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ABSTRACT
Indexes can improve query-processing performance by avoiding
full table scans. Although traditional indexes (e.g., B+-tree) have
been widely used, learned indexes are proposed to adopt machine
learning models to reduce the query latency and index size. How-
ever, existing learned indexes are (1) not thoroughly evaluated
under the same experimental framework and are (2) not compre-
hensively compared with different settings (e.g., key lookup, key
insert, concurrent operations, bulk loading). Moreover, it is hard
to select appropriate learned indexes for practitioners in different
settings. To address those problems, this paper detailedly reviews
existing learned indexes and discusses the design choices of key
components in learned indexes, including key lookup (position
inference which predicts the position of a key, and position refine-
ment which re-searches the position if the predicted position is
incorrect), key insert, concurrency, and bulk loading. Moreover, we
provide a testbed to facilitate the design and test of new learned in-
dexes for researchers. We compare state-of-the-art learned indexes
in the same experimental framework, and provide findings to select
suitable learned indexes under various practical scenarios.
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1 INTRODUCTION
Indexes are vital to improve query performance by avoiding full
table scans. Traditional indexes (e.g., B+tree) build additional data
structures to guide key search. However, additional indexes not only
take additional space but also are inefficient due to pointer chasing
and cache miss. To address those problems, learned indexes are
proposed recently (e.g., one-dimensional index [1, 7, 9–13, 16–18,
24, 27–29, 38, 40, 41, 43, 46, 47, 49, 50, 53, 58, 59], multi-dimensional
index [6, 8, 25, 34, 36, 54], Bloom filter [5, 26, 33, 37, 44]), which
adopt machine learning models to replace the additional structures
[19, 42, 45, 51, 56, 57] such that the models can not only reduce the
index size but also improve the key lookup efficiency [23, 30, 48, 60].

Given a sorted list of key-position pairs, a learned index aims to
use machine learning models to predict the position of a query key.
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Figure 1: A General Learned Index Structure. Dotted rectan-
gles denote some indexes have no keys in internal nodes.

Five important factors should be considered in designing a learned
index (as shown in Figure 1).
(1) Key Lookup. It aims to identify the query key position effi-
ciently. It includes position prediction and position search. The
former adopts a machine learning model to predict the key position.
If the prediction is correct, it can easily identify the key; otherwise
it calls the latter step to re-search the key position based on the
predicted position. There are different choices on model design for
position prediction and position search algorithms. For model de-
sign, existing learned indexes mainly adopt a hierarchy of multiple
models where each internal model predicts the position of a key in
its child models and each leaf model predicts the real key position.
For position search, there are various search methods (e.g., linear
and binary searches), which are suitable for different scenarios (e.g.,
linear search works well for small ranges and small prediction er-
rors, while binary search performs better for large ranges). Thus
it is vital to select proper position search methods based on the
prediction errors of machine learning models in learned indexes.
(2) Key Insert. Inserting a new key may change the index structure
(e.g., node split) and lead to model retraining (for changes of key
positions). Mutable learned indexes are proposed to address these
problems in two ways. (𝑖) In-place insert learned indexes reserve
some gaps in the index in order to postpone index structure change
and model retraining. (𝑖𝑖) Delta-buffer insert indexes use the pair-
level/node-level/index-level buffer to allow key inserts.
(3) Key Delete.Deleting a key may change the index structure (e.g.,
node merge) and may also lead to model retraining. Key deletes
can be handled similarly as key inserts.
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(4) Concurrency. To support concurrent operations, learned in-
dexes use different granularities of buffers to improve the through-
put. On one hand, to enable intra-node concurrent queries, learned
indexes maintain a buffer for each key in the node, and the up-
dates across different keys can be concurrent. On the other hand, to
enable concurrent queries across different nodes, learned indexes
maintain a temporary buffer for each node and use the buffer to
(1) support concurrent operations during nodes split/merge and (2)
merge the buffer with the new node after the nodes splits/merge.
(5) Bulk Loading. It builds the learned index for a batch of key-
position pairs. There are two types of methods. (𝑖) Top-down meth-
ods initialize the root, split its pairs to child nodes, and process the
pairs in the child nodes recursively. (𝑖𝑖) Bottom-up methods split
the pairs to leaf nodes, extract the minimal or maximal keys from
each node, and recursively process the extracted pairs. To decide
how to split the pairs, there are many algorithms that consider the
split overhead to effectively build the tree structure.

1.1 Our Motivation
(1) Existing Learned Indexes Are Not Evaluated Under The
Same Evaluation Framework. Although there are dozens of
learned indexes, there is a lack of a comprehensive evaluation
framework to thoroughly compare them.
(2) There Is No Guideline To Help Practitioners Select Suit-
able Learned Indexes. There are multiple factors that affect the
learned indexes, and it is rather hard for practitioners to select a
suitable learned index in different scenarios.
(3) There Is No Testbed To Design New Learned Indexes. De-
signing a new learned index should implement multiple compo-
nents and if there is no testbed, the researchers/practitioners have
to re-design all the components which are tedious and needless.

1.2 Our Contribution
Some existing works have evaluated a subset of above index fac-
tors [2, 30, 48]. First, SOSD [30] evaluated immutable learned in-
dexes, but did not compare the mutable learned indexes. Besides,
although SOSD [30] and the workshop paper [2] evaluated learned
indexes with micro-architectural metrics (e.g., cache misses), SOSD
(𝑖) did not cover some important metrics (e.g., instruction fetching,
instruction encoding) and (𝑖𝑖) did not evaluate the execution time
ratios of these metrics, which are vital to analyze the effects to
index performance. And the evaluation in [2] only supported one
learned index (ALEX) and did not evaluate other important learned
indexes. Second, GRE [48] evaluated the mutable learned indexes,
particularly in concurrency scenarios. However, GRE neither thor-
oughly summarized above index factors of learned indexes, nor
conducted fine-grained evaluations of these factors. Different from
those works, our main contributions are as follows:
(1) A Comprehensive Evaluation. We have constructed an eval-
uation framework and compared state-of-the-art learned indexes
and traditional indexes on various datasets and workloads.
(2) An Extensive Set of Findings.We have extensively compared
existing learned indexes from various aspects. We also summarize
the evaluation results so as to guide practitioners to select proper
indexes under various practical scenarios.

(𝑖) Some learned indexes can outperform traditional indexes
for simple data distributions (e.g., relatively smooth CDF without
abrupt shifts) and read-heavy scenarios, for which they utilize ma-
chine learning models to quickly locate the key positions. However,
existing learned indexes have no advantages for complicated data
distributions (because the machine learning models cannot fit well)
and write-heavy workloads (because tree structures should be up-
dated and the models should be retrained).

(𝑖𝑖) Learned indexes have no significant advantage against tra-
ditional indexes for range queries, where most of the time is spent
in scanning the sorted pairs in leaf nodes.

(𝑖𝑖𝑖) Learned indexes have no advantage on string keys, because
it is rather hard to model and predict complicated string keys.

(𝑖𝑣) Learned indexes have no advantage on bulk loading, which
need to iterate many times per node to determine the structure.

(𝑣) Non-linear models often achieve higher prediction accuracy
than linear models, with which learned indexes can reduce position
searches and gain lower lookup latency. However, non-linear mod-
els take more training overhead and slow down the write operations
during structural modifications.

(𝑣𝑖) Indexes often use additional structures (e.g., ART adopts
hash tables in some nodes) to reduce insert/lookup latency, and
thus involve large index sizes. However, learned indexes like XIn-
dex and FINEdex gain both large index size and high insert/lookup
latency, because they use extra space (e.g., pair-level buffers) to sup-
port concurrent operations, which may slow down insert/lookup
operations as the search involves both the index and buffers.

(𝑣𝑖𝑖) The micro-architectural metrics like retiring (instruction
count), bad speculation (branch-instruction misprediction), fron-
tend bound (instruction fetching/encoding) and DRAM bound
(cache miss) can reveal the read/write performances of learned
indexes (e.g., reducing branch-instruction misprediction by search-
ing only at the leaf nodes).

(𝑖𝑥) Learned indexes cannot outperform traditional indexes for
concurrent lookups/writes, which need to (𝑖) search both the index
and delta buffers and (𝑖𝑖) retrain models during structural modifi-
cation. However, learned indexes and traditional indexes achieve
similar concurrency performance for range queries, which could
incur thread collisions and are hard to optimize. For non-concurrent
scenarios, DPGM has better performance for write-only workloads;
LIPP is a better choice for workloads without range queries; ALEX
has better performance for hybrid insert/lookup/range workloads.
(3) A Unified Testbed. We provide a testbed with many reusable
components (e.g., workload generation, hyper-parameter tuning,
performance evaluation), which can facilitate researchers to design
and test new learned index structures with lower overhead on
design, evaluation and implementation.

2 LEARNED INDEXES
In this section, we first give the definition of learned indexes. Next
we describe the key factors in designing a learned index (Table 1).
Note we focus on one-dimensional in-memory learned indexes [1,
7, 9, 11–13, 16, 18, 24, 40, 41, 43, 46, 47, 49, 50, 53, 58].

2.1 Learned Indexes
A learned index usually adopts a hierarchical structure, where all
the original data (key-position pairs) are maintained in leaf nodes.
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Table 1: Technical differences of evaluated indexes. The thick line separates immutable (top) and mutable indexes (down).

Le
ar
ne
d

Index Insert Lookup Concurrency Bulk LoadingInsert Strategy Structural Modification Data Fitting Model Position Search
RMI [18] No No Simple neural network At leaf nodes No Top-down

PLEX [41] No No Non-linear model [4]
Linear interpolation At all nodes No Greedy split

Bottom-up

PGM [11] No No Linear model At all nodes No Greedy split
Bottom-up

DPGM
(Dynamic PGM [11]) Delta-buffer Buffer merge [35] Linear model At all nodes No Greedy split

Bottom-up

XIndex [43] Delta-buffer Buffer merge
Error-based node split

RMI
Piecewise linear regression At all nodes Temporary buffer Even split

Bottom-up

FINEdex [24] Delta-buffer Fullness-based
buffer train&merge Piecewise linear regression At all nodes Pair-level buffer

Buffer train&merge
Greedy split
Bottom-up

SIndex [46] Delta-buffer Buffer merge (Piecewise) linear regression At all nodes Temporary buffer Greedy split
Bottom-up

ALEX [7] In-place Fullness&cost based
node expand/split/rebuild Linear model At leaf nodes No Cost-based split

Top-down

MAB+tree [1] In-place Fullness-based node split Linear interpolation At all nodes No Greedy split
Bottom-up

LIPP [49] In-place Conflict&fullness based
subtree rebuild Non-linear model No No Conflict-based split

Top-down

Tr
ad
iti
on

al FAST [14] No No No At all nodes No Bottom-up

ART [20] In-place Fullness&prefix based
node expand/split No At most nodes No Top-down

B+tree [3] In-place Fullness-based node split No At all nodes No Bottom-up
Wormhole [52] In-place Fullness-based node split No At all nodes RCU [32] hash table Bottom-up

Each node in the hierarchy contains a machine learning model that
predicts the position of a key. Note, for simplicity, we assume there
is no duplicated key in the original data and will explain how to
solve the issue in Section 2.2.2.

Definition 2.1 (Learned Index). Let 𝐷 = {(𝑘0, 𝑝0), (𝑘1, 𝑝1), · · · }
be a sorted list of key-position pairs, where 𝑘𝑖 denotes a key and 𝑝𝑖
is the position value of 𝑘𝑖 . Let 𝐾 denote the set of keys and 𝑃 denote
the set of positions in 𝐷 . Let 𝐻 : 𝐾 → 𝑃 denote a mapping from 𝐾

to 𝑃 , where for a key 𝑘 , 𝐻 (𝑘) is the first position in 𝐷 whose key
is not smaller than 𝑘 . A learned index 𝐼 adopts a machine learning
model 𝐹 to fit the mapping 𝐻 , and uses position search to correct
the fitting error |𝐹 (𝑘) − 𝐻 (𝑘) |.

Similar to traditional indexes, the learned index 𝐼 also requires
to resolve the following key factors:

(1) lookup (𝑘): It uses the learned model 𝑓 to identify the position
of 𝑘 . For each internal node from the root, it uses the model 𝑓 to
predict the child node 𝑘 belongs to. For the leaf node, it uses the
model 𝑓 to predict the key position. Note that if the predicted
position is incorrect, it needs to re-search the position, e.g., using
the binary search algorithms as the keys are sorted (see Section 2.2).

(2) range (𝑘𝑙𝑒 𝑓 𝑡 , 𝑘𝑟𝑖𝑔ℎ𝑡 ): It first obtains the position of 𝑘𝑙𝑒 𝑓 𝑡 via
𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘𝑙𝑒 𝑓 𝑡 ). Note if 𝑘𝑙𝑒 𝑓 𝑡 is not within 𝐷 , it finds the first po-
sition whose key is larger than 𝑘𝑙𝑒 𝑓 𝑡 . From the found position, it
sequentially scans the leaf nodes until the key of the scanned pair
is larger than 𝑘𝑟𝑖𝑔ℎ𝑡 .

(3) insert (𝑘𝑖 , 𝑝𝑖 ) : It first obtains the leaf node that 𝑘𝑖 belongs to.
Then it inserts the key-position pair into the node. If the node is full,
it needs to split the node and retrains the model (see Section 2.3).

(4) delete (𝑘𝑖 , 𝑝𝑖 ) : It first obtains the position of 𝑘𝑖 via 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘𝑖 ).
Then if (𝑘𝑖 , 𝑝𝑖 ) exists, it removes (𝑘𝑖 , 𝑝𝑖 ) from 𝐷 . Note that it may
need to merge the nodes and retrain the model (see Section 2.4).

(5) concurrency: The concurrent operations on the index (e.g.,
insert, delete) may have conflicts, and it aims to process them in
parallel while keeping transaction correctness (see Section 2.5).

(6) bulk loading: It builds the index for a batch of key-position
pairs by utilizing the key distributions in the batch (see Section 2.6).

2.2 Lookup Design
Most of learned indexes use a hierarchical structure, where each
node adopts a machine learning model to fit the key-to-position
mapping (data fitting model). As shown in Figure 2 (a), in the lookup
phase, the model of a leaf node predicts the position of the query
key and the model of an internal node predicts its child node that
contains the query key. Note that the complexity of the prediction
is 𝑂 (1), which is better than binary search in a node. Next, if there
exists an error in the predicted position, position search is used to
re-search the key position.
2.2.1 Data FittingModel. It aims to fit the key-to-positionmapping.
Existing models can be broadly categorized into linear models [1,
7, 11, 24, 41, 43, 46] and non-linear models [18, 41, 43, 49]. The
former is lightweight and most widely adopted, while the latter
aims to achieve high prediction accuracy for a large node with
many key-position pairs (which can reduce the index height).

(1) Linear Model. Most learned indexes adopt a linear model in
each node, assuming linear relations between the keys and positions
for leaf nodes (children IDs for internal nodes). There are two main
types of linear models, i.e., the linear interpolation model and linear
regression model. The linear interpolation model [1, 7, 41] extracts
several pairs (e.g., the two endpoint pairs in a node and one median
pair in MAB+tree [1]) and computes a piecewise linear model (e.g.,
a linear equation for every two adjacent pairs). The linear regression
model [7, 24, 46] computes the minimal sum of squared differences
of all the pairs in the node by adjusting the slope and intercept
parameters (e.g., 𝑦 = 0.5𝑥 − 0.5 for leaf node in Figure 2 (a)).

(2) Non-linear Model. There are two types of non-linear models,
polynomial fitting models and neural network models. The former
extends the linear regression model to polynomial models [49].
LIPP [49] extends the linear function as 𝐹 (𝑥) = 𝑘 ·𝐺 (𝑥) + 𝑏, where
𝑘 is the slope, 𝑏 is the intercept and 𝐺 (𝑥) is any monotonically in-
creasing function that helps to learn more complex key-to-position
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mappings. The latter adopts neural-network models as the data
fitting models, e.g., RMI [18], which are trained by gradient descent
to minimize the prediction error.

(3) Hybrid Model. Some works adopt both linear and non-linear
models in the learned indexes. For example, XIndex [43] adopts a
two-layer hierarchical structure, where the first-layer uses an RMI
model (as the first layer contains many pairs) and the second-layer
nodes use piecewise linear models.
Linear vs Non-linear. First, non-linear models often achieve better
prediction accuracy than linear models. However, the training and
prediction of non-linear models often take more time. Second, non-
linear models can support a larger number of keys than linear
models, and thus each node can contain more keys and the tree
depth can be smaller.
2.2.2 Position Search. Given a key, suppose its correct position is
𝑝 . If a model predicts an incorrect position 𝑝′, we need to re-search
the true position 𝑝 based on 𝑝′. There are three cases. (𝑖) All model
predictions are correct and it does not need to conduct re-search
(e.g., LIPP [49]). (𝑖𝑖) The predictions of internal nodes are correct
and the prediction of leaf nodes may be incorrect. Thus it only
searches leaf nodes (e.g., RMI [18], ALEX [7]). (𝑖𝑖𝑖) The prediction
of both leaf nodes and internal nodes may be incorrect. It needs to
search both internal nodes and leaf nodes [1, 11, 24, 24, 41, 43, 46].
Position SearchMethods. There are two steps in a position search.
First, it needs to determine the search range. Given the sorted key-
position pairs 𝐷 [0 : 𝑁 ] and query key 𝑘 , if the key of the predicted
pair 𝐷 [𝑝′] is larger than 𝑘 , the search range is 𝐷 [0 : 𝑝′]; otherwise,
the search range is 𝐷 [𝑝′ + 1 : 𝑁 ], where 𝑁 is the number of pairs
in 𝐷 . Second, with the search range, its chooses proper search
approaches. There are two types of methods. (𝑖) Linear Search.
If the error is relatively small, a linear search can perform well,
since it can sequentially scan the pairs from the predicted position
and quickly find the accurate position. (𝑖𝑖) Binary Search. If the
error is large, it can use a binary search to find the key. Moreover,
other variants of binary search, e.g., exponential search (searching
positions of 1, 2, 4, · · · ) and interpolation search (computing the
probe position using interpolation on the two endpoints), are used
to accelerate the binary search for some specific key distributions
(e.g., interpolation search is better for uniform key distribution).

2.2.3 Supporting RangeQuery. Given a range query [𝑘𝑙𝑒 𝑓 𝑡 , 𝑘𝑟𝑖𝑔ℎ𝑡 ],
it first identifies the first key that is not smaller than 𝑘𝑙𝑒 𝑓 𝑡 , and then
scans the sorted pairs until reaching the key larger than 𝑘𝑟𝑖𝑔ℎ𝑡 .

2.2.4 Supporting Duplicated Key. The difference between dupli-
cated key and distinct key is that there may be multiple positions for
a duplicated key. As a model predicts one position for each key, it re-
quires to re-search positions even if the predicted position is correct,
as it requires to find other positions for the key [1, 7, 11, 18, 41].

2.3 Insert Design
Given an insert pair (𝑘, 𝑝), the learned index first finds the position
of 𝑘 , and then inserts the pair into the corresponding leaf node. If
the number of pairs in the leaf node exceeds a threshold or the data
fitting model is of low quality, the index has to perform structural
modifications (e.g., splitting the node into two nodes and retrain
the models) to keep high performance. Besides, since the structural

modifications often take long time, learned indexes develop effective
insert strategies to reduce the possibility of structural modification
and model retraining.
2.3.1 Insert Strategies. There are two insert strategies. (𝑖) The
delta-buffer insert strategy keeps delta buffers, inserts a new pair
into the buffers and periodically merges them into the existing index
structure (Figure 2 (b)). (𝑖𝑖) The in-place insert strategy preserves
some gaps in the leaf nodes and the new pairs can be directly
inserted into the gaps (Figure 2 (c)).

(1) Delta-buffer Insert Strategy. There are three buffering granu-
larities, including index-level, node-level, and pair-level. First, the
index-level method (e.g., DPGM [11]) shares one buffer for all the
insert operations. Second, the node-level method (e.g., XIndex [43],
SIndex [46]) maintains a delta buffer for each leaf node to cache
the inserted pairs. Third, the pair-level method (e.g., FINEdex [24])
has finer-grained delta buffers, and allocates a buffer for each key
in the leaf node. Compared with node-level buffer, pair-level buffer
achieves higher concurrency performance, but may incur extra
storage overhead.

(2) In-place Insert Strategy. To accommodate an insert, we can
reserve some gaps for each node (e.g., inserting one key occupies
two positions). For each insert, if there exists a gap in the target
position, the pair can be directly inserted; otherwise, there are two
strategies to resolve the conflict. First, ALEX [7] shifts the pairs
between the target position and the closest gap to make space for
the new pair. (Note that if the insert cost is too large, it may trigger
structural modification). Second, LIPP [49] creates a new node with
both the inserted pair and the existing pair in the target position,
and replaces the target position with a pointer to the new node.
2.3.2 Structural Modification. If a node cannot accommodate the
inserted pairs, it needs to update the index structure (e.g., splitting
the node). There are four cases to trigger the update. (𝑖) The fullness-
based method triggers the structural modification if the number of
pairs in the node or buffer exceeds a threshold. (𝑖𝑖) The error-based
method triggers the structural update if the model prediction error
exceeds a threshold. (𝑖𝑖𝑖) The cost-based method uses a cost model
to trigger the structural update, which estimates the cost value of an
index node based on both the lookup costs (position searches) and
insert costs (position searches and pair shifts). It updates the local
structures if the cost of a node exceeds a threshold. (𝑖𝑣) The conflict-
based method records the number of pairs that are mapped to the
same position, and triggers the structural update if the number of
conflict pairs in the subtree rooted at the node exceeds a threshold.

(1) Fullness-based StructuralModification. It can be further divided
into three classes. First, for the delta-buffer insert indexes [11, 24,
43, 46], if the buffer has no space left, they should merge the buffer
with the index node and retrain the model. Second, if the number
of pairs in the node exceeds a threshold, it will split the node. For
instance, MAB+tree [1] splits the target index node into two nodes,
which become the child nodes of the target node’s parent. Third,
if the number of pairs in the subtree rooted at the node exceeds a
threshold, LIPP will adopt the bulk loading algorithm to rebuild the
subtree with all of pairs under this node (see Section 2.6).

(2) Error-based Structural Modification. If the prediction error of
a node exceeds a threshold, XIndex will split the node. The keys in
the node are evenly divided into two child nodes, and each child
node trains a piecewise linear model with linear regression.
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Figure 2: Examples of Lookup and Insert on Learned Indexes. 
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Figure 3: Concurrency in Learned Indexes. 
(3) Cost-based Structural Modification. ALEX proposes a cost 

model to estimate the average latency of lookups/inserts for each 
leaf node. If the cost of a leaf node exceeds a threshold, ALEX 
adopts three strategies to modify the index structure. (i) Expand 
the node. It first doubles the capability of the node, scales the linear 
model (e.g., doubling the slope and the intercept), and maps the 
keys to a wider range of positions. The pairs are re-arranged to 
their predicted positions, and more gaps are preserved among them. 
(ii) Split the node. Given a leaf node, it splits the keys into two 
nodes, trains models for the two nodes, and replaces the leaf node 
with the two nodes, which are rooted at the same parent node. (iii) 
Rebuild the node. It adopts the bulk loading algorithm to rebuild 
the subtree for pairs under the node, and then replaces the original 
node. ALEX selects the best one from the three strategies with the 
lowest cost. 

(4) Conflict-based Structural Modification. Given a node, if two 
pairs are mapped to the same position by the model, the node and all 
its parents record the conflict. If the number of conflicts for a node 
exceeds a threshold, LIPP will adopt the bulk loading algorithm to 
rebuild the subtree of this node. 

Note that each node contains a small number of pairs, thus 
retraining the models of a few nodes is acceptable. 

2.4 Delete Design 
Delete is similar to the insert operation. For delete, the index first 
finds the position and removes it from the node. There are also 
trigger conditions to determine when to modify the structure. For 
example, in Xlndex [43], if there are too few pairs in the buffer and 
too small model prediction error, two consecutive nodes will be 
merged into one node and the corresponding model is retrained. 

2.5 Concurrency Design 
When a thread inserts/deletes a pair, it locks the involved object 
(e.g., key-position pair or node). Other threads requiring to access 
that object are blocked until the lock is released. There are two 
concurrency design granularities. (i) Intra-node concurrency. It 
will not modify the index structure, and the updates across dif-
ferent key-position pairs can be concurrent with their pair-level 
buffers. However, updates on the same pair cannot be concurrent. 
As shown in Figure 2 (b), when FINEdex inserts a pair (key: x=68), 
it first locks and then inserts into the buffer. (ii) Inter-node con-
currency. It needs to modify the index structures. There are two 
strategies. (a) Temporary-Buffer. It locks the node and its node 
buffers when splitting the node into two nodes, e.g., XIndex [ 43]. 
Then it creates two temporary buffers for the two split nodes (Fig-
ure 3 (a)). New pairs from other concurrent threads are inserted 
into the temporary buffers during splitting the node. After the split, 
the temporary buffers become the delta buffers of the new nodes. 
(b) Buffer-Train-Merge. It performs two types of structural modifica-
tions, e.g., FINEdex [24] in Figure 2 (b) and Figure 3 (b). First, when 
a pair-level buffer is full (e.g., with 4 pairs), it trains a sub-node 
(y=0.273x-15.68) with the buffered pairs. During this procedure, up-
dates across other pair-level buffers can be concurrent. Second, 
when a buffer of a sub-node is full, it merges the sub-nodes with the 
node to reduce the height. It locks the node's model, and retrains 
a new model with the pairs in the node and sub-nodes. During 
retraining, updates across the buffers of the node and sub-nodes 
can be concurrent. After retraining, the pair-level buffers of the 
original node and sub-nodes become buffers of the new node. 

2.6 Bulk Loading Design 
Bulk loading aims to construct the learned index structure for a 
batch of key-position pairs, which can utilize the data distribution 
to effectively build the index. Most of learned indexes adopt a tree 
structure and there are two bulk-loading strategies. 
Top-down Bulk Loading. It first takes all the pairs as the root 
node. It then decides whether to split the pairs to generate multiple 
child nodes. If it decides not to split, this node will be a leaf node 
and it trains a model to predict the key-to-position mapping in this 
leaf node; otherwise, it trains a key-to-child model in this internal 
node, and splits the pairs to multiple child nodes in accordance with 
the model prediction. Next it recursively processes the child nodes. 
There are two challenges in this framework. The first is whether to 
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Figure 4: The Evaluation Testbed. 

split a node. The second is to decide the number of split child nodes 
and how to split the pairs into different child nodes (discuss later). 
Bottom-up Bulle Loading. It first splits the pairs into different 
leaf nodes and trains a model to predict the positions for each key 
in each leaf node. Then it extracts the minimal or maximal keys in 
each leaf node and generates a subset of pairs with those selected 
keys. Next it decides whether to further split the subset of those 
selected pairs. If it decides not to split, it constructs a root node with 
those pairs and trains a key-to-child model for that node, which 
predicts the child that a key belongs to; otherwise, it splits these 
pairs to different nodes, trains a key-to-child model for each split 
node, and extracts the minimal or maximal keys for each split node. 
Next it iteratively evaluates those selected keys and builds the tree 
structure. This method also needs to address the above challenges. 
Decide Whether To Split A Node. There are several strategies 
to decide whether to split a node. The first is to manually decide. 
For example, the learned indexes decide the number of levels. Then 
the nodes except the last level will be split. The second is to use 
some conditions (e.g., prediction accuracy) to decide. For instance, it 
evaluates the prediction accuracy of this node. If the prediction error 
is larger than a threshold, then it splits the nodes; not otherwise. 
Decide The Number of Split Nodes And How To Assign Pairs 
Into Split Nodes. There are several strategies to split the sorted 
pairs into multiple nodes. 

(1) Greedy Split [1, 11, 24, 41, 46]. It initializes a node with the 
first pair. Then it incrementally checks whether to add the next pair 
into that node. Assume it adds that pair into the node and trains 
a model for the pairs in that node. If the prediction error of the 
trained model for the pairs in that node exceeds a threshold [11, 41], 
it will not add that pair into that node and takes it as the next node; 
otherwise it adds that pair into that node. However it is expensive 
to add the pairs one by one, and thus some methods [24, 46] add 
the pairs in a batch (e.g., adding lK pairs each time) and train a 
model until the prediction error is larger than a threshold. Then 
they remove some pairs backward until the prediction error is not 
larger than a threshold. 

(2) Even Split [43]. It first sets a number r of split nodes, e.g., 2, 
and then it evenly splits the pairs into r sub-nodes and trains the 
models. If the prediction error of any sub-node exceeds a threshold, 
it increases the number (e.g., to 2r) and repeats the above steps; 
otherwise it terminates the split. 

(3) Cost-based Split [7]. It first trains a model with the pairs. 
Then it exponentially splits the pairs to different numbers (e.g., 
2, 4, 8, · · · ), and the key range of the pairs is evenly split to the 
child nodes. It adopts a cost model to estimate the average latency 
of lookups/inserts for the index, and selects the best split number. 
Then it adopts an auxiliary full binary tree, and maps each leaf node 
to a split node. Next it wants to merge some nodes in a bottom-up 

manner in order to get a concise structure. If the cost becomes 
smaller by merging two siblings, it merges them; otherwise, it skips 
them. It repeats the process until no siblings can be merged. 

( 4) Conflict-based Split [49]. It first trains a model with the pairs. 
For the pairs, if more than two pairs are mapped to a position, they 
will be assigned to a child node and the pointer to the child node 
will be stored in that position; otherwise, the pair is mapped to a 
distinct position, and will be directly stored in that position. 
Bottom-up vs Top-down. The bottom-up methods have predic-
tion errors in internal nodes, while top-down methods do not. Be-
cause for the internal node, the bottom-up method extracts the 
minimal or maximal key from the child node and trains a key-to-
child model in it. The model may not fit the mapping perfectly and 
have prediction errors. On the other hand, the top-down method 
first trains a key-to-child model with the pairs in the internal node, 
and splits the pairs to multiple child nodes in accordance with 
model prediction (i.e., the key must belong to its predicted child 
node). Thus the top-down method may have no prediction error. 

Note that the top-down method adopts the monotonic model 
in the internal node [7, 49]. If the internal node adopts the non-
monotonic model for the sorted list of keys, the mapped children IDs 
of them may not keep sorted. Then two problems arise. (i) Distant 
keys in the sorted list are mapped to the same node. It is difficult to 
train a model to fit those distant keys, which may produce larger 
prediction error. (ii) The prediction for a non-existing key can be 
far from the position of its closest existing key, which causes extra 
position search overhead. 
Other Methods. RMI [18] uses a non-tree structure (two layers) 
for bulk loading. It first takes all pairs as the root, and the number 
ofleaf nodes is a hyper-parameter. For the root node, it first builds a 
model to predict the position of each key, and it can obtain the cor-
responding leaf node based on the position and the number of leaf 
nodes. For example, suppose the predicted position p' , the number 
of pairs N and the number ofleaf nodes M, the corresponding leaf 
node of this key position will be the i-th node, where i = L MJ' J. 
RMI then splits the root into the leaf nodes using the model predic-
tions. Next it trains a model by stochastic gradient descent for each 
leaf node that predicts the position of each key in the leaf node. 

3 A TESTBED FOR LEARNED INDEXES 
We design a testbed that can be used for (1) practitioners to select 
a learned index for their applications and (2) researchers to design 
new learned indexes with less development overhead. 

3.1 Testbed Architecture 
Figure 4 shows the architecture of our testbed, which is composed 
of three main reusable modules, i.e., workload generator, hyper-
parameter tuner, and index evaluator. 
Workload Generator. It generates different workloads for static/-
dynamic/concurrency scenarios (see Section 3.2). 
Hyper-Parameter Tuner. It explores the most suitable hyper-
parameter settings for each learned index to ensure fair evaluation. 
First, we support five main search methods, i.e., linear search, SIMD 
accelerated linear search, binary search, exponential search, interpo-
lation search. We also provide APis similar to the standard template 
library (STL) API: (i) the lower _bound function returns the first 
location in the list where the key is not smaller than query key kq 
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Figure 5: Lineage of Learned Indexes. 
and (ii) the upper _bound function returns the first location where 
the key is larger than kq. The API is easily compatible with existing 
(and potentially future) indexes. Second, for other hyper-parameters 
(e.g., prediction error threshold), we either utilize existing tuning 
tools (e.g., RMI uses the automated tuning framework CDFShop to 
tune the hyper-parameters [31]) or tune major hyper-parameters 
discussed in their papers to report the best performance. Specif-
ically, we conduct grid search for the hyper-parameters and try 
out all the five search methods. Then, we run sample workloads 
(e.g., 1 million insert/lookup only) with every hyper-parameter 
setting from the grid search, and record the throughput. For the 
workload with the read ratio of r, we can estimate the throughput 

lookup throughput (l ) insert throughput F 
as r max lookup throughput + - r max insert throughput· or any 
workload, we sort the throughput of the hyper-parameter samples 
in a descending order, and select the best hyper-parameter setting 
to run our experiments. 
Index Evaluator. It evaluates the throughput/latency/index size of 
learned indexes by varying different factors, e.g., static or dynamic 
scenarios, concurrent operations, and bulk loading. 
Workflow. To evaluate a learned index, we first prepare the test 
datasets from real scenarios. Then the workload generator generates 
test workloads. Next, the hyper-parameter tuner selects and tunes 
the hyper-parameters of the index. Finally, the index evaluator 
executes the workloads on the index, evaluates the performance 
during workload execution, and provides empirical analysis based 
on the evaluation results. 

3.2 Workload Generator 
To effectively evaluate different index designs, we separately pro-
vide workloads in static scenario (with lookup/range operations), 
dynamic scenario (with lookup/range/insert operations), and con-
currency scenario (with parallel lookup/range/insert operations). 
Static Scenario only involves lookups and range queries. We con-
trol the proportions of existing keys and non-existing keys. Assume 
the keys in the dataset are within [kmin, kmaxL we separately ex-
tract existing and non-existing keys from [kmin, kmax] with uni-
formly random sampling. For non-existing keys, we repeatedly 
sample until the sampled key does not exist. In our experiments, 
the proportions of (non)-existing keys are set 50%. Besides, to gener-
ate the range query of keys in [k1eft, krightL we first uniformly and 
randomly sample k1eft from [kmin, kmax] - Then we choose kright 
to ensure the number of target keys in the range is fewer than 100 
(too many keys will significantly increase the scan overhead). 
Dynamic Scenario. Compared with static scenarios, there are 
inserts in dynamic scenarios. To make our evaluation more prac-
tical, we design three distribution patterns of inserted pairs: (i) 

- PSO = P99 

Figure 6: P50 and P99 lookup latency. The dotted and solid 
lines divide the chart into (i) learned indexes without po-
sition search; (ii) learned indexes that only search at leaf 
nodes; (iii) learned indexes that search at both internal and 
leaf nodes; (iv) traditional indexes (listed from left to right). 
Note some indexes cannot support duplicated keys on Wiki. 
the uniform mode where the keys of inserted pairs are evenly and 
randomly sampled from the dataset; (ii) the delta mode where the 
keys of inserted pairs are larger than those of bulk-loaded pairs, and 
the inserted pairs are sequentially appended by the key values; ( iii) 
the hotspot mode where the keys are evenly and randomly sampled 
from a small part of the dataset D. The sample range divided by the 
range of D is defined as hotspot ratio. The smaller hotspot ratio, the 
more skewed the inserted keys distribute. Furthermore, to better 
test the index factors (e.g., structural modification), we also provide 
a parameter mix. If mix is set false, different types of operations 
are separately executed in batch (e.g., first execute inserts and then 
execute lookups); otherwise, they are mixed together to execute. 
Concurrency Scenario involves concurrent lookups and inserts, 
and its design is similar to that of dynamic scenarios. 

4 EXPERIMENTS 
In this section, we first discuss the experimental setup (see Sec-
tion 4.1), and then evaluate the learned indexes in static scenar-
ios (see Section 4.2), dynamic scenarios (see Section 4.3), hybrid 
lookup/range/insert scenarios (see Section 4.4), concurrency sce-
narios (see Section 4.5), bulk loading (see Section 4.6). Next, we 
evaluate string keys (see Section 4. 7) 1. Finally, we provide guidance 
for learned index selection (see Section 4.8). 

4.1 Experimental Setup 
Datasets. We test the learned indexes on five real datasets with 
different cumulative distribution function (CDF) curves, which can 
well reflect different distributions of keys [15, 22]. Amzn is a collec-
tion of Amazon book IDs with their sale popularity, which includes 
200M non-duplicated integer keys. Face is a collection ofFacebook 
user IDs, which includes 200M non-duplicated integer keys. Wiki 
is a collection of wikipedia article IDs with their edit timestamps, 
which includes 200M pairs, and at most 21,026 duplicated integer 
keys. Osmc is a collection of cell IDs from OpenStreetMap, which in-
cludes 200M non-duplicated integer keys. Since the keys in Osmc are 
the projections of the high dimensional locations, the CDF of Osmc is 
much more complicated than other datasets [15]. Url is a collection 
of URLs from Memetracker, which includes 90M non-duplicated 
string keys. The string keys in Url are of variable lengths (15~128 
bytes). As the keys need to be converted into high-dimensional 
integers, it takes more processing time in learned indexes [ 46]. Note 
that some learned indexes do not support strings, and thus we use it 
to evaluate those supporting strings. 

1 Some supplementary experiments at github.com/curtis-sun/TLI/tree/main/report 
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Figure 7: Model prediction and position search in lookup. 
The horizontal line represents ( i) the average distance be-
tween the start and end positions in searches of B+tree (a); 
(ii) the lookup latency ofB+tree (b). The vertical line divides 
learned indexes by data fitting model, i.e., the left adopt non-
linear/hybrid models, and the right adopt linear models. 
Evaluated Indexes. We evaluate ten learned indexes and four tra-
ditional indexes. First, we explain the techniques of learned indexes 
in Section 2 and the relations of the selected learned indexes are 
shown in Figure 5. Second, we select four representative traditional 
indexes, B+tree, FAST, ART, Wormhole [3, 14, 20, 52]. B+tree [3] is 
a widely used disk-based index. FAST [14] is a variant of binary 
search tree, which is well optimized for the hardware characteris-
tics, e.g., SIMD, cache line. ART [20, 21] is a variant of radix tree, 
which is a well-optimized in-memory index. Wormhole [52] is a hy-
brid structure ofB+tree, radix tree and hash table, which supports 
variable-length keys and optimizes concurrency. 
Performance Metrics. We evaluate latency, throughput, and index 
size. Note that some work only measures the space of internal nodes 
as the index size [18, 30]. However, for secondary indexes, the leaf 
nodes must be included in the index. Thus, in our evaluation, the 
index size includes both internal nodes and leaf nodes. 
Experimental Setting. We conduct all experiments on a Linux 
server with 128GB RAM and two 10-core Intel(R) Xeon(R) CPU 
E5-2630 v4 @ 2.20GHz. 

4.2 Static Scenario Evaluation 
In this section, we evaluate the lookup and range query perfor-
mances in static scenarios, e.g., only point and range queries with-
out inserts and concurrency. 

4.2.1 Lookup Evaluation. We first evaluate the performances for 
point queries. For each dataset, we initialize the indexes with 200M 
keys in total, and evaluate the indexes using 20M lookups as the 
workload, which are generated as described in Section 3.2. 
Lookup Performance. We evaluate the lookup performance from 
P50 and P99 lookup latency, and Figure 6 shows the results. First, 
for each dataset, there is at least one learned index that outperforms 
traditional indexes; but there is no learned index that outperforms 
traditional indexes on all datasets. On F ace/Osmc/ Amzn datasets, 
LIPP performs best because it does not conduct position searches; 
while on Wiki dataset, ALEX performs best because ALEX only 
conducts position searches at leaf nodes (LIPP does not support 
duplicated keys in wiki data). Second, P99 latency is close to P50 
latency, indicating lookups of most keys have similar latency. 
Position Search. From Figure 6, we find the lookup performance 
is affected by the position searches. ( i) Those with no search have 
best lookup performances. (ii) Those that only search at leaf nodes 
achieve middle performances. (iii) Those with searches at both 
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Figure 8: Throughput of range queries. The solid line divides 
the chart into learned indexes (left) and traditional indexes 
(right), for which the dotted lines separately divide into im-
mutable (left) and mutable indexes (right). 

internal and leaf nodes have the worst performances (except for 
concurrent learned indexes Xlndex and FINEdex). Because fewer 
position searches require less overhead in the phase of lookups. 
Data Fitting Model. We evaluate the position search latency and 
the prediction error. As shown in Figure 7, we have two observa-
tions. First, in most cases, the prediction error oflearned indexes is 
smaller than the search distance ofB+tree, which verifies that data 
fitting model can reduce the search distance by properly fitting the 
key-to-position mapping. Second, in terms of model design, we find 
that indexes using non-linear/hybrid models (except XIndex) have 
smaller prediction errors than those using linear models on Face 
dataset, with which learned indexes can reduce position searches 
and gain lower lookup latency. Differently, all indexes (except XIn-
dex) have similar prediction errors on Osmc dataset, for which ALEX 
using linear models can gain similar lookup latency with those us-
ing non-linear models. That is because the key-position distribution 
of Osmc data is the most complicated, and all models cannot fit well. 

Finding 1. For lookup-only scenarios, learned indexes LIPP and 
ALEX perform the best on the four datasets. In terms of position 
search, learned indexes without search and those which only search 
at leaf nodes perform better. For model design, non-linear models 
have lower prediction errors than linear models on simple datasets 
( e.g., relatively smooth CDP without abrupt shifts), and thus achieve 
better lookup performances. 

4.2.2 Range Qµery Evaluation. Figure 8 shows the performances of 
range queries. For each dataset, we initialize the indexes with 200M 
keys in total, and evaluate the indexes using 20M range queries as 
the workload, which are generated as described in Section 3.2. 

We have three observations. First, immutable indexes mostly per-
form better than mutable indexes, because immutable indexes store 
the original list of key-position pairs together outside the index, and 
can directly scan the pair list for range queries. Instead, mutable 
indexes split the original data into different index nodes, which 
limits the scan throughput. Second, among the mutable indexes, 
the traditional index B+tree and learned indexes ALEX, MAB+tree 
perform best on both datasets. Because they all link a sorted list 
among leaf nodes. So during the scan of range query, they can 
scan the pairs along the list and reduce the data access overhead. 
Third, LIPP has the worst range-query throughput. Although LIPP 
achieves best lookup performance, the pairs of LIPP are scattered in 
both the internal and leaf nodes, and LIPP has no linked list among 
them. As a result, during the scan of range query, it takes a long 
time for LIPP to find the target consecutive pairs in different nodes. 
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(a) P50 and P99 insert latency. (b) P50 and P99 lookup latency 
after inserts. 

Figure 9: Insert and lookup latency. The solid line divides 
the indexes into learned (left) and traditional indexes (right). 
The dotted line divides learned indexes in terms of the insert 
strategy: the left is delta-buffer, and the right is in-place. 
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(a) Insert throughput. (b) Lookup throughput ratio of 
after insert to before insert. 

Figure 10: Performance of different insert patterns. The solid 
line divides into learned (left) and traditional (right) indexes. 
The dotted line divides learned indexes by structural modifi-
cation, i.e., fullness-based (left), and others (right}. 

Finding 2. For range queries only, learned indexes do not out-
perform traditional indexes. Indexes that maintain a sorted list 
of key-position pairs can efficiently process range queries while 
others cannot as they cannot sequentially obtain the pairs. 

4.3 Dynamic Scenario Evaluation 
Figure 9 (a) shows the P50 and P99 insert latency, and Figure 9 
(b} shows those of lookup latency after insert. The P50 latency 
represents the insert/lookup performance. In terms of the insert 
strategy, we have two observations. First, in-place insert provides 
better lookup performances than delta-buffer insert. For instance, 
the delta-buffer index DPGM performs worst lookup performances 
on both datasets. Because DPGM adopts the buffer and multiple 
PGMs (similar to LSM-tree [35]}, which require lots of position 
searches during lookups. Second, we also find that DPGM performs 
best insert performances on both datasets, because it adopts one 
shared delta buffer and can directly insert into the buffer. 
Structural Modification Overhead. From Figure 9 (a), we have 
two observations. First, most indexes have similar P99 insert la-
tency, which reflects that they have similar structural modification 
overhead. Second, DPGM has the lowest P99 insert latency. That 
is because DPGM adopts the delta-buffer insert strategy and the 
logarithmic merge method [35], so that most of its structural mod-
ifications only involve a small number of key-position pairs and 
consume low overhead. 
Insert Factor. Figure 12 shows the insert throughput under varying 
insert factor, which is defined as the inserted data size divided by 
the bulk-loaded data size. To fairly compare the results, we ensure 
that the bulk-loaded data and inserted data cover all the original 
data pairs. We observe the learned index DPGM performs best in 
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(b) Trade-off of insert latency 
and normalized index size. 

Figure 11: Trade-off of performance and normalized index 
size (i.e., index size divided by that of B+tree). 
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Figure 12: Insert throughput varying with insert factor (in-
serted data size divided by bulk-loaded data size). 

most cases. However, the traditional index ART performs best on 
Osmc dataset when the insert factor is large. There are two reasons. 
(i) Osmc data has the most complicated data distribution, which 
often causes inaccurate model predictions of learned indexes and 
negatively affects the insert throughput. (ii) For large insert factors, 
learned indexes trigger more structural modifications during inserts, 
which further reduces the insert throughput. 
Insert Pattern. Figure 10 shows throughput under three insert 
patterns, i.e., uniform, delta and hotspot. We evaluate the insert 
throughput in Figure 10 (a). For the uniform pattern, we find that 
DPGM performs best on all datasets. For the delta pattern, we find 
that MAB+tree and B+tree perform best on all datasets. That is 
because in the insert phase, the new key is always larger than all 
keys in the index. For MAB+tree and B+tree, the new key can be 
directly inserted into the end of the last leaf node, which avoids 
the overhead to shift existing keys. When the inserted data follows 
the hotspot pattern, we find that DPGM performs best on Face 
dataset, while the traditional index ART performs best on Osmc. 
There are two reasons. (i) Osmc data has more complicated CDF, 
which reduces the insert throughput oflearned indexes. (ii} Since 
many pairs are inserted into a small region, learned indexes trigger 
more structural modifications during inserts, which further reduces 
the insert throughput. 

Next, we evaluate the lookup throughput change before/after 
inserts with 1.0 insert factor in Figure 10 (b). We have two observa-
tions. First, the lookup throughput ratios of most indexes are larger 
than 0.5, which reflects that their structural modifications perform 
well to improve the lookup throughput. Second, indexes using cost-
based and conflict-based modifications are more robust than those 
using fullness-based modifications. We explain the performances 
ofDPGM and MAB+tree respectively. (i) For uniform pattern, we 
observe that DPGM's lookup throughput decreases most greatly on 
both datasets. That is because whenever the inserted keys accumu-
late to a particular number, DPGM will rebuild a PGM index. Since 
the inserted keys of uniform pattern are randomly distributed in 
a large range, PGM index's linear models have difficulty in fitting 
the key-to-position mapping and require a higher height, which 
reduces the lookup throughput. (ii) For delta pattern, MAB+tree's 
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Figure 13: Throughput of different read-write ratios. Some indexes cannot support duplicated keys on Wiki. 
lookup throughput decreases extremely greatly on Face dataset, be-
cause MAB+tree's models are not updated in time, which increases 
the prediction error and reduces the lookup throughput. 
Trade-off between Performance and Index Size. Figure 11 
shows the trade-off between the insert/lookup performance and 
index size. We have three observations. First, indexes often use 
additional structures (e.g., ART adopts hash tables in some nodes) 
to reduce insert/lookup latency, and thus involve large index sizes. 
Second, we also find that some learned indexes like Xlndex and 
FINEdex gain both large index size and high insert/lookup latency, 
because they use extra space (e.g., pair-level buffers) to support 
concurrent operations, which may slow down insert/lookup opera-
tions as the search involves both the index and buffers. Third, most 
indexes have similar index sizes (within 0.5 ~2X that of B+tree). 
Because the index size is mainly affected by the original data size 
(except for structures like Bloom filters that only involve keys). 

Finding 3. For uniform insert pattern, learned indexes gain high in-
sert throughput; while for skewed pattern or many inserts, learned 
indexes have no advantage over traditional indexes. In terms of 
insert strategies, the learned indexes using in-place inserts have 
higher lookup performances, while the indexes using delta-buffer 
inserts can achieve highest insert performance. For structural mod-
ification, most indexes (except DPGM) have similar overhead, and 
those using fullness-based modification perform less robustly. In-
dexes often use additional structures to reduce insert/lookup latency, 
and thus involve large index sizes. 

4.4 Hybrid Lookup/Range/Insert Evaluation 
Figure 13 shows the workload throughput with different read-write 
ratios. The read operations include lookups and range queries (with 
a ratio of 19:1). For the read-only workload, we first initialize the 
index with 105M random dataset samples, and then execute 100M 
lookups. For the other four workloads, we first initialize the index 
with SM random samples, and then execute 100M operations. 

For read-only {0% write) and read-heavy workloads {5% write), 
ALEX performs best on all datasets. There are two reasons. (i) 
ALEX searches only at leaf nodes, and decreases the position search 
overhead in inserts and lookups. {ii) ALEX links the leaf nodes 
in a sorted sequence to facilitate range queries. Note in lookup 
evaluation (Section 4.2.1), LIPP performs best on Face, Osmc and 
Amzn datasets, because, for range queries, LIPP needs to search 
from difference leaf nodes (not linked together). For balanced work-
loads {50% write), the traditional index ART performs best on Osmc 
dataset, while ALEX performs best on Face, Wiki and Amzn. For 
write-heavy workloads (80% write), ART performs best on Face 

and Osmc datasets, while ALEX performs best on Wiki and Amzn. 
There are two reasons. (i) Compared with ALEX, ART involves 
fewer nodes {no more than 3 in most cases) in structural modifi-
cations, and gains higher insert throughput. (ii) DPGM adopts a 
delta buffer and multiple PGMs (similar to LSM-tree [35]), which 
requires lots of position searches during lookups. For write-only 
workloads (100% write), DPGM performs best on most datasets, 
which is similar to the experimental results in Section 4.3. 

Furthermore, to analyze the experimental results in finer granu-
larity, we break down the execution cycles (oc latency) into under-
lying metrics in the Intel's Top-down Micro-architecture Analysis 
Method {TMAM), including retiring {cycles used to retire instruc-
tions, mainly affected by the instruction count), bad speculation 
(stalls from branch-instruction rnispredictions), frontend bound 
{stalls from instruction fetching/encoding), DRAM bound {stalls 
from cache misses), and other minor metrics [39, 55]. From Fig-
ure 14, we have four observations. (i) For read-only workloads, the 
metrics that consume most time are DRAM bound {30.0%), retiring 
{24.5%), frontend bound {14.0%) and bad speculation {9.4%). These 
metrics are closely related to lookup/range operations. For write-
only workloads, DRAM bound (30.7%), retiring (21.6%) occupy most 
part of the latency, and thus are the bottlenecks of insert operations. 
(ii) For lookup operations, learned indexes use model predictions 
to reduce position searches, and thus reduce cache misses {DRAM 
bound). Besides, some learned indexes further improve the per-
formance by avoiding position searches (e.g., LIPP) or searching 
only at leaf nodes {e.g., ALEX), which eases branch-instruction pre-
diction (bad speculation) and avoids extra instruction re-fetching 
between model prediction and position search (frontend bound). 
{iii) For range operations, some indexes link the leaf nodes in a 
sorted list (e.g., ALEX) and allow direct list scanning, which results 
in fewer instructions (retiring) and cache misses (DRAM bound). 
{iv) For insert operations, some learned indexes utilize shared delta 
buffers (e.g., DPGM) to reduce cache misses {DRAM bound). Be-
sides, for structural modifications during inserts, learned indexes 
often involve more tree nodes than traditional indexes (e.g., ART) 
and require to retrain the data fitting models in these nodes, which 
increases instructions (retiring) and cache misses (DRAM bound). 

Finding 4. Learned indexes are efficient for read-heavy workloads, but 
traditional indexes better balance the throughput of lookups/ranges/inserts 
in write-heavy workloads. Besides, micro-architectural metrics like retiring 
(instruction count), bad speculation (branch-instruction misprediction), 
frontend bound (instruction fetching/encoding), DRAM bound (cache miss) 
can indicate the read/write performances of learned indexes ( e.g., reducing 
branch-instruction misprediction by searching only at the leaf nodes). 
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Figure 14: Average latency of different workloads on Face (broken down by micro-architectural metrics). 
Table 2: Bulk Loading Time on Amzn Dataset. 

Type Learned (Greedy) Learned (Not Greedy) Traditional 
Index MAB+tree PLEX PGM DPGM FINEdex Xlndex LIPP RMI ALEX B+tree FAST ART Wormhole 

Time (s) 2.258 6.634 11.233 12.476 18.336 25.162 
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Figure 15: Throughput of Concurrency on Face Dataset. 

Figure 16: Throughput of Figure 17: Concurrent in-
Concurrent Range Work- sert throughput varying with 
loads (95% range + 5% insert). hotspot ratio. 

4.5 Concurrency Scenario Evaluation 
We evaluate the four indexes that support concurrency scenar-
ios, and Figure 15 shows the throughput of four workloads with 
different ratios of lookups and inserts (i.e., read only (0% insert), 
read heavy (5% insert), balanced (50% insert) and write only (100% 
insert)). We observe that learned indexes do not outperform tradi-
tional indexes in all cases. There are three reasons. (i) The learned 
indexes adopt data-buffer insert, which may slow down lookups as 
the search involves both the index and buffers. (ii) For structural 
modifications during inserts, learned indexes should retrain models, 
which decreases the insert throughput. Besides, structural modi-
fications should lock involved nodes, and more thread collisions 
occur. (iii) The learned index FINEdex does not adopt advanced lock 
mechanisms (e.g., optimistic lock coupling [21]), which negatively 
affects its insert/lookup throughput. 
Range Query Evaluation. Figure 16 shows the throughput of 
range workloads (95% range + 5% insert). We find the traditional 
index Wormhole performs best on Osmc dataset, while Xlndex and 
the traditional index ART perform best on Face dataset. Because ( i) 
Osmc data has the most complicated data distribution, which causes 
inaccurate model predictions of Xlndex and negatively affects the 
insert/range throughput. (ii) Xlndex links its leafnodes and buffers 
in a sorted list, which facilitates range queries. 
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Figure 18: Evaluation on Block-wise Loading. 
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Figure 19: Evaluation on String Keys. 

Skewed Insert. Figure 17 shows the insert throughput under dif-
ferent hotspot ratios (smaller hotspot ratio indicates more skewed 
inserted data). We find learned indexes cannot outperform tradi-
tional indexes, particularly for small hotspot ratios. There are two 
reasons. First, the inserted keys are within a small range (several 
buffers) and cause frequent thread collisions. Second, the skewed 
inserted data quickly takes up the buffers and triggers frequent 
structural modifications. 

Finding 5. Learned indexes cannot outperform traditional indexes 
for concurrent lookups/writes, which need to (i) search both the 
index and delta buffers and (ii) retrain models during structural 
modification. However, learned indexes and traditional indexes 
achieve similar concurrency performance for range queries, which 
could incur thread collisions and are hard to optimize. 

4.6 Bulk Loading Evaluation 
Since the bulk loading latencies are similar among datasets, Table 2 
showcase the bulk loading time for Amzn dataset. For each index, we 
choose the hyper-parameter with the best lookup throughput. We 
have three observations. First, learned indexes do not outperform 
traditional indexes in bulk loading time. Because during the bulk 
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loading, learned indexes train the models and split the key-position
pairs into nodes according to the model prediction, which takes
much time. Second, learned indexes using greedy split have lower
bulk loading time than others. That is because greedy split has
the smallest time complexity. On contrary, ALEX using cost-based
split has the longest bulk loading time, since it iterates many times
per node to determine the index structure. Third, recall the lookup
evaluation results (see Section 4.2.1), learned indexes that do not
using greedy split have higher lookup throughput than others.
Because greedy split is relatively simple. Instead, more effective
index structure will be built if it considers the cost and the pair
conflict for the nodes.
Block-wise Loading. Figure 18 shows the insert and lookup la-
tency during inserting pairs block by block. The loaded ratio is the
loaded pair number divided by the dataset size. We have three ob-
servations. (𝑖) The insert/lookup latency of most indexes increases
slowly during block-wise loading, because their structural modifica-
tion methods can adapt to the increasing data size (e.g., maintaining
low prediction error and index height). (𝑖𝑖) As the loaded ratio in-
creases, the insert latency of ALEX increases most greatly in Face
and Osmc datasets. Because ALEX splits the nodes and increases
the index height, such that maintaining accurate model predictions
and enough gaps for in-place inserts. (𝑖𝑖𝑖) DPGM’s lookup latency
varies greatly during block-wise loading. Because DPGM adopts the
logarithmic merge method, and its PGM components can greatly
change during inserts.

Finding 6. Learned indexes do not outperform traditional indexes
for bulk loading time. Among learned indexes, those using the
greedy split method gain faster bulk loadings, but at the cost of
worse lookup performances. The insert/lookup latency of most
indexes increases slowly during block-wise loading, while DPGM’s
lookup latency could significantly changes.

4.7 String Index Evaluation
Figure 19 shows the throughput of indexes supporting strings keys
on Url workloads. We observe that learned indexes do not out-
perform traditional indexes in all cases. There are two reasons. (𝑖)
Since the string keys are much longer than the integer keys, the
model prediction and position search require more overhead. (𝑖𝑖)
SIndex deals with the string key as the high-dimensional integers,
and adopts multi-variant linear models to fit the key-to-position
mapping. However, the high-dimensional data has more compli-
cated distribution, and the prediction error is relatively large. In
contrast, Wormhole adopts a trie to deal with the keys with variable
lengths, and adopts hash table to accelerate the search of the keys,
which accelerate both the lookup and insert throughput.

Finding 7. Learned indexes cannot outperform traditional indexes
on string keys, because the string keys are of long length and the
distribution is complicated to predict.

4.8 Learned Index Selection Guidance
Based on the experimental results, we summarize how to select
learned indexes (Figure 20). First, learned indexes can replace tra-
ditional indexes for simple datasets (e.g., relatively smooth CDF

Thread NumberWorkload

DPGM LIPP
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Single

MultiRead HeavyWrite Only

Lookup (+Insert)

ALEX

Range+Lookup/Insert
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Range Only

OperationInsert Pattern
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TradDataset
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Trad

Complicated
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Figure 20: Learned index selection (‘Trad’: traditional).

without abrupt shifts), uniform inserted pairs, and read-heavy work-
loads. However, learned indexes have no advantage against tradi-
tional indexes for complex datasets, skewed insert patterns, and
workloads with many range queries, heavy writes, concurrent oper-
ations, or string keys. Second, for learned indexes in single-thread
scenarios, we consider three cases. (𝑖) If there are only inserts,
DPGM [11] is the best choice, which efficiently supports inserts with
delta buffers. (𝑖𝑖) If there are both inserts and lookups, LIPP [49]
is the most suitable, which locates keys for inserts/lookups with-
out position searches. (𝑖𝑖𝑖) If there are inserts, lookups and range
queries, ALEX [7] is most suitable, which conducts minor positions
searches and uses a linked list of leaf nodes for range queries.

5 CONCLUSION AND FUTURE WORK
We have systematically reviewed existing learned indexes and eval-
uated them under the same evaluation framework. We have tested
three typical scenarios (static, dynamic, concurrency) with real
datasets. The results and findings can guide researchers and practi-
tioners in selecting appropriate learned indexes for their applica-
tions. We have also provided a unified testbed to help researchers
design new learned indexes that can reduce the overhead of design
and implementation.

Based on our findings, there are still some open problems and
research challenges. First, existing learned indexes struggle to per-
form well in different scenarios. For example, (𝑖) for static sce-
narios, learned indexes have similar or even worse range query
performance than traditional indexes; (𝑖𝑖) for dynamic scenarios,
learned indexes sometimes fail to outperform traditional indexes
in write-heavy workloads; (𝑖𝑖𝑖) for concurrency scenarios, most of
existing learned indexes adopt delta-buffer to store inserted pairs,
which slows down the lookups. Besides, the insert performance of
learned indexes drop greatly for highly skewed inserted data, while
traditional indexes achieve more stable performance. It requires
new index designs to solve above performance issues (e.g., design-
ing in-place insert learned index to efficiently support concurrent
lookups/inserts). Second, learned indexes lack practical features,
such as recovery from system failures and persistence [27, 28, 59].
Third, there is a need for guidelines and best practices for imple-
menting learned indexes in real databases (e.g., estimating index
benefits based on model retraining issues).
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