
Longshot: Indexing Growing Databases using MPC and
Differential Privacy

Yanping Zhang
Duke University

yanping.zhang@duke.edu

Johes Bater
Tufts Univeresity

johes.bater@tufts.edu

Kartik Nayak
Duke University

kartik@cs.duke.edu

Ashwin Machanavajjhala
Duke University

ashwin@cs.duke.edu

ABSTRACT
In this work, we propose Longshot, a novel design for secure out-
sourced database systems that supports ad-hoc queries through
the use of secure multi-party computation and differential privacy.
By combining these two techniques, we build and maintain data
structures (i.e., synopses, indexes, and stores) that improve query
execution efficiency while maintaining strong privacy and security
guarantees. As new data records are uploaded by data owners, these
data structures are continually updated by Longshot using novel
algorithms that leverage bounded information leakage to minimize
the use of expensive cryptographic protocols. Furthermore, Long-
shot organizes the data structures as a hierarchical tree based on
when the update occurred, allowing for update strategies that pro-
vide logarithmic error over time. Through this approach, Longshot
introduces a tunable three-way trade-off between privacy, accuracy,
and efficiency. Our experimental results confirm that our optimiza-
tions are not only asymptotic improvements but also observable
in practice. In particular, we see a 5x efficiency improvement to
update our data structures even when the number of updates is less
than 200. Moreover, the data structures significantly improve query
runtimes over time, about ∼103x faster compared to the baseline
after 20 updates.

PVLDB Reference Format:
Yanping Zhang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala.
Longshot: Indexing Growing Databases using MPC and Differential
Privacy. PVLDB, 16(8): 2005 - 2018, 2023.
doi:10.14778/3594512.3594529

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ypzhang725/Longshot/tree/vldb.

1 INTRODUCTION
Secure database systems enable outsourcing data and computa-
tion to untrusted servers while preserving privacy. Several existing
approaches achieve this goal. One class of techniques centers on
utilizing cryptographically secure protocols, such as server-aided

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 8 ISSN 2150-8097.
doi:10.14778/3594512.3594529

secure multi-party computation (MPC) [6], homomorphic encryp-
tion [21], or trusted hardware [31] on the server to execute analyst-
provided queries. While these approaches ensure that the server
does not gain plaintext access to private information, they utilize
data-independent, worst-case query execution to prevent side chan-
nel leakage. This introduces an enormous performance cost, on
the order of 1000x [6], which makes performance too costly to be
practical. Another class of work [26, 35–37, 42, 42, 77, 80] provides
practical performance by leaking access patterns and response vol-
ume (the result set size for a query). However, these approaches
are susceptible to attacks that can reconstruct the private data dis-
tribution by observing the leakage [12, 18]. With this, we can see
an inherent tension between privacy and efficiency.

Furthermore, this tension becomes more pronounced when con-
sidering practical issues such as growing data and multiple clients.
When data grows, i.e., clients continually upload new records, se-
cure database systems need to store and fetch these records without
knowing their actual plaintext values. In the worst case, answering
an ad-hoc query requires the server to carry out an expensive cryp-
tographically secure scan over all records ever uploaded to fetch a
specific record. If there is a single client as in Kellaris et al.[43], the
client could provide a differentially private index to help the server
avoid scanning all records every time. However, many scenarios
have multiple clients uploading their private records. In this case,
the index cannot be generated by a single client, thus necessitating
the server to scan all uploaded records for each query.

Recent efforts [7, 8, 75, 76] strike a promising balance between
privacy and performance by allowing bounded information leakage
under differential privacy (DP) [30], but none of them satisfies all
the requirements. These works improve the performance of query
processing by hiding either access patterns or response volume only
for specific and limited settings and do not generalize well to a prac-
tical setting that requires ad-hoc queries over growing data from
multiple clients. Kellaris et al. uses ORAM [34, 69] to combat access
pattern leakage and bound volume leakage using DP, but cannot
support multiple clients continually uploading new private data.
Mazloom et al. [54] hides access patterns of MPC using DP only in
a static data setting. Shrinkwrap [7] reduces operator-level execu-
tion time of MPC through DP volume leakage, and IncShrink [76]
generalizes Shrinkwrap to support updates continuously from mul-
tiple clients. However, IncShrink requires one specific query to be
specified in advance. Using Shrinkwrap or IncShrink to support
ad-hoc queries leads to a drastically increased and redundant com-
putation cost for each query on all uploaded data. Furthermore,

2005

https://doi.org/10.14778/3594512.3594529
https://github.com/ypzhang725/Longshot/tree/vldb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3594512.3594529
https://www.acm.org/publications/policies/artifact-review-and-badging-current

repetitive querying of the same data can cause cumulative privacy
loss, ultimately resulting in a complete loss of privacy [28].

In short, there is no prior privacy-preserving database manage-
ment system that can support efficient and accurate ad-hoc queries
on growing data from multiple clients. In this paper, instead of
hiding one leakage source or improving the performance of pro-
cessing one query using DP, we propose, Longshot, a system that
constructs and continually updates differentially private data struc-
tures such that Longshot 1) can avoid redundant computation by
using data structures computed during previous updates and 2) can
process unlimited ad-hoc predicate queries in public using the data
structures once they are released under differential privacy.

We summarize the contributions of Longshot as follows. The
key technical ideas are described in more detail in Section 2.

• Longshot is a first of its kind, secure growing database sys-
tem that maintains data structures to support ad-hoc predicate
queries on data uploaded from multiple clients with provable
security and privacy guarantees, as well as practical performance.
Compared to executing queries without these structures, Long-
shot significantly improves both query efficiency and accuracy.

• Longshot introduces efficient oblivious algorithms to create dif-
ferentially private statistics over growing data a.k.a. DP synopses
on untrusted servers. The synopses are the only leakage source
of access patterns, query volumes and update patterns when
processing queries and updating data structures.

• Longshot introduces novel oblivious algorithms to store the data
records efficiently without additional privacy leakage. In particu-
lar, our solution utilizes the differentially private statistics in the
synopses to reduce the number of records on which computation
needs to be performed using MPC from a linear factor to a loga-
rithmic factor in the number of updates. Moreover, in the system,
the data records layout map exactly with the synopses, due to
which data records can be fetched using a publicly available
index; thus leading to extremely efficient query processing.

• We evaluate Longshot on a real-world NYC taxi dataset [2]. The
evaluation results show improved performance for updating the
data structures and accuracy improvements over baseline ap-
proaches. Our optimization to update data stores achieves a 5x
efficiency improvement even when the number of updates are
less than 200 (and more subsequently since we perform compu-
tations over a poly-logarithmic amount of data records instead
of a linear number of records). Moreover, the data structures
significantly improve query runtimes over time, about ∼103x
faster compared to the baseline after 20 updates. Our evaluation
shows how Longshot allows users to adjust the configuration
of the system to ensure the desired guarantee and identify their
desired trade-off between privacy, efficiency, and accuracy.

2 OVERVIEW
We design Longshot to achieve three main goals:

• Efficient query execution through data structure mainte-
nance over growing databases. Longshot provides efficient
query execution by maintaining privacy-preserving data struc-
tures that continuously, and securely, store and update uploaded
records and statistics.

• End-to-end privacy for multiple data owners against un-
trusted servers. Longshot allows untrusted servers to execute
queries on data uploaded from multiple data owners while en-
forcing strong privacy guarantees with bounded privacy loss.

• Practical query performance and result accuracy. Longshot
maintains accurate results and efficient query execution of ad-
hoc predicate queries with tunable trade-offs between privacy,
accuracy, and performance.

In this section, we go over the key ideas of Longshot (Section 2.1),
then discuss the required system components (Section 2.2), and end
with a look at the overall system workflow (Section 2.3).

2.1 Key Ideas

KI-0. Secure databases with DP leakage. Privacy-preserving
query processing schemes often allow information leakage of input
data as a trade-off for efficiency. Recent works leverage differen-
tial privacy to bound the leakage of access patterns [11, 18, 39,
40, 42, 58, 64], update patterns [75] or intermediate/output vol-
ume [35, 37, 42, 45, 47] to provide a rigorous privacy and efficiency
trade-off. However, these works hide only one type of leakage in a
specific setting, which introduces strict limits on supported queries.
Longshot aims to use a single leakage function to hide all these
leakages and design privacy-preserving data structures to process
ad-hoc queries on growing data frommultiple data owners. The key
insight is that Longshot measures data distribution using DP his-
tograms and orders records by domain value such that the volume
of records for each domain value is equal to its DP count. Longshot
can use the DP histograms to either answer queries directly or as an
index to fetch records from a DP store. The DP histograms account
for all leakage types.

KI-1. DP synopsis updates over growing data. To support ad-
hoc queries on growing data collected from multiple data owners,
Longshot continually generates synopses over time. Each synop-
sis summarizes statistical information about data received over a
specific time interval. Crucially, the synopses are constructed and
released under a strict privacy loss bound, which introduces error
in exchange for privacy. Once released, each synopsis can be used
to answer arbitrary predicate aggregate queries, and improve effi-
ciency when answering non-aggregate queries and updating DP
stores (further explained in KI-2 and KI-4).

To ensure that query results have high accuracy, we design DP
strategies that reduce errors in generated synopses using two tech-
niques. First, we deploy a trigger-based update strategy to separate
continuously uploaded data into disjoint blocks, so that Longshot
can use existing differentially private statistical summary gener-
ation algorithms [46, 50, 55] on data blocks as a black box. The
DP algorithms are designed to optimize outputs to answer a work-
load of linear queries on a single table with multiple attributes. In
this way, Longshot can be further extended to support multiple at-
tributes and tune the synopsis to provide better accuracy for a given
workload. Second, naïvely applying DP algorithms on growing data
accumulates error linearly w.r.t. the number of updates. Instead, we
hierarchically update synopses to achieve logarithmic error in the
number of updates. We further reduce error by using constrained

2006

inference [38, 63] to resolve inconsistencies in noisy measurements
of different levels, without violate our desired privacy goals.

KI-2. DP store and DP index maintenance over growing data.
In addition to answering aggregate queries, Longshot efficiently
and securely returns records to answer non-aggregate queries
through DP statistics. DP synopses provide these statistics, leaking
a bounded amount of private information to improve the perfor-
mance of fetching records. We develop novel indexing techniques
to construct indexes and data stores that use DP synopses to lay out
and store encrypted records. Specifically, DP synopses are used to
construct and update an index that maintains a mapping between
domain values and record positions in the data store. The data
store contains the encrypted records described by the DP synopses.
These records are ordered by their domain values such that the
volume of records with each domain value is consistent with the DP
synopses. The untrusted computing servers that hold the data store
do not know the exact volume of records corresponding to each
domain value as the records are encrypted. Using the DP synopses
as the sole source of information about the volume and location
of records with each domain value, Longshot bounds the privacy
leakage when locating and fetching records on the server.

KI-3. Secure synopsis generation under MPC. In order to con-
struct the data structures over data uploaded from multiple data
owners on untrusted computing servers, Longshot utilizes MPC
to securely process growing data without revealing records in the
clear. While MPC is an effective tool, it introduces a performance
overhead of up to three orders of magnitude [6], meaning that
naïvely applying it to process all uploaded records at every time
step can quickly become computationally infeasible. Instead, our
approach ensures the efficiency of secure synopsis generation on
growing data by minimizing the data and algorithm steps requiring
MPC. The DP synopsis generation of Longshot usingMPC improves
performance by: 1) carrying out post-processing of computed noisy
statistics, such as constrained inference [49] in the clear and 2)
re-using previously computed statistics as inputs to future compu-
tations, all under strict privacy and security guarantees. We discuss
the details of this approach in Section 5.

KI-4. Data store maintenance under MPC. In Longshot, a data
store is an array of encrypted records sorted into ordered bins by
domain values, where the number of records in each bin matches
the DP synopsis that may not be equal to the true volume of records.
When the DP count is larger, the data store is padded with “dummy”
records to match the DP count. Additional records are deferred
to the next update when the count is lower. There are two chal-
lenges to constructing data stores efficiently and privately. First,
the untrusted servers generate dummy records for each bin, but
generating the exact needed dummy records allows them to learn
private information (the true counts of each bin). Thus, we need to
add a publicly known number of dummy data records and perform
MPC computations. The number needs to be large enough; however,
if it is too large, it results in inefficiency. Our solution uses the DP
synopsis to estimate the needed dummy records in each bin.

Second, when new data records are added, to avoid privacy
leakage in maintaining the data store, the natural solution may
require performing MPC computation (specifically, oblivious sorts

Servers

Data
Owners

Analysts

UpdateTrigger
Ingest uploaded data

UpdateSynopses
Update data synopses

QueryProcessing
Answer queries

UpdateStores
Update stores and indexes

SynopsesUploaded
Data

Deferred
Data Stores Indexes

1 2

3

4

Figure 1: System Diagram.

over real and dummy records) over the entire database, leading to
inefficiency. Our solution uses the DP synopsis to publicly iden-
tify offsets in each bin to separate mostly real and mostly dummy
records. This separation allows us to exclude a vast majority of
existing records when performing MPC computation, dramatically
improving performance with no additional privacy loss and little
effect on accuracy.

2.2 Components

Trust model. As seen in Figure 1, we consider three parties: 1) one
or more mutually distrustful data owners, 2) the computing servers,
and 3) the analysts. Data owners hold database instances that share
the same public schema but do not allow each other to view their
private data. Each data owner continuously uploads their own pri-
vate data to the computing servers. The servers store received data,
execute pre-specified protocols and process queries sent by analysts,
all without seeing private data in the clear. There are two types of
analysts, trusted and untrusted, whose roles are agreed upon by
all parties before any computation occurs. Untrusted analysts can
only issue aggregate queries and are not allowed to see private data
in the clear. Trusted analysts can issue non-aggregate queries and
directly receive private data from the server, which the analysts
can view in the clear. The trusted analysts can be in the same au-
thority as the data owners or sign legal binding as researchers so
that they can query the private data directly. All untrusted parties
act in a semi-honest fashion, meaning that they faithfully follow
the protocol, but may attempt to learn private information.

Secure growing data. Each data owner holds private data records
that they upload to the servers for computation. Each record may
contain multiple attributes of any data type. Attributes may be
either queryable or non-queryable, indicating if they can be com-
puted on as part of a query. There is no restriction on the data
type of queryable or non-queryable attributes. To ensure privacy
from servers, data owners locally generate secret shares [9] of their
records and upload different shares to two semi-honest and non-
colluding servers; the two jointly compute on secret-shared data
using MPC-based protocols. We assume that the number of up-
loaded records is fixed and known. In practice, this information
leak information of private data; we can use techniques from prior
works [75] to address this privacy concern w.r.t. upload volume.
The Longshot framework supports alternative implementations
such as using homomorphic encryption or trusted hardware.

2007

Data structures. On the servers, Longshot uses the following data
structures to collect statistics and store the uploaded records over
multiple updates: 1) DP synopses, 2) indexes, and 3) data stores. Each
materialized DP synopsis is a histogram of a queryable attribute, i.e.,
a list of noisy counts of records for each domain value, computed
over certain blocks of the growing data. Longshot discretizes and
encodes the domain of queryable attributes into bins, e.g., values
1-10 are encoded into bin 1 while values 11-20 are encoded into bin
2. Note that the original record is not altered during construction.
Once built, the synopsis is used to directly answer aggregate queries
and maintain a corresponding index and store. Each index is a
CDF version of the corresponding DP synopsis. Each materialized
data store generated using the corresponding synopsis contains
the aforementioned data blocks ordered by domain values, and
the number of records for each domain value maps to that in the
synopsis. Thus, the index can locate records in data store to answer
arbitrary predicate queries on the domain.

Data buffers. Longshot maintains two data buffers, one for holding
newly uploaded data and the other for records deferred during
previous updates. Newly uploaded data is appended to the new
data buffer. Once an update is triggered, Longshot uses the records
in the new data buffer to update the data structures and stored them
in the data store, leaving the buffer empty. Any unfetched records
are moved to the deferred data buffer for use in the subsequent
updates. Details about deferred data are explained in Section 5.3.

2.3 Workflow
Figure 1 showcases the workflow of Longshot where analysts are
interested in predicate queries over growing data with a specified
data schema from a group of users. Longshot operates in four steps.

Step 1: UpdateTrigger: Data owners encode, secret share and pe-
riodically upload their data to servers, which store them in a data
buffer. To conceal the size of newly uploaded records, a fixed-
size array, including dummy records, is assumed to be uploaded
by each data owner at predetermined intervals. The servers use
UpdateTrigger at each time step to decide whether to update the
data structures with the newly uploaded data.

Step 2: UpdateSynopses. Once UpdateTrigger decides to update,
the servers generate new synopses over the newly uploaded records.

Step 3:UpdateStores. Longshot uses theDP synopses, deferred data
(not fetched from previous updates), and newly uploaded records
to update the index and data store.

Step 4: QueryProcessing. Independently, analysts issue queries to
the servers. The servers use the DP synopsis to process aggregate
queries and the index and store to process non-aggregate queries.
Aligning the index and data store to the DP synopsis ensures that
these queries can be answered in the clear (i.e., without using MPC).

3 BACKGROUND
3.1 Notations

Secret shares. We use ⟨𝑥⟩ to denote a secret-shared variable 𝑥 .
When 𝑥 is an array of secret-shared elements, we use ⟨𝑥⟩[𝑖 : 𝑗] to
denote a slice of elements. We denote the function that is computed
on secret shares using a secure computation protocol as Ffunction.

Growing database. Consider a relation with 𝑑 attributes 𝑅 =

(𝑎𝑡𝑡1, ..., 𝑎𝑡𝑡𝑑). For attribute𝑎𝑡𝑡𝑖 , we denote its domain by𝑑𝑜𝑚(𝑎𝑡𝑡𝑖).
For the 𝑑 attributes, we demote the full domain by Γ = 𝑑𝑜𝑚(𝑎𝑡𝑡1) ×
...×𝑑𝑜𝑚(𝑎𝑡𝑡𝑑). Let 𝐷 be a database instance, which is a multi-set of
elements from Γ and |𝐷 | ≥ 0. Let |𝑑𝑜𝑚(𝑎𝑡𝑡) | =𝑚 and we represent
the histogram of attribute 𝑎𝑡𝑡 as 𝐻 ∈ R𝑚 over the ordered domain
𝑑𝑜𝑚(𝑎𝑡𝑡). A histogram 𝐻 is a list of counts, in which each entry
corresponds to a domain value and reports the frequency of the
domain value in 𝐷 . We assume that our model supports queries on
a single attribute 𝑎𝑡𝑡 for demonstration purposes and discuss the
model to support queries on multiple attributes in the Section 7.
A growing database consists of a set of insertion or append only
logical updates and is a collection of database instances associated
with a timestamp. We denote a growing database as D = {𝐷𝑡 }𝑡≥1,
where 𝐷𝑡 is a database instance uploaded at time 𝑡 and |𝐷𝑡 | ≥ 0.

DP structure.We use Synopsis, ⟨Store⟩ and Index to denote the DP
synopses, data stores and indexes, respectively. We define Synopsis
as {synopsis[𝑖, 𝑗] }1≤𝑖≤ 𝑗 , where synopsis[𝑖, 𝑗] is a DP histogramwith
𝑚 bins computed by adding DP noise on the true histogram of the
queryable attribute 𝑎𝑡𝑡 computed on the union of each data block
with an update number c ∈ [𝑖, 𝑗] (which will be introduced in Sec-
tion 5). We define Index = {index[𝑖, 𝑗] }, where index[𝑖, 𝑗] is a CDF
of the histogram synopsis[𝑖, 𝑗] . We define ⟨Store⟩ = {⟨store[𝑖, 𝑗]⟩},
where ⟨store[𝑖, 𝑗]⟩ is a list of secret-shared tuples of the aformen-
tioned data blocks sorted by ordered domains of the queryable
attribute 𝑎𝑡𝑡 and indexed by index[𝑖, 𝑗] . Let ⊕ and ⊖ denote the
bin-wise sum and difference of histograms or CDFs, respectively.

Query. Longshot answers both aggregate and non-aggregate ad-
hoc predicate queries. A query is associated with a predicate 𝜙 :
𝑑𝑜𝑚(𝑎𝑡𝑡) → {0, 1}. Evaluating a non-aggregate predicate query 𝑞
returns all records in D that satisfy the corresponding predicate
𝜙𝑞 , i.e., 𝑞(D) = {𝑟 ∈ D|𝜙𝑞 (𝑟 .𝑎𝑡𝑡) = 1}. An aggregate version of
query 𝑞 returns |𝑞(D)|.

We define a non-aggregate query on indexes and data stores
as 𝑞(⟨Store⟩, Index) and aggregate query results on DP synopsis
as 𝑞(Synopsis). 𝑞(⟨Store⟩, Index) includes dummy records to hide
the exact volume of query results. We use |𝑞(⟨Store⟩, Index) | to
denote the number of true records returned from 𝑞(⟨Store⟩, Index).
We define the error of an aggregate query DPCountError𝑞 using
| |𝑞(Synopsis) − |𝑞(D)| | |1 . We define the true record error of a non-
aggregate query TrueRecordError𝑞 using | | |𝑞(⟨Store⟩, Index) | −
|𝑞(D)| | |1, which is the number of deferred real data.

3.2 Preliminaries

Secure multi-party computation (MPC). MPC utilizes cryp-
tographic primitives to let multiple parties 𝑃 jointly compute a
function 𝑓 over the private inputs of each party 𝑃𝑖 , without the
need for a trusted third party. MPC guarantees that for a probabilis-
tic polynomial time adversary, each party only learns the output of
𝑓 and nothing about the private data of other parties.

Definition 3.1 ((𝑛, 𝑡)-secret sharing). Given a ring Z𝑘 where 𝑘 =

2ℓ and ℓ is the length of a secret value 𝑥 . A (𝑛, 𝑡)-secret sharing
(𝑡-out-of-𝑛) over Z𝑘 shares 𝑥 ∈ Z𝑘 with 𝑛 parties such that at least
𝑡 parties are required to reconstruct 𝑥 .

2008

For Longshot, we utilize a (2, 2)-secret sharing scheme, where
each server holds one of two secret shares for a record, and both
shares are required in order to reconstruct the plaintext record.

4 PRIVACY MODEL
Definition 4.1 (DP FOR GROWING DATABASES). We define two

growing databases D and D′ as neighboring if they differ by the
removal or addition of a single record in the entire collection of
uploaded database instances. Let 𝐹 be a mechanism over a growing
database D and 𝐹 is 𝜖-𝐷𝑃 if for any D and D′, and any 𝑂 ∈ O,
where O is the output space of 𝐹 ,

Pr[𝐹 (D) ∈ 𝑂] ≤ 𝑒𝜖Pr[𝐹 (D′) ∈ 𝑂]

We assume that each record is an event (addition of a tuple to
the growing database) and thus the mechanism 𝐹 ensures event-
level [30] 𝜖-𝐷𝑃 .

Definition 4.2 (𝜖-SIM-CDP VIEW). A DP structure update proto-
col Π is said to satisfy 𝜖-𝑆𝐼𝑀-𝐶𝐷𝑃 if for any growing database D
there exists a probabilistic polynomial time (p.p.t.) simulator 𝑆 , such
that for any p.p.t. adversary A, it holds that 𝑉 𝐼𝐸𝑊 Π and 𝑉 𝐼𝐸𝑊 𝑆

is computationally indistinguishable (≡𝑐):

Pr[A(𝑉𝑖𝑒𝑤Π (D, 𝑝𝑝, 𝜅)) = 1]

≡𝑐 Pr[A(𝑉𝑖𝑒𝑤𝑆 (D, 𝐹 (D), 𝑝𝑝, 𝜅) = 1]

where 𝑉𝑖𝑒𝑤Π denotes the adversary A’s view during the proto-
col execution which includes a transcript of secret-shared inputs
of D (for one party), randomness, public parameters, messages
exchanged and the output of the honest party, and 𝑉𝑖𝑒𝑤𝑆 denotes
the adversary A’s view against the output of the honest party and
the simulator 𝑆 that accesses secret-shared inputs of D (for one
party), the output of 𝐹 that is 𝜖-𝐷𝑃 and a set of public parameters
pp. 𝜅 is a computational security parameter.

Relations to other definitions. Using the group privacy property
of differential privacy one can easily show that any mechanism
satisfying 𝜖-event DP also satisfies𝑤-window-event [44] DP with
parameter𝑤𝜖 and user level-DPwith parameter with privacy loss of
𝑘𝜖 , where 𝑘 is an upper bound on the number of tuples contributed
by the same user. If there is no finite bound 𝑘 on user contributions,
then one would need to ensure that the algorithms limit the con-
tributions of user in some way. Recent work [17] has shown that
attackers could use temporal correlations between events to make
the privacy guarantees worse. Nevertheless, they show that for an
𝜖-event-DP algorithm, there are constants 𝜖 ≤ 𝛼, 𝛽 ≤ 𝑘𝜖 such that
the privacy loss does not degrade worse than 𝛼 and 𝛽 under event-
and𝑤-window-event DP respectively. The user level-DP guarantee
continues to be 𝑘𝜖 even if attackers could use temporal correlations.

Definition 4.2 differs from the standard definition of semi-honest
secure computation by allowing leakage in the ideal world to repre-
sent what a p.p.t adversary can learn from the execution of protocol
Π in the real world. The leakage profile provides differentially pri-
vate guarantees on input data using the output of DP mechanism
𝐹 . Thus, the definition ensures differentially private protection
against leakage from intermediate/output volume, access patterns
and update patterns during protocol execution.

5 PROTOCOL DESIGN
Longshot performs secure computation across two non-colluding
and semi-honest servers to update differentially private data struc-
tures on uploaded secret-shared data. We begin by looking at how
records are ingested by the servers according to an update trigger
and how Longshot organizes update numbers of data blocks using
a hierarchical time tree. Next, we describe oblivious algorithms
to update and maintain the Longshot data structures (Synopsis,
Index, and ⟨Store⟩) as new records arrive. Finally, we explain how
Longshot utilizes these structures to process and answer ad-hoc
predicate queries.

5.1 Longshot Protocol Overview
As described in Section 2.2, Longshot maintains the Synopsis, Index,
and ⟨Store⟩ data structures by continually incorporating newly
uploaded data. Using a trigger condition, Longshot batches new
records together before updating the data structures. We describe
the overarching update protocol in Algorithm 1.

Algorithm 1 Longshot Protocol Overview
1: Input: privacy budget 𝜖 ,
2: Update: Synopsis, ⟨Store⟩, Index
3: Initialize: c← 1, ⟨newDatac⟩ ← ∅, ⟨deferc⟩ ← ∅
4: for 𝑡 ← 1, ... do
5: ⟨𝐷𝑡 ⟩ ← secret-shared records uploaded at time 𝑡
6: ⟨newDatac⟩ ← ⟨newDatac⟩ ∪ ⟨𝐷𝑡 ⟩
7: res← UpdateTrigger(𝑡, ⟨newDatac⟩)
8: if res == True then
9: Synopsis← UpdateSynopses(𝜖, ⟨newDatac⟩)
10: ⟨Store⟩, Index, ⟨deferc+1⟩ ← UpdateStoresOPT (

Synopsis, ⟨newDatac⟩, ⟨deferc⟩)
11: c← c + 1, ⟨newDatac⟩ ← ∅

The input to Algorithm 1 is the privacy budget 𝜖 provided to
Longshot as a parameter. At timestamp 𝑡 , Longshot stores newly
uploaded data 𝐷𝑡 in a new data buffer ⟨newDatac⟩ where c refers
to the current update number (Alg 1: 5). Then, Longshot deter-
mines whether to update the data structures according to the pro-
vided UpdateTrigger policy (Alg 1: 7). Once an update is triggered,
Longshot updates Synopsis using ⟨newDatac⟩ and privacy budget 𝜖
(Alg 1: 9). Next, Longshot uses Synopsis, deferred data ⟨deferc⟩ from
the previous update and ⟨newDatac⟩, to update Index, ⟨Store⟩ and
⟨deferc+1⟩ (Alg 1: 10). Finally, Longshot empties ⟨newDatac⟩ and
increments the update number to create ⟨newDatac+1⟩ (Alg 1: 11).
We describe the details of the algorithm below.

Update trigger. The UpdateTrigger can fire either at fixed time
intervals or based on the volume of uploaded data records. Previ-
ous work [51, 75, 76] considers how to trigger updates to handle
sparse data based on upload volume while preserving privacy; their
techniques are complementary to ours and can be applied directly.

Hierarchical update tree. The update trigger separates uploaded
records into disjoint blocks of data where each block is associated
with an update number c. Naïvely, we could use the privacy budget
to generate a DP histogram for the data block of each update. How-
ever, this leads to a linearly increasing total error in the number of

2009

Root(8)

[2, 2] [4, 4]

[3, 4]

[6, 6] [8, 8] [10,10] Root(11)

[7, 8]

[5, 8]

1 2 3 4 5 6 7 8 9 10 11

Uploaded data

Root(10)

Root(9)

Root(6)

Root(3) Root(5) Root(7)

Root(2)

Root(1)

Root(4)

Path2Root(8)

PreSubRoots(8)

SubTree(8)

Figure 2: Hierarchical tree of updates.

updates over time. Longshot instead arranges updates in a tree of
hierarchical intervals as shown in Figure 2 to achieve logarithmic
error over time. Formally, in a tree of intervals with branching
factor 𝑏, each leaf node of the tree is a unit-length interval while
non-leaf nodes correspond to intervals that are recursively the
unions of the intervals of 𝑏 children nodes. Since the tree is materi-
alized gradually over time, we maintain a set of sub-trees and take
a binary tree (𝑏 = 2) as a running case where ℎ is the height of the
highest tree for the maximum number of updates 𝑇 .

In order to carry out the update protocol, we define four func-
tions to return specific intervals and illustrate them using the 8-th
update as an example in Figure 2. Root(i) returns the interval of
the root of the sub-tree whose rightmost node is the 𝑖-th leaf node.
Path2Root(i) returns the set of intervals that are on the path from
the 𝑖-th leaf node to Root(i). SubTree(i) returns all intervals in
the sub-tree of Root(i). PreSubRoots(i) returns the smallest set of
intervals that together with the 𝑖-th leaf node covers Root(i). To
make terminology simple, the data blocks of an interval refers to the
union of all data blocks whose update number falls in the interval;
the synopses, indexes and stores of an interval refers to the data
structures generated using the data blocks of that interval.

For each update 𝑖 , we generate the data structures of Root(i).
We call this update strategy the tree approach. Looking ahead,
the DP synopsis generated at each update would use the total
privacy budget divided by the tree height, which is logarithmic
in the number of updates. A logarithmic number, rather than a
linear number of synopses, can cover all uploaded data so that the
tree approach can provide logarithmic variance in the number of
updates. The detailed error analysis is in Section 5.5.

5.2 Protocol to Update Synopsis
We now explain the details of how Longshot securely and efficiently
generates an accurate synopsis of Root(i) using differential privacy
with the tree approach for update number 𝑖 . Once generated, the
synopses can be used to: 1) answer arbitrary predicate aggregate
queries (described in Section 5.4) and 2) update indexes and stores
(described in Section 5.3). Recall that a DP synopsis represents a his-
togram over data blocks of records from a specific range of updates.
Although we can compute this by applying a standard differentially
private mechanism [29] on the data blocks of Root(i), Longshot

further boosts accuracy by enforcing consistency on noisy measure-
ments at different hierarchy levels [38, 63]. Longshot computes the
DP histograms of SubTree(i), and for each bin, apply constrained in-
ference [38, 63] on the DP counts of SubTree(i) to obtain improved
estimates of each count of Root(i). We discuss the details of the
UpdateSynopses protocol in Algorithm 2 below.

Algorithm 2 Update DP synopsis

// {⟨𝐻𝑖 ⟩}: set of secret-shared true histograms,
// {𝐻̃ [𝑖, 𝑗] }: set of DP histograms

1: function UpdateSynopses(𝜖, ⟨newDatac⟩):
2: ⟨𝐻c⟩ ← FComputeTrueHist (⟨newDatac⟩)
3: {𝐻̃𝐼 }𝐼 ∈Path2Root(c) ← FComputeDPHists ({⟨𝐻𝑖 ⟩}𝑖∈Root(c) , 𝜖)
4: store ⟨𝐻c⟩ and {𝐻̃𝐼 }𝐼 ∈Path2Root(c) internally
5: synopsisRoot(c) ← BoostAccuracy({𝐻𝐼 }𝐼 ∈SubTree(c))
6: return Synopsis ∪ synopsisRoot(c)

//𝑚: number of bins
7: function FComputeDPHists ({⟨𝐻𝑖 ⟩}𝑖∈Root(c) , 𝜖) :
8: 𝐻̃𝐼 ← (⊕𝑖∈𝐼 ⟨𝐻𝑖 ⟩) ⊕ FGenLap (𝜖ℎ ,𝑚) for 𝐼 ∈ Path2Root(c)
9: return {𝐻̃𝐼 }𝐼 ∈Path2Root(c)
10: function BoostAccuracy({𝐻𝐼 }𝐼 ∈SubTree(c))
11: for each bin ∈ [1,𝑚] do:
12: synopsisRoot(c) [bin] = WAVG({𝐻𝐼 [bin]}𝐼 ∈SubTree(c))
13: return synopsisRoot(c)

Step 1: FComputeTrueHist. The first step is to securely compute the
true histogram of the data block with current update number c and
output the secret-shared version ⟨𝐻c⟩. We compute the histogram
using the most efficient oblivious algorithm which is a combination
of oblivious sorts and linear scans (akin to the gather protocol in
GraphSC [60]). This requires𝑂 ((𝑛+𝑚) log2 (𝑛+𝑚)) runtime, where
𝑛 and𝑚 are the sizes of input data and bins, respectively (Alg 2: 2).
Step 2: FComputeDPHists.We compute the DP histograms of the data
blockswith update intervals ofPath2Root(c), so those of SubTree(c)
are computed over each update (Alg 2: 3). FComputeDPHists takes
the secret-shared true histogram of each entry in Root(c) as input,
sums them together to compute the true histograms of each inter-
val of Path2Root(c), and then adds noise to the true histograms
according to Laplace mechanism [29] with privacy budget 𝜖

ℎ
, where

ℎ is the height of the tree corresponding to the maximum num-
ber of updates. FComputeDPHists reveals these noisy histograms in
the clear. We implement FGenLap (𝜖ℎ ,𝑚) to generate a vector of𝑚
Laplace noise values with scale 𝜖

ℎ
using the approach proposed

in Crypt𝜖 [21], where for each value, two servers sample indepen-
dently with scale 𝜖

ℎ
and add them up using MPC (Alg 2: 7-9). An

alternative approach is for servers to jointly sample noise with scale
𝜖
ℎ
under MPC (as in [22, 76]).

Step 3: BoostAccuracy. To obtain an improved estimation of the
DP histogram of Root(c), we apply the weighted average step of
constrained inference described by Hay et al. [38, 63] on the tree
bin-wise (Alg 2: 5). The precise definition of weighted average
(WAVG) is in Hay et al. [38, Section 4.1]. As mentioned earlier,
enforcing consistency improves the accuracy of synopsisRoot(c)
without additional privacy loss (Alg 2: 10-13).

2010

5.3 Protocol to Update Index and ⟨Store⟩
After generating a Synopsis for an array of uploaded records, Long-
shot creates two corresponding data structures, Index and ⟨Store⟩,
to lookup and store those records. Thus, the servers can efficiently
lookup the locations of records in cleartext for non-aggregate
queries using the Index, and fetch them from the ⟨Store⟩ (described
in detail in Section 5.4). In order to store uploaded records correctly,
we introduce the FThresholdedBinSort primitive, seen in Figure 3. This
primitive takes in an array of secret shared records ⟨𝑉 ⟩ for whom
we have already generated a histogram and obliviously sorts them
into bins such that the bin sizes match the histogram. We describe
the details below in Algorithm 3.

Algorithm 3 FThresholdedBinSort primitive

Input: ⟨𝑉 ⟩: array where each element has the form (data,
bin, isReal) and bin ∈ [1,𝑚], 𝐻̃ : an array of𝑚 counts

1: function FThresholdedBinSort (⟨𝑉 ⟩, 𝐻̃)
// 𝐴: list of tuples [data, bin, isCounter, isReal,mark]

2: ⟨𝐴⟩ ← transform(⟨𝑉 ⟩, 𝐻̃)
▷ Step 1: Group by bins

3: sort ⟨𝐴⟩ by (bin,¬isCounter,¬isReal)
▷ Step 2: Mark whether records are in ⟨output⟩ or ⟨defer⟩

4: var cnt := 0
5: for 𝑖 ← 1, ..., |𝐴| do
6: if ⟨𝐴⟩[𝑖] .isCounter then
7: cnt = ⟨𝐴⟩[𝑖] .mark, ⟨𝐴⟩[𝑖] .mark = |𝐻̃ | + 2
8: else
9: cnt = cnt - 1
10: if cnt < 0 then ⟨𝐴⟩[𝑖] .mark = |𝐻̃ | + 1

▷ Step 3: Generate outputs
11: sort ⟨𝐴⟩ by (mark, ¬isReal)
12: 𝑘 ← ∑

𝑖∈[1, |𝐻̃ |] 𝐻̃ [𝑖]
13: ⟨output⟩ ← ⟨𝐴⟩[1 : 𝑘], ⟨defer⟩ ← ⟨𝐴⟩[𝑘 + 1 : |𝐴| − |𝐻̃ |]
14: return ⟨output⟩, ⟨defer⟩

We first transform the array ⟨𝑉 ⟩ and threshold counts 𝐻̃ into
an alternative representation ⟨𝐴⟩ using a list of tuples tagged with
[data, bin, isCounter, isReal,mark]. First, we set isCounter values
for the input array as 0 and mark values as their bin values. Note
that data, bin, isReal represent non-queryable attributes, queryable
attribute and dummy/real for a record in input array. Second, we
append𝑚 secret-shared records to the input array. The bin values
for the𝑚 records are from 1 to𝑚 and themark values are initialized
to the appropriate values in 𝐻̃ . isCounter and isReal values for the𝑚
records are 1 and 0 respectively. This is described as the transform()
function in Algorithm 3 line 2 for simplicity. We provide an example
of three bins to illustrate the three steps of FThresholdedBinSort in
Figure 3. The algorithm progresses in three steps.
Step 1: Group by bins. ⟨𝐴⟩ is obliviously sorted by (bin, isCounter,
isReal) to group records of the same bin together. isCounter record
is followed by real and dummy records within each bin. (Alg 3: 3).
Step 2: Mark whether records are in ⟨output⟩ or ⟨defer⟩. Our even-
tual goal is to have an output ⟨output⟩ with bins of pre-specified
sizes containing preferably real elements. Thus, the objective is
to decide for each bin if an element would be in the ⟨output⟩ or

<defer>

!"[1] !"[2] !"[3]

1. Group by bins

R R R

2. Mark whether records are in <output> or <defer>

3. Generate outputs

bin1

D

bin2 bin3

R R R

!"[1] !"[2]

D

!"[3]

!"

D D

D D

Input data <A>

<output>

Figure 3: FThresholdedBinSort: R: Real; D: Dummy. Each color
in the last row represents each bin. The shaded part in the
fourth row represents dummy records.

⟨defer⟩. Specifically, based on the mark values when isCounter is
true for a record (i.e., records coming from 𝐻̃), we keep the mark
values (in the output) or assign𝑚 + 1 as the mark values (in the
deferred category) for other elements. We assign𝑚 + 2 as the mark
values for counter records to move them to the end. (Alg 3: 4-10).
Step 3: Generate outputs.We sort the array bymark values. The first∑
𝑖 𝐻̃ [𝑖] elements are output as ⟨output⟩, the last |𝐻̃ | elements are

ignored, and the remaining elements form ⟨defer⟩. Within ⟨output⟩
and ⟨defer⟩, real records are before dummy records (Alg 3: 11-14).

Updating Index and ⟨Store⟩. For a given update 𝑐 , we have shown
how to create synopsisRoot(c) for the records uploaded in 𝑐 . Now,
we want to store those records in ⟨storeRoot(c) ⟩ and lookup them
up using indexRoot(c) . There are two high-level challenges to gen-
erate ⟨storeRoot(c) ⟩. First, updating the store obliviously can lead to
accessing the entire database(e.g., when generating ⟨storeRoot(8) ⟩),
significantly reducing performance. Second, Longshot allocates
space for storing records based on the synopsis, which incorporates
positive or negative Laplace noise in each bin and may not accu-
rately reflect the exact number of records. Longshot handles excess
space by inserting dummy records, while for inadequate space, ad-
ditional records are deferred. We introduce UpdateStoresALL and
UpdateStoresOPT to solve the second and the first challenge.

5.3.1 UpdateStoresALL Protocol. Let’s start with a high-level de-
scription of UpdateStoresALL. At update 𝑐 , we have records up-
loaded during previous updates (located in either ⟨deferc⟩) or stores,
newly uploaded records, and dummy records (added to hide the data
distribution from the untrusted servers). We concatenate and sort
these records using FThresholdedBinSort, constructing ⟨storeRoot(c) ⟩
using most of the records and moving the rest into ⟨deferc+1⟩. We
discuss the details of this process in Algorithm 4.
Step 1: Add dummy records. As the synopsis is noisy, it may require
adding dummy records to the bins in the data store. Therefore, we
commence the algorithm by adding an adequate number of dummy
records. Adding as many dummy records as in synopsisRoot(c) for
each bin is sufficient but inefficient. However, an overly small size
leads to inconsistency between ⟨storeRoot(c) ⟩ and synopsisRoot(c) .

We use insight to choosing the appropriate size: DP noise added
in synopsisRoot(c) determines the number of dummy records in
⟨storeRoot(c) ⟩. If we can bound the DP noise with high probability,
thenwe can bound the number of dummies needed in ⟨storeRoot(c) ⟩

2011

Algorithm 4 ⟨Store⟩ and Index update on ALL
//𝑚: number of bins, 𝑑 : DP noise bound

1: function UpdateStoresALL (Synopsis, ⟨newDatac⟩, ⟨deferc⟩):
2: ⟨𝑅pre⟩ ← {⟨store𝐼 ⟩}𝐼 ∈PreSubRoots(c)
3: 𝐻̃Root(c) ← synopsisRoot(c)
4: ⟨storeRoot(c) ⟩, ⟨deferc+1⟩ ← UpdateStores(⟨newDatac⟩,

⟨deferc⟩, ⟨𝑅pre⟩, 𝐻̃Root(c))
5: return updated ⟨Store⟩, Index, ⟨deferc+1⟩
6: function UpdateStores(⟨newDatac⟩, ⟨deferc⟩, ⟨𝑅pre⟩, 𝐻̃sort):

▷ Step 1: Add dummy records
7: ⟨dummy⟩ ← Generate𝑚 ∗ 𝑑 dummy records

▷ Step 2: FThresholdedBinSort
8: ⟨𝑉 ⟩ ← ⟨𝑅pre⟩ ∥ ⟨deferc⟩ ∥ ⟨newDatac⟩ ∥ ⟨dummy⟩
9: 𝐻̃ ← Process 𝐻̃sort into 𝐻̃ such that

∑
𝑖 𝐻̃ [𝑖] ≤ |⟨𝑉 ⟩|

10: ⟨output⟩, ⟨defer⟩ ← FThresholdedBinSort (⟨𝑉 ⟩, 𝐻̃)
▷ Step 3: Truncate dummy records in ⟨defer⟩

11: 𝐶cut ←𝑚 × 𝑑 × (|PreSubRoots(c) |)
12: ⟨deferc+1⟩ ← ⟨defer⟩[1 : |⟨defer⟩| −𝐶cut]
13: return ⟨output⟩, ⟨deferc+1⟩

using a fixed value. We can use this value to generate enough
dummy records instead of using the maximum value. In particular,
based on the fact below, the DP noise, sampled from Laplace distri-
bution with scale 𝑏, is bounded by 𝑑 = ln(1

𝑝) · 𝑏 with probability
1 − 𝑝 , where 𝑝 = 𝑒𝑥𝑝 (−𝑡). We securely generate 𝑑 dummy records
for each bin value as ⟨dummy⟩. Therefore, there are enough dummy
records for each bin for FThresholdedBinSort to update the data store
with probability 1 − 𝑝 . We deal with the scenario where we do not
have sufficiently many dummies in step 2 below (Alg 4: 7).

Fact1 : 𝐼 𝑓 Y ∼ Lap(b), 𝑡ℎ𝑒𝑛 : Pr[|Y| ≥ t × b] = exp(−t)
Step 2: FThresholdedBinSort.Now that we have enough dummies with
high probability, Longshot calls the FThresholdedBinSort primitive
to process the input array ({⟨store𝐼 ⟩}𝐼 ∈PreSubRoots(c) ∥ ⟨deferc⟩ ∥
⟨newDatac⟩ ∥ ⟨dummy⟩) according to synopsisRoot(c) to obtain
⟨storeRoot(c) ⟩ and update ⟨deferc+1⟩. In case added dummy records
are not sufficient, we pre-process synopsisRoot(c) to obtain a his-
togram 𝐻̃ so that

∑
𝑖 𝐻̃ [𝑖] is equal to the length of the input array.

We processes each value of the cumulative distribution function
(CDF) of synopsisRoot(c) to be at most the length of input array and
then compute the histogram 𝐻̃ from the processed CDF (Alg 4: 8-10).
Step 3: Truncate dummy records in ⟨defer⟩. The errors in DP syn-
opsis accumulates logarithmically in the number of updates as
mentioned in Section 5.1. Correspondingly, this holds true for the
number of dummy records accumulated in the deferred data buffer.
We achieve the logarithmically accumulated dummies by dropping
the last𝑚 ×𝑑 × |PreSubRoots(c) | records in ⟨defer⟩ (Alg 4: 11-12).

5.3.2 UpdateStoresOPT Protocol. WithUpdateStoresALL, Longshot
must obliviously sort all data blocks of Root(c). When the update
number c is a power of two, we end up obliviously sorting the
entire data store, which can be extremely inefficient. To address
this concern, we introduce UpdateStoresOPT, which significantly
reduces the number of records that Longshot needs to sort using
expensive cryptographic protocols.

In UpdateStoresOPT, we extend the insight w.r.t. bounding the
DP noise used in synopsisRoot(c) to sorting records. Since real
records are stored before dummy records in each bin, we have
a region where the records are all dummies with high probability.
We can apply ThresholdedBinSort only on the records in this re-
gion in {⟨store𝐼 ⟩}𝐼 ∈PreSubRoots(c) , allowing to either replace extra
dummy records with real records or move them into ⟨defer⟩.

We provide examples using three bins at the 8-th update in Fig-
ure 4 to illustrate how UpdateStoresOPT applies FThresholdedBinSort
only on a small portion of the input array, rather than all input data
as in UpdateStoresALL. We describe the protocol in Algorithm 5.

Algorithm 5 Optimized ⟨Store⟩ and Index update
//𝑚: number of bins, 𝑑 : DP noise bound

1: function UpdateStoresOPT (Synopsis, ⟨newDatac⟩, ⟨deferc⟩) :
▷ Step 1:MergeBinsSepDmy

2: (⟨𝑅xReal⟩, 𝐻̃xReal), ⟨𝑅xDummy⟩ ← MergeBinsSepDmy
(𝑑, synopsis𝐼 , ⟨store𝐼 ⟩)𝐼 ∈PreSubRoots(c))

▷ Step 2: Call UpdateStores on mostly dummy elements.
3: 𝐻̃sort ← synopsisRoot(c) ⊖ 𝐻̃xReal
4: ⟨𝑅sort⟩, ⟨deferc+1⟩ ← UpdateStores(⟨newDatac⟩,

⟨deferc⟩, ⟨𝑅xDummy⟩, 𝐻̃sort)
▷ Step 3:MergeBins

5: ⟨storeRoot(c) ⟩ ← MergeBins((⟨𝑅sort⟩, 𝐻̃sort),
(⟨𝑅xReal⟩, 𝐻̃xReal))

6: return updated ⟨Store⟩, Index, ⟨deferc+1⟩
7: functionMergeBinsSepDmy (𝑑, (synopsis𝐼 ,

⟨store𝐼 ⟩)𝐼 ∈PreSubRoots(c)) :
8: for each bin 𝑖 ∈ [1,𝑚] do:
9: for 𝐼 ∈ PreSubRoots(c) do:
10: 𝑅 ← records for bin 𝑖 in ⟨store𝐼 ⟩ located by DP index
11: 𝐶𝑟 ← max(0, (synopsis𝐼 [𝑖] − 𝑑))
12: 𝐻̃xReal [𝑖] ← 𝐻̃xReal [𝑖] +𝐶𝑟
13: 𝑅xReal ← 𝑅xReal ∥ 𝑅 [1 : 𝐶𝑟]
14: 𝑅xDummy ← 𝑅xDummy ∥ 𝑅 [𝐶𝑟 + 1, synopsis𝐼 [𝑖]]
15: return (⟨𝑅xReal⟩, 𝐻̃xReal), ⟨𝑅xDummy⟩

Step 1: MergeBinsSepDmy. Given 𝑑 , which bounds the number of
dummies in each bin, MergeBinsSepDmy treats the last 𝑑 records
from each bin in {store𝐼 }𝐼 ∈PreSubRoots(c) as containing most dum-
mies and moves them into ⟨𝑅xDummy⟩. If the number of records for
a bin in {synopsis𝐼 }𝐼 ∈PreSubRoots(c) is smaller than 𝑑 , all records
in the bin are treated as dummies and moved to ⟨𝑅xDummy⟩. Next,
MergeBinsSepDmy merges bin-wise the remaining records, which
are mostly real, into ⟨𝑅xReal⟩ and computes the DP histogram 𝐻̃xReal
of ⟨𝑅xReal⟩. (Alg 5: 2). Note that, these operations are based on public
parameters, and thus they can be performed in the clear.
Step 2: Call UpdateStores on mostly dummy elements. We now ap-
plyUpdateStores on all records of ⟨𝑅xDummy⟩ togetherwith ⟨deferc⟩,
⟨newDatac⟩, and ⟨dummy⟩. At the end of this process, we obtain a
sorted array ⟨𝑅sort⟩ which is consistent with 𝐻̃sort and ⟨𝑅sort⟩ con-
tains as many real records as possible from ⟨𝑅xDummy⟩, ⟨deferc⟩
and ⟨newDatac⟩. This ensures that the merged array ⟨storeRoot(c) ⟩
from ⟨𝑅sort⟩ and ⟨𝑅xReal⟩ in step 3 is consistent with synopsisRoot(c)
and contains mostly real records (Alg 5: 3-4).

2012

<!!"#$%> and "#!"#$%
<defer&> <newData&> <dummy>

<!!'())*>

<!+,-.> and "#+,-.

<store[0,2]> and synopsis[0,2] <store[4,5]> and synopsis[4,5]

2. ℱ!"#$%"&'($()*+,&#-

3. MergeBins

<store[0,&]> and synopsis[0,&]

<store[6]> and synopsis[6]d

<defer7>

1. MergeBins,$./01

real (left) and dummy (right) for each bin

Figure 4: UpdateStoresOPT: The example uses the DP stores of intervals [1, 4], [5, 6], [7, 7] returned by PreSubRoots(8) and the data
block [8, 8] stored in the new data buffer 𝜌8 to update the DP store of [1, 8]. Each color represents the location of each bin in
these stores identified by their index, and the dotted box represents the records seen as dummies by their index. The shaded
area represents actual dummy records that are unknown either in public or by index.

Step 3: MergeBins.Wemerge the sorted data ⟨𝑅sort⟩with themostly
real array ⟨𝑅xReal⟩ bin-wisely using their histograms 𝐻̃sort and
𝐻̃xReal to obtain ⟨storeRoot(c) ⟩. The two arrays are consistent with
their DP histograms and thus we can locate the records for each
bin without decrypting data (Alg 5: 5).

5.4 QueryProcessing Protocol
We now discuss how Longshot utilizes our data structures to an-
swer ad-hoc predicate queries posed by the analyst. The Synopsis
generated with DP guarantees is publicly released, allowing for the
direct answering of aggregate queries without the need to fetch
individual records. Longshot utilizes the publicly released Index
to locate and fetch the needed secret-shared records in ⟨Store⟩ for
Non-aggregate predicate queries. We discuss the details below.
Step 1: Map query. To process a query 𝑞, we check the update num-
ber c at the current time stamp and compute the set of bins for
which the predicate of 𝑞 returns true as 𝐵 = {𝑖 ∈ [1 : 𝑚] |𝜙𝑞 (𝑖) = 1}.
Step 2: Prepare data structures. We perform this step only for the
first query for a given update number. We merge the data stores of
Intervals(c) using the corresponding indexes and sum up these DP
synopses and indexes, bin by bin.
Step 3: Process query. For an aggregate query, we use the processed
DP synopsis to compute the total count for the required bins 𝐵. For
a non-aggregate query, we use the processed index and data store
to fetch the total records for the required bins 𝐵.

5.5 Error and Efficiency Analysis

Query errors.We analyzeDPCountError and TrueRecordError for
aggregate and non-aggregate queries.We assume that the total num-
ber of updates is 𝑇 . For each bin, the variance of the sum of counts
in Synopsis over𝑇 updates is𝑂 ((log𝑇

𝜖)
2) × log𝑇 = 𝑂 (log3𝑇

𝜖2). The
variance decides the DPCountError.

The negative noise added in a synopsis decides the size of de-
layed real records in the corresponding store, leading to the error

of TrueRecordError. However, TrueRecordError is further affected
by the size of ⟨dummy⟩ records and the value of 𝑑 , which is one
of the inputs of MergeBinsSepDmy. When there are not enough
dummy records in each bin, the number of records for each bin
in store is inconsistent with the bin count in the corresponding
synopsis. Thus, index can locate the records in store incorrectly,
potentially resulting in high TrueRecordError. When 𝑑 is smaller,
fewer records for each bin in {store𝐼 }𝐼 ∈PreSubRoots(c) are treated as
dummies by MergeBinsSepDmy. Therefore, more dummy records
are unsorted and accumulated in storeRoot(c) , and thus more real
records are deferred, increasing TrueRecordError. Both the size of
⟨dummy⟩ and the value of 𝑑 are decided by parameter 𝑝 in the
UpdateStoresALL and UpdateStoresOPT protocol.

Efficiency. The update protocol for ⟨Store⟩ primarily computes
FThresholdedBinSort usingMPC.FThresholdedBinSort includes two obliv-
ious sorts and one linear scan, and thus the protocol takes 𝑂 ((𝑛 +
𝑚) · log2 (𝑛 +𝑚)), where 𝑛 is the number of records to sort and𝑚
is the number of bins. Let 𝑛 be the sum of the size 𝑛defer of real
and dummy data acumulated in the deferred data buffer and the
size 𝑛′ of the necessary data to sort for the required data block.
𝑛defer = 𝑂 (

√︁
log𝑘). Assume that the number of uploaded records

at each triggered update is 𝑁 and the height of SubTree(i) is ℎ′. For
UpdateStoresOPT, 𝑛′ = 𝑁 + ℎ′ × 𝑑 ×𝑚, compared with 𝑁 × 2ℎ

′
for

UpdateStoresALL. The protocol of updating DP synopsis requires
𝑂 ((𝑛 +𝑚) · log2 (𝑛 +𝑚) +𝑚 · ℎ′) runtime, where 𝑛 = 𝑁 . Longshot
processes queries publicly, so the processing time is negligible.

6 EXPERIMENTAL EVALUATION
In this section, we describe the evaluation results of Longshot.
Specifically, we address the following questions:

• Question-1 On processing ad-hoc predicate queries:
– Efficiency: Is Longshotmore efficient than baseline approaches?
– Errors: How does query error for Longshot compare to base-

line approaches?

2013

• Question-2 On updating the data structures: Does the optimized
UpdateStoresOPT protocol solve the bottleneck of updating data
stores in UpdateStoresALL?

• Question-3 On tunable trade-offs: How are privacy, efficiency
and accuracy affected when adjusting the privacy budget?

6.1 Methodology

Implementation and configurations. We use C++ and EMP
toolkit [1] to implement Longshot with secure 2-PC protocols. The
experiments are run on a single machine with 64-bit Ubuntu 20.04.4,
8 cores, 2.50GHz CPU, and 32Gb RAM using two separate processes.

Dataset. We evaluate Longshot on the NYC Taxi dataset [2]. After
we dropped the records with missing and NULL values, the NYC
Taxi dataset has 1363103 records. We use the ‘total_amount’ column
whose values are numerical, and we bucketize them to obtain𝑚 =

40 bins. For a large number of updates, we copy over the original
dataset to ensure sufficiently many records.

Query. We answer two workloads of 40 point queries and 800
range queries on all uploaded data over time. For each query work-
load, we report the average DPCountError and TrueRecordError
of aggregate and non-aggregate queries and average runtime of
aggregate and non-aggregate queries.

Default setting. We set the privacy budget 𝜖 over all updates to
1, by default. The failure probability of bounding Laplace noise, 𝑝 ,
for UpdateStores is set to 0.001. UpdateTrigger uses a public timer
to trigger updates and the number 𝑁 of new records uploaded at
each triggered update is 1000. Unless specified explicitly, the largest
number of updates 𝑇 is 200, and the height of the tree is ℎ = log2𝑇 .

6.2 Baseline Algorithms
In Section 5, we show how to generate Synopsis, and present two
protocolsUpdateStoresALL andUpdateStoresOPT that use Synopsis
to update the data store. We refer to these two resulting systems
as Tree-ALL and Tree-OPT respectively. We compare against two
additional protocols described below.

The first protocol, Baseline, processes an ad-hoc query inde-
pendently on all uploaded data with differentially-private leakage.
Baseline extends the approaches seen in IncShrink [76], which re-
quires one query prespecified, to answer ad-hoc queries. Through
this comparison, we can see the necessity of the DP structures cre-
ated in Longshot for efficient ad-hoc query execution. In Baseline,
given an aggregate query, we linear scan all uploaded data to com-
pute a differentially private count using the privacy budget. To
answer a non-aggregate query, we linear scan all records to mark
the required records for the query, obliviously sort all data to move
the target records to the beginning, and return the first DP count
number of records. Each non-aggregate query takes 𝑂 (𝑛 · log2 𝑛)
time, where 𝑛 is the size of all the data uploaded until a given time
point. We only evaluate the query errors when an update is trig-
gered. Therefore, at each update in Baseline, we set the privacy
budget for the point query as 𝜖

𝑇
and for each range query as 𝜖

𝑇×𝑚 ,
where𝑚 is the number of bins.

The second protocol, Leaf, uses an alternative to the hierarchical
tree approach described in Section 5.1. In particular, the Leaf is a
special case of the hierarchical approach where the height ℎ and the

Table 1: Comparison of aggregate query variance and maxi-
mum records processed under MPC for query processing and
data update between Baseline, Leaf, Tree-OPT and Tree-ALL. 𝑘
is the number of updates.

Agg. error Query Update

Baseline 𝑂 (𝑇 2

𝜖2) 𝑂 (𝑘𝑁) public
Leaf 𝑂 (𝑇

𝜖2) public 𝑂 (𝑁 +
√
𝑘 +𝑚)

Tree-OPT 𝑂 (log3𝑇
𝜖2) public

𝑂 (𝑁 +𝑚𝑑 log𝑘+√︁
log𝑘 +𝑚)

Tree-ALL 𝑂 (log3𝑇
𝜖2) public 𝑂 (𝑘𝑁 +

√︁
log𝑘 +𝑚)

branching factor 𝑏 of the hierarchical time tree is 1. Thus, Root(i),
Path2Root(i) and SubTree(i) only return [𝑖, 𝑖], PreSubRoots(i) re-
turns empty and Intervals(i) returns [1, 1], ..., [𝑖, 𝑖]. Consequently,
UpdateStoresALL andUpdateStoresOPT devolve to the same update
protocol. In this protocol, the privacy budget used at each update is
the total privacy budget. Therefore, the protocol has the advantage
of obtaining a low error when the number of updates is small.

The runtime of updating DP stuctures of Longshot is comparable
to the runtime of processing one query using Baseline, however, DP
stuctures can be used to process unlimited queries once released.

6.3 End-to-End comparison
WeanswerQ1 by comparing Leaf,Baseline, and Tree-OPT. Tree-OPT
and Tree-ALL operate on similar structures for query processing,
and their differences are explained in Figure 8. The blue points, red
points, and green points in Figures 5, 6 and 7 represent the results
of Leaf, Baseline, and Tree-OPT, respectively.

Observation 1. Leaf and Tree-OPT protocols provide orders
of magnitude performance improvement over the Baseline.
Figure 5 shows the run time of processing aggregate and non-
aggregate queries on all data at each triggered update. We observe
that Baseline is much less efficient than Leaf and Tree-OPT. Despite
the possibility of different dummy records in DP store, the query
processing runtimes for Leaf and Tree-OPT are almost the same as
when performed in clear text. The processing time of the Baseline
grows linearly with the number of updates, and due to its slow
runtime, we only show the first 10 updates. However, the average
query processing time for Leaf and Tree-OPT is less than 1s for
both point and range query workloads, even for 200 updates. The
results show that processing queries with the Leaf and Tree-OPT
protocols provides a significant improvement over Baseline.

0 25 50 75 100 125 150 175 200
The number of updates

100

101

102

103

104

Ru
nt

im
e-

Po
in

tQ
ue

ry
(m

s)

T:200; ε:1; N:1000
Leaf
Baseline
Tree-OPT

(a) Point query

0 25 50 75 100 125 150 175 200
The number of updates

100

101

102

103

104

Ru
nt

im
e-

Ra
ng

eQ
ue

ry
(m

s)

T:200; ε:1; N:1000
Leaf
Baseline
Tree-OPT

(b) Range query

Figure 5: Run time of processing query

2014

Observation 2. Leaf and Tree-OPT have lower errors than
Baseline. Tree-OPT shows lower errors than Leaf for a large
number of updates. Figure 6 shows error comparisons between
Baseline, Leaf, and Tree-OPT. Baseline has significantly higher er-
rors than Leaf and Tree-OPT for point and range queries workloads
due to smaller privacy budgets at each update. Range queries have
larger errors than point queries because they require the summation
of noisy values over multiple bins. Both point and range queries
have the same pattern of errors over time.

Figure 7 compares errors between Leaf and Tree-OPT. The largest
number of updates is𝑇 = 600. Since the runtime for the Leaf proto-
col grows linearly with the number of updates (c.f. Figure 9a), we
only run experiments for the first 200 updates. Leaf has an error
linear in the number of updates (as also shown with the extrapo-
lated line). On the other hand, Tree-OPT has an error logarithmic
in the number of updates. When the number of updates is about
200, the error of Leaf begins exceed the error of Tree-OPT.

0 25 50 75 100 125 150 175 200
The number of updates

0
50

100
150
200
250
300
350

DP
Co

un
tE

rro
r-P

oi
nt

Qu
er

y

T:200; ε:1; N:1000
Leaf
Tree-OPT
Baseline

(a) Point query

0 25 50 75 100 125 150 175 200
The number of updates

0

2000

4000

6000

8000

10000

12000

DP
Co

un
tE

rro
r-R

an
ge

Qu
er

y

T:200; ε:1; N:1000
Leaf
Tree-OPT
Baseline

(b) Range query

0 25 50 75 100 125 150 175 200
The number of updates

0

50

100

150

200

Tr
ue

Re
co

rd
Er

ro
r-P

oi
nt

Qu
er

y

T:200; ε:1; N:1000
Leaf
Tree-OPT
Baseline

(c) Point query

0 25 50 75 100 125 150 175 200
The number of updates

0

1000

2000

3000

4000

5000

6000

7000

Tr
ue

Re
co

rd
Er

ro
r-R

an
ge

Qu
er

y

T:200; ε:1; N:1000
Leaf
Tree-OPT
Baseline

(d) Range query

Figure 6: Query errors of Leaf, Tree-OPT and Baseline

6.4 Performance Gain from Optimization
To evaluate Q2, we compare the speed-up of UpdateStoresOPT ver-
sus UpdateStoresALL for updating the data stores. The results of
Leaf, Tree-ALL, and Tree-OPT are shown as blue, red, and green
points respectively in Figure 9a and 8.

Observation 3. UpdateStoresOPT has a significantly shorter
run time thanUpdateStoresALL, with slightly bigger errors.We
observe from Figure 9a that the running time of UpdateStoresOPT
is shorter than that of UpdateStoresALL. When the number of up-
dates is the 𝑛-th power of 2, UpdateStoresOPT is significantly faster.
This is because only part of the records in the previous data stores,
which are highly likely to be dummy records, are sorted obliviously,
rather than all records in these data stores. Thus, UpdateStoresOPT
dramatically reduces the number of records to be processed us-
ing MPC. Leaf does not sort records in previous data stores, but

0 100 200 300 400 500 600
The number of updates

0
20
40
60
80

100
120
140
160

DP
Co

un
tE

rro
r-P

oi
nt

Qu
er

y

T:600; ε:1; N:1000
Leaf-extrapolated
Leaf
Tree-OPT

(a) Point query

0 100 200 300 400 500 600
The number of updates

0
250
500
750

1000
1250
1500
1750

DP
Co

un
tE

rro
r-R

an
ge

Qu
er

y

T:600; ε:1; N:1000
Leaf-extrapolated
Leaf
Tree-OPT

(b) Range query

0 100 200 300 400 500 600
The number of updates

0

5

10

15

20

25

Tr
ue

Re
co

rd
Er

ro
r-P

oi
nt

Qu
er

y

T:600; ε:1; N:1000
Leaf-extrapolated
Leaf
Tree-OPT

(c) Point query

0 100 200 300 400 500 600
The number of updates

0

50

100

150

200

250

300

350

Tr
ue

Re
co

rd
Er

ro
r-R

an
ge

Qu
er

y

T:600; ε:1; N:1000
Leaf-extrapolated
Leaf
Tree-OPT

(d) Range query

Figure 7: Query errors of Leaf and Tree-OPT

the number of dummy records accumulated in the deferred buffer
grows linearly. Thus, the runtime of Leaf grows linearly. Note that
Baseline takes negligible time to update data, since it simply ap-
pends new uploaded data to the data store. As shown in Figure 8,
despite the optimizations leading to slightly higher errors, the er-
ror of Tree-OPT is comparable to Tree-ALL. The slightly higher
TrueRecordError of Tree-OPT comes from not sorting all records in
the previous data stores using UpdateStoresOPT, leading to dummy
records accumulating in the updated store with low probability.

0 25 50 75 100 125 150 175 200
The number of updates

5
10
15
20
25
30
35
40
45

DP
Co

un
tE

rro
r-P

oi
nt

Qu
er

y

T:200; ε:1; N:1000
Tree-ALL
Tree-OPT

(a) Point query

0 25 50 75 100 125 150 175 200
The number of updates

100

200

300

400

DP
Co

un
tE

rro
r-R

an
ge

Qu
er

y

T:200; ε:1; N:1000
Tree-ALL
Tree-OPT

(b) Range query

0 25 50 75 100 125 150 175 200
The number of updates

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ue

Re
co

rd
Er

ro
r-P

oi
nt

Qu
er

y

T:200; ε:1; N:1000
Tree-ALL
Tree-OPT

(c) Point query

0 25 50 75 100 125 150 175 200
The number of updates

50

100

150

200

250

300

Tr
ue

Re
co

rd
Er

ro
r-R

an
ge

Qu
er

y

T:200; ε:1; N:1000
Tree-ALL
Tree-OPT

(d) Range query

Figure 8: Query errors

2015

0 25 50 75 100 125 150 175 200
The number of updates

0

500

1000

1500

2000

Ru
nt

im
e(

s)

T:200; ε:1; N:1000

Leaf
Tree-ALL
Tree-OPT

(a) Different approaches

0.25 0.5 1 2
Privacy parameter ε

100
200
300
400
500
600
700
800

Ru
nt

im
e(

s)

Tree-OPT -- Update DPStore

(b) Different 𝜖

Figure 9: Run time of updating data store

6.5 Performance and Errors as a Function of 𝜖

Observation 4. We address Q3 by evaluating Tree-OPT with
different 𝜖 in [0.25, 0.5, 1, 2]. Tree-OPT exhibits different trade-
offs of efficiency and accuracy for different privacy budgets.
As 𝜖 increases, we observe a half-decreasing trend in the query
errors and the performance of Tree-OPT (c.f. Figures 9b and 10).
Increasing the privacy budget results in less noise in Synopsis and
fewer dummy records in ⟨Store⟩, leading to smaller query errors
and faster running time.

0.25 0.5 1 2
Privacy parameter ε

0

20

40

60

80

100

Er
ro

rs

Tree-OPT -- Point query
DPCountError
TrueRecordError

(a) Point query

0.25 0.5 1 2
Privacy parameter ε

200

400

600

800

1000

Er
ro

rs

Tree-OPT -- Range query
DPCountError
TrueRecordError

(b) Range query

Figure 10: Query errors of Tree-OPT with different 𝜖

7 EXTENSIONS

Multiple attributes. We now explain how to support queries
with conditions on multiple queryable attributes (e.g. attributes
A, B, C, D). There is extensive literature about releasing high-
dimensional differentially private statistics [72]. Longshot can fol-
low the marginal-based approach to securely materialize counts for
a set of low-dimensional histograms (e.g., histogram over AB and
histogram over CD) and post-processing them to measure a full-
dimensional histogram (over all attributes A, B, C & D) to answer
aggregate queries on the queryable attributes [56, 57, 79]. To re-
turn records for non-aggregate queries, there are two options. First,
Longshot can sort records according to the ordered domain values
of the full-dimensional histogram with all queryable attributes (e.g.
A, B, C &D) and use that histogram to index records. The large num-
ber of bins required for the full-dimensional histogram incurs much
larger storage maintenance costs. Second, instead of laying out
records using the full-dimensional histogram, Longshot can main-
tain a copy of data and data structures for each low-dimensional
histogram such that the records in each copy are sorted using the
corresponding histogram (e.g. one for AB and one for CD). When
processing a query, Longshot can satisfy a subset of conditions by

using one of the low-dimensional histograms to fetch the appro-
priate records. For instance, a query on attributes A, B, & C would
use the AB index. Longshot can then securely filter the fetched
records to satisfy the conditions over the remaining attributes. This
approach requires one copy of data for each low-dimensional his-
togram, incurring larger storage costs. Both approaches guarantee
differentially private bounded leakage.

Multiple tables. Inspired by the idea in PrivateSQL [46], we can
assume a representative workload of queries on multiple tables and
generate a set of views to support them. Then we can use Longshot
to generate data structures for each view, so that Longshot can
answer the representationworkload by processing queries using the
data structures of a single view. We can bound the view sensitivity
by dropping records that cause high sensitivity as in PrivateSQL or
limiting the number of row that a record can contribute in a view
as in incShrink [76]. However, how to design an update policy with
bounded privacy loss to decide when to update all views together
is a future research question to explore.

8 RELATEDWORK

Secure databases.Many existing approaches incorporate crypto-
graphically secure protocols into database management systems
to allow executing queries on untrusted servers while maintaining
strong security guarantees. These systems have used predicate en-
cryption [52, 68], property and order preserving encryption [4, 10],
symmetric searchable encryption (SSE) [19, 25, 41, 70], functional
encryption [15, 67], oblivious RAM [23, 27, 59], multi-party secure
computation (MPC) [7, 14, 71, 76], trusted execution environments
(TEE) [31, 62, 73, 78] and homomorphic encryption [16, 21, 32, 65].
The security guarantees rely on hiding not just the value of the
underlying records, but different leakage sources such as query pat-
terns [77, 80], access patterns [26, 42], query response volume [35–
37, 42], and leakage over time [5, 19, 33, 43, 75, 76]. Our approach
uses one leakage function to hide all these leakages and design
differentially-private data structures that significantly improve the
performance of query execution.

Differential privacy for databases. A substantial body of re-
search in differential privacy provides strong privacy guarantees
for databases by protecting query results [3, 21, 24, 48, 53], or by
protecting query execution [7, 13, 20, 54, 61, 66, 74]. Longshot uti-
lizes differential privacy not only to bound information leakage
but to improve the performance of cryptographic protocols over
time by introducing novel oblivious algorithms that generate and
maintain DP structures for multiple users on untrusted servers.

9 CONCLUSION
We introduce Longshot, the first privacy-preserving database man-
agement system that maintains DP data structures using MPC to
support ad-hoc predicate queries on sensitive growing data con-
tinually uploaded by multiple, mutually distrustful clients. With
Longshot, we introduce novel oblivious algorithms that balance the
trade-off between privacy, and efficiency in a dynamic setting.

ACKNOWLEDGMENTS
This work was supported by NSF SaTC Award 2016393.

2016

REFERENCES
[1] 2022. Emp-toolkit. https://github.com/emp-toolkit.
[2] 2022. TLC Trip Record Data. https://www1.nyc.gov/site/tlc/about/tlc-trip-

record-data.page.
[3] Archita Agarwal, Maurice Herlihy, Seny Kamara, and Tarik Moataz. 2019. En-

crypted Databases for Differential Privacy. Proceedings on Privacy Enhancing
Technologies 2019, 3 (2019), 170–190.

[4] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.
Order preserving encryption for numeric data. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data. 563–574.

[5] Ghous Amjad, Seny Kamara, and Tarik Moataz. 2019. Forward and backward
private searchable encryption with SGX. In Proceedings of the 12th European
Workshop on Systems Security. 1–6.

[6] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. 2016. SMCQL: secure querying for federated databases. arXiv preprint
arXiv:1606.06808 (2016).

[7] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.
2018. Shrinkwrap: efficient sql query processing in differentially private data
federations. Proceedings of the VLDB Endowment 12, 3 (2018), 307–320.

[8] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020. Saqe:
practical privacy-preserving approximate query processing for data federations.
Proceedings of the VLDB Endowment 13, 12 (2020), 2691–2705.

[9] Amos Beimel. 2011. Secret-sharing schemes: a survey. In International conference
on coding and cryptology. Springer, 11–46.

[10] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and
efficiently searchable encryption. In Annual International Cryptology Conference.
Springer, 535–552.

[11] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. 2017. The tao of inference in privacy-protected databases. Cryptology
ePrint Archive (2017).

[12] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2019. Revisiting Leakage
Abuse Attacks. IACR Cryptol. ePrint Arch. 2019 (2019), 1175.

[13] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam
O’Neill. 2021. 𝜖psolute : Efficiently Querying Databases While Providing Differ-
ential Privacy. arXiv preprint arXiv:1706.01552 (2021).

[14] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[15] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
2004. Public key encryption with keyword search. In International conference on
the theory and applications of cryptographic techniques. Springer, 506–522.

[16] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. 2005. Evaluating 2-DNF formulas on
ciphertexts. In Theory of cryptography conference. Springer, 325–341.

[17] Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, and Li Xiong. 2018. Quantifying
differential privacy in continuous data release under temporal correlations. IEEE
transactions on knowledge and data engineering 31, 7 (2018), 1281–1295.

[18] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
abuse attacks against searchable encryption. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. 668–679.

[19] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic searchable encryption
in very-large databases: data structures and implementation.. In NDSS, Vol. 14.
Citeseer, 23–26.

[20] Guoxing Chen, Ten-Hwang Lai, Michael K Reiter, and Yinqian Zhang. 2018.
Differentially private access patterns for searchable symmetric encryption. In
IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 810–
818.

[21] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,
and Somesh Jha. 2019. Crypt𝑒𝑝𝑠𝑖𝑙𝑜𝑛: Crypto-Assisted Differential Privacy on
Untrusted Servers. arXiv preprint arXiv:1902.07756 (2019).

[22] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics.. In NSDI. 259–282.

[23] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal,
and Lorenzo Alvisi. 2018. Obladi: Oblivious Serializable Transactions in the Cloud.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 727–743. https://www.usenix.
org/conference/osdi18/presentation/crooks

[24] Rachel Cummings, Sara Krehbiel, Kevin A Lai, and Uthaipon Tantipongpipat.
2018. Differential privacy for growing databases. arXiv preprint arXiv:1803.06416
(2018).

[25] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable
symmetric encryption: improved definitions and efficient constructions. Journal
of Computer Security 19, 5 (2011), 895–934.

[26] Jonathan L Dautrich Jr and Chinya V Ravishankar. 2013. Compromising privacy
in precise query protocols. In Proceedings of the 16th International Conference on
Extending Database Technology. 155–166.

[27] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. {SEAL}: Attack Mitigation for Encrypted Databases via
Adjustable Leakage. In 29th {USENIX} Security Symposium ({USENIX} Security
20).

[28] Irit Dinur and Kobbi Nissim. 2003. Revealing information while preserving
privacy. PODS.

[29] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[30] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. 2010. Dif-
ferential privacy under continual observation. In Proceedings of the forty-second
ACM symposium on Theory of computing. 715–724.

[31] Saba Eskandarian and Matei Zaharia. 2017. Oblidb: Oblivious query processing
using hardware enclaves. arXiv preprint arXiv:1710.00458 (2017).

[32] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In
Proceedings of the forty-first annual ACM symposium on Theory of computing.
169–178.

[33] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. 2018. New constructions for forward and backward private sym-
metric searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1038–1055.

[34] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[35] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.
2018. Pump up the volume: Practical database reconstruction from volume
leakage on range queries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 315–331.

[36] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.
2019. Learning to reconstruct: Statistical learning theory and encrypted database
attacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1067–1083.

[37] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted databases:
New volume attacks against range queries. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 361–378.

[38] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2009. Boosting
the accuracy of differentially-private histograms through consistency. arXiv
preprint arXiv:0904.0942 (2009).

[39] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
pattern disclosure on searchable encryption: ramification, attack and mitigation..
In Ndss, Vol. 20. Citeseer, 12.

[40] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2014. Inference
attack against encrypted range queries on outsourced databases. In Proceedings
of the 4th ACM conference on Data and application security and privacy. 235–246.

[41] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic
searchable symmetric encryption. In Proceedings of the 2012 ACM conference on
Computer and communications security. 965–976.

[42] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. 2016. Generic
attacks on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1329–1340.

[43] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2017. Ac-
cessing data while preserving privacy. arXiv preprint arXiv:1706.01552 (2017).

[44] Georgios Kellaris, Stavros Papadopoulos, Xiaokui Xiao, and Dimitris Papadias.
2014. Differentially private event sequences over infinite streams. Proceedings of
the VLDB Endowment 7, 12 (2014), 1155–1166.

[45] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2020. The state of the uniform: Attacks on encrypted databases beyond the
uniform query distribution. In 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 1223–1240.

[46] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-
jjhala, Michael Hay, and Gerome Miklau. 2019. Privatesql: a differentially private
sql query engine. Proceedings of the VLDB Endowment 12, 11 (2019), 1371–1384.

[47] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved
reconstruction attacks on encrypted data using range query leakage. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 297–314.

[48] Mathias Lécuyer, Riley Spahn, Kiran Vodrahalli, Roxana Geambasu, and Daniel
Hsu. 2019. Privacy Accounting and Quality Control in the Sage Differentially
Private ML Platform. In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for
Computing Machinery, New York, NY, USA, 181–195. https://doi.org/10.1145/
3341301.3359639

[49] Jaewoo Lee, Yue Wang, and Daniel Kifer. 2015. Maximum likelihood postpro-
cessing for differential privacy under consistency constraints. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 635–644.

[50] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Ras-
togi. 2015. The matrix mechanism: optimizing linear counting queries under
differential privacy. VLDB.

[51] Haoran Li, Li Xiong, Xiaoqian Jiang, and Jinfei Liu. 2015. Differentially private
histogram publication for dynamic datasets: an adaptive sampling approach.

2017

https://www.usenix.org/conference/osdi18/presentation/crooks
https://www.usenix.org/conference/osdi18/presentation/crooks
https://doi.org/10.1145/3341301.3359639
https://doi.org/10.1145/3341301.3359639

In Proceedings of the 24th ACM international on conference on information and
knowledge management. 1001–1010.

[52] Yanbin Lu. 2012. Privacy-preserving Logarithmic-time Search on Encrypted
Data in Cloud.. In NDSS.

[53] Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon, Roxana Geambasu, and
Mathias Lécuyer. 2021. Privacy Budget Scheduling. In 15th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 21). 55–74.

[54] Sahar Mazloom and S Dov Gordon. 2018. Secure computation with differentially
private access patterns. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 490–507.

[55] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.
2018. Optimizing error of high-dimensional statistical queries under differential
privacy. VLDB.

[56] Ryan McKenna, Gerome Miklau, and Daniel Sheldon. 2021. Winning the NIST
Contest: A scalable and general approach to differentially private synthetic data.
arXiv preprint arXiv:2108.04978 (2021).

[57] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. 2019. Graphical-model
based estimation and inference for differential privacy. In International Conference
on Machine Learning. PMLR, 4435–4444.

[58] Muhammad Naveed, Seny Kamara, and Charles VWright. 2015. Inference attacks
on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 644–655.

[59] Muhammad Naveed, Manoj Prabhakaran, and Carl A Gunter. 2014. Dynamic
searchable encryption via blind storage. In 2014 IEEE Symposium on Security and
Privacy. IEEE, 639–654.

[60] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,
and Elaine Shi. 2015. Graphsc: Parallel secure computation made easy. In 2015
IEEE Symposium on Security and Privacy. IEEE, 377–394.

[61] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating
leakage in secure cloud-hosted data structures: Volume-hiding for multi-maps
via hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 79–93.

[62] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. Enclavedb: A secure
database using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
264–278.

[63] WahbehQardaji,Weining Yang, andNinghui Li. 2013. Understanding hierarchical
methods for differentially private histograms. Proceedings of the VLDB Endowment
6, 14 (2013), 1954–1965.

[64] Paul Grubbs Tom Ristenpart and Vitaly Shmatikov. [n.d.]. Why Your Encrypted
Database Is Not Secure. ([n. d.]).

[65] Bharath Kumar Samanthula, Wei Jiang, and Elisa Bertino. 2014. Privacy-
preserving complex query evaluation over semantically secure encrypted data.
In European Symposium on Research in Computer Security. Springer, 400–418.

[66] Zhiwei Shang, Simon Oya, Andreas Peter, and Florian Kerschbaum. 2021. Ob-
fuscated Access and Search Patterns in Searchable Encryption. arXiv preprint
arXiv:2102.09651 (2021).

[67] Emily Shen, Elaine Shi, and Brent Waters. 2009. Predicate privacy in encryption
systems. In Theory of Cryptography Conference. Springer, 457–473.

[68] Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Per-
rig. 2007. Multi-dimensional range query over encrypted data. In 2007 IEEE
Symposium on Security and Privacy (SP’07). IEEE, 350–364.

[69] Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: an
extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[70] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-
namic Searchable Encryption with Small Leakage.. In NDSS, Vol. 71. 72–75.

[71] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. 2021. CRYPTGPU:
Fast Privacy-Preserving Machine Learning on the GPU. arXiv preprint
arXiv:2104.10949 (2021).

[72] Yuchao Tao, RyanMcKenna, Michael Hay, AshwinMachanavajjhala, and Gerome
Miklau. 2021. Benchmarking differentially private synthetic data generation
algorithms. arXiv preprint arXiv:2112.09238 (2021).

[73] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
Stealthdb: a scalable encrypted database with full SQL query support. Proceedings
on Privacy Enhancing Technologies 2019, 3 (2019), 370–388.

[74] SameerWagh, Paul Cuff, and PrateekMittal. 2018. Differentially private oblivious
ram. Proceedings on Privacy Enhancing Technologies 2018, 4 (2018), 64–84.

[75] Chenghong Wang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala.
2021. DP-Sync: Hiding Update Patterns in Secure OutsourcedDatabases with
Differential Privacy. arXiv preprint arXiv:2103.15942 (2021).

[76] Chenghong Wang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala.
2022. IncShrink: architecting efficient outsourced databases using incremental
mpc and differential privacy. SIGMOD.

[77] XingchenWang and Yunlei Zhao. 2018. Order-revealing encryption: file-injection
attack and forward security. In European Symposium on Research in Computer
Security. Springer, 101–121.

[78] Min Xu, Antonis Papadimitriou, Andreas Haeberlen, and Ariel Feldman. 2019.
Hermetic: Privacy-preserving distributed analytics without (most) side channels.
External Links: Link Cited by (2019).

[79] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and
Xiaokui Xiao. 2017. Privbayes: Private data release via bayesian networks. ACM
Transactions on Database Systems (TODS) 42, 4 (2017), 1–41.

[80] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All your
queries are belong to us: The power of file-injection attacks on searchable encryp-
tion. In 25th {USENIX} Security Symposium ({USENIX} Security 16). 707–720.

2018

	Abstract
	1 Introduction
	2 Overview
	2.1 Key Ideas
	2.2 Components
	2.3 Workflow

	3 Background
	3.1 Notations
	3.2 Preliminaries

	4 Privacy Model
	5 Protocol Design
	5.1 Longshot Protocol Overview
	5.2 Protocol to Update Synopsis
	5.3 Protocol to Update Index and Store
	5.4 QueryProcessing Protocol
	5.5 Error and Efficiency Analysis

	6 Experimental Evaluation
	6.1 Methodology
	6.2 Baseline Algorithms
	6.3 End-to-End comparison
	6.4 Performance Gain from Optimization
	6.5 Performance and Errors as a Function of

	7 Extensions
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

