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ABSTRACT
Recently, the topic of influential community search has gainedmuch
attention. Given a graph, it aims to find communities of vertices
with high importance values from it. Existing works mainly focus
on conventional homogeneous networks, where vertices are of the
same type. Thus, they cannot be applied to heterogeneous informa-
tion networks (HINs) like bibliographic networks and knowledge
graphs, where vertices are of multiple types and their importance
values are of heterogeneity (i.e., for vertices of different types, their
importance meanings are also different). In this paper, we study
the problem of influential community search over large HINs. We
introduce a novel community model, called heterogeneous influ-
ential community (HIC), or a set of closely connected vertices that
are of the same type and high importance values, using the meta-
path-based core model. An HIC not only captures the importance of
vertices in a community, but also considers the influence on meta-
paths connecting them. To search the HICs, we mainly consider
meta-paths with two and three vertex types. Then, we develop ba-
sic algorithms by iteratively peeling vertices with low importance
values, and further propose advanced algorithms by identifying
the key vertices and designing pruning strategies that allow us to
quickly eliminate vertices with low importance values. Extensive
experiments on four real large HINs show that our solutions are
effective for searching HICs, and the advanced algorithms signifi-
cantly outperform baselines.
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1 INTRODUCTION
Heterogeneous information networks (HINs) are networks with mul-
tiple typed objects and multiple typed links denoting different se-
mantic relations. These graph data sources are prevalent in various
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Figure 1: An example HIN of DBLP network.

domains, including bibliographic networks [40, 46], IMDB movie
networks [43, 57], and knowledge graphs [15]. The objects of these
HINs are often associated with importance values, which can be
found easily from their profiles or derived by importance estimation
methods [19, 20, 36, 37]. Particularly, the importance values are
also of heterogeneity; that is, for vertices of different types,
their importance semantic meanings are different, and their
possible values are in different ranges. For example, the HIN
of DBLP network has four vertex types, i.e., author (𝐴), paper (𝑃 ),
venue (𝑉 ), and topic (𝑇 ); the objects’ importance values can be
reflected by their h-indexes, citation numbers, h5-indexes, and pop-
ularity values (i.e., the numbers of results in Google search engine),
respectively. In Figure 1, the example HIN of DBLP network con-
sists of seven authors (i.e., 𝑎1, · · · , 𝑎7), five papers (i.e., 𝑝1, · · · , 𝑝5),
one venue (i.e., 𝑣1), and one topic (i.e., 𝑡1). The directed lines denote
their semantic relationships. For instance, the author 𝑎3 has written
a paper 𝑝3, which mentions the topic 𝑡1, published in the venue 𝑣1.
The vertices’ importance values are shown in the HIN (e.g., the
author 𝑎3’s h-index is 60, and the paper 𝑝4’s citation number is 400).
Note that the h-index of an author is often hundreds at most [35],
while a paper could be cited thousands of times or more [52].

In this paper, we study the problem of Influential Community
Search over HINs (or ICSH problem). The topic of influential CS ,
or finding communities of vertices with high influence values from
a graph, has gained much attention recently [2, 8, 26–29, 31, 53].
However, existing works mainly focus on conventional homoge-
neous networks where vertices are of the same type, making them
inapplicable for the HIN which involves multiple types of vertices
and edges. To tackle this issue, we aim to search highly influential
communities from HINs. A highly influential community is a set
of vertices of the same type, which are not only closely related,
but also have high importance values. Particularly, the community
satisfies the meta-path-based cohesiveness [15], i.e., its vertices are
intensively connected by instances of a specific meta-path [46] or
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Table 1: Existing works of community search (CS).

Graph type Non-influential CS Influential CS
Homogeneous e.g., [10, 11, 13, 21, 23, 44] [2, 8, 22, 26–29, 31, 38, 53]
Heterogeneous e.g., [14, 15, 24, 25, 39] ICSH (this work)

a path of vertex types and edge types between two given vertex
types. In Figure 1, the meta-path P1=(𝐴𝑃𝐴), defined on authors (𝐴)
and papers (𝑃 ), describes two authors with co-authorship. The au-
thors {𝑎3, 𝑎4, 𝑎5, 𝑎6} form a cohesive community, since each pair of
authors can be connected by a path instance of P, and the authors
and papers are of high h-indexes and citation numbers respectively.

Prior works. Existing works on community retrieval can be
roughly classified into community detection and community search
(CS). Community detection often aims to identify all communities
for a graph [16, 32, 34, 47–49, 62], so they are not “query-based”
(i.e., they are not customized for a query request) or efficient for
processing large graphs. To tackle these limitations, the CS solutions
(e.g., [11, 13, 21, 44]) have been extensively studied in the last decade,
which can be classified as shown in Table 1. Most of the existing CS
solutions focus on the homogeneous graph where all the vertices
are of the same type, and they can be further classified as non-
influential CS and influential CS. In particular, influential CS [2, 8,
26, 27, 29, 31, 53] aims to find communities of vertices with high
importance values. However, these CS solutions cannot be applied
to the HIN because it involves multiple types of vertices and edges
with different semantic meanings and it does not make sense to
mix them up for performing CS using previous solutions. Recently,
the topic of CS over HINs has received much interest [14, 15, 24,
25]. Nevertheless, none of the them has studied how to perform
influential CS over HINs by considering vertices’ importance values.

ICSH problem. Our ICSH problem aims to search highly in-
fluential communities from HINs. A highly influential community
is a set of vertices with the same type, which are not only closely
related, but also have high importance values. To achieve this goal,
we face two key questions: (1) How to model the cohesiveness of
vertices with the same type in a community? (2) How to model
the influential community by considering the vertices’ importance
values? For the first question, the existing CS over HINs query [15]
performs CS over HINs, by introducing the (𝑘 , P)-core, or the set
of vertices in which each vertex has at least 𝑘 neighbors linked
by the path instances of meta-path P. The (𝑘 , P)-core is effective
for modeling the cohesiveness of vertices with the same type in a
community, since a meta-path with a limited length between two
vertices well reveals their semantic relationships (e.g., P1=(𝐴𝑃𝐴)
indicates the co-authorship between two authors).

For the second question, to model a highly influential community,
a typical group of existing influential CS works [2, 8, 26–29, 31, 53]
maximizes theminimum importance value of all vertices that form a
connected 𝑘-core, or a cohesive subgraph such that each vertex has
at least 𝑘 neighbors within it [13]. However, since they inherently
assume that all the vertices are of the same type, meaning that their
importance should be of the same semantic meanings (but may
have different values), they cannot be directly applied to the HIN,
due to the heterogeneity of importance values of vertices, i.e., for
vertices of different types, their importance semantic meanings are
different and their values are often in different ranges.

Another more related group of existing influential CS works [26,
28] focuses on the multi-valued network with each vertex having

multiple importance values, represented by a multi-dimensional
vector. Instead of maximizing a single minimum value of all vertices
that form a 𝑘-core, it introduces an influence vector for a commu-
nity, by using the minimum importance values of each dimension.
Then, it finds all the communities with skyline influence vectors,
or vectors that cannot be dominated by the influence vectors of
all other possible communities. Note that a vector 𝑣1 is said to be
dominated by another one 𝑣2, if for each dimension, the value of
𝑣1 is less or equal to that of 𝑣2, but for a certain dimension, it is
strictly less than that of 𝑣2. In this paper, we exploit this idea for
modeling the importance values of influential communities of HINs.
Specifically, we consider the induced sub-HIN of (𝑘 , P)-core, and
for each vertex type in the meta-path P, we consider the minimum
importance value of all the vertices with that type. As a result, by
considering all the vertex types in P, we can get an influence vector
for a community, and then find all the communities with skyline
influence vectors that cannot be dominated by each other.

By combining the answers of the two questions above, we intro-
duce a novel community model, called heterogeneous influential
community (HIC), which is a set of vertices in a meta-path-based
core and its induced subgraph has the skyline influence vector. An
HIC not only captures the importance value of vertices in a com-
munity, but also considers the influence on meta-paths connecting
them. In Figure 1, for example, consider the meta-path P1=(𝐴𝑃𝐴).
There are two communities of authors, whose induced sub-HINs
include vertex sets {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑝1, 𝑝2, 𝑝3} and {𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑝4},
and their skyline influence vectors are (21, 600) and (50, 400) re-
spectively. Note that if a CS over HINs query is issued with 𝑘=3
and P1, then the returned community will contain all the authors
with influence vector (2, 5), which is clearly dominated by those of
our ICSH communities.

Applications. The HIC can be used in various real applications,
such as event organization, recommendation, and network anal-
ysis. For example, an academic workshop is often organized by
some senior researchers with close relationships, so to organize a
workshop, we can invite members of the influential communities
of researchers from DBLP network, who have not only close rela-
tionships but also high h-indexes. In Twitter, as another example,
the relationship between users and topics can be modeled as an
HIN. By finding the influential communities from it, we can identify
some prestige users and hot topics, and thus some recommendation
tasks based on these users and topics can be performed.

Our technical contributions. To find all the HICs from an HIN,
we first focus on the case that the meta-path P has only two vertex
types and present a basic algorithm, which computes the skyline
influence vectors by iteratively finding the maximum importance
value for each vertex type. Although this algorithm is straightfor-
ward and also easy to implement, it is very costly since it peels
vertices one by one and involves much redundant computation. To
improve the efficiency, we propose an advanced algorithm which
avoids the removal operations and unnecessary search by intro-
ducing a novel concept, namely target-keynode, extended from the
concept of keynode for influential CS on homogeneous graphs [2].
Moreover, we observe that for each target-keynode, an upper bound
value exists for its corresponding influence vector, and it is very
close to the actual value. Hence, we further boost the efficiency by
exploiting the upper bound value.

For the meta-paths with three vertex types, we first propose a
basic algorithm using the idea of dimension reduction. In specific,
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we first find all possible importance values in the third vertex type,
and then by fixing each value of them, we invoke the advanced
algorithm above to compute the 2-dimensional influence vector.
This algorithm, however, may involve much invalid search and find
communities with influence vectors dominated by others. To tackle
this issue, we introduce an advanced algorithm, which significantly
reduces the number of influence vectors dominated by others by an
effective pruning strategy. Note that in this paper, we mainly focus
on meta-path with lengths at most four because long meta-paths
are often meaningless and rarely used in practice [15, 25], but our
algorithms above can be easily extended for processing them.

Extensive experimental evaluation on four real large HINs shows
that our ICSH solutions are effective for finding the influential
communities. Besides, our advanced algorithms are up to two orders
of magnitude faster than the basic algorithms for meta-paths with
two and three vertex types, respectively.

Outline. We formulate our ICSH problem in Section 2. Sections
3 and 4 present the ICSH algorithms for processing meta-paths with
two and three vertex types, respectively.We report the experimental
results in Section 5. We review the related works in Section 6 and
conclude in Section 7.

2 PROBLEM FORMULATION
In this section, we first review some basic concepts of HINs, and
then formally formulate our ICSH problem.

2.1 Preliminaries
Definition 1. HIN.AnHIN is a directed graphH = (𝑉 , 𝐸,𝜓, 𝜙, 𝜔)

with a vertex type mapping function𝜓 : 𝑉 → A, an edge type map-
ping function 𝜙 : 𝐸 → R, and an importance function 𝜔 : 𝑉 → R,
where each vertex 𝑣 ∈ 𝑉 belongs to a vertex type𝜓 (𝑣) ∈ A and has
an importance value 𝜔 (𝑣), and each edge 𝑒 ∈ 𝐸 belongs to an edge
type 𝜙 (𝑒) ∈ R, and |A| + |R| > 2.

Note that the above HIN model includes some special kinds of
graphs, such as bipartite graphs, k-partite graphs, and multigraphs
where multiple edges may exist between the same pair of vertices.
An HIN often follows a schema, which is a directed graph defined
over vertex types A and edge types R, denoted by 𝑇𝐺 = (A,R).
As shown in the DBLP network schema of Figure 1(b), the schema
describes all allowable edge types between vertex types. Note that
in the schema, if there is an edge 𝑅 from vertex type 𝐴 to vertex
type 𝐵, the inverse edge 𝑅−1 naturally exists from 𝐵 to 𝐴.

Definition 2. Meta-path [46] A meta-path P is a path defined

on an HIN schema 𝑇𝐺 = (A,R), and is denoted in the form 𝐴1
𝑅1−→

𝐴2
𝑅2−→ · · · 𝑅𝑙−→ 𝐴𝑙+1, where 𝑙 is the length of P, 𝐴𝑖 ∈ A, and

𝑅𝑖 ∈ R(1 ≤ 𝑖 ≤ 𝑙).
If there exist no multiple edges between the same pair of vertex

types, we simply use vertex type names to denote a meta-path, i.e.,
P = (𝐴1𝐴2 · · ·𝐴𝑙+1). The reverse meta-path of P denoted by P−1
is the reverse path of P in 𝑇𝐺 . A meta-path P is symmetric if it is
the same with P−1. Clearly, the meta-path P1=(𝐴𝑃𝐴) on the HIN
of DBLP network is a symmetric meta-path.

Given an HIN H , a path 𝑝=(𝑎1 → 𝑎2 · · · → 𝑎𝑙+1) between
vertices 𝑎1, 𝑎𝑙+1 ∈ H is called a path instance of P, if∀1 ≤ 𝑖 ≤ 𝑙 , the
vertex 𝑎𝑖 and edge 𝑒𝑖 = (𝑎𝑖 , 𝑎𝑖+1) satisfy𝜓 (𝑎𝑖 ) = 𝐴𝑖 and 𝜙 (𝑒𝑖 ) = 𝑅𝑖 .
For example, in Figure 1, the path 𝑎1 → 𝑝1 → 𝑎2 is a path instance

of P1. Note that we use lowercase letters (e.g., 𝑎1) to denote vertices
in an HIN, and upper-case letters (e.g., 𝐴) to denote vertex types.
We say that vertex𝑢 is a P-neighbor of vertex 𝑣 , or (𝑢, 𝑣) is a P-pair,
if they are connected by an instance of P. Two vertices 𝑢 and 𝑣 are
P-connected if there exists a chain of vertices from 𝑢 to 𝑣 such that
any two adjacent vertices are P-neighbors.

Definition 3. P-Graph. Given an 𝐻𝐼𝑁 H and a symmetric
meta-path P, the P-graph is a homogeneous graph HP such that
each P-pair ofH corresponds to an edge inHP .

Next, we present the concept of (𝑘 , P)-core, a widely-used co-
hesive subgraph model on HINs [15, 25, 54]. Here, the symmetric
meta-path P=(𝐴1𝐴2 · · ·𝐴ℎ · · ·𝐴2𝐴1) has ℎ vertex types, and the
type linked by P, 𝐴1, is called the target type. Given a vertex 𝑣 and
a set 𝑆 of vertices with target type, the number of P-neighbors of 𝑣
within 𝑆 is called P-degree, denoted by 𝛼 (𝑣, 𝑆).

Definition 4. (k, P)-core [15]. Given an HINH , an integer 𝑘 ,
and a symmetric meta-path P, the (𝑘 , P)-core ofH is a set 𝑆𝑘,P of
P-connected vertices, s.t. ∀𝑣 ∈ 𝑆𝑘,P , 𝛼 (𝑣, 𝑆𝑘,P ) ≥ 𝑘 , where vertices
in 𝑆𝑘,P are with the target type.

Table 2 summarizes the notations frequently used in this paper.
Table 2: Notations and meanings.

Notation Meaning

H =
(𝑉 , 𝐸,𝜓,𝜙,𝜔 )

An HIN with vertex set𝑉 , edge set 𝐸, vertex type
mapping function𝜓 , edge type mapping function
𝜙 , and vertex importance function 𝜔

P A symmetric meta-path defined on the schema of H
Φ A set of path instances of a meta-path P
H[Φ] A sub-HIN induced by path instances in Φ

𝛼 (𝑣, 𝑆 ) P-degree, i.e., the number of path instances starting
from the vertex 𝑣 and ending at vertices in a set 𝑆

ℎ The number of vertex types in P
K A list of target-keynodes in H
𝜃𝑖 The smallest importance value in the vertex set𝑉𝑖

2.2 Problem statement
We first introduce a novel concept of P-induced sub-HIN.

Definition 5. P-induced sub-HIN. Given an HINH and a set
Φ of path instances of a meta-path P, the P-induced sub-HIN of Φ,
denoted by H[Φ], is a subgraph of H containing the union of all
vertices and union of all edges that are in the path in Φ.

As aforementioned, our proposedHIC considers not only vertices
with target type, but also meta-paths connecting them. As a result,
anHIC corresponds to aP-induced sub-HIN. Tomodel the influence
of an HIC, we consider the importance values of all the vertices in
the HIC. However, due to the heterogeneity of importance values in
the HIN, for vertices with different types, their importance values
are not comparable. Besides, some important target vertices may
be connected by intermediate vertices with low importance values,
which may make the relationship less important. To solve this issue,
we propose to use a vector of multiple dimensions to characterize
the influence of an HIC, such that each dimension captures the
importance of a specific vertex type.

Definition 6. Influence vector. Given anHINH=(𝑉 , 𝐸,𝜓, 𝜙, 𝜔),
a symmetric meta-path P=(𝐴1𝐴2 · · ·𝐴ℎ · · ·𝐴2𝐴1), and a P-induced
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(b) G′ and 𝑓 (G′ )=(50, 400)

Figure 2: Two P-induced sub-HINs (G and G′) in Figure 1.

sub-HIN G=(𝑉G , 𝐸G ,𝜓, 𝜙,𝜔), the influence vector of G is

𝑓 (G) = (𝑚𝑖𝑛𝑣∈𝑉1𝜔 (𝑣),𝑚𝑖𝑛𝑣∈𝑉2𝜔 (𝑣), · · · ,𝑚𝑖𝑛𝑣∈𝑉ℎ𝜔 (𝑣)), (1)
where 𝑉𝑖 ⊂ 𝑉G is the set of vertices whose types are the 𝑖-th vertex
type of P, i.e., ∀𝑣 ∈ 𝑉𝑖 ,𝜓 (𝑣)=𝐴𝑖 .

Here, in line with most of the existing works of influential CS [2,
8, 26–29, 31, 53], we adopt the 𝑚𝑖𝑛(·) function to measure the
importance for each vertex type. The main reason is that it requires
each vertex of an HIC to have a large importance value, indicating
that every member is an influential individual [27].

Other functions such as𝑚𝑎𝑥 (·), 𝑠𝑢𝑚(·), and 𝑎𝑣𝑔(·) can also be
used [38]. For𝑚𝑎𝑥 (·), our algorithms can be used directly by chang-
ing the importance values of all vertices by multiplying −1. For
𝑠𝑢𝑚(·) and 𝑎𝑣𝑔(·), we will study how to solve these cases in the
future.

Definition 7. Dominance relationship of influence vectors.
Given two influence vectors 𝑓 (G) and 𝑓 (G′) with the same dimension
ℎ, we say 𝑓 (G′) dominates 𝑓 (G), if for any 𝑖 ∈ {1, 2, · · · , ℎ},

𝑓𝑖 (G) ≤ 𝑓𝑖 (G′), (2)
and there exists a certain 𝑖 s.t.

𝑓𝑖 (G) < 𝑓𝑖 (G′), (3)
where 𝑓𝑖 (G) is the 𝑖-th element of the vector 𝑓 (G).

For a set of influence vectors with the same dimension, if one
influence vector cannot be dominated by any other vectors, then it
is called a skyline influence vector. Next, we formally introduce the
concept of heterogeneous influential community (HIC).

Definition 8. HIC. Given an HINH , a positive integer 𝑘 , and a
symmetric meta-path P, an HIC is a set 𝑆 of vertices with the target
type, if there exists a set Φ of path instances of P between them
satisfying properties:

1. Link cohesiveness. Vertices of 𝑆 can form a (𝑘 , P)-core using
Φ, i.e., ∀𝑣 ∈ 𝑆 , it has at least 𝑘 P-neighbors in 𝑆 via paths in Φ;

2. Skyline importance. There is no other sets 𝑆 ′ and Φ′, s.t. they
satisfy Property 1 and 𝑓 (H [Φ′]) dominates 𝑓 (H [Φ]);

3.Maximality. There is no other set 𝑆 ′ of vertices with target type,
satisfying 𝑆 ⊂ 𝑆 ′ and the two properties above.

Essentially, an HIC is a (𝑘 , P)-core with vertices of high impor-
tance values in its P-induced sub-HIN.

Problem 1 (ICSH problem). Given an 𝐻𝐼𝑁 H , a positive integer
𝑘 , and a symmetric meta-path P, return all the HICs fromH .

Example 1. In Figure 1, let P1=(𝐴𝑃𝐴) and 𝑘=3. Then, we will find
two HICs {𝑎1, 𝑎2, 𝑎3, 𝑎4} and {𝑎3, 𝑎4, 𝑎5, 𝑎6} in the HIN. Figures 2(a)
and 2(b) show two P-induced sub-HINs, G and G′, corresponding to
these two HICs respectively. We can easily verify that 𝑓 (G)=(21, 600)
and 𝑓 (G′)=(50, 400) are the skyline influence vectors.

In practice, people often use meta-paths with limited lengths
since they are more meaningful than long meta-paths [15, 25, 46].
Thus, we focus on finding HICs for meta-paths with lengths less
than four, so the meta-paths either have two or three vertex types.
Nonetheless, our algorithms can be easily extended to process meta-
paths with more than two vertex types, as we will show later.

3 ALGORITHMS FOR THE CASE ℎ=2
In this section, we present two algorithms for solving the ICSH
problem with meta-paths having two vertex types (i.e., ℎ=2), which
means that the influence vector of an HIC is a 2-dimensional vector
𝑓 =(𝑓1, 𝑓2). For ease of exposition, we denote the two sets of vertices
with the target type and the other type in the input HIN by 𝑉1 and
𝑉2, respectively.

We use 𝜃1 and 𝜃2 to denote the smallest importance values in 𝑉1
and 𝑉2 respectively. For lack of space, all the proofs in this paper
are included in Appendix D of the technical report [61].

3.1 A basic algorithm for the case ℎ=2
To find all the HICs with skyline influence vector 𝑓 = (𝑓1, 𝑓2), our
core idea is to iteratively fix the value of one dimension of 𝑓 , and
in the meantime maximize the value of the other one. Specifically,
in each iteration, we perform three steps: (1) fix the value of 𝑓1 and
maximize the value of 𝑓2 by finding a (𝑘,P)-core; (2) fix the value
of 𝑓2 and maximize the value of 𝑓1 by finding a (𝑘,P)-core such
that vertices of the other type have importance values being at least
𝑓2; and (3) record a skyline influence vector and its corresponding
HIC. In the next iteration, we first increase 𝑓1 to the minimum value
that is larger than the previous 𝑓1, and then repeat the three steps
above. This process is repeated until we cannot increase 𝑓1. Since
the value of 𝑓1 is increased in these iterations, we can keep peeling
vertices in 𝑉1 with the lowest importance values.

Algorithm 1: Basic2D(H , 𝑘 , P)
input :An HIN H, an integer 𝑘 , and a meta-path P
output :All HICs and their skyline influence vectors

1 𝑓1 ← 𝜃1, 𝑓2 ←∞, R ← ∅;
2 while 𝑓2 > 𝜃2 do
3 𝑓2 ← TypeMax(H, 𝑓1, 𝜃2,𝑉2 ) ;
4 𝑓1 ← TypeMax(H, 𝑓1, 𝑓2,𝑉1 ) ;
5 R ← R ∪ { (𝑓1, 𝑓2 ) };
6 𝑓1 ← min{𝜔 (𝑣1 ) |𝑣1 ∈ 𝑉1 ∧𝜔 (𝑣1 ) > 𝑓1};
7 return R and the corresponding HICs;

8 Function TypeMax(H, 𝑓1, 𝑓2,𝑉 ):
9 remove vertices {𝑣1 | (𝑣1 ∈ 𝑉1 ∧𝜔 (𝑣1 ) < 𝑓1 ) } and

{𝑣2 | (𝑣2 ∈ 𝑉2 ∧𝜔 (𝑣2 ) < 𝑓2 ) } from H;
10 𝑆1 ← compute a (𝑘, P)-core from H;
11 𝑆2 ← all the vertices in𝑉2 that are in the path instances of P

between vertices in 𝑆1;
12 𝑓 ← min{𝜔 (𝑣) |𝑣 ∈ 𝑉 };
13 while𝑉 ∩ (𝑆1 ∪ 𝑆2 ) ≠ ∅ do
14 𝑣 ← argmin𝑣∈𝑉𝜔 (𝑣) ;
15 𝑓 ← 𝜔 (𝑣) ;
16 DeleteVertex(H, 𝑆1, 𝑆2, 𝑣);
17 return 𝑓 ;

Based on the idea above, we develop an algorithm, called Basic2D,
as shown in Algorithm 1. Specifically, we first initialize 𝑓1=𝜃1, 𝑓2=∞,
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and R=∅ which is used to keep skyline influence vectors (line 1).
Then, we use a while loop to find all the skyline influence vectors
with corresponding HICs (lines 2-6). In each iteration, we first fix
𝑓1 and maximize the value of 𝑓2 by invoking TypeMax (line 3), then
fix 𝑓2 and maximize the value of 𝑓1 by calling TypeMax (line 4), fol-
lowed by recording the skyline influence vector (line 5), and finally
increase 𝑓1 for the next iteration (line 6).

In Algorithm 1, TypeMax is a function for computing the max-
imum importance value of a certain vertex type. It first removes
all vertices with importance values less than 𝑓1 and 𝑓2 from 𝑉1 and
𝑉2 respectively (line 9). Then, it computes a (𝑘,P)-core 𝑆1, and
collects the vertices in 𝑉2 that are in the path instances of P be-
tween vertices in 𝑆1 (lines 10-11). Finally, it iteratively removes
vertices with the smallest importance values by invoking function
DeleteVertex (please see Appendix A of technical report [61]),
until no more vertices can be removed when an HIC with a skyline
importance vector is obtained (lines 13-16).

Theorem 3.1. Algorithm 1 correctly computes all the HICs with
2-dimensional skyline influence vectors.

Example 2. Consider Figure 1 with 𝑘=3 and P=(𝐴𝑃𝐴). We first
compute the maximum value of 𝑓2 by Typemax(H , 2, 5,𝑉1) which
removes 𝑝5 and 𝑝4, and then get 𝑓2=𝜔 (𝑝1)=600. Next, we compute the
maximum value of 𝑓1 by fixing 𝑓2=600 and invoking TypeMax(H ,
2, 600,𝑉1) (note that if 𝑎7 and 𝑎2 are removed, there is no (3,P)-
core), and get 𝑓1=21. After obtaining the first skyline influence vector
(21, 600), we increase 𝑓1 to the minimum value that is larger than
21, which is 25. By repeating the above process, we can get the next
skyline influence vector (50, 400). After 𝑎1, 𝑎2, 𝑎6, and 𝑎7 are removed,
there is no (3,P)-core in the HIN, and 𝑓2 is set to 5, so we stop. Figure
2 depicts the two HICs and their corresponding P-induced sub-HINs.

Lemma 3.2. The total time cost of Basic2D is𝑂 (𝑠 ·𝑛2 · (𝑛1 +𝑚) +
𝑛1 ·𝑏1,2 +𝑛1 ·𝑛2 ·𝑏2,1), where 𝑛𝑖=|𝑉𝑖 |, 𝑏𝑖, 𝑗 is the maximum number of
vertices in 𝑉𝑖 that are connected to a vertex in 𝑉𝑗 ,𝑚 is the number of
edges in the P-graph and 𝑠 is the number of skyline influence vectors.

3.2 An advanced algorithm for the case ℎ=2
Although Basic2D is straightforward and also easy to implement,
it is very costly because it removes vertices from 𝑉2 on the entire
HIN multiple times, leading to too much redundant computation.
To alleviate this issue, we propose a novel algorithm to eliminate
redundant computation and reduce peel operations based on the
definition of target-keynode, which is extended from the concept
of keynode used for influential CS on homogeneous graphs [2].

Definition 9. Target-keynode. Given an HINH , an integer 𝑘 ,
and a meta-path P, a vertex 𝑢 with target type in H is a target-
keynode, if there exists a (𝑘 , P)-core such that the minimum impor-
tance value of its vertices is 𝜔 (𝑢).

Essentially, each target-keynode corresponds to a non-empty (𝑘 ,
P)-core, but this (𝑘 , P)-core may not be an HIC. The main idea of
our algorithm is to first obtain all the target-keynodes. Then, we find
a list of possible skyline influence vectors 𝑓 =(𝑓1, 𝑓2) by exploiting
these target-keynodes. Specifically, for each target-keynode 𝑢, we
first fix 𝑓1=𝜔 (𝑢), then compute the upper bound of 𝑓2, denoted by
𝑓2 (𝑢), and finally shrink 𝑓2 (𝑢) to its actual value. Afterwards, the
skyline influence vectors with HICs can be found.

a7

cvs a6 a4a1a7 a2

a2

a3 a4a4 a5

a6

Figure 3: A running example of ComputeTK.

3.2.1 Obtaining target-keynodes. All the target-keynodes can be
obtained by iteratively peeling vertices with the smallest impor-
tance values in the (𝑘 , P)-core. Specifically, we first obtain the (𝑘 ,
P)-core 𝑆1 from the HIN and a P-induced sub-HINH[Φ], where
Φ is a set of path instances of P between vertices in the 𝑆1. Then,
we remove the vertex 𝑢 with the smallest importance value in 𝑆1,
and append it to a list K as a target-keynode. After 𝑢 is removed
from 𝑆1, all the vertices with P-degrees less than 𝑘 are iteratively
removed and appended to 𝑐𝑣𝑠 together with𝑢 , where 𝑐𝑣𝑠 is a vertex
set for subsequent computation. To obtain all the target-keynodes,
we repeat the above process until 𝑆1 becomes empty.

Algorithm 2: ComputeTK(H , 𝑘 , P)
1 K ← ∅, 𝑐𝑣𝑠 ← ∅,𝑄 ← ∅;
2 𝑆1 ← compute the (𝑘, P)-core in H;
3 H[Φ] ← a P-induced sub-HIN of a set of path instances of P

between vertices in 𝑆1 ;
4 while 𝑆1 ≠ ∅ do
5 𝑢 ← argmin𝑣∈𝑆1 {𝜔 (𝑣) };𝑄 .add(𝑢) ;
6 append 𝑢 to the end of K ;
7 while𝑄 ≠ ∅ do
8 𝑣 ← 𝑄 .poll() ;
9 foreach 𝑣′ ∈ 𝑁 (𝑣,H[Φ] ) do
10 if 𝛼 (𝑣′, 𝑆1 ) = 𝑘 then 𝑄 .add(𝑣′) ;
11 𝛼 (𝑣′, 𝑆1 ) ← 𝛼 (𝑣′, 𝑆1 ) - 1;
12 delete 𝑣 from 𝑆1 and H[Φ]; append 𝑣 to the end of 𝑐𝑣𝑠 ;

13 return K , 𝑐𝑣𝑠 , H[Φ];

Algorithm 2 shows the steps above.We first initializeK=∅, 𝑐𝑣𝑠=∅,
and 𝑄 is an auxiliary queue. Next, we compute the (𝑘 , P)-core 𝑆1
and a P-induced sub-HINH[Φ] of a set of path instances between
vertices in 𝑆1 (lines 2-3). Then, we remove the vertex with the
smallest importance value in 𝑆1 from H[Φ], and place it into K
as a target-keynode (lines 5-6). The remaining vertices with P-
degrees less than 𝑘 are also removed and appended to 𝑐𝑣𝑠 (lines
8-12). Finally, when 𝑆1=∅, we return K , 𝑐𝑣𝑠 , andH[Φ] (line 13).

Example 3. In Figure 1,P1=(𝐴𝑃𝐴) and 𝑘=3. To compute all target-
keynodes, we first obtain the (3, P)-core 𝑆1={𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7}
from the HIN and a P-induced sub-HINH[Φ]={𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6,
𝑎7, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}. We first obtain a target-keynode 𝑎7 and append
it toK and 𝑐𝑣𝑠 . Then, we remove 𝑎2 fromH[Φ] and append it toK as
a target-keynode. After that, 𝑎1 is iteratively removed and appended
to 𝑐𝑣𝑠 together with 𝑎2 immediately. Similarly, we can obtain another
target-keynode 𝑎6, and 𝑎6, 𝑎3, 𝑎4 and 𝑎5 are recorded into 𝑐𝑣𝑠 . After
removing 𝑎7, 𝑎2, and 𝑎6, all the other vertices in 𝑆1 are also removed,
so we stop. Figure 3 shows the process above.

3.2.2 Computing 𝑓2 (𝑢) for each target-keynode 𝑢. We begin with
an interesting observation about target-keynode.

Observation 1. A target-keynodemust have at least𝑘 P-neighbors
whose P-degrees are at least 𝑘 .
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Figure 4: An example of computing 𝑓2 (𝑎2).
To establish the relationship between 𝑓2 (𝑢) of a target-keynode

𝑢 and the importance values of vertices in 𝑉2, we introduce the
following definition.

Definition 10. Skyline path. Given an HINH , a meta-path P,
and a P-pair (𝑢, 𝑣), a path instance of P 𝑝=𝑢 → 𝑎1 · · · → 𝑎𝑛 → 𝑣
is the skyline path of (𝑢, 𝑣), if there is no other path instance of
P 𝑝′=𝑢 → 𝑎′1 · · · → 𝑎′𝑛 → 𝑣 from 𝑢 to 𝑣 s.t. ∀𝑖 ∈ {1, 2, · · · , 𝑛},
𝜔 (𝑎𝑖 ) ≤ 𝜔 (𝑎′𝑖 ) and ∃𝑖 ∈ {1, 2, · · · , 𝑛}, 𝜔 (𝑎𝑖 ) < 𝜔 (𝑎′𝑖 ).

In the case ℎ=2, the skyline path of a P-pair (𝑢, 𝑣) is the path
instance with the largest importance value of the middle vertex
among all path instances between 𝑢 and 𝑣 , and we call this value
the weight of this P-pair. Obviously, for each vertex 𝑢 in 𝑆1, it has
𝛼 (𝑢, 𝑆1) skyline paths, where 𝛼 (𝑢, 𝑆1) is the P-degree of 𝑢 and 𝑆1
is the corresponding (𝑘 , P)-core containing it.

According toObservation 1, since theP-degree of target-keynode
𝑢 is at least 𝑘 , 𝑓2 (𝑢) is bounded by the 𝑘-th largest value of the
weights of all the P-pair containing 𝑢, which we denote as 𝑢𝑏 (𝑢).
Besides, for each P-neighbor 𝑣𝑖 of 𝑢, we also find the 𝑘-th largest
P-pair’s weight of 𝑣𝑖 and put it into the set 𝐹 , i.e., 𝐹={𝑢𝑏 (𝑢, 𝑣𝑖 ) |𝑣𝑖 ∈
𝑁 (𝑢, 𝑆1)}. Since there are at least 𝑘 vertices in 𝑁 (𝑢, 𝑆1) with P-
degree being at least 𝑘 , we take the 𝑘-th largest value in 𝐹 as an
upper bound of 𝑓2, and denote it as 𝑢𝑏 (𝑢, 𝑁 (𝑢, 𝑆1)). Finally, we set
the upper bound 𝑓2 (𝑢) as

𝑓2 (𝑢) = min{𝑢𝑏 (𝑢), 𝑢𝑏 (𝑢, 𝑁 (𝑢, 𝑆1))}. (4)
We further illustrate this process by Example 4.

Example 4. In Example 3, 𝑎7, 𝑎2, and 𝑎6 are target-keynodes.
To compute 𝑓2 (𝑎2), we first identify skyline paths by removing the
edges on other path instances, as shown in Figure 4 where the dotted
lines indicate the removed edges. Then, we compute the 𝑢𝑏 (𝑎2). Since
𝑎2 has three P-neighbors (i.e., 𝑎1, 𝑎3, 𝑎4) and the three P-pair’s
weights are 600, 850, and 850, respectively, we have 𝑢𝑏 (𝑎2)=600, as
shown in Figure 4(a) where the red lines indicate the P-pair with
the third largest weight among all the P-pairs. Next, we compute
the 𝑢𝑏 (𝑎2, 𝑆1), by repeating the above process for each P-neighbor
of 𝑎2, as depicted in Figure 4(b). As a result, 600, 850, and 850 are
added into set 𝐹 , implying that𝑢𝑏 (𝑎2, 𝑆1)=600. Hence, for 𝑎2, we have
𝑓2 (𝑎2)=min{𝑢𝑏 (𝑎2), 𝑢𝑏 (𝑎2, 𝑆1)}=600.
3.2.3 Shrinking 𝑓2 (𝑢) to 𝑓2 (𝑢). Given a target-keynode 𝑢 and its
𝑓2 (𝑢), we can smoothly shrink 𝑓2 (𝑢) to 𝑓2 (𝑢), by the following steps.
First, we remove all the vertices from 𝑉2 with importance values
less than 𝑓2 (𝑢). Next, if there is still a (𝑘 , P)-core containing 𝑢 in
the remaining graph, we set 𝑓2 (𝑢)=𝑓2 (𝑢). Otherwise, there may
exist a skyline influence vector (𝜔 (𝑢), 𝑓2 (𝑢)) with 𝑓2 (𝑢) < 𝑓2 (𝑢).
To obtain 𝑓2 (𝑢) in this case, we propose a new method, which is
different from TypeMax for reducing the computation.

Themain idea of this method is to gradually add vertices toH[Φ]
until there is a (𝑘 , P)-core containing 𝑢 in the graph. Specifically,
we sort the vertices in 𝑉2, that are removed due to importance
values less than 𝑓2 (𝑢), in the descending order of importance values.
Then, we add vertices back toH[Φ] one by one, verify whether the
updated sub-HIN forms a (𝑘 , P)-core, and return the importance
value of the last added vertex.

Algorithm 3: Shrink(𝑢,H[Φ], 𝑓2 (𝑢), 𝑉2)
1 𝐷 ← {𝑣2 | (𝑣2 ∈ 𝑉2 ∧𝜔 (𝑣2 ) < 𝑓2 ) };
2 𝑆1 ← remove all vertices in 𝐷 from H[Φ] and compute (𝑘 , P)-core

in H[Φ];
3 H[Φ′ ] ← a P-induced sub-HIN of a set of path instances of P

between vertices in 𝑆1 ;
4 if 𝑆1 ≠ ∅ and 𝑢 ∈ 𝑆1 then return 𝑓2 (𝑢 ) ;
5 foreach 𝑣 ∈ 𝐷 in reverse order do
6 add 𝑣 to H[Φ′ ] ;
7 if there is a (𝑘 , P)-core in H[Φ′ ] then
8 𝑓2 (𝑢 ) ← 𝜔 (𝑣) ;
9 break ;

10 return 𝑓2 (𝑢 )

Algorithm 3 shows the steps above. We first collect all vertices
with importance values less than 𝑓2 (𝑢) to a set𝐷 , remove all vertices
in 𝐷 fromH[Φ], and compute the (𝑘 , P)-core 𝑆1 (lines 1-2). Then,
we get aP-induced sub-HINH[Φ]′ (line 3). If 𝑆1 ≠ ∅ and it contains
𝑢, we have 𝑓2 (𝑢)=𝑓2 (𝑢) (line 4). Otherwise, we add each vertex 𝑣
from 𝐷 back toH[Φ′] in reverse order one by one. If the updated
sub-HIN has a (𝑘 , P)-core containing𝑢, we record 𝑓2 (𝑢)=𝜔 (𝑣) (lines
5-9). Finally, 𝑓2 (𝑢) is returned (line 10).
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Algorithm 3: ComputeTK(H , : , P)
1 K  ;, 2EB  ;,&  ;;
2 (1  compute the (:, P)-core in H;
3 H[�]  a P-induced sub-HIN of a set of path instances of P

between vertices in (1 ;
4 while (1 < ? do
5 D  argminE2(1 {l (E) };& .add(D) ;
6 append D to the end of K ;
7 while& < ? do
8 E  & .poll() ;
9 for all E0 2 # (E,H[�]) do
10 if U (E0,(1) = : then & .add(E0) ;
11 U (E0,(1) = U (E0,(1) - 1;
12 delete E from (1 and H[�]; append E to the end of 2EB ;

13 return K , 2EB , H[�];

To establish the relationship between b52 (D) of a target-keynode
D and the importance values of vertices in +2, we introduce the
following de�nition.

D��������� 10. Dominate path. Given an HIN H , a meta-path
P, and aP-pair (D, E), a path instance ofP ?=D ! 01 ! · · ·0= ! E
is the dominate path of (D, E), if there is no other path instance of
P ? 0=D ! 001 ! · · ·00= ! E from D to E s.t. 88 2 {1, 2, · · · ,=},
l (08 )  l (008 ) and 98 2 {1, 2, · · · ,=},l (08 ) < l (008 ).

In the case ⌘=2, the dominate path of a P-pair (D, E) is the path
instance with the largest importance value of the middle vertex
among all path instances between D and E , and we call this value
the weight of this P-pair. Obviously, for each vertex D in (1, it has
U (D, (1) dominate paths, where U (D, (1) is the P-degree of D and
(1 is the corresponding (: , P)-core containing it.

According toObservation 1, since theP-degree of target-keynode
D is at least : , b52 (D) is bounded by the :-th largest value of the
weights of all the P-pair containing D, which we denote as D1 (D).
Besides, for each P-neighbor E8 of D, we also �nd the :-th largest
P-pair’s weight of E8 and put it into the set � , i.e., �={D1 (D, E8 ) |E8 2
# (D, (1)}. Since there are at least : vertices in # (D, (1) with P-
degree being at least : , we take the :-th largest value in � as an
upper bound of 52, and denote it as D1 (D,# (D, (1)). Finally, we set
the upper bound b52 (D) asb52 (D) = min{D1 (D), D1 (D,# (D, (1))}. (4)

We further illustrate this process by Example 4.
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Figure 4: xxxx.

E������ 4. In Figure ??, P1=(�%�), :=3 and 01 is a target-
keynode. To compute b52 (01), we �rst identify dominate paths by
removing the edges on other path instances, as shown in Figure ??
where the dotted lines indicate the removed edges. Then, we com-
pute the D1 (01). Since 01 has three P-neighbors (i.e., 02, 03, 04)
and the three P-pair’s weights are 900, 800, and 800, respectively,
we have D1 (01)=800, as shown in Figure ?? where the red lines
indicate the P-pair with the third largest weight among all the
P-pairs. Next, we compute the D1 (01,# ), by repeating the above
process for each P-neighbor of 01. That is, 800, 680, and 800 are
added into set � , and then D1 (01,# )=680. Hence, for 01, we haveb52 (01)=<8={D1 (01),D1 (01,# )}=680.
3.2.3 Shrinking b52 (D) to 52 (D). Given a target-keynode D and itsb52 (D), we can smoothly obtain 52 (D) by the following steps. First,
we remove all the vertices from +2 in H[�] with important values
less than b52 (D). Next, if there is still a (: , P)-core containing D in
the remaining graph, we set 52 (D)=b52 (D). Otherwise, there may
exist a skyline in�uence vector (l (D), 52 (D)) with 52 (D) < b52 (D).
To obtain 52 (D) in this case, we propose a new method, which is
di�erent from TypeMax for reducing the computation.

Themain idea of this method is to gradually add vertices toH[�]
until there is a (: , P)-core containing D in the graph. Speci�cally,
we arrange the vertices in +2, that are removed due to importance
values less than b52 (D), in the descending order of importance values.
Then, we add vertices back toH[�] one by one, verify whether the
updated sub-HIN forms a (: , P)-core, and return the importance
value of the last added vertex.

Algorithm 4: Shrink(D,H[�], b52 (D), +2)
1 ⇡  {E2 | (E2 2 +2 ^l (E2) < b52) } ;
2 (1  remove all vertices in ⇡ from H[�] and compute (: , P)-core

in H[�];
3 H[�0]  a P-induced sub-HIN of a set of path instances of P

between vertices in (1 ;
4 if (1 < ? and D 2 (1 then return b52 (D) ;
5 foreach E 2 ⇡ in reverse order do
6 add E to H[�0] ;
7 if there is a (: , P)-core in H[�0] then
8 52 (D) = l (E) ;
9 break ;

10 return 52 (D)

Algorithm 4 shows the steps above. Speci�cally, we �rst collect
all vertices with importance values less than b52 (D) to a vertex set
⇡ , and we remove all vertices in ⇡ from H[�], compute the (: ,
P)-core (1 (lines 1-2). Then get a P-induced sub-HIN H[�] 0 (line
3). If (1 < and it containsD, we have b52 (D)=52 (D) (line 4). Otherwise,
we add each vertex E from ⇡ back toH[�0] in reverse order one
by one. If the updated sub-HIN has a (: , P)-core containing D, we
record 52 (D)=l (E) (lines 5-9). Finally, 52 (D) is returned (line 10).

3.2.4 The overall algorithm. To obtain all the skyline in�uence
vectors and HICs, we can process the target-keynodes one by one,
where the one with the largest importance value will be processed
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Algorithm 3: ComputeTK(H , : , P)
1 K  ;, 2EB  ;,&  ;;
2 (1  compute the (:, P)-core in H;
3 H[�]  a P-induced sub-HIN of a set of path instances of P

between vertices in (1 ;
4 while (1 < ? do
5 D  argminE2(1 {l (E) };& .add(D) ;
6 append D to the end of K ;
7 while& < ? do
8 E  & .poll() ;
9 for all E0 2 # (E,H[�]) do
10 if U (E0,(1) = : then & .add(E0) ;
11 U (E0,(1) = U (E0,(1) - 1;
12 delete E from (1 and H[�]; append E to the end of 2EB ;

13 return K , 2EB , H[�];

To establish the relationship between b52 (D) of a target-keynode
D and the importance values of vertices in +2, we introduce the
following de�nition.

D��������� 10. Dominate path. Given an HIN H , a meta-path
P, and aP-pair (D, E), a path instance ofP ?=D ! 01 ! · · ·0= ! E
is the dominate path of (D, E), if there is no other path instance of
P ? 0=D ! 001 ! · · ·00= ! E from D to E s.t. 88 2 {1, 2, · · · ,=},
l (08 )  l (008 ) and 98 2 {1, 2, · · · ,=},l (08 ) < l (008 ).

In the case ⌘=2, the dominate path of a P-pair (D, E) is the path
instance with the largest importance value of the middle vertex
among all path instances between D and E , and we call this value
the weight of this P-pair. Obviously, for each vertex D in (1, it has
U (D, (1) dominate paths, where U (D, (1) is the P-degree of D and
(1 is the corresponding (: , P)-core containing it.

According toObservation 1, since theP-degree of target-keynode
D is at least : , b52 (D) is bounded by the :-th largest value of the
weights of all the P-pair containing D, which we denote as D1 (D).
Besides, for each P-neighbor E8 of D, we also �nd the :-th largest
P-pair’s weight of E8 and put it into the set � , i.e., �={D1 (D, E8 ) |E8 2
# (D, (1)}. Since there are at least : vertices in # (D, (1) with P-
degree being at least : , we take the :-th largest value in � as an
upper bound of 52, and denote it as D1 (D,# (D, (1)). Finally, we set
the upper bound b52 (D) asb52 (D) = min{D1 (D), D1 (D,# (D, (1))}. (4)

We further illustrate this process by Example 4.

a! a" a# a$

p#p!

a%

p%p" p$

10 30 50 60 20

600680900 700 800
a!

cvs a$ a$a#a! a" a%

(a) xx

a! a" a# a$

p#p!

a%

p%p" p$

10 30 50 60 20

600680900 700 800
a!

cvs a$ a$a#a! a" a%

(b) xx

Figure 4: xxxx.

E������ 4. In Figure ??, P1=(�%�), :=3 and 01 is a target-
keynode. To compute b52 (01), we �rst identify dominate paths by
removing the edges on other path instances, as shown in Figure ??
where the dotted lines indicate the removed edges. Then, we com-
pute the D1 (01). Since 01 has three P-neighbors (i.e., 02, 03, 04)
and the three P-pair’s weights are 900, 800, and 800, respectively,
we have D1 (01)=800, as shown in Figure ?? where the red lines
indicate the P-pair with the third largest weight among all the
P-pairs. Next, we compute the D1 (01,# ), by repeating the above
process for each P-neighbor of 01. That is, 800, 680, and 800 are
added into set � , and then D1 (01,# )=680. Hence, for 01, we haveb52 (01)=<8={D1 (01),D1 (01,# )}=680.
3.2.3 Shrinking b52 (D) to 52 (D). Given a target-keynode D and itsb52 (D), we can smoothly obtain 52 (D) by the following steps. First,
we remove all the vertices from +2 in H[�] with important values
less than b52 (D). Next, if there is still a (: , P)-core containing D in
the remaining graph, we set 52 (D)=b52 (D). Otherwise, there may
exist a skyline in�uence vector (l (D), 52 (D)) with 52 (D) < b52 (D).
To obtain 52 (D) in this case, we propose a new method, which is
di�erent from TypeMax for reducing the computation.

Themain idea of this method is to gradually add vertices toH[�]
until there is a (: , P)-core containing D in the graph. Speci�cally,
we arrange the vertices in +2, that are removed due to importance
values less than b52 (D), in the descending order of importance values.
Then, we add vertices back toH[�] one by one, verify whether the
updated sub-HIN forms a (: , P)-core, and return the importance
value of the last added vertex.

Algorithm 4: Shrink(D,H[�], b52 (D), +2)
1 ⇡  {E2 | (E2 2 +2 ^l (E2) < b52) } ;
2 (1  remove all vertices in ⇡ from H[�] and compute (: , P)-core

in H[�];
3 H[�0]  a P-induced sub-HIN of a set of path instances of P

between vertices in (1 ;
4 if (1 < ? and D 2 (1 then return b52 (D) ;
5 foreach E 2 ⇡ in reverse order do
6 add E to H[�0] ;
7 if there is a (: , P)-core in H[�0] then
8 52 (D) = l (E) ;
9 break ;

10 return 52 (D)

Algorithm 4 shows the steps above. Speci�cally, we �rst collect
all vertices with importance values less than b52 (D) to a vertex set
⇡ , and we remove all vertices in ⇡ from H[�], compute the (: ,
P)-core (1 (lines 1-2). Then get a P-induced sub-HIN H[�] 0 (line
3). If (1 < and it containsD, we have b52 (D)=52 (D) (line 4). Otherwise,
we add each vertex E from ⇡ back toH[�0] in reverse order one
by one. If the updated sub-HIN has a (: , P)-core containing D, we
record 52 (D)=l (E) (lines 5-9). Finally, 52 (D) is returned (line 10).

3.2.4 The overall algorithm. To obtain all the skyline in�uence
vectors and HICs, we can process the target-keynodes one by one,
where the one with the largest importance value will be processed

6

(b) P-induced sub-HIN

Figure 5: A running example of Fast2D.

3.2.4 The overall algorithm. To obtain all the skyline influence
vectors and HICs, we can process the target-keynodes one by one,
where the one with the largest importance value will be processed
in the beginning. This process can be further improved by an early-
stop strategy. That is, once we obtain a target-keynode correspond-
ing to an HIC that has the largest 𝑓2 (𝑢), we can skip verifying the
remaining target-keynodes, as stated by Lemma 3.3.

Lemma 3.3. If there is no vertex 𝑢 ∈ K with 𝑓2 (𝑢) larger than the
𝑓2 value of the current skyline influence vector, then all the skyline
influence vectors ofH have been obtained.

Based on the discussions above, we develop a fast algorithm,
denoted by Fast2D, in Algorithm 4. Specifically, we first initialize
𝑓 ∗2 =𝜃2, which records the 𝑓2 value of the previous skyline influence
vector (line 1). Then, we invoke ComputeTK to compute K , 𝑐𝑣𝑠 and
H[Φ] (line 2). Subsequently, for each target-keynode 𝑢, we first
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Algorithm 4: Fast2D(H , 𝑘 , P)
input :An HIN H, an integer 𝑘 , and a meta-path P
output :All HICs and their skyline influence vectors

1 R ← ∅, 𝑓 ∗2 ← 𝜃2;
2 K, 𝑐𝑣𝑠,H[Φ] ← ComputeTK(H, 𝑘 , P) ;
3 foreach 𝑢 ∈ K in reverse order do
4 𝑓2 (𝑢 ) ← compute the upper bound 𝑓2 of 𝑢 ;
5 if max{ 𝑓2 (𝑢 ) |𝑢 ∈ K} ≤ 𝑓 ∗2 then break; ;
6 if 𝑓2 (𝑢 ) ≤ 𝑓 ∗2 then continue;
7 foreach 𝑣 ∈ 𝑐𝑣𝑠 starting from 𝑢 do
8 if 𝑣 ∈ K and 𝑣 ≠ 𝑢 then break; ;
9 add 𝑣 to H[Φ];

10 𝑓2 (𝑢 ) ← Shrink(𝑢,H[Φ], 𝑓2 (𝑢 ),𝑉2 ) ;
11 if 𝑓2 (𝑢 ) > 𝑓 ∗2 then
12 𝑓 ∗2 ← 𝑓2 (𝑢 ) ;
13 R ← R ∪ {(𝜔 (𝑢 ), 𝑓 ∗2 )};
14 return R and the corresponding HICs;

compute 𝑓2 (𝑢) (line 4) and add the vertices from𝑢 to the next target-
keynode in 𝑐𝑣𝑠 back to H[Φ] (lines 7-9). Note that if 𝑓2 (𝑢) is not
larger than 𝑓 ∗2 and 𝑢 does not correspond to an HIC, we can skip
it (line 6). After that, we use Shrink to obtain 𝑓2 (𝑢) and if 𝑓2 (𝑢) is
larger than 𝑓 ∗2 , we update 𝑓 ∗2 =𝑓2 (𝑢) and append (𝜔 (𝑣), 𝑓 ∗2 ) into R
(lines 10-13). We repeat the above process until all vertices in K
have been traversed. Finally, all the HICs are returned (line 14).

Theorem 3.4. Algorithm 4 correctly computes all the HICs with
2-dimensional skyline influence vectors.

Example 5. Consider Figure 5 with𝑘=3 andP=(𝐴𝑃𝐴). Here,K={𝑎1},
𝑐𝑣𝑠={𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} and H[Φ] only contains {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}.
For the target-keynode 𝑎1, we first add it and its corresponding vertices
in the 𝑐𝑣𝑠 , i.e., {𝑎2, 𝑎3, 𝑎4, 𝑎5}, back to theH[Φ], where the updated
sub-HIN is depicted in Figure 5(b), so we obtain 𝑓2 (𝑎1)=680 and delete
the paper vertices in 𝑉2 (i.e., 𝑝5) with importance value less than 680.
After that, 𝑎5 is also deleted as it only has two P-neighbours, and the
remaining vertices will be deleted as well, leading to no (3, P)-core.
Thus, we need to add some vertices back to the current sub-HIN. After
adding vertex 𝑝5 (with a dashed line cycle) to it, a new (3, P)-core
could be formed, as shown in Figure 5(b), and we get 𝑓2 (𝑎1)=600.

Lemma 3.5. Fast2D completes in𝑂 ((𝑛2 +𝑡) · (𝑛1 +𝑚) +𝑛1 · (𝑏1,2 +
𝑛2 · 𝑏2,1)) time, where 𝑡 is the number of target-keynodes inH and
the rest of variables have the same meaning as those in Lemma 3.2.
Note that 𝑡 is considerably smaller than 𝑛1 in practice.

4 ALGORITHMS FOR THE CASE ℎ=3
In this section, we focus on meta-paths with three vertex types (i.e.,
ℎ=3), so the influence vector is a 3-dimensional vector 𝑓 =(𝑓1, 𝑓2, 𝑓3).
In the input HIN, we denote the set of vertices with target type by
𝑉1; The sets of vertices with the second and third vertex types are
denoted by 𝑉2 and 𝑉3 respectively.

In addition, we use 𝜃1, 𝜃2 and 𝜃3 to denote the smallest impor-
tance values in 𝑉1, 𝑉2 and 𝑉3 respectively.

In the following, we present two ICSH algorithms in Sections
4.1 and 4.2. We also briefly discuss how to extend them for solving
the cases ℎ > 3 in Section 4.3.

4.1 A basic algorithm for the case ℎ=3
To search all HICs for the case ℎ=3, a simple algorithm is to enumer-
ate all the possible importance values of vertices with the second
or third type, and by fixing each of them, we invoke an algorithm
for processing the case ℎ=2 (e.g., Fast2D in Section 3) to find the
2-dimensional skyline influence vectors for the remaining two ver-
tex types. Afterward, we filter the 3-dimensional influence vectors
that are dominated by other influence vectors, which can be easily
solved by the traditional skyline algorithm [4], and then get all
skyline influence vectors. We denote this algorithm by Basic3D.

Algorithm 5: Basic3D(H , 𝑘,P)
input :An HIN H, an integer 𝑘 , and a meta-path P
output :All HICs and their skyline influence vectors

1 R ← ∅, T ← ∅ ;
2 𝑆1 ← compute the (𝑘, P)-core from H;
3 𝑆3 ← all the vertices in𝑉3 that are in the path instances of P

between vertices in 𝑆1;
4 while 𝑆3 ≠ ∅ do
5 𝑣 ← argmin𝑣∈𝑆3 {𝜔 (𝑣) };
6 T ← Fast2D(H, 𝑘, P) ;
7 foreach (𝑓1, 𝑓2 ) ∈ T do
8 R ← R ∪ { (𝑓1, 𝑓2, 𝜔 (𝑣) ) };
9 DeleteVertex(H, 𝑆1, 𝑆3, 𝑣);

10 R ← filter all the dominated influence vectors ;
11 return R and the corresponding HICs;

Algorithm 5 presents Basic3D. We first compute the (𝑘 , P)-core
𝑆1 forH and collect all vertices in 𝑉3 that are in the path instances
of P between vertices in 𝑆1 (lines 2-3). Then, we iteratively take
the vertex 𝑢 with the smallest importance value in 𝑆3 and compute
all the 2-dimensional skyline influence vectors corresponding to
𝜔 (𝑣) by Fast2D, which keeps the 2-dimensional skyline influence
vectors in R (lines 5-8). After that, we remove 𝑣 from 𝑆3 (line 9). The
above process repeats until 𝑆3=∅. Finally, we filter all the dominated
influence vectors and return R (lines 10-11).

Remark. In Algorithm 5, we cannot fix the importance values
of vertices with target type, and then directly invoke Basic2D or
Fast2D to process the other two vertex types, since the minimum
P-degree constraint is imposed on the vertices with target type.

Theorem 4.1. Algorithm 5 correctly computes all the HICs with
3-dimensional skyline influence vectors.

Lemma 4.2. Basic3D completes in𝑂 (𝑛3 · (𝑛2 + 𝑡) · (𝑛1 +𝑚) +𝑛1 ·
(𝑏1,2 +

∑4
𝑖=2 𝑛𝑖 · 𝑏𝑖,𝑖+1)) time, where all the variables have the same

meanings as those in Lemma 3.5.

4.2 An advanced algorithm for the case ℎ=3
Basic3D is very intuitive, but it may involve much redundant com-
putation, because it may generate many influence vectors that are
dominated by others. To alleviate this issue, we propose a novel
algorithm which significantly reduces the number of generated
influence vectors, resulting in much higher efficiency. We term this
advanced algorithm as Fast3D.

Inspired by Fast2D, our main idea is to first identify all the
target-keynodes, and then for each target-keynode 𝑢, we derive
all the 3-dimensional influence vectors with 𝑓1=𝜔 (𝑢). To improve
the efficiency, we further propose an effective pruning strategy,
ensuring that for 𝑢, all the derived 3-dimensional influence vectors
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with the first dimension values 𝑓1=𝜔 (𝑢) are not dominated by each
other. As a result, the total number of generated 3-dimensional
influence vectors is significantly reduced.

In particular, for each target-keynode 𝑣 , we can determine the
range of its corresponding 2-dimensional influence vector, i.e.,
𝜃2 ≤ 𝑓2 ≤ 𝐹2 and 𝜃3 ≤ 𝑓3 ≤ 𝐹3, where 𝐹2 and 𝐹3 are the largest
importance values in 𝑉2 and 𝑉3, respectively. We use Figure 6(b)
to indicate the entire search space. Obviously, it is inefficient to
search in the entire space, so we propose to prune the search space
by the upper bound of the influence vectors corresponding to each
target-keynode.
• Upper bound of influence vectors. According to Definition

10, for the case ℎ=3, there may exist multiple skyline paths between
a P-pair, which is different from the case ℎ=2 since it only has one
skyline path between the P-pair. Consequently, the weight of each
skyline path is a 2-dimensional vector, consisting of the minimum
importance value of vertices with the second and third types. A
P-pair may have multiple such 2-dimensional vectors, say (𝑥1, 𝑦1),
(𝑥2, 𝑦2), · · · , (𝑥𝑟 , 𝑦𝑟 ), so we can introduce a 2-dimensional vector
that can serve as an upper bound vector for them:

(𝑥,𝑦) =
(
max
𝑖∈[1,𝑟 ]

𝑥𝑖 , max
𝑖∈[1,𝑟 ]

𝑦𝑖

)
. (5)

Based on the upper bound vectors of P-pairs, we can compute
the upper bound of 𝑓2 (𝑢) and 𝑓3 (𝑢) of a target-keynode𝑢, i.e., 𝑓2 (𝑢)
and 𝑓3 (𝑢), by the method mentioned in Section 3. Note that 𝑥 and
𝑦 are used to compute 𝑓2 (𝑢) and 𝑓3 (𝑢) respectively.
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Figure 6: Illustrating the main ideas of Fast3D.

Example 6. Consider the HIN in Figure 6(a) with P=(𝐴𝑃𝑉𝑃𝐴).
For the P-pair (𝑎1, 𝑎3), there are three path instances of P between
them, and the skyline paths are 𝑎1 → 𝑝1 → 𝑣3 → 𝑝1 → 𝑎3 and 𝑎1
→ 𝑝3→ 𝑣3 → 𝑝4 → 𝑎3 (marked with red line). The weight vectors
of these paths are (700, 5) and (300, 8), so (𝑓2, 𝑓3)=(700, 8).

• Search space pruning strategy. For each target-keynode
𝑢, after deriving 𝑓2 (𝑢) and 𝑓3 (𝑢), we use Shrink to obtain 𝑓2 (𝑢)
and 𝑓3 (𝑢). Then, we invoke TypeMax to maximize the values of 𝑓3
and 𝑓2 by fixing the values of 𝑓2 and 𝑓3 respectively. As a result,
we obtain two 2-dimensional influence vectors, denoted by (𝑓2 (𝑢),
𝑓 ∗3 ) and (𝑓 ∗2 , 𝑓3 (𝑢)), where 𝑓 ∗2 ≤ 𝑓2 ≤ 𝑓2 (𝑢), and 𝑓 ∗3 ≤ 𝑓3 ≤ 𝑓3 (𝑢).
Here, the ranges of 𝑓2 and 𝑓3 restrict the overall search space for the
remaining 2-dimensional influence vectors, which is much smaller
than the entire search space, as illustrated by Figure 6(c). Finally,
by following the idea of Basic2D which iteratively maximizes 𝑓2
and 𝑓3, we can find all the remaining influence vectors from these
ranges, which are not dominated by each other.

Algorithm 6 presents Fast3D. We first initialize R=∅ and T=∅
which is used to store all the 2-dimensional skyline influence vectors
for each target-keynode (line 1). Then, we invoke ComputeTK to
computeK , 𝑐𝑣𝑠 andH[Φ] (line 2). Next, we use a for loop to process

Algorithm 6: Fast3D (H , 𝑘,P)
input :An HIN H, an integer 𝑘 , and a meta-path P
output :All HICs and their skyline influence vectors

1 R ← ∅, T ← ∅;
2 K, 𝑐𝑣𝑠,H[Φ] ← ComputeTK(H, 𝑘, P) ;
3 foreach 𝑢 ∈ K in reverse order do
4 𝑓2 (𝑢 ), 𝑓3 (𝑢 ) ← compute the upper bounds of 𝑓2 and 𝑓3 of 𝑢 ;
5 if (𝑓2 (𝑢 ), 𝑓3 (𝑢 ) ) is dominated then continue;
6 foreach 𝑣 ∈ 𝑐𝑣𝑠 starting from 𝑢 do
7 if 𝑣 ∈ K and 𝑣 ≠ 𝑢 then break;
8 Add 𝑣 to H[Φ];
9 T ← SearchSP(𝑢,H[Φ], 𝑓2 (𝑢 ), 𝑓3 (𝑢 ) ) ;

10 foreach (𝑓2, 𝑓3 ) ∈ T do
11 R ← R ∪ { (𝜔 (𝑢 ), 𝑓2, 𝑓3 ) };
12 Return R and the corresponding HICs ;

target-keynodes one by one. Specifically, for each target-keynode
𝑢, we compute 𝑓2 (𝑢) and 𝑓3 (𝑢) (line 4). Then, we check whether
(𝑓2 (𝑢), 𝑓3 (𝑢)) is dominated by the existing 2-dimensional influence
vectors (line 5). After that, we add the vertices corresponding to 𝑢
back toH[Φ] and call SearchSP to obtain a setT which contains all
the 2-dimensional skyline influence vectors (lines 6-9). All vectors
in T and 𝑓1=𝜔 (𝑢) are recorded to R (lines 10-11). Finally, we obtain
all the HICs (line 12).

Algorithm 7: SearchSP(𝑢,H[Φ], 𝑓2 (𝑢), 𝑓3 (𝑢))
1 R′ ← ∅; ⊲ save all 2-dimensional skyline influence vectors of 𝑢
2 (𝑓2 (𝑢 ), 𝑓 ∗3 ), (𝑓 ∗2 , 𝑓3 (𝑢 ))← compute two skyline influence vectors by

Shrink and TypeMax based on the 𝑓2 (𝑢 ) and 𝑓3 (𝑢 ) ;
3 𝑆1 ← compute a (𝑘, P)-core from H[Φ];
4 𝑆3 ← all the vertices in𝑉3 that are in the path instances of P

between vertices in 𝑆1;
5 𝑇 ← {𝑣3 |𝑣3 ∈ 𝑉3 ∧ (𝑓 ∗3 < 𝜔 (𝑣3 ) < 𝑓3 (𝑢 ) ) } ;
6 while 𝑓 ∗2 ≤ 𝑓2 (𝑢 ) and𝑇 ≠ ∅ do
7 𝑣 ← argmin𝑣∈𝑇 {𝜔 (𝑣) };
8 Add 𝑣 to H[Φ] ;
9 𝑓2 ← TypeMax(H[𝜙 ], 𝜃1, 𝑓 ′2 ,𝑉2 ) ;

10 if (𝑓2, 𝜔 (𝑣)) is not dominated then
11 R′ ← R′ ∪ {(𝑓2, 𝜔 (𝑣))};
12 𝑓 ′2 ← 𝑓2 ;
13 Remove 𝑣 from𝑇 ;
14 Return R′;

Algorithm 7 shows SearchSP, which computes all the 2-dimension
al skyline influence vectors for a target-keynode 𝑢. We first initial-
ize R′=∅, and use Shrink and Typemax to compute (𝑓2 (𝑢), 𝑓 ∗3 ) and
(𝑓 ∗2 , 𝑓3 (𝑢)) (lines 1-2). Then, we recompute the (𝑘 , P)-core 𝑆1 of
H[Φ] and collect a set of vertices 𝑆3 such that each of its vertices
is in a path instance of P between vertices in 𝑆1 (lines 3-4). Next,
we append all vertices in 𝑆3 with importance values in [𝑓 ∗3 , 𝑓3 (𝑢)]
into𝑇 (line 5). Afterwards, we add each vertex 𝑣 in𝑇 back toH[Φ]
in reverse order one by one, and then compute 𝑓2 of the new up-
dated P-induced sub-HIN by TypeMax (lines 7-9). If (𝑓2,𝜔 (𝑣)) is not
dominated by the other 2-dimensional skyline influence vectors,
we append it into R′ and update 𝑓 ∗2 =𝑓2 (lines 10-12). We remove
𝑣 from 𝑇 (line 13) and compute the next 2-dimensional influence
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vector by repeating the above process (line 6). Finally, when 𝑇=∅
or 𝑓 ∗2 > 𝑓2 (𝑢), we stop and return R′ (line 14).

Theorem 4.3. Algorithm 6 correctly computes all the HICs with
3-dimensional skyline influence vectors.

Lemma 4.4. Fast3D completes in 𝑂 ((𝑛2 + 𝑛3) · (𝑛1 +𝑚) + 𝑛1 ·
(𝑏1,2 +

∑4
𝑖=2 (𝑛𝑖 ·𝑏𝑖,𝑖+1))) time, where all the variables have the same

meanings as those in Lemma 3.5.

4.3 Extending our algorithms for the cases ℎ>3
Our algorithms above can be easily extended for processing the
cases ℎ>3 by exploiting the idea of “dimension reduction”. Specif-
ically, we first fix one particular vertex type, and then for each
importance value of vertices with this type, we compute the skyline
influence vectors of the other (ℎ–1) vertex types by the algorithms
for the case (ℎ–1). If (ℎ–1) is still larger than 3, we execute the above
process recursively; otherwise, Basic3D and Fast3D can be used
directly. Finally, we can obtain the skyline influence vectors by
filtering the influence vectors dominated by others and return their
corresponding HICs.

5 EXPERIMENTS
We now present the experimental results. Section 5.1 discusses the
setup. We discuss the results in Sections 5.2 and 5.3. For lack of
space, some additional experimental results for the case ℎ=3 are
reported in Appendix B of the technical report [61].

5.1 Setup
Table 3: Datasets used in our experiments.

Dataset Vertices Edges Vertex
types

Edge
types

Meta-
paths

TMDB 7,1978 113,581 7 12 37
DBLP 748,884 1,366,161 4 3 11
IMDB 854,616 3,898,144 4 3 12

DBpedia 5,900,558 17,961,887 413 637 50

Datasets. We use four real HINs: TMDB1 [20], DBLP2 [50],
IMDB3 [25], and DBpedia4 [15]. Their statistics, including the num-
bers of vertices, edges, vertex types, and edge types, are reported
in Table 3. TMDB is a movie knowledge graph including entities
like movies, actors, casts, crews and companies. IMDB contains the
movie rating records since 2000, and it has four types of vertices
(authors, directors, writers and movies). DBLP includes publication
records in computer science areas, and the vertex types are authors,
papers, venues and topics.DBPedia contains the data extracted from
Wikipedia infoboxes using the mapping-based extraction.

Regarding importance values, for TMDB, we use the worldwide
box office grosses of directors as their importance values, and use
the popularity (i.e., numbers of Google search results) of movies as
their importance values. For other vertices, we use HIVEN model
[19] to estimate their importance values, since it is the SOTA model
for HIN node importance estimation. For DBLP, we develop a Web
Crawler for collecting the h-indexes, citation numbers, h5-indexes,
1https://www.kaggle.com/tmdb/tmdb-movie-metadata
2https://www.aminer.cn/citation
3https://www.imdb.com/interfaces/
4https://wiki.dbpedia.org/Datasets

and popularity (i.e., numbers of Google search results) of authors,
papers, venues, and topics respectively. For the rest two datasets,
the importance values are synthetically generated; that is, for each
vertex type, we assign the importance values of all the vertices
following the power law distribution, meaning that high degree
vertices have higher importance values.

ICSH queries. For the first three datasets, we collect all the
possible symmetric meta-paths with lengths less than four. For the
remaining one, since it does not have the pre-defined schema, we
construct the schema by using its vertex and edge types. Specifically,
for each edge, we first collect its end vertex types and edge type,
then create two nodes with an edge which are labelled with these
vertex types and edge type respectively, and finally obtain a schema
network of these new nodes and edges. Notice that each vertex/edge
type is allowed to appear only once in the schema. Afterwards, by
traversing on the schema network, we collect 50 meta-paths of the
highest frequencies (i.e., the number of meta-path instances), where
25 meta-paths are with lengths two and four respectively.

We perform ICSH query for each meta-path where the value
of 𝑘 is set to 5 by default [55]. In the following reported results,
each data point is the average result for all meta-paths unless oth-
erwise specified. We implement all the algorithms in Java and run
experiments on a machine having an Intel(R) Xeon(R) Gold 6226R
2.90GHz CPU and 256GB of memory, with Ubuntu installed. If an
algorithm cannot finish in seven days, we mark its running time as
INF.

Algorithms.We test the following algorithms.
• Basic2D: our proposed ICSH algorithm for ℎ=2 (Algorithm 1).
• BasicHalf2D: this algorithm follows the steps of Basic2D, ex-
cept that TypeMax is replaced by BinaryTypeMax which finds the
maximum value by binary search. The details of BasicHalf2D are
presented in appendix B of technical report [61].
• Fast2D: our proposed ICSH algorithm for ℎ=2 (Algorithm 4).
• Basic3D: our proposed ICSH algorithm for ℎ=3 (Algorithm 5).
• Fast3D: our proposed ICSH algorithm for ℎ=3 (Algorithm 6).

5.2 Effectiveness evaluation
We analyze the quality of communities from the following aspects:

1. Influence values of communities.We compare the influ-
ence of the communities found by our ICSH solution and CSH
solution [15], which is the most relevant work and also finds com-
munities using (𝑘 , P)-core, but does not consider vertex importance.
Specifically, we consider two datasets, namely DBLP and TMDB,
and for each of them, we first select two meta-paths of two and
three vertex types respectively, and then run ICSH queries to get
all the HICs. Next, for each HIC, we select the vertex 𝑣 with the
highest importance value as the query vertex to run a CS over HINs
(CSH) query, which finds the (𝑘 , P)-core containing 𝑣 . Finally, we
compute the average importance value of vertices of each type in
the communities.

We report the results in Table 4. Clearly, for communities of
ICSH queries, their vertices always have higher importance values
than vertices of communities of CSH queries, indicating that our
ICSH solution is able to find communities with high influence.

2. Compactness, similarity, and density of communities.
In this experiment, we aim to compare the compactness, similarity,
and density of communities found by the ICSH and CSH solutions
[15]. To measure the compactness of communities, a commonly-
used metric is the P-distance [15], which is the minimum number
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Table 4: Vertices’ importance values on communities.

Query
on DBLP

P1=(𝐴𝑃𝐴) P2=(𝑇𝑃𝑉𝑃𝑇 )
Author Paper Topic Paper Venue

ICSH 64.57 5,341.2 6,681,984.3 851.7 178.6
CSH 10.98 58.44 2,459,195.8 39.4 50.4
Query

on TMDB
P3=(𝑀𝐷𝑀) P4=(𝐺𝑀𝐷𝑀𝐺)

Movie Director Genre Movie Director
ICSH 101.89 5.42 0.35 111.6 6.69
CSH 25.96 0.27 0.29 21.8 0.27

of path instances of P for linking two vertices (e.g., the P-distance
between two vertices linked by an instance of P is 1). To measure
the similarity of community members, we use PathSim [46]. To
measure the density of communities, we follow the density measure
in [15], which is the number of P-pairs over the number of vertices
(here, all the vertices are with the target type) as density.

To do the experiments, we set 𝑘=5 and for each meta-path, we
first run the ICSH query to get all HICs, and then for each HIC, we
select the vertex with the highest importance value as the query
vertex to run the CSH query. We report the compactness, similarity,
and density of communities of ICSH and CSH queries with ℎ=2 on
all datasets in Table 5. We omit the results for ℎ=3 since they are
similar to those for ℎ=2. We observe that: (1) the communities of
ICSH queries have smaller diameters than those of CSH queries,
so HICs are more structurally compact and their vertices tend to
have closer relationships. (2) the communities of ICSH queries
achieve higher similarity values than those of CSH queries. Thus,
our ICSH solution can find communities with vertices of higher
similarity values. (3) the communities of CSH queries have the
lowest densities, while HICs have the highest densities. Therefore,
our ICSH solution finds communities with vertices that tend to be
more densely connected to each other.

Table 5: Community quality on four datasets for ℎ=2.

Dataset Diameter PathSim Density
CSH ICSH CSH ICSH CSH ICSH

TMDB 4.16 1.31 0.04 0.29 92.6 235.8
DBLP 6.80 1.20 0.19 0.34 491.1 869.9
IMDB 14.7 1.28 0.09 0.38 402.0 1,353.3

DBpedia 4.08 1.0 0.50 0.82 2,511.8 2,624.0

3. The sizes and numbers of communities. In this experi-
ment, we first find communities by ICSH and CSH queries (ℎ=2)
with settings similar to those in the experiments above, and then
report their average sizes in Figure 7(a). Due to the skyline con-
straint, the average sizes of ICSH communities are around ten, far
smaller than those of CSH communities which may have up to 105
vertices. Besides, in Figure 7(b), we depict the numbers of searched
communities by varying 𝑘 , which are limited in each dataset, and
thus will not make users feel overwhelmed in practice.

We also evaluate the effect of ℎ and 𝑘 on the sizes and numbers
of communities and show the results in Appendix C of technical
report [61]. In line with results of previous works on influential
CS [2, 8, 26–29, 31], the community sizes and numbers are small.
The main reason is that the number of vertices with very high
importance values is often limited. This would be meaningful in
practice as existing works [30, 33, 56] have shown that communities

with too many vertices may make users feel overwhelmed. Besides,
the numbers and sizes of communities increase with ℎ and 𝑘 . For
example, by increasing ℎ=2 to ℎ=3 (𝑘=5), the average community
number is changed from 8.5 to 82.1; by increasing 𝑘=5 to 𝑘=15 (ℎ=2),
the average community size is changed from 7.3 to 20.8.

TMDB DBLP IMDB DBpedia100
101
102
103
104
105

datasets

#
of

ve
rt
ic
es

CSH ICSH

(a) The size of communities

5 7 9 11 13 15100

101

102

𝑘

#
of

co
m
m
un

it
ie
s TMDB DBLP

IMDB DBpedia

(b) The number of communities
Figure 7: The numbers and sizes of communities.

4. A case study. We use a small DBLP network with 411,151
vertices and 719,346 edges, randomly extracted from the original
DBLP network. We run an ICSH query and its corresponding CSH
query [15] on it by using a meta-path P1=(𝐴𝑃𝐴) and setting 𝑘=5.
Due to the space limitation, we only draw two representative HICs
in Figure 8, whose skyline influence vectors are (51, 55) and (12,
6158) respectively. Clearly, the researchers of the first one are more
senior than those in the second one, because their h-indexes are
higher. Nevertheless, the researchers in the second one have co-
authored papers with high importance values. This means that
although they may not be as senior as the authors in the first
one, they have published works with higher importance values,
indicating their teamwork tends to produce higher quality papers.

Jeffrey	Xu	Yu

Jiawei	Han

Xuemin	Lin

Wei	Wang

Jian	Pei

Hongjun LU

(a) HIC with influence vector (51, 55)

Michael
Burrows

Deborah	A.	Wallach

Wilson	C.	Hsieh

Jeffrey	S.	Dean

Tushar	Deepak	
Chandra

Sanjay	Ghemawat

(b) HIC with influence vector (12, 6158)
Figure 8: Two HICs on a small DBLP network.

In addition, the average h-index value of authors in the com-
munity of CSH query is 12.06, and the average citation number of
papers of these authors is 40.64, which are much lower than those
of ICSH queries as they do not consider importance values.

5.3 Efficiency evaluation
1. Efficiency of algorithms for the case ℎ=2. Figure 9 depicts the
efficiency results by varying 𝑘 . Clearly, Fast2D is up to two orders
of magnitude faster than Basic2D and BasicHalf2D, because they
need to iteratively find the influence vector with the largest value in
a certain dimension, which involves much redundant computation.
In contrast, Fast2D can avoid repeated deletion of vertices and
reduce the number of deletions to decrease redundant computation.

2. Efficiency of algorithms for the case ℎ=3. We show the
efficiency results by varying 𝑘 in Figure 9. We observe that Fast3D
is at least two orders of magnitude faster than Basic3D, since it is
not based on dimension reduction, Basic3D needs to call Fast2D
for every possible 𝑓3 value and then filters out all communities with
influence vectors dominated by others, which will lead to a huge
number of invalid communities to be computed. On the contrary,
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Figure 9: Efficiency results of ICSH algorithms.
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Figure 10: Scalability test for ICSH search algorithms.
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Figure 13: The numbers of visited edges of running Basic3D and Fast3D.
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Fast3D only finds all the communities with 2-dimensional skyline
influence vectors for each target-keynode, by space search pruning
strategy which extremely avoids searching invalid communities.

3. Scalability test. For each HIN, we randomly select 20%, 40%,
60%, 80%, and 100% of its vertices and obtain five sub-HINs induced
by these vertices respectively. Then, we run our ICSH algorithms
on these sub-HINs, and report the average efficiency results in
Figure 10. Generally, their time cost scales linearly with the number
of vertices in the graph, indicating good scalability.

4. Analysis of Basic2D and Fast2D by comparing the upper
bound and actual values. To further analyze why Fast2D is faster,
we run ICSH queries on two datasets, DBLP and TMDB, by using the
two meta-paths P1=(𝐴𝑃𝐴) and P2=(𝐷𝑀𝐷) with 𝑘=5, respectively.
Figure 11 shows the comparison plot about the actual value of 𝑓2
and the upper bound. We can see that the true value and the upper
bound are very close to each other, which is the main reason why
Fast2D is faster than Basic2D.

5. Analysis of Basic3D and Fast3D by comparing the size
of search space. To measure the size of search space, we run
Basic3D and Fast3D on four datasets, during which we count the
total numbers of visited edges. Figure 13 shows the results. Clearly,
Fast3D is more effective for reducing the search space and avoiding
invalid search compared to Basic3D.

6. Dataset sensitivity of our algorithms.We report the time
costs of our four algorithms on all datasets in Figure 12. We observe
that their time costs are not strictly proportional to the dataset size.
For example, DBpedia is the largest dataset, but its time cost is less
than that of IMDB. This is because its number of vertex types is
much larger than that of IMDB, resulting in fewer vertices for each
vertex type which allows the queries to be answered faster.
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Figure 14: The results for ICSH search algorithms (ℎ=4).
7. Efficiency and scalability of algorithms for the case ℎ=4.

Following the idea in Section 4.3, we design two algorithms Basic4D
and Fast4D for the case ℎ=4, based on Basic3D and Fast3D respec-
tively. We collect 10 meta-paths with length six which have 4 vertex
types on the DBpedia dataset. We then run the two algorithms and
report the efficiency results by varying 𝑘 in Figure 14(a). Clearly,
Fast4D runs much faster than Basic4D. Besides, the scalability re-
sults in Figure 14(b) show that Fast4D scales better than Basic4D.

6 RELATEDWORK
The two representative groups of community retrieval methods are
community detection and community search (CS).

Community detection. The link-based analysis methods [16,
34] are the most representative methods for detecting network
communities. However, most of these works focus on homogeneous
graphs where vertices are of the same type. Some recent works [41,
42, 45, 47–49, 62] have studied community detection onHINs, which
can be roughly divided into two classes depending on the type of
community vertex. The first class [6, 42, 45, 49] focuses on detecting

clusters, each of which contains objects with multiple types, while
the second class [47, 48, 62] aims to generate clusters of objects
with a specific type. In [47], Sun et al. proposed an algorithm to
generate clusters of a specific type of objects; in [48], a user-guided
algorithm is developed to cluster objects of a target type.

Community search (CS). CS aims to query densely connected
subgraphs containing a specific vertex or a set of vertices [11, 13,
15, 44, 55]. To measure the structure cohesiveness of a community,
people often use the cohesive subgraph models [13], like 𝑘-core
[1, 3], 𝑘-truss [9, 59], 𝑘-clique [10, 58] and 𝑘-edge connected com-
ponent [5, 18]. A representative group of CS works is based on
the 𝑘-core model. For example, in [11, 44], the metric of minimum
degree used in 𝑘-core is used for CS. Another group of CS works
uses the 𝑘-truss [9, 59]. For example, in [21, 23], the 𝑘-truss-based
model is used for CS. Besides, many CS works have considered
vertices’ attributes (e.g., [7, 13, 22]). Particularly, some works have
considered vertices’ importance values and studied the problem of
influential CS [2, 8, 22, 26–29, 31, 53]. For example, Li et al. studied
influential CS on graphs where each vertex has a single impor-
tance value [27] and multiple importance values [26]. Some faster
algorithms for influential CS have been developed [2, 8].

While CS has been extensively studied, most of the existing
works focus on homogeneous networks. Recently, some works have
studied CS over HINs [12, 15, 17, 24, 39, 51, 55, 60]. For example,
Fang et al. studied CS over HINs by using the (𝑘 , P)-core model
[15, 25]; Jian et al. [24] searched communities with vertices of
multiple types by using relational constraints. Nevertheless, all
these works only consider the structural information of HINs, and
ignore the importance values of vertices. Thus, it is desirable to
study how to effectively perform influential CS over large HINs.

7 CONCLUSIONS
In this paper, we study the problem of influential community search
over HINs (or ICSH problem). Conceptually, a highly influential
community in the HIN is a set of vertices with the same type, that
are not only closely related, but also have high importance values.
In particular, we introduce a novel community model for the HIN,
called heterogeneous influential community (HIC), which is a set of
vertices in a meta-path-based core and its induced sub-HIN has the
skyline influence vector. To search HICs, we develop fast algorithms
for meta-paths with two and three vertex types, respectively. Our
experimental results on four real large HINs show that our solutions
are effective and efficient for searching influential communities. In
the future, we will study how to maintain HICs efficiently on large
dynamic HINs since many real-world HINs are evolving over time.
We will consider other aggregate functions (e.g., 𝑠𝑢𝑚(·) and 𝑎𝑣𝑔(·))
[38] in the community influence vector and develop fast solutions
for solving the corresponding problems.
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