) +

∑︁
𝑣 |𝑁 (𝑣) |), the first term is due to

Lines 6-7 and the second term is due to Lines 4-5. Computing H -
operator requires hypergraph ℎ-indices of 𝑣’s neighbors and costs
linear-time: O(|𝑁 (𝑣) |). Core-correcting 𝑣 requires at most |𝑁 (𝑣) |
iterations of while-loop (Line 1, Algorithm 4), at each iteration con-
structing each of 𝐸+ (𝑣) and 𝑁 + (𝑣) costs O(𝑑 (𝑣) + |𝑁 (𝑣) |). Thus,
Local-core has time complexity O (𝜏 ∗∑︁𝑣 (𝑑 (𝑣) |𝑁 (𝑣) | + |𝑁 (𝑣) |2)

)︁
.

Upper-bound on the number of iterations. To derive an upper-
bound on the number of iterations 𝜏 required by Local-core, we
define the notion of neighborhood hierarchy for nodes in a hyper-
graph and prove that every node converges by the time the for-loop
iterator in Line 3 (Algorithm 3) reaches its neighborhood hierarchy.

DEFINITION 5 (NEIGHBORHOOD HIERARCHY). Given a hy-
pergraph 𝐻 , the 𝑖-th neighborhood hierarchy, denoted by 𝑁𝑖 , is the
set of nodes that have the minimum number of neighbors in 𝐻 [𝑉 ′],
where 𝑉 ′ = 𝑉 \ ∪0≤ 𝑗<𝑖𝑁 𝑗 . Formally,

𝑁𝑖 = {𝑣 : argmin
𝑣∈𝑉 ′

|𝑁𝐻 [𝑉 ′] (𝑣) | } (7)

Consider the hypergraph 𝐻 in Figure 1(a). Since Hall has 4 neigh-
bors, 𝑁0 = {𝐻𝑎𝑙𝑙}. After deleting Hall, nodes Wallace and Popiden
have the lowest number of neighbors (4) in the remaining sub-
hypergraph. Hence, 𝑁1 = {𝑊𝑎𝑙𝑙𝑎𝑐𝑒, 𝑃𝑜𝑝𝑖𝑑𝑒𝑛}. After deleting them,
nodes in 𝑅 has the lowest number of neighbors (6) in the remaining
sub-hypergraph. Hence, 𝑁2 = 𝑅. Finally, 𝑁3 = 𝑇 .

THEOREM 5 (INDIVIDUAL NODE CONVERGENCE). Given a

node 𝑣 ∈ 𝑁𝑖 in a hypergraph 𝐻 , it holds that ∀𝑛 ≥ 𝑖, ℎ̂
(𝑛)
𝑣 = 𝑐 (𝑣) .

The proof by induction on 𝑖 is given in our extended version [4].
Clearly, 𝜏 is at most the largest neighborhood hierarchy of the nodes.

4 OPTIMIZATION AND PARALLELIZATION
OF THE LOCAL-CORE ALGORITHM

We propose four optimizations to improve the efficiency of Local-
core (§3.3). Algorithm 5 presents the pseudocode for the optimized
algorithm, Local-core(OPT), where all four optimizations are in-
dicated. Optimization-I adopts sparse representations to efficiently
evaluate neighborhood queries in hypergraphs, while Optimization-
II consists of three implementation-specific improvements to effi-
ciently perform Core-correction. Optimizations-I and II have not

been used in earlier core-decomposition works for both graphs and
hypergraphs. Our Optimizations-III and IV are motivated by [41],
where similar optimizations are proposed for graph (𝑘, ℎ)-core de-
composition to improve convergence and eliminate redundant com-
putations, respectively. However such optimizations have not been
adopted in earlier hypergraph-related works.
Optimization-I (Compressed hypergraph representation). Local-
core makes two primitive neighborhood queries on hypergraph struc-
tures: neighbors enumeration (for ℎ-index computation, Lines 2 and
5, Algorithm 3) and incident-hyperedges enumeration (during Core-
correction, Line 2, Algorithm 4). A naïve implementation keeps a
|𝑉 | × |𝑉 | matrix for neighbors counting queries and a |𝑉 | × |𝐸 | matrix
for incident-hyperedge queries. However, storing such matrices in
memory is expensive and unnecessary for large hypergraphs since
these matrices are sparse in practice. Hence, it is imperative to adopt
a compressed sparse representation, e.g., Compressed sparse row
(CSR) for these matrices. For example, in CSR representation we
use two arrays F and N for storing neighbors. For all nodes 𝑣 ∈ 𝑉 ,
N[𝑣] stores the starting index in F containing neighbors of node 𝑣 .
To facilitate neighborhood enumeration query, neighbors of node 𝑣
are stored at contiguous indicesN[𝑣],N[𝑣] + 1, . . .,N[𝑣 + 1] − 1 in
F . Any neighbor 𝑢 connected to 𝑣 by a hyperedge has their own set
of neighbors 𝑁 (𝑢) stored at contiguous indices N[𝑢], N[𝑢] + 1,. . .,
N[𝑢 +1] −1 in F . Hence for any node 𝑣 ∈ 𝑉 ,N[𝑣 +1] −N [𝑣] gives
the number of neighbors |𝑁 (𝑣) | in O(1) time and neighborhood
enumeration takes O(|𝑁 (𝑣) |) time; in contrast to the matrix repres-
entations which take O(|𝑉 |) time for both neighbors-enumeration
and incident-hyperedges enumeration queries. CSR representations,
due to their contiguous memory locations, can also exploit spatial
memory access patterns in the Local-core algorithm.
Optimization-II (Efficient Core-correction and LCCSAT). We
design three optimization methods for more efficient Core-correction.

Hyperedge-index for efficient 𝐸+ computation: In Line 2 of Core-
correction (Algorithm 4), we check if ℎ (𝑛)𝑢 ≥ ℎ

(𝑛)
𝑣 for every node

𝑢 ∈ 𝑒 such that 𝑒 ∈ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑣). This computation incurs O(𝑑 (𝑣) +
|𝑁 (𝑣) |) at every while-loop (Line 1) of Core-correction. Since the
number of while-loop iterations is |𝑁 (𝑣) | in the worst-case, an inef-
ficient 𝐸+ computation contributes O(|𝑁 (𝑣) | (𝑑 (𝑣) + |𝑁 (𝑣) |)) to the
total cost of Core-correction. We reduce this cost to O(|𝑁 (𝑣) |𝑑 (𝑣))
by maintaining an index 𝐸𝑒 for hyperedges. 𝐸 (𝑛)𝑒 records for every
hyperedge 𝑒 ∈ 𝐸 the minimum of ℎ-indices of its constituent nodes
(min𝑢∈𝑒 ℎ

(𝑛)
𝑢). We compute 𝐸+ (𝑣) by traversing only the incident

hyperedges whose 𝐸 (𝑛)𝑒 ≥ ℎ
(𝑛)
𝑣 . Storing 𝐸𝑒 for all hyperedges costs

O(|𝐸 |) space and constructing the indices costs O(∑︁𝑒∈𝐸 |𝑒 |) time.
However, hyperedge-indices are constructed only once before every
iteration in Local-core (Line 3, Algorithm 3). Moreover, hyperedge-
index helps efficiently compute 𝑁 + as follows.

Dynamic programming for efficient 𝑁 + computation: The while
loop in the Core-correction procedure computes 𝑘 = ℎ

(𝑛)
𝑣 , ℎ

(𝑛)
𝑣 −

1, . . . , ℎ̂ (𝑛)𝑣 ; and for every ℎ̂
(𝑛)
𝑣 ≤ 𝑘 ≤ ℎ

(𝑛)
𝑣 , it recomputes 𝐸+ (𝑣) and

𝑁 + (𝑣) until returning ℎ̂
(𝑛)
𝑣 as output. Without any optimization, the

cost of computing 𝑁 + (𝑣) at every while-loop iteration 𝑘 (Line 1)
is O(𝑑 (𝑣) + |𝑁 (𝑣) |). Since the number of while-loop iterations is

(ℎ (𝑛)𝑣 − ℎ̂ (𝑛)𝑣) ≤ |𝑁 (𝑣) |, an inefficient 𝑁 + computation contributes
O(|𝑁 (𝑣) | (𝑑 (𝑣) + |𝑁 (𝑣) |)) to the total cost of Core-correction.

2067

We reduce this cost to O(𝑑 (𝑣) + |𝑁 (𝑣) |) by constructing an index
𝐵 such that 𝐵 [ℎ (𝑛)𝑣] records the set of incident hyperedges whose
hyperedge-index 𝐸

(𝑛)
𝑒 ≥ ℎ

(𝑛)
𝑣 , and for every 𝑘 < ℎ

(𝑛)
𝑣 , 𝐵 [𝑘] records

the incident hyperedges whose hyperedge-index 𝐸
(𝑛)
𝑒 = 𝑘 .

Let us denote 𝐸+ (𝑣) and 𝑁 + (𝑣) at 𝑘 as 𝐸+ (𝑣, 𝑘) and 𝑁 + (𝑣, 𝑘),
respectively. Exploiting the index structure 𝐵, we have the following
dynamic programming paradigm for efficiently computing 𝑁 + (𝑣, 𝑘).

𝑁 + (𝑣, 𝑘) =
{︄
∪𝑒𝐵 [𝑘] 𝑘 = ℎ

(𝑛)
𝑣

𝑁 + (𝑣, 𝑘 + 1) ∪ (∪𝑒𝐵 [𝑘]) ℎ̂
(𝑛)
𝑣 ≤ 𝑘 < ℎ

(𝑛)
𝑣

(8)

Instead of traversing all incident hyperedges at every ℎ̂
(𝑛)
𝑣 ≤

𝑘 ≤ ℎ
(𝑛)
𝑣 , we only traverse hyperedges at 𝐵 [𝑘] to compute 𝑁 + (𝑣, 𝑘).

Since the indices 𝐵 [𝑘] are mutually exclusive, each incident hy-
peredge is traversed at most once during the entire Core-correction
procedure. The storage cost of 𝐵 is O(ℎ (𝑛)𝑣 + 𝑑 (𝑣)), as there are
at most ℎ (𝑛)𝑣 keys in 𝐵 and exactly 𝑑 (𝑣) hyperedges are stored in
𝐵. Due to efficient 𝐸+ and 𝑁 + computation, core-correction costs
O(|𝑁 (𝑣) |𝑑 (𝑣) + 𝑑 (𝑣) + |𝑁 (𝑣) |) instead of O(|𝑁 (𝑣) |𝑑 (𝑣) + |𝑁 (𝑣) |2).

Efficient LCCSAT computation: We return True upon finding
the first hyperedge 𝑒 ∈ 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑣) adding which to 𝐸+ (𝑣) causes
|𝑁 + (𝑣) | ≥ ℎ

(𝑛)
𝑣 . Adding subsequent incident hyperedges to 𝐸+ (𝑣)

increases |𝑁 + (𝑣) | more without affecting 𝐿𝐶𝐶𝑆𝐴𝑇 (𝑘)=True.
Optimization III (Faster convergence). In Line 8 (Algorithm 5),
instead of computing ℎ (𝑛)𝑣 as per Equation (6), we compute a smaller

value 𝑔
(𝑛)
𝑣 by replacing some operands ℎ̂

(𝑛−1)
𝑢𝑖

in the H -operator

with ℎ
(𝑛)
𝑢𝑖 ≤ ℎ̂

(𝑛−1)
𝑢𝑖

(due to Theorem 3). This leads to faster conver-

gence since 𝑔
(𝑛)
𝑣 ≤ ℎ

(𝑛)
𝑣 , because lowering a few arguments may

cause the output of H() to decrease further, e.g., H(1, 1, 2, 2) = 2,
whereas H(1, 1, 1, 2) = 1. Computing 𝑔𝑣 does not affect the cor-
rectness because the new interleave sequence (ℎ𝑣, 𝑔𝑣, 𝑔̂𝑣) is also
monotonically non-increasing and lower-bounded by 0. This is be-
cause ℎ

(𝑛)
𝑣 ≥ 𝑔

(𝑛)
𝑣 and Core-correction never increases 𝑔 (𝑛)𝑣 , so

𝑔
(𝑛)
𝑣 ≥ 𝑔̂

(𝑛)
𝑣 . Thus, (ℎ (𝑛)𝑣), (𝑔

(𝑛)
𝑣), and (𝑔̂ (𝑛)𝑣) have the same limit

as that in Theorem 3: ℎ̂
(∞)

. Finally, from Theorem 4, it follows that

ℎ̂
(∞)

= 𝑐 (𝑣) holds despite this optimization.
Optimization-IV (Reducing redundant H computations and
LCCSAT checks). We use local lower-bound LB(𝑣) on core-numbers
(Lemma 1) to reduce the number of ℎ-index computations and

core corrections. At some iteration 𝑛, if ℎ̂
(𝑛)
𝑣 =LB(𝑣), it ensures that

𝑐 (𝑣)=LB(𝑣). Thus, ℎ-index for 𝑣 would no longer reduce in future

iterations; otherwise, 𝑐 (𝑣) = ℎ̂
(∞)
𝑣 < ℎ̂

(𝑛)
𝑣 = LB(𝑣), which is a con-

tradiction. Hence, it must be that 𝑐 (𝑣) = ℎ̂
(∞)

= ℎ̂
(𝑛)

. We need not
compute the ℎ-index and core corrections for 𝑣 at future iterations.

Note that Liu et al. [41] determine the redundancy ofH compu-
tation for node 𝑣 based on the convergence of both ℎ

(𝑛)
𝑣 and ℎ

(𝑛)
𝑢 of

neighbors 𝑢 ∈ 𝑁 (𝑣). This does not work for our problem, because
even if a node 𝑣 and its neighbors’ ℎ-indices have converged, node 𝑣
may still need core correction (e.g., Example 4).
Efficiency comparison of Local-core(Opt) and Peel. The terms
𝑑𝑛𝑏𝑟 and 𝑑ℎ𝑝𝑒 in the time complexity of Peel (§3.1) are upper bounds
of |𝑁 (𝑣) | and 𝑑 (𝑣), respectively, ∀𝑣 ∈ 𝑉 . Hence, the complexity of
Peel is comparable to O(∑︁𝑣∈𝑉 |𝑁 (𝑣) |𝑑 (𝑣) + 𝑁 (𝑣)2), which is same

as the complexity of one round of Local-core (§3.3). Thus, Local-
core is slower than Peel. However, our optimizations reduce its com-
plexity significantly. For instance, by efficiently computing 𝐸+ and
𝑁 +, optimization-II reduces the complexity to O(𝜏 ∑︁𝑣 (𝑑 (𝑣) |𝑁 (𝑣) | +
𝑑 (𝑣) + |𝑁 (𝑣) |)) = O(𝜏 ∑︁𝑣 𝑑 (𝑣) |𝑁 (𝑣) |) = O(𝜏 |𝑉 |𝑑ℎ𝑝𝑒𝑑𝑛𝑏𝑟). Hence,

Local-core(Opt) is at least
𝑑𝑛𝑏𝑟+𝑑ℎ𝑝𝑒

𝜏𝑑ℎ𝑝𝑒
= (𝑑𝑛𝑏𝑟

𝜏𝑑ℎ𝑝𝑒
+ 1

𝜏)-times faster
than Peel due to Optimization-II. A node usually has more neighbors
than its degree in large-scale, real-world hypergraphs (e.g., aminer,
dblp in Table 1), resulting in 𝑑𝑛𝑏𝑟 > 𝑑ℎ𝑝𝑒 . Optimizations III and IV
further reduce 𝜏 , making the ratio > 1, and thus Local-core(Opt) is
much faster than Peel in our experiments.

Parallelization of Local-core. We propose parallel Local-core(P)
algorithm following the shared-memory, data parallel programming
paradigm, which further improves efficiency. The algorithm parti-
tions nodes into𝑇 partitions, where𝑇 is the number of threads. Each
thread is responsible for computing core-numbers of nodes in its
own partition. To improve load-balancing, we adopt the longest-
processing-time-first scheduling approach [27] such that the aggreg-
ated number of neighbors of nodes in different threads are roughly
the same. Local-core(P) has three primary differences compared to
sequential Local-core(OPT) (Algorithm 5).

First, at iteration 0 (Line 3), every thread initializes hypergraph
ℎ-indices for its allocated nodes in parallel. Concurrent computation
of |𝑁 (𝑣) | and |𝑁 (𝑢) | for nodes allocated to different threads requires
concurrent reads to the CSR representation. Since the CSR represent-
ation does not change across queries, both queries will produce the
same result as their sequential counterparts. Second, at subsequent it-
erations (𝑛 > 0), every thread computes ℎ (𝑛)𝑣 and the corrected value

ℎ̂
(𝑛)
𝑣 for its allocated nodes in parallel (Lines 6-11). Interestingly, our

algorithm still terminates with the correct output because none of our
previous theoretical results rely on any particular computation order
of nodes in the same iteration. The computation order only affects the
number of iterations required for convergence. Finally, all threads
keep their respective core-correction counter, which counts the num-
ber of allocated nodes that have been core-corrected in a given round.
Once all the counters report 0, Local-core(P) terminates.

5 EXTENSION TO (NEIGHBORHOOD,
DEGREE)-CORE DECOMPOSITION

We propose a new hypergraph-core model, (neighborhood, degree)-
core, or (𝑘,𝑑)-core in short, by considering both neighborhood and
degree constraints. (𝑘,𝑑)-core eliminates problems such as the nbr-
𝑘-core of a node can be very large if it is involved in one large-size
hyperedge. Notice that the 𝑑-value of the (𝑘,𝑑)-core for such a node
would be small, differentiating it from other nodes having both
higher degrees and a higher number of neighbors. We demonstrate
the superiority of (𝑘, 𝑑)-core in diffusion spread (§7.1).

(𝑘,𝑑)-core. Given integers 𝑘, 𝑑 > 0, the (𝑘,𝑑)-core, denoted as
𝐻 [𝑉(𝑘,𝑑)] = (𝑉(𝑘,𝑑) , 𝐸 [𝑉(𝑘,𝑑)]) is the maximal subhypergraph s.t.
every node 𝑢 ∈ 𝑉(𝑘,𝑑) has at least 𝑘-neighbors and degree ≥ 𝑑 in the
strongly induced subhypergraph 𝐻 [𝑉(𝑘,𝑑)].
(𝑘, 𝑑)-core decomposition is difficult: (1) Unlike neighborhood-

based core decomposition that defines a total hierarchical order
across different cores, (𝑘, 𝑑)-core decomposition forms a core lattice
defining only partial containments: (𝑘 + 𝑖, 𝑑 + 𝑗)-core is contained

2068

Table 1: Datasets: |𝑉 | #nodes, |𝐸 | #hyperedges, 𝑑 (𝑣) avg. degree of a
node, |𝑒 | avg. cardinality of a hyperedge, |𝑁 (𝑣) | avg. #neighbors/node

hypergraph |𝑉 | |𝐸 | 𝑑 (𝑣) |𝑒 | |𝑁 (𝑣) |

Syn.
bin4U 500 12424 99.4±8.5 4±0 225.3±15.5

bin3U 500 16590 99.5±8 3±0 164.1±11.6

pref3U 125329 250000 5.9±915.9 3±0 4.5±412.4

Real

enron 4423 5734 6.8±32 5.2±5 25.3±44

contact 242 12704 127±55.2 2.4±0.5 68.7±26.6

congress 1718 83105 426.2±475.8 8.8±6.8 494.7±248.6

dblp 1836596 2170260 4±11.6 3.4±1.8 9±21.4

aminer 27850748 17120546 2.3±5 3.7±2.6 8.4±24.1

in (𝑘,𝑑)-core ∀𝑘,𝑑 > 0; 𝑖, 𝑗 ≥ 0. (2) Let 𝑘𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥 denote the
maximum core-numbers via neighborhood- and degree-based core
decompositions, respectively. We can have up to O(𝑘𝑚𝑎𝑥 · 𝑑𝑚𝑎𝑥)
different (𝑘,𝑑)-cores. Due to such challenges, we keep the problem
of designing a holistic local algorithm for (𝑘, 𝑑)-core decomposition
open. Following a similar notion from multi-layer core decomposi-
tion [24], we propose a hybrid local and peeling approach.

Local-core+Peel algorithm for (𝑘, 𝑑)-core decomposition. We ini-
tialize all (𝑘,𝑑)-cores as empty and compute neighborhood-based
core decomposition of all nodes using Local-core(OPT). Our al-
gorithm (given in [4]) has two for-loops: At each outer for-loop
iteration 𝑘 , we construct the nbr-𝑘-core (𝐻 [𝑉𝑘]) and peel the nodes
in 𝑉𝑘 to find various (𝑘,𝑑)-cores with the same 𝑘 but different 𝑑 . To
do so, we use a vector of lists 𝐵 to define the initial peeling order of
𝑉𝑘 based on their degrees in cell 𝐻 [𝑉𝑘] similar to algorithm Peel.
We traverse 𝐵 in ascending order of values 𝑑 and peel nodes from the
current cell 𝐵 [𝑑] until 𝐵 [𝑑] is empty. Whenever a node is removed
from 𝐵, it is assigned to proper (𝑘,𝑑)-core, and its neighbors in
𝐻 [𝑉𝑘] are moved to appropriate cells in 𝐵. After we assign all the
nodes in 𝑉𝑘 to various (𝑘, 𝑑)-cores for varying 𝑑, we proceed to do
the same for 𝑉𝑘+1 at the next iteration of the outer for-loop.

6 EMPIRICAL EVALUATION
We empirically evaluate the performance of our algorithms on four
synthetic and five real-world datasets (Table 1). We implement our
algorithms in GNU C++11 and OpenMP API version 3.1. All ex-
periments are conducted on a server with 128 AMD EPYC 32-core
processors and 256GB RAM. Our code and datasets are at [3].

Datasets. Among synthetic hypergraphs, bin4U and bin3U are 4-
uniform and 3-uniform hypergraphs, respectively, generated using
state-of-the-art hypergraph configuration model [2]. pref3U is a
3-uniform hypergraph generated using the hypergraph preferential-
attachment model [5] with parameter 𝑝 = 0.5, where 𝑝 is the probab-
ility of a new node being preferentially attached to existing nodes in
the hypergraph. The node degrees in pref3U approximately follows
a power-law distribution with exponent = 2.2. Among real-world
hypergraphs, enron is a hypergraph of emails, where each email
correspondence is a hyperedge and users are nodes [11]. We derive
the contact (in a school) dataset from a graph where each maximal
clique is viewed as a hyperedge and individuals are nodes [11]. In
the congress dataset, nodes are congress-persons and each hyperedge
comprises of sponsors and co-sponsors (supporters) of a legislative
bill [11]. In dblp, nodes are authors and a hyperedge consists of

authors in a publication recorded on DBLP [11]. Similarly, aminer
consists of authors and publications recorded on Aminer [52].

6.1 Effectiveness of Local-core Algorithm
Exp-1: Novelty & importance of hypergraph ℎ-index. We demon-
strate the novelty of the proposed hypergraph ℎ-index (Definition 4)
by showing that a direct adaptation of graph ℎ-index (Definition 2)
without any core correction, that is, running the local algorithm
from [42, 45] may produce incorrect hypergraph core-numbers. Fig-
ure 4(a) depicts that a local algorithm that only considers graph
ℎ-index without adopting our novel Core-correction (§ 3.3) gener-
ates incorrect core-numbers for at least 90% nodes on bin4U, bin3U,
and congress. On contact, enron, pref3U, dblp, and aminer, core-
numbers for at least 15%, 26%, 5%, 17%, and 10% nodes are in-
correct, respectively. As nodes in bin4U, bin3U, and congress have
relatively higher mean(|𝑁 (𝑣) |) (Table 1), there are more correlated
neighbors in these datasets. Incorrect ℎ-indices of correlated neigh-
bors have a domino-effect: A few nodes with wrong ℎ-values, unless
corrected, may cause all their neighbors to have wrong ℎ-values,
which may in turn cause the neighbors’ neighbors to have wrong
ℎ-values, and so on. Unless all such correlated nodes are corrected,
almost all nodes eventually end up with wrong core-numbers.

We also compare the average error in the core-number estimates
at each iteration by graph ℎ-index and our hypergraph ℎ-index. Here,
avg. error at iteration n =

∑︁
𝑢∈𝑉 (ℎ (𝑛) (𝑢) − 𝑐𝑜𝑟𝑒 (𝑢))/|𝑉 |. Figures

4(b)-(c) show avg. errors incurred at the end of each iteration on
enron and bin4U. At initialization, both indices have the same error
on a specific dataset. For both indices, avg. error at a given iteration
is less than or equal to that in the previous iteration. However at
higher iterations, hypergraph ℎ-index incurs less avg. error com-
pared to graph ℎ-index. At termination, although hypergraph ℎ-index
produces correct core-numbers, graph ℎ-index has non-zero avg.
error. We notice similar trends in other datasets, however for the
same iteration number, graph ℎ-index produces higher avg. error on
bin4U than that on enron. This is due to more number of correlated
neighbors in bin4U than that in enron as stated earlier.

Exp-2: Convergence of Local-core. Figure 4(d) shows that as #
iterations increases in our Local-core algorithm (§ 3.3), the per-
centage of nodes with correctly converged core-numbers increases.
The number of iterations for convergence depend on hypergraph
structure and computation ordering of nodes. As pref3U, dblp, and
enron have more nodes with fewer correlated neighbors, more nodes
achieve correct core-numbers after the first iteration. On pref3U 98%
nodes already converge by iteration 2. This observation also suggests
that one can terminate Local-core algorithm early at the expense of
a fraction of incorrect results on pref3U.

6.2 Efficiency Evaluation
We evaluate the efficiency of our proposed algorithms: Peel, E-Peel,
Local-core(OPT), and local-core(P) vs. baselines: Clique-Graph-
Local and Bipartite-Graph-Local. The baselines Clique-Graph-
Local and Bipartite-Graph-Local consider clique graph and bipart-
ite graph representations (§2.2), respectively, of the hypergraph and
then apply local algorithms [41, 42] for graph core decomposition.
From Figures 6(a)-(b), which report end-to-end running times, we
find that (1) E-Peel is more efficient than Peel on all datasets. (2)

2069

bin4U bin3U contact enron pref3U congress dblp aminer
Dataset

0

20

40

60

80

100

%
N

od
es

w
/

w
ro

ng
c(

v)

(a) Ineffectiveness of graph ℎ-index

2 4 6 8 10
Iteration

0
2
4
6
8

10
12

A
vg

.
er

ro
r

Graph h-index

Hyp. h-index

(b) Average error of hyp. and graph
ℎ-index on Enron

1 2 3 4 5 6 7 8 9
Iteration

0
5

10
15
20
25
30
35
40

A
vg

.
er

ro
r

Graph h-index

Hyp. h-index

(c) Average error of hyp. and graph
ℎ-index on bin4U

20 21 22 23 24 25

Iteration

0

20

40

60

80

100

%
N

od
es

w
/

co
rr

ec
t

c(
v)

pref3U

dblp

enron

bin3U

bin4U

(d) Convergence of Local-core

Figure 4: Effectiveness evaluation of hypergraph ℎ-index and Local-core

cliqueG-Local
D2biparatiteG-Local

Peel
E-Peel

Local-core(OPT)
Local-core(P)

Local-core
Local-core+I

Local-core+I+III
Local-core+I+III+IV

Local-core+Peel for (k,d)-core

Figure 5: Legends for Figures 6 and 7

bin4U bin3U contact enron
Dataset

10−3

10−2

10−1

100

102

E
2E

T
im
e(
s)

(a)

pref3U congress dblp aminer
Dataset

10−2

100
101
102

104

106

E
2E

T
im

e(
s)

(b)

enron congress dblp aminer
Dataset

10−2

100

10−1

101

102

104

A
lg

.
T

im
e(

s)

(c)

pref3U congress dblp aminer
Dataset

10−1

100

101

102

103

104

A
lg

.
T

im
e(

s)

(d)

Figure 6: (a)-(b) End-to-end (E2E) running time of our algorithms: Peel, E-Peel, Local-core(OPT), Local-core(P) with 64 Threads vs. those of baselines:
Clique-Graph-Local and Distance-2 Bipartite-Graph-Local. End-to-end (E2E) running time = data structure initialization time (shaded with dark-black
on top of each bar) + algorithm’s execution time. (c) Impact of the four optimizations to Local-core algorithm’s execution time. Here, Local-core(OPT)
= Local-core + Optimizations-I + II +III + IV. (d) Local-core+Peel algorithm’s execution time for (neighborhood, degree)-core decomposition vs.
Local-core(OPT) for neighborhood-core decomposition.

1 2 4 8 16 32 64 128
Threads

100

101

102

A
lg

.
T

im
e(

s)

0.3x
0.5x

1.0x
2x

3x
7x

11x 12x

Local-core(OPT)

(a) dblp

1 2 4 8 16 32 64 128
Threads

101

102

103

A
lg

.
T

im
e(

s)

0.2x
0.3x

0.6x
1x

2x
4x

7x 7x

Local-core(OPT)

(b) aminer

Figure 7: Local-core(P) algorithm’s execution time. Local-core(P)
achieves up to 12x speedup compared to sequential Local-core(OPT).

Local-core(OPT) is more efficient than Peel on all datasets. (3)
Local-core(P) is the most efficient algorithm among all the data-
sets. (4) The baseline Bipartite-Graph-Local is the least efficient
among all algorithms. This is because reducing the hypergraph to
bipartite graph inflates the number of graph nodes and edges (§1),
and distance-2 core decomposition [41] on this inflated graph signi-
ficantly increases the running time (§2.2). Clique-Graph-Local’s
end-to-end running time is comparable to Local-core(OPT) (e.g.,
slightly more efficient on contact and congress, while less efficient
on enron and aminer). This is because reduction to clique graph also
inflates the problem size (§1), but graph-based ℎ-index computation
[42] on the clique graph does not require any core-correction. How-
ever, clique graph decomposition gives a different decomposition
than ours and in certain applications (as shown in §2.2, §7) our
decomposition is more desirable than clique graph decomposition.

Various algorithms require different data structure initialization
times, e.g., finding neighbors and incidence hyperedges for all nodes
(all algorithms), creating bipartite graph (Bipartite-Graph-Local),
clique graph (Clique-Graph-Local), and CSR (Bipartite-Graph-
Local, Clique-Graph-Local, Local-core(OPT), Local-core(P)).
In end-to-end running times (Figures 6(a)-(b)), we included initial-
ization times of data structures (shaded with dark-black on top of
each bar). We also report initialization times on our largest aminer
dataset separately in Table 2. We parallelize CSR construction, find-
ing neighbors and incidence hyperedges for nodes using OpenMP
with dynamic scheduling [21]. Parallel initialization time of data
structures and execution time of Local-core(P) are 66 sec and 25
sec, respectively, on aminer, thus end-to-end time being 91 sec.

Exp-3: Efficiency of E-Peel. As stated in §3.2, the speedup of E-
Peel over Peel is related to 𝛼 , which is the ratio of the #|𝑁 (𝑢) |
queries made by E-Peel to that of Peel. In Figures 6(a)-(b), E-
Peel achieves the highest speedup (17x compared to Peel) on enron
because 𝛼 = 0.35 is the smallest on this dataset.

In remaining experiments (Figures 6(c)-(d), 7), we compare sim-
ilar algorithms that have same initialization time on a dataset, thus we
compare these algorithms’ execution times (‘Alg. Time’ on 𝑦-axis).

Exp-4: Efficiency and impact of optimizations to Local-core. We
next analyze the efficiency of the proposed optimizations (§4) with
respect to Local-core without any optimization. Local-core+I incor-
porates optimization-I to Local-core, Local-core+I+III incorpor-
ates optimization-III on top of Local-core+I, Local-core+I+III+IV

2070

Table 2: Data structure initialization times of all algorithms on aminer

Local-core(P) Local-core (OPT) E-Peel Peel Clique-G-Local Bipartite-G-Local
66 s 510 s 195 s 198 s 806 s 793 s

incorporates optimization-III on top of Local-core+I+III. Finally,
Local-core(OPT) incorporates all four optimizations. Figures 6(c)
shows the execution times of Local-core, Local-core+I, Local-
core+I+III, Local-core+I+III+IV, and Local-core(OPT) on four
representative datasets. On all hypergraphs, we observe that adding
each optimization generally reduces the execution time.

Exp-5: Impact of parallelization. We test the parallelization per-
formance of Local-core(P) by varying #threads (Figure 7). Adding
64-128 threads reduces the overall execution time up to 7-12x on
larger dblp and aminer datasets. We measure execution times of
Local-core(P) without load-balancing (§4), where load-balancing
speeds up Local-core(P) up to 1.8x on aminer and dblp.

Expt-6: Efficiency of Local-core+Peel for (neighborhood, degree)-
core decomposition. Figure 6(d) shows that the Local-core+Peel
algorithm for (𝑘, 𝑑)-core decomposition takes more time than Local-
core(OPT) on larger datasets. This is expected since the number
of possible (𝑘, 𝑑)-cores is O(𝑘𝑚𝑎𝑥 · 𝑑𝑚𝑎𝑥), whereas the number of
neighborhood-based cores is only 𝑘𝑚𝑎𝑥 (§5). As the output size
increases, the algorithm Local-core+Peel, on top of running Local-
core(OPT), explicitly constructs subhypergraphs 𝐻 [𝑉𝑘] and peels
𝐻 [𝑉𝑘] based on degree-dimension, for all nbr core-numbers 𝑘 .

7 APPLICATIONS AND CASE STUDIES
7.1 Influence Spreading and Intervention
We consider the SIR diffusion process [36]: Initially, all nodes except
one—called a seed—are at the susceptible state. The seed node is
initially at the infectious state. At each time step, each infected node
infects its susceptible neighbors with probability 𝛽 and then becomes
immunized. Once a node is immunized, it is never re-infected.

Inner-cores contain influential spreaders (Figure 8(a-c)). For each
decomposition method, we select the top-5 innermost cores (on the
𝑥-axis), and for each core, we run the SIR model (𝛽=0.3) from each
of 100 uniformly selected seed nodes in that core. For (𝑘,𝑑)-cores,
we choose inner cores with top-5 𝑘 values, where for each 𝑘, we
select seed nodes with the maximum 𝑑-value. Figure 8(a) shows the
#infected nodes averaged per seed node from a core. (1) The avg.
#infected nodes generally decreases as we move from inner to outer
cores, implying that inner cores contain better quality seeds. (2)
Seeds selected according to (𝑘, 𝑑)-core decomposition outperform
seeds selected via other decomposition, indicating that our (𝑘,𝑑)-
core decomposition produces the best-quality seeds for maximizing
diffusion. (3) Seeds selected via degree-based decomposition have
the lowest spread. (4) The quality of seeds derived from the neigh-
borhood and clique graph decompositions have similar spread, the
reason being that their inner cores have higher similarity in terms of
constituent nodes, while outer cores from these two decompositions
are quite different in dblp. Figure 8(b) highlights this difference by
comparing core-numbers of 1000 randomly selected nodes accord-
ing to different methods. We notice a linear correlation between the
neighborhood and clique graph decomposition-based core-numbers

Top 1 Top 2 Top 3 Top 4 Top 5
Top 5 innermost core

0K

2K

4K

6K

#
av

g
in

fe
ct

ed
no

de
s

Clique Degree Nbr (k, d)

(a) dblp

20 21 22 23 24 25 26 27

Neighborhood-based core-number

21

23

25

27

C
or

e-
nu

m
b

er Clique

Degree

(b) dblp

6 7 8 9 10 11 12
Core-number of seed nodes

1400

1600

1800

2000

2200

#
av

g
in

fe
ct

ed
no

de
s Clique Nbr

(c) dblp

1K 2K 3K 4K 5K 6K 7K
#deleted nodes from inner cores

100

101

102

103

D
ec

re
as

e
in

av
g.

sp
re

ad
p

er
se

ed

Clique Degree Nbr

(d) dblp

Figure 8: (a) The avg. #infected nodes decreases as seeds are selected
from innermost to outer cores. (b) Neighborhood decomposition core-
number vs. degree and clique graph decomposition core-numbers of
nodes. (c) Neighborhood-based decomposition outperforms clique-based
method when seeds are selected from outer cores. (d) The decrease in
avg. expected #infected nodes per seed is the highest when the top-𝑘
nodes are deleted via neighborhood-based decomposition.

for nodes in inner cores, but such linear correlation diminishes as
we consider nodes from outer cores. We do not observe any correla-
tion between the neighborhood and degree-based core-numbers. (5)
Neighborhood-based method outperforms clique graph when seed
nodes are selected from relatively outer cores (Figure 8(c)).

Deleting inner-cores for the maximum intervention in spread-
ing (Figure 8(d)). We devise an intervention strategy to disrupt
diffusion, which is critical in mitigating the spread of contagions in
epidemiology, limiting the spread of misinformation, or blocking
competitive campaigns in marketing. The nodes in inner cores ac-
cording to a specific decomposition method (neighborhood, degree,
or clique) are considered more important than nodes in outer cores.
We select the top-𝑘 most important nodes (on the 𝑥-axis) according
to a specific decomposition, then we delete those nodes and incident
hyperedges. For fairness across different decompositions, we con-
sider the same set of seeds for all – seeds are selected from outside
the union of deleted node sets according to three decompositions. To
determine the effectiveness of such deletion strategy, on the 𝑦-axis,
we report the decrease in average spread (expected number of infec-
ted nodes) per seed. We observe that when deleting up to 6K nodes,
deletion of important nodes via neighborhood-based decomposition
always results in a maximum decrease of spread, compared to the
same done via other decompositions (degree and clique). Beyond 6K
nodes, each decomposition method deletes a significant number of
important nodes according to that decomposition, and the quality of
seeds (which are from outside deleted regions) also degrades; thus,
all approaches cause a similar decrease in spread. This result shows
that our neighborhood-based decomposition produces the best order
of important nodes for deleting a limited number of them, while
causing the maximum intervention in spreading.

2071

7.2 Densest SubHypergraph Discovery
The degree-densest subgraph is a subgraph with the maximum aver-
age node-degree among all subgraphs of a given graph [14, 19, 26],
which may correspond to communities [17] and echo chambers [37]
in social networks, brain regions responding to stimuli [40]. Follow-
ing same principle, we define a new notion of densest subhypergraph,
called the volume-densest subhypergraph, based on the number of
neighbors of nodes in a hypergraph. The volume-density 𝜌𝑁 [𝑆] of
a subset 𝑆 ⊆ 𝑉 of nodes in a hypergraph 𝐻 = (𝑉 , 𝐸) is defined as the
ratio of the summation of neighborhood sizes of all nodes 𝑢 ∈ 𝑆 in
the induced subhypergraph 𝐻 [𝑆] to the number of nodes in 𝐻 [𝑆].

𝜌𝑁 [𝑆] =
∑︁
𝑢∈𝑆 |𝑁𝑆 (𝑢) |
|𝑆 | (9)

The volume-densest subhypergraph is a subhypergraph which has
the largest volume-density among all subhypergraphs.

Approximation algorithm. Inspired by Charikar [14], our approach
follows the peeling paradigm: In each round, we remove the node
with the smallest number of neighbors in the current subhyper-
graph. In particular, we sort the nodes in ascending order of their
neighborhood-based core-numbers, obtained from any neighborhood-
based core-decomposition algorithm (Peel, E-Peel, Local-core(P),
or Local-core(OPT)). We peel nodes in that order. Among nodes
with the same core-number, the one with the smallest number of
neighbors in the current subhypergraph is peeled earlier. We finally
return the subhypergraph that achieves the largest volume-density.

THEOREM 6. Our volume-densest subhypergraph discovery al-
gorithm returns (𝑑𝑝𝑎𝑖𝑟 (𝑑𝑐𝑎𝑟𝑑 − 2) + 2)-approximate densest subhy-
pergraph if the maximum cardinality of a hyperedge is 𝑑𝑐𝑎𝑟𝑑 and the
maximum number of hyperedges between a pair of nodes is 𝑑𝑝𝑎𝑖𝑟 in
the input hypergraph.

The proof is given in our extended version [4]. Notice that 𝑑𝑝𝑎𝑖𝑟 =

2 if the hypergraph is a graph and our result gives 2-approximation
guarantee for the densest subgraph discovery [14].

Case study: Meetup dataset. We extract all events with < 100
participants from the Nashville meetup dataset [7]. The extracted
hypergraph contains 24 115 nodes (participants) and 11 027 hy-
peredges (events) organized by various interest groups. We compute
and analyze the volume-densest subhypergraph, degree-densest sub-
hypergraph [31], and degree-densest subgraph [14] of clique graph
(Table 3). (1) The degree-densest subhypergraph contains casual,
frequent gatherings, each having less participants, from only one
socializing group (Bellevue Meetup: Meet new Friends). (2) How-
ever, both the degree-densest subgraph of the clique graph and the
volume-densest subhypergraph contain events involving multiple
technical groups that arrange meetups about diverse technical themes.
(3) Despite finding events of technical themes, the volume-densest
subhypergraph finds a different set of events than the degree-densest
subgraph of the clique graph. The reason is that the degree-density
criterion used to extract these events from the clique graph is differ-
ent from volume-density. The degree-densest subgraph of the clique
graph, despite having a high degree-density (100.7), when projected
to a subhypergraph (by projecting cliques to hyperedges), has a low
volume-density (0.4). We also find these technical events to be less
popular, having 5 participants on avg., compared to those returned
by the volume-densest subhypergraph (avg. 78 participants).

Table 3: A summary of volume-densest subhyp., degree-densest subhyp.,
and degree-densest subgraph of clique graph on Meetup dataset [7]

Vol.-den. subhyp. Deg.-den. subg. of clique g. Deg.-den. subhyp.
Events 27 17 26

Vol.-density 116.9 0.4 (projected to subhyp.) 9.3

Example
events

Identity and Access

Controls Landscape

in .NET; Web scraping

in Python; Regulatory Env.

Around Blockchain

Field Trip w/

Genealogical Society;

Monthly Meeting: Civic

Tech; Nashville (Nv)

PHP User Group

Trivia Night a○
Plantation Pub;

Trivia Night a○
Three Stones Pub;

Dinner a○ Dalton

Organizing
groups

Nv .NET User Group;

Data Science Nv.;

Nv. Blockchain User Group

State & Local Govt. Dev

Network; Dev Launchpad;

Nv. PHP User Group

Bellevue Meetup:

Meet new Friends

8 RELATED WORK
Recently, there has been a growing interest in hypergraph data man-
agement [20, 34, 38, 49, 51, 55]. As we focus on core decomposition,
we refer to recent surveys [10, 18, 39, 53] for a general exposition.

There are relatively few works on hypergraph core decomposi-
tion. [46] propose a peeling algorithm to find the maximal-degree
based 𝑘-core of a hypergraph. [33, 49] discuss parallel implementa-
tions of degree-based hypergraph core computation based on peeling
approach. Sun et al. [50] propose a fully dynamic approximation
algorithm that maintains approximate degree-based core-numbers
of an unweighted hypergraph. Gabert et al. [23] study degree-based
core maintenance in dynamic hypergraphs, and propose a parallel
(shared-memory) local algorithm. None of these works explore our
neighborhood-based hypergraph core decomposition, which is differ-
ent from degree-based hypergraph core computation (§1). Existing
approaches for degree-based core decomposition cannot be easily
adapted for neighborhood-based hypergraph core computation (§3).

Related work on graph cores are discussed in our full version [4].

9 CONCLUSIONS
We introduced neighborhood-cohesive core decomposition of hyper-
graphs, having desirable properties such as Uniqueness and Core-
containment. We then proposed three algorithms: Peel, E-Peel, and
novel Local-core for hypergraph core decomposition. Empirical
evaluation on synthetic and real-world hypergraphs showed that the
novel Local-core with optimizations and parallel implementation is
the most efficient among all proposed and baseline algorithms. Our
proposed decomposition is more effective than the degree and clique
graph-based decompositions in intervening diffusion. Case studies
illustrated that our novel volume-densest subhypergraphs capture
differently important meetup events. Finally, we developed a new
hypergraph-core model, (neighborhood, degree)-core by considering
both neighborhood and degree constraints, designed decomposition
algorithm Local-core+Peel, and depicted its superiority in diffusion
spread. In future, we shall design efficient algorithms for (neighbor-
hood, degree)-core decomposition.

ACKNOWLEDGMENTS
Arijit Khan acknowledges support from the Novo Nordisk Founda-
tion grant NNF22OC0072415. Bishwamittra Ghosh acknowledges
support from National Research Foundation Singapore NRF-NRFFAI1-
2019-0004 , CREATE (DesCartes), MoE Singapore Tier 2 grant
MOE-T2EP20121-0011 and Tier 1 grant R-252-000-B59-114.

2072

REFERENCES
[1] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2005. Large scale networks fingerprinting and visualization using the k-core
decomposition. In Advances in Neural Information Processing Systems (NeurIPS).
MIT Press, 41–50.

[2] Naheed Anjum Arafat, Debabrota Basu, Laurent Decreusefond, and Stéphane
Bressan. 2020. Construction and random generation of hypergraphs with pre-
scribed degree and dimension sequences. In Database and Expert Systems Ap-
plications (DEXA) (Lecture Notes in Computer Science), Vol. 12392. Springer,
130–145.

[3] Naheed Anjum Arafat, Arijit Khan, Arpit Kumar Rai, and Bishwamittra Ghosh.
2022. Our code and datasets. https://github.com/toggled/vldbsubmission/.

[4] Naheed Anjum Arafat, Arijit Khan, Arpit Kumar Rai, and Bishwamittra Ghosh.
2023. Neighborhood-based Hypergraph Core Decomposition. arXiv preprint
arXiv:2301.06426 (2023).

[5] Chen Avin, Zvi Lotker, Yinon Nahum, and David Peleg. 2019. Random preferen-
tial attachment hypergraph. In IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM). 398–405.

[6] Mohammad A. Bahmanian and Mateja Sajna. 2015. Connection and separation
in hypergraphs. Theory and Applications of Graphs 2, 2 (2015), 5.

[7] Stephen Bailey. 2017. Nashville meetup network. https://www.kaggle.com/
datasets/stkbailey/nashville-meetup.

[8] Vladimir Batagelj, Andrej Mrvar, and Matjaž Zaveršnik. 1999. Partitioning
approach to visualization of large graphs. In Graph Drawing (Lecture Notes in
Computer Science), Vol. 1731.

[9] Vladimir Batagelj and Matjaž Zaveršnik. 2011. Fast algorithms for determining
(generalized) core groups in social networks. Advances in Data Analysis and
Classification 5, 2 (2011), 129–145.

[10] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas,
Alice Patania, Jean-Gabriel Young, and Giovanni Petri. 2020. Networks beyond
pairwise interactions: structure and dynamics. Physics Reports 874 (2020), 1–92.

[11] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon
Kleinberg. 2018. Simplicial closure and higher-order link prediction. Proceedings
of the National Academy of Sciences 115, 48 (2018), E11221–E11230.

[12] Claude Berge. 1989. Hypergraphs - combinatorics of finite sets. North-Holland
mathematical library, Vol. 45. North-Holland.

[13] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized
core decomposition. In The International Conference on Management of Data
(SIGMOD). ACM, 1006–1023.

[14] Moses Charikar. 2000. Greedy approximation algorithms for finding dense com-
ponents in a graph. In Approximation Algorithms for Combinatorial Optimization,
Third International Workshop (Lecture Notes in Computer Science), Vol. 1913.
Springer, 84–95.

[15] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core
decomposition in massive networks. In IEEE International Conference on Data
Engineering (ICDE). 51–62.

[16] Megan Dewar, Kirill Ternovsky, Benjamin Reiniger, John Proos, Pawel Pralat,
Xavier Pérez-Giménez, and John Healy. 2018. Subhypergraphs in non-uniform
random hypergraphs. Internet Math. 2018 (2018).

[17] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extraction and
classification of dense implicit communities in the web graph. ACM Transactions
on the Web 3, 2 (2009), 1–36.

[18] Tina Eliassi-Rad, Vito Latora, Martin Rosvall, and Ingo Scholtes. 2021. Higher-
order graph models: from theoretical foundations to machine learning (Dagstuhl
Seminar 21352). Dagstuhl Reports 11, 7 (2021), 139–178.

[19] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin
Lin. 2019. Efficient algorithms for densest subgraph discovery. Proc. VLDB
Endow. 12, 11 (2019), 1719–1732.

[20] Pit Fender and Guido Moerkotte. 2013. Counter strike: generic top-down join
enumeration for hypergraphs. Proc. VLDB Endow. 6, 14 (2013), 1822–1833.

[21] Andrew Finlayson. [n.d.]. OpenMP Scheduling. http://www.inf.ufsc.br/~bosco.
sobral/ensino/ine5645/OpenMP_Dynamic_Scheduling.pdf.

[22] Christoph Flamm, Bärbel M.R. Stadler, and Peter F. Stadler. 2015. Generalized to-
pologies: hypergraphs, chemical reactions, and biological evolution. In Advances
in Mathematical Chemistry and Applications. Bentham Science, 300–328.

[23] Kasimir Gabert, Ali Pinar, and Ümit V. Çatalyürek. 2021. Shared-Memory
Scalable k-Core Maintenance on Dynamic Graphs and Hypergraphs. In IEEE
International Parallel and Distributed Processing Symposium. 998–1007.

[24] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lan-
ciano. 2020. Core decomposition in multilayer networks: theory, algorithms, and
applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 11:1–11:40.

[25] Thomas Gaudelet, Noël Malod-Dognin, and Natasa Przulj. 2018. Higher-order
molecular organization as a source of biological function. Bioinformatics 34, 17
(2018), i944–i953.

[26] Andrew V. Goldberg. 1984. Finding a maximum density subgraph. University of
California Berkeley.

[27] Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics 17, 2 (1969), 416–429.

[28] Ronald L. Graham, Martin Grötschel, and László Lovász (Eds.). 1996. Handbook
of Combinatorics (Vol. 2). MIT Press.

[29] Yi Han, Bin Zhou, Jian Pei, and Yan Jia. 2009. Understanding importance of
collaborations in co-authorship networks: a supportiveness analysis approach. In
SIAM International Conference on Data Mining (SDM). 1112–1123.

[30] Jorge E. Hirsch. 2005. An index to quantify an individual’s scientific research
output. Proceedings of the National academy of Sciences 102, 46 (2005), 16569–
16572.

[31] Shuguang Hu, Xiaowei Wu, and T.-H. Hubert Chan. 2017. Maintaining densest
subsets efficiently in evolving hypergraphs. In ACM International Conference on
Information and Knowledge Management (CIKM). 929–938.

[32] Jin Huang, Rui Zhang, and Jeffrey Xu Yu. 2015. Scalable hypergraph learning and
processing. In IEEE International Conference on Data Mining (ICDM). 775–780.

[33] Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. 2017. Parallel peeling
algorithms. ACM Transactions on Parallel Computing 3, 1 (2017), 1–27.

[34] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita,
Yaroslav Akhremtsev, and Alessandro Presta. 2017. Social hash partitioner:
a scalable distributed hypergraph partitioner. Proc. VLDB Endow. 10, 11 (2017),
1418–1429.

[35] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
K-core decomposition of large networks on a single PC. Proc. VLDB Endow. 9, 1
(2015), 13–23.

[36] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,
H. Eugene Stanley, and Hernán A. Makse. 2010. Identification of influential
spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.

[37] Laks V.S. Lakshmanan. 2022. On a quest for combating filter bubbles and misin-
formation. In The International Conference on Management of Data (SIGMOD).
ACM, 2.

[38] Geon Lee, Jihoon Ko, and Kijung Shin. 2020. Hypergraph motifs: concepts,
algorithms, and discoveries. Proc. VLDB Endow. 13, 11 (2020), 2256–2269.

[39] Geon Lee, Jaemin Yoo, and Kijung Shin. 2022. Mining of Real-World Hy-
pergraphs: Patterns, Tools, and Generators. In Proceedings of the 31st ACM
International Conference on Information and Knowledge Management (CIKM).
5144–5147.

[40] Robert Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh S.
Vempala. 2018. Long term memory and the densest k-subgraph problem. In Innov-
ations in Theoretical Computer Science Conference (ITCS) (Leibniz International
Proceedings in Informatics (LIPIcs)), Vol. 94. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 57:1–57:15.

[41] Qing Liu, Xuliang Zhu, Xin Huang, and Jianliang Xu. 2021. Local algorithms for
distance-generalized core decomposition over large dynamic graphs. Proc. VLDB
Endow. 14, 9 (2021), 1531–1543.

[42] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H. Eugene Stanley. 2016. The
H-index of a network node and its relation to degree and coreness. Nature
communications 7, 1 (2016), 1–7.

[43] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis.
2016. Locating influential nodes in complex networks. Scientific Reports 6, 19307
(2016).

[44] Irene Malvestio, Alessio Cardillo, and Naoki Masuda. 2020. Interplay between
k-core and community structure in complex networks. Scientific Reports 10,
14702 (2020).

[45] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2012. Dis-
tributed k-core decomposition. IEEE Transactions on parallel and distributed
systems 24, 2 (2012), 288–300.

[46] Emad Ramadan, Arijit Tarafdar, and Alex Pothen. 2004. A hypergraph model
for the yeast protein complex network. In International Parallel and Distributed
Processing Symposium.

[47] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,
and Ümit V. Çatalyürek. 2013. Streaming algorithms for k-core decomposition.
Proc. VLDB Endow. 6, 6 (2013), 433–444.

[48] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2015.
Finding the hierarchy of dense subgraphs using nucleus decompositions. In The
International Conference on World Wide Web (WWW). ACM.

[49] Julian Shun. 2020. Practical parallel hypergraph algorithms. In The ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. 232–249.

[50] Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. 2020. Fully dynamic approx-
imate k-core decomposition in hypergraphs. ACM Trans. Knowl. Discov. Data 14,
4 (2020), 39:1–39:21.

[51] Justin Sybrandt, Ruslan Shaydulin, and Ilya Safro. 2022. Hypergraph partitioning
with embeddings. IEEE Trans. Knowl. Data Eng. 34, 6 (2022), 2771–2782.

[52] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008.
ArnetMiner: extraction and mining of academic social networks. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 990–998.

[53] Leo Torres, Ann Sizemore Blevins, Danielle S. Bassett, and Tina Eliassi-Rad.
2021. The why, how, and when of representations for complex systems. SIAM

2073

https://github.com/toggled/vldbsubmission/
https://www.kaggle.com/datasets/stkbailey/nashville-meetup
https://www.kaggle.com/datasets/stkbailey/nashville-meetup
http://www.inf.ufsc.br/~bosco.sobral/ensino/ine5645/OpenMP_Dynamic_Scheduling.pdf
http://www.inf.ufsc.br/~bosco.sobral/ensino/ine5645/OpenMP_Dynamic_Scheduling.pdf

Rev. 63, 3 (2021), 435–485.
[54] Jia Wang and James Cheng. 2012. Truss decomposition in massive networks.

Proc. VLDB Endow. 5, 9 (2012), 812–823.
[55] Joyce Jiyoung Whang, Rundong Du, Sangwon Jung, Geon Lee, Barry L. Drake,

Qingqing Liu, Seonggoo Kang, and Haesun Park. 2020. MEGA: multi-view
semi-supervised clustering of hypergraphs. Proc. VLDB Endow. 13, 5 (2020),
698–711.

[56] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang
Zhang. 2021. Self-supervised hypergraph convolutional networks for session-
based recommendation. In AAAI Conference on Artificial Intelligence. 4503–
4511.

[57] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network com-
munities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

2074

	Abstract
	1 Introduction
	2 Our Problem and Characterization
	2.1 Problem Formulation
	2.2 Differences with Other Core Decompositions
	2.3 Nbr-k-Core: Properties

	3 Algorithms
	3.1 Peeling Algorithm
	3.2 Efficient Peeling with Bounding
	3.3 Local Algorithm
	3.4 Theoretical Analysis of Local-core

	4 Optimization and Parallelization of the local-core Algorithm
	5 Extension to (neighborhood, degree)-core decomposition
	6 Empirical Evaluation
	6.1 Effectiveness of Local-core Algorithm
	6.2 Efficiency Evaluation

	7 Applications and Case Studies
	7.1 Influence Spreading and Intervention
	7.2 Densest SubHypergraph Discovery

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

