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ABSTRACT
The approximate nearest neighbor (ANN) search in high-dimensional

spaces is a fundamental but computationally very expensive prob-

lem. Many methods have been designed for solving the ANN prob-

lem, such as LSH-based methods and graph-based methods. The

LSH-based methods can be costly to reach high query quality due

to the hash-boundary issues, while the graph-based methods can

achieve better query performance by greedy expansion in an ap-

proximate proximity graph (APG). However, the construction cost

of these APGs can be one or two orders of magnitude higher than

that for building hash-based indexes. In addition, they fail short in

incrementally maintaining APGs as the underlying dataset evolves.

In this paper, we propose a novel approach named LSH-APG to

build APGs and facilitate fast ANN search using a lightweight LSH

framework. LSH-APG builds an APG via consecutively inserting

points based on their nearest neighbor relationship with an effi-

cient and accurate LSH-based search strategy. A high-quality entry

point selection technique and an LSH-based pruning condition are

developed to accelerate index construction and query processing

by reducing the number of points to be accessed during the search.

LSH-APG supports fast maintenance of APGs in lieu of building

them from scratch as dataset evolves. Its maintenance cost and

query cost for a point is proven to be less affected by dataset cardi-

nality. Extensive experiments on real-world and synthetic datasets

demonstrate that LSH-APG incurs significantly less construction

cost but achieves better query performance than existing graph-

based methods.
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1 INTRODUCTION
Given a dataset and a distance function, the nearest neighbor (NN)

search problem aims to find the point in the dataset with the mini-

mum distance to a given query point. It has applications in a wide

range of areas such as machine learning [4], pattern recognition

[39] and data mining [41]. It is well known that finding the exact

NN in large high-dimensional datasets can be very time-consuming

[26]. A more efficient and potentially more practical alternative is

to perform an approximate nearest neighbor (ANN) search, which

has been widely studied in the database community [2, 8, 12, 26].

There are many categories of methods designed for efficient ANN

search, such as locality-sensitive hashing (LSH)-based methods

[2, 18, 20], graph-based methods [17, 23, 34] and so on. The LSH-

based methods are known for their robust theoretical guarantee on

query result accuracy and simple and efficient implementation. By

mapping points in a high-dimensional space to low-dimensional

spaces via a set of LSH functions, it is possible to find a high-quality

result with a guaranteed high probability by only checking the

points around the query point in low-dimensional spaces [2, 20].

On the other hand, the graph-based methods build an approximate

proximity graph (APG) where each data point is represented as a

vertex in the graph, and there is an edge between two vertices if

the corresponding points are sufficiently close to each other in the

original space. When the query q comes, the search begins from an

arbitrary point o (i.e., the entry point) in the APG and computes the

distance between o’s neighbors and q. The closest neighbor to q is

chosen as the next entry point. The process repeats until it reaches

a point v , which is closer to q than any of its neighbors in the APG.

The graph-based methods have been extensively studied due to

their higher query accuracy [17, 43]. Compared with LSH-based

methods that may suffer from the problem of hash-boundary issues

(i.e., some points that are close in the original space may be mapped

into different hash buckets, thus not being identified by LSH-based

approaches as neighbors) [18, 20, 42], the graph-based methods

can achieve much higher accuracy [17, 43]. However, the cost of

APG construction can be one or two orders of magnitude higher

than that of LSH-based methods for very large datasets [3, 28], as
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such an approach will require finding proper neighbors for every

point in the dataset. To address this issue, many heuristic strategies

such as NN-Descent [13] and HCNNG [35] have been proposed for

reducing the construction cost of APGs. However, such strategies

cannot guarantee the quality of built APG is good enough and

lowers the query performance. In addition, dataset in our real life is

dynamic in nature, but existing graph-based methods fail short in

incrementally maintaining APGs as the underlying dataset evolves.

Motivated by the above observations, we propose a novel ap-

proach named LSH-APG to build APGs from lightweight LSH in-

dexes and facilitate efficient ANN query processing. By exploiting

the properties of LSH functions and analyzing the problem using

different structures of proximity graphs, LSH-APG can overcome

the drawbacks of both LSH (i.e., the hash-boundary issues) and

graph-based methods (i.e., high graph construction time and poor

maintainability for dynamic datasets). It adopts LSH indexes to

quickly retrieve some query results as the entry point for a search

in an APG, followed by using graph-based techniques to further

improve the accuracy of the query result. To boost query efficiency,

an accurate and scalable pruning strategy is proposed to filter out

neighbors which are far away from the query point. It can signifi-

cantly reduce the number of points to be accessed during the search

on the graph. A consecutive insertion strategy is used to build the

graph index. It handles the high construction cost issue with the

help of the LSH framework. All points are consecutively inserted

into the APG where each point is regarded as a query point and

inserted into the graph index based on its nearest neighbors. This

strategy not only reduces the construction cost due to improved

search efficiency using the LSH framework but also enables a formal

correctness and complexity analysis for our approach.

In summary, our main contributions in this paper include:

• Based on a comprehensive analysis of state-of-the-art LSH-based

and graph-based methods, a new solution named LSH-APG is de-

veloped for efficient index construction and ANN query in high-

dimensional spaces. LSH-APG adopts a well-designed LSH frame-

work to accelerate indexing and query processing for proximity

graphs with higher-quality entry point selection and LSH-based

pruning conditions. LSH-APG has a much lower construction

cost without scarifying query efficiency or query quality.

• We provide a cost model to demonstrate the effectiveness of LSH-

APG, which shows the expected query cost of LSH-APG is nearly

independent on the cardinality of the dataset. The effectiveness

of the LSH framework is also theoretically proven.

• Based on our construction strategy and index structure, an effi-

cient update strategy is designed to maintain index structures as

the database evolves. The expected cost of deleting/inserting a

point is also nearly independent on the cardinality of the dataset.

• Extensive experiments show that LSH-APG can greatly reduce

indexing cost and achieve the best trade-off between query effi-

ciency and accuracy compared with the existing methods.

The rest of the paper is organized as follows. Section 2 reviews

the related work. Section 3 introduces the problem definition, basic

concepts and analyzes the limitations in the existing methods. The

framework of LSH-APG is presented in Section 4. The pruning con-

dition and update strategies are discussed in Sections 5-6. Section 7

reports experimental results. We conclude this paper in Section 8.

2 RELATEDWORK
2.1 LSH-based Methods
LSH-based method is originally proposed in [12, 20, 26]. In these

methods, LSH functions map data points in the high-dimensional

space into several low-dimensional hash buckets and the ANN

query is answered by checking the buckets where the query falls.

However, to guarantee a high query accuracy and sub-linear query

cost, these methods require preparing multiple suit of LSH indexes

with different bucket width, which causes undesirably large index

sizes and limits their applications. [40] and [18] addressed this issue

via the virtual rehashing technique, but they are hard to achieve a

very high query quality due to the hash boundary issue, a short-

coming shared by all static LSH-based methods. To relieve the hash

boundary issue, recent studies focus on designing dynamic LSH

methods that dynamically construct query-centric hash buckets

for every query point via novel LSH frameworks, such as colli-

sion counting based strategy [25, 31, 32] and metric based strategy

[30, 47]. However, their query cost is no longer sub-linear due to

the overhead of dynamic bucketing. Tian et al. combined the dy-

namic query strategy with the static LSH framework and proposed

DB-LSH, which achieved the best query complexity theoretically

among the existing LSH-based methods [42].

2.2 Graph-based Methods
Graph-based methods use the approximate proximity graph (APG)

to facilitate ANN search and have shown better query performance

compared to othermethods, in terms of both accuracy and efficiency

[34, 35, 43]. However, their construction cost reachesO(n2), making

them unaffordable for large-scale datasets. To lower the construc-

tion cost, several indexing strategies tried to build an approximate

proximity graph (APG) at the cost of a bit of query quality, such

as NN-Descent [13], whose construction complexity is lowered to

Õ(n1.14). Due to its efficiency compared to the brute-force manner,

NN-Descent algorithm is used in many graph based methods, such

as EFANNA [16], NSG [17] and others [29, 46] and some deriva-

tives are developed [8]. However, it needs iterating about 10 times

to find the high-quality neighbors, which is still time-consuming.

NSW [33] builds the approximate KNNG and DG via consecutive

insertion strategy. This construction manner is very efficient, but it

can cause hubness issue, i.e., high out-degrees for some vertexes,

which degrades the query performance. HNSW [34] adopts the

same strategy as NSW but limits the maximum degree for each

point to alleviate the hubness issue. HCNNG [35] and VRLSH [14]

cluster or partition the data into many subgroups, and then build

an APG in each subgroup. It could reduce the construction cost of

graph index to O(n) but requires building the graph multiple times

to achieve a good performance.

2.3 Other Methods
Tree-based methods [5, 6, 45] and quantization-based methods

[19, 21, 27] are also able to solve ANN problems. Tree-based meth-

ods, such as M-Tree [9], R-Tree [22], and KD-Tree [36] and their

variants, divide the space into subspaces using pivots or hyper-

planes, which reduces the search space by only considering points
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Table 1: List of Key Notations.

Notation Description
Rd d-dimensional Euclidean space

D The dataset

n The cardinality of dataset

LID The local intrinsic dimensionality of dataset

o,v,u A data point

q A query point

∥o1,o2∥ The distance between o1 and o2
e = (o1,o2) The directed edge from o1 to o2
h∗(o),h(o) Hash function

χ2(m) The χ2 distribution with freedomm
CQ The expected number of points accessed per query

in overlapping subspaces. However, as the data dimensionality in-

creases, the efficacy of this partitioning strategy decreases, and

almost all subspaces overlap with the search region [7, 44], making

tree-based methods unsuitable for efficient ANN search in high-

dimensional spaces. Quantization-based methods, such as VA-file

[44] and Product Quantization (PQ) [19, 27], quantize the data and

cluster it according to its quantization value, enabling the search

for candidate points with the same quantization value as the query

point. However, these methods can struggle with achieving high

query accuracy due to quantization errors, particularly in high-

dimensional spaces. Additionally, they lack any theoretical quality

guarantees, unlike LSH-based methods. In summary, each category

ofmethods has its specific applications. Tree-basedmethods are suit-

able for finding exact nearest neighbors in multi-dimensional spaces

[5, 45]. Quantization-based methods perform well on well-clustered

datasets [44]. However, when it comes to high-dimensional spaces,

only LSH-based and graph-basedmethods can guarantee high query

quality on any dataset.

3 PRELIMINARIES
In this section, we first introduce the problem definition, the con-

cepts of LSH and graph-based methods. Then, a comprehensive

analysis of limitations in the existing ANN methods is presented,

which inspires us to design LSH-APG. Frequently used notations

are summarized in Table 1.

3.1 Problem Definition
In this paper, we study the c-ANN and (c,k)-ANN queries in the

Euclidean space. LetD be a set of points ind-dimensional Euclidean

spaceRd with cardinality |D| = n. Let ∥o1,o2∥ denote the Euclidean
distance between points o1,o2 ∈ D.

Definition 1 ((c,k)-ANN Query [42]). Given a query point
q, an approximation ratio c > 1 and a positive integer k , a (c,k)-
approximate nearest neighbor query returns k points o1, . . . ,ok that
are sorted in ascending order w.r.t. their distances to q. If o∗i is the i-th
nearest neighbor of q in D, it satisfies that ∥q,oi ∥ ≤ c · ∥q,o∗i ∥.

Remark 1. The c-ANN query is the (c,k)-ANN query with k = 1.

Remark 2. In the graph-based methods, we usually do not ex-
plicitly use c to control the query quality. Without confusion, we
abbreviate (c,k)-ANN as kANN for simplicity.

(a) Search in the LSH-Based Method

Entry point

(b) Search in the Graph-Based Method

Figure 1: Illustration of LSH-based and graph-based meth-
ods. The red triangle is the query point q. The three points
in the black dashed circle are the 3NNofq. The orange points
denote those that are accessed during the search.

3.2 Locality Sensitive Hashing
Definition 2 (Locality Sensitive Hashing (LSH) [42, 47]).

Given a distance r and an approximation ratio c > 1, a family of
hash functions H = {h : Rd → R} is called (r , cr ,p1,p2)-locality-
sensitive, if for ∀o1,o2 ∈ Rd , it satisfies both conditions below:

(1) If ∥o1,o2∥ ≤ r , Pr[h(o1) = h(o2)] ≥ p1;
(2) If ∥o1,o2∥ > cr , Pr[h(o1) = h(o2)] ≤ p2,

where h ∈ H is chosen at random, p1,p2 are collision probabilities
and p1 > p2.

A typical LSH in the Euclidean space is defined as follows [25]:

h∗(o) = a⃗ · o⃗, (1)

where o⃗ is the vector representation of a point o ∈ Rd and a⃗ is a

d-dimensional vector where each entry is chosen independently

from the standard normal distribution.

Lemma 1. Let P(o) = (h∗
1
(o), . . . ,h∗m (o)) be an m-dimensional

vector where h∗i is chosen from the LSH family in Eq. 1. Then, for ∀

o1,o2 ∈ D, we have
∥P(o1), P(o2)∥

2

∥o1,o2∥2
∼ χ2(m).

Proof. This lemma can be derived based on the property of the

normal distribution. □

Another commonly used LSH family in the Euclidean space is

defined as follows [12]:

h(o) =

⌊︃
h∗(o) + b

w

⌋︃
, (2)

where w is a pre-defined integer and b is a real number chosen

uniformly from [0,w). To distinguish these two LSH families, we

call h∗ as the projected function and h as the hash function.

3.3 Graph based Methods
The foundational structure of graph-based methods is a proximity

graph, denoted as G = (V , E), where the vertex set V represents all

data points in the dataset D, and the edge set E is the collection of

all edges between vertices if the corespondent points are sufficiently

close to each other in the original space. There are mainly three

strategies to build the proximity graph [43].

• Cluster & Merge [35]. The dataset D is clustered into several

small groups and the exact proximity graph, such as MST [35], is
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built in each group. Then, we obtain the approximate proximity

graph by merging all the subgraphs.

• Iteration [13, 17].TheAPG is built from an initial random graph

where each vertex has several neighbors. For each vertex, we it-

eratively update its neighbors according to the local information,

e.g., its neighbors and the neighbors of its neighbors. The final

APG is obtained when the iteration converges.

• Consecutive Insertion [33, 34]. In this manner, the graph is

built by inserting the point one by one, like that in R-Tree. When

inserting a point o, we find the points close to o in the current

graph and choose them as o’s neighbors.

The number of edges directly affects the query performance [43].

Intuitively, the more the out-edges of a vertex, the more candidates

and computations need to be performed, and the slower the query

processing will be. There are two commonly used neighbor selec-

tion strategies to control the distribution of edges, i.e., the simple

selection strategy and the heuristic selection strategy. The simple

selecting strategy is to choose the closestM neighbors, whereM is

a pre-defined threshold. In the heuristic selecting strategy, neigh-

bors are chosen based on the distribution so as to preserve their

diversity. Take HNSW and NSG for example, if the point o has two
edges (o,u) and (o,v) that satisfies ∥o,u∥ < ∥u,v ∥ < ∥o,v ∥, the
edge (o,v) is said to be conflicted to (o,u) and the longer edge (o,v)
will be discarded. The behind idea is that edges (o,u) and (o,v) are
too similar, and thus there is no need to store both of them.

3.4 Limitations in the existing ANN methods
In this subsection, we analyze the drawbacks of the LSH-based and

graph-based methods.

LSH-basedmethods. Figure 1(a) shows the framework of the LSH-

based methods, where the data points are mapped into several hash

buckets (parallelograms formed by purple and green lines). Then,

the points in the 2-dimensional projected space are indexed by some

simple structures, such as hash table, B+-Tree and R-Tree, which

makes the LSH indexes easy to be maintained for dynamic datasets.

To answer the ANN query, we only check the points in the bucket

where the query point falls, i.e., the 3 orange points in Figure 1(a).

Both the LSH family in Equations 1 and 2 satisfy that the collision

probability decreases monotonically with the distance between

points. Thus, LSH-based methods provide a guarantee of query

quality. However, it is hard for these methods to achieve a very

high recall due to their simple query strategy and hash boundary

issue. As shown in Figure 1(a), 2 of 3-NN results are not found by

this LSH index. To find them, it requires to build more LSH indexes,

and thus incurs higher query cost.

Graph-based methods. Figure 1(b) shows the framework of the

graph-based methods, where each vertex in the graph has 2-4 neigh-

bors. The query procedure begins from the bottom right point (a

random entry point) and approaches to the correct results via the

greedy search in the APG. The orange points are the points ac-

cessed during the search for the 3ANN of q. Although these meth-

ods hardly offer a theoretical guarantee, they always perform better

than LSH-based methods. Experimental results show that to reach

the recall of 0.95, the cost of DB-LSH is about 100 times higher

than that of graph-based methods. The bottleneck of graph-based

methods, however, comes from their huge construction cost. In the

cluster and merge strategy, the subgraphs built for each cluster

are disconnected and their graph quality is unsatisfactory since

many close point pairs are divided into different clusters. Thus, we

need to repeat the cluster and merge operations several times to

improve the graph quality, which is time-consuming. Moreover,

the graph built via this strategy requires being reconstructed as

the data evolves since the clusters inevitably evolve with the data.

In the iteration strategy, the construction cost is high because it

requires updating the neighbors for every vertex in each iteration

and the number of iterations to convergence increases with the data

cardinality. Compared to them, the consecutive insertion strategy is

more efficient and can be easily adapted to support the index main-

tenance for dynamic dataset, since the index is built point by point.

However, the construction cost and graph quality of APG built via

this strategy depends heavily on a well-designed query strategy.

Besides, the neighbor selection strategies have a significant impact

on the construction cost. The heuristic selection strategy greatly

increases the computational cost since we need to compare every

two neighbors. To lower its cost, some methods, such as HNSW

[34], only adopt the heuristic selection strategy to cut off the edges

of a vertex when its degree reaches a given maximum capacity. The

simple selecting strategy is more efficient, but some edges could be

similar especially when the data is in a dense region, which incurs

the unnecessary computational cost in the query processing.

4 LSH-APG FRAMEWORK
Observe that LSH indexes have a relatively low recall although

they can be quickly built and maintained as the underlying dataset

evolves; while graph-based methods perform well in terms of query

processing, they suffer from the high construction cost due to the

complex construction strategy and edge selection strategy. To ad-

dress this dilemma, we propose a novel framework called LSH-APG

that can reduce the construction cost without sacrificing query

performance for ANN search. The main idea is to quickly build

APGs via a consecutive insertion and simple selection strategy,

based on which the LSH framework is further adopted to accelerate

the construction of APGs and the query processing by providing a

closer entry point and filtering out some irrelevant edges. Consider

Figure 2, LSH-APG selects the closest point to the query point q
in the bucket where the q falls as the entry point (i.e., the blue

point), and thus the number of hops is reduced to 2, half of that

in Figure 1(b). Then, it adopts the LSH-based pruning condition to

avoid accessing all the neighbors during the search. In the figure,

the grey point is one of neighbors of the red point, but we do not

need to check it since its distance to q is much larger than that of

the red point. Compared to existing methods, LSH-APG has the

following advantages:

(1) Low construction cost. As the APG is built via the consecutive

insertion strategy without considering the distribution of edges,

the distance computation cost is greatly reduced. In addition,

LSH framework further helps reduce the construction cost to

nearly O(n).
(2) Guaranteed query cost and quality. LSH-APG adopts a suit of

lightweight LSH indexes to quickly find a better entry point

for the query in the graph, which reduces the number of hops
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Algorithm 1: Building Naive-APG(D,T ,T ′)
Input: Dataset D and parameter T ,T ′

Output: IG
1 IG ← ∅;

2 for each point o ∈ D do
3 candidates ← T ANN results of o found in IG ;

4 for each e ∈ candidates do
5 IG ← IG ∪ {(o, e), (e,o)};

6 if e .deдree > T ′ then
7 of ← e’s furthest neighbor in IG ;

8 IG ← IG − {(e,of )};

9 return IG ;

required to terminate the algorithm and ensures the worst query

quality is bounded.

(3) Accurate pruning condition. LSH-APG filters out some edges dur-

ing the search by an accurate yet efficient LSH-based pruning

condition for reducing the unnecessary distance computations.

(4) Incremental index maintenance. LSH-APG supports incremental

index maintenance in a low cost as the data evolves.

In what follows, we begin with a basic framework called Naive-

APG (see Section 4.1), which can achieve (1). Then, we further

develop LSH-APG by integrating the LSH framework with Naive-

APG to realize (2) and (3) (Sections 4.2– 5). To accomplish (4), we

present the index updating strategy (see Section 6) for incrementally

maintaining the indexes as the underlying dataset evolves.

4.1 Naive-APG: the Basic Structure
The index of Naive-APG, denoted as IG = (V , E), is a directed

NN graph. V = D is the dataset and E = (u,v) is the edge set

where v is an approximate nearest neighbor of u in the dataset.

Unlike the NN graph where each vertex connects to the unified

number of edges, we allow the degree to vary in a range [T ,T ′]
to better fit the data distribution, where T is the initial degree and

T ′ is the maximum degree. An intuition explanation is that: The

data points in dense regions are difficult to be differentiate from its

nearby points, and thus requires more edges than data points in

sparse regions. We build IG via the consecutive insertion strategy

as described in Algorithm 1. In this strategy, we findT ANN results

for the incoming point o in the current graph index (Line 3). Next,

we mutually connect o with its each ANN result e (Line 5). Finally,
we check whether the degree of e reaches the maximum capacity

T ′. If so, we select the closest T ′ points to oi in N (oi ), following
the simple neighbor selection strategy (Lines 6-8).

Remark 3. When T ′ = T , all vertices in IG will have a unified
number of edges, as that in most NN graph. However, we find such a
structure has a low performance due to the following reasons: 1) The
real-world dataset is usually distributed unevenly and this setting
does not consider this difference totally; 2) The points inserted earlier
will often be accessed when we insert the points later. So, providing
them more edges help the points coming later find the better ANN
result. However, a too large T ′ will increase the number of distance
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Figure 2: Search in LSH-APG

computation during the search and incurs a high query cost. Consid-
ering these factors, we set T ′ = 2T by default. More discussion about
settings of T and T ′ is reported in the experiments (see Sec. 7.2.)

4.2 LSH-APG: Optimized by LSH Indexes
Algorithm 1 guarantees the APG can be build in a rather low cost

since the required distance computations just comes from finding

ANN results for o and graph-based index has a low query cost.

However, an underlying problem in this strategy is that the graph

quality is not guaranteed. If we cannot find good enough ANN

results for o, the o’s edge quality is limited; in turn, a low-quality

edge selection of o will prevent us from finding the high-quality

ANN results for next-coming points. To address this issue, we adopt

a suit of lightweight LSH indexes to quickly find a better entry

point for the query in the graph to guarantee the query quality.

The chosen LSH indexes IH need to be built quickly and an-

swer an NN query efficiently. Since the final ANN results will be

refined in the graph index, its query quality is not supposed to be

very high, which is in line with the property of LSH indexes. To

achieve this goal, we build our hash indexes IH following the idea

in [40]: first, we randomly choose K LSH functions h1, . . . ,hK as

described by Eq. 2. For a point o to be inserted, we compute its K
hash values h1(o), . . . ,hK (o) and consider them as a K-dimensional

point H (o) = (h1(o), . . . ,hK (o)). Then, we transform H (o) into a

one-dimensional value z(H (o)) via the Z-order curve [11] and store
the z(H (o)) in a B+-Tree (other sorted indexes are also suitable).

Repeating this process L times, we build L B+-Trees, which forms

IH . For the convenience, we denote the K LSH functions used the

for i-th projected space as Hi = {hi ,1, . . . ,hi ,K }, i = 1, . . . , L, i.e.,
there are total L × K LSH functions used. Algorithm 2 describes

how to build IH and IG in the same time, which is much more

efficient than building them independently. Such an index IH is

proved to return good enough ANN results.

Lemma 2 (Theorem 1 of [40]). By setting K = O(logn) and
L = nρ where ρ = O(1/c ′), IH can answer a c ′2-ANN (c ′ ≥ 2) in
O(dL) query cost with at least constant probability of 1/2 − 1/e .

The lemma indicates that we can find a c ′2-ANN result with a

small query cost O(dL). As stated in [40], even single LSB-Tree is

also expected to return results with high quality. In our method,

c ′ = 2 and we set K = O(1) and L = O(1) following the mainstream

LSH methods [32, 42].
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Example 1. Assume T = 2 and T ′ = 4, LSH-APG is like that in
Figure 2. The parallelograms formed by purple and green lines are the
hash buckets. When removing the hash buckets, we obtain Naive-APG.
For simplicity, we consider all the edges are bi-directed. Then, there
are total 64 edges. o1 has 3 neighbors o2, o4 and o9.

4.3 ANN Query in LSH-APG
The query algorithm not only decides the efficiency and accuracy

of ANN search, but also affects the index quality and indexing ef-

ficiency. Algorithm 3 outlines the ANN query processing, which

consists of two parts: find entry points using IH (Line 1 - 4) and

improve query quality using IG (Line 5 - 21). The algorithm starts

by computing the hash values of q (Line 1). Then, we can conduct

a kANN search for q using IH (Line 2). Since the search procedure

in IH is the same as that in the LSB-Tree [40], we do not give de-

tailed description here due to the space limitation. According to

the property of LSH, we can obtain high-quality results in O(L)
costs [40]. Next, we take points in EPs as the entry points to con-

duct a kANN query in IG . Specifically, in each iteration (hop), the

nearest point ep in EPs to q is popped from EPs (Line 8) and we

denote the current found k-th NN as Rk (Line 9). If the distance

between q and ep is already greater than that between q and Rk ,
the algorithm terminates immediately (Line 10). Otherwise, we

continue the search from ep by checking its neighbors. To further

boost query efficiency, we design an LSH-based pruning condition

(Line 15) to reduce the number of neighbors checked. That is, for

each neighbor o of ep , if ∥P(q), P(o)∥ > t · ∥q,Rk ∥, we filter out o
without computing the distance ∥q,o∥. According to Lemma 5, to

be introduced in Section 5, we can guarantee that ∥q,o∥ > ∥q,Rk ∥
with the high probability pτ , and thus it is reasonable to prune o
directly. By updating EPs and the result set R iteratively, we get

kANN of q finally. Generating entry points via the LSH framework

greatly reduces the initial search radius. The reduction of the initial

search radius can lower the hop numbers required to terminate the

algorithm, and thus improve the query efficiency. Moreover, a closer

entry point decreases the probability that the query terminates at a

local minimal where the final search radius is still very high.

Example 2. Let us take the points in Figure 2 as example to illus-
trate the kANN query with k = 2. We do not consider the LSH-based
pruning condition in this example. When search in the LSH-APG, we
can find o8, o10 and o11 collide with the query point q (the red trian-
gle). o10 and o11 is put in EPs. o10 is closest so far and we access it. Its
neighbors o9, o12 and o15 are accessed and put in EPs. o12 and o9 are
then accessed in order. The query terminates at o9 since its farthest
to q than 2-nd of q, o10. The computation cost of this process is 8. On
contrary, when search in the Naive-APG with o21 as the random entry
point. We need to access o21, o19, o15, o10, o12 and o9 in order. The
computation cost reaches 12, 50% higher than that of LSH-APG.

4.4 Cost Model of LSH-APG
To demonstrate the performance of LSH-APG, we design a cost

model to analyze the query cost and query quality of LSH-APG. First,

we demonstrate the query cost and query quality is little affected

Algorithm 2: Building LSH-APG(D,T ,T ′)

Input: Dataset D and parameter T ,T ′

Output: LSH-APG index IG and IH
1 IH ← ∅, IG ← ∅;

2 for each point o ∈ D do
3 candidates ← call

kANN-Query(o,IG ,IH ,pτ = 0.95,T );
4 for each e ∈ candidates do
5 IG ← IG ∪ {(o, e), (e,o)};

6 if e .deдree > T ′ then
7 of ← e’s furthest neighbor in IG ;

8 IG ← IG − {(e,of )};

9 Insert o into the corresponding LSB-Tree in the IH ;

10 return IH and IG ;

Algorithm 3: kANN Query(q,IG ,IH ,pτ ,k)

Input: A query point q, LSH-APG index IG and IH , pτ , k
Output: k nearest points to q

1 Compute q’s projected values h∗
1
(q), . . . ,h∗L×K (q);

2 EPs← the set of k approximate nearest points to q in IH ;

3 V ← the set of visited points during the above search;

4 R ← EPs; //the result set of k best results found so far

5 m ← K , P(q) ← (h∗
1
(q), . . . ,h∗m (q));

6 t ←
√︂
χ2pτ (m);

7 while |EPs | > 0 do
8 ep ← pop the nearest element in EPs to q;

9 Rk ← the furthest points in R to q;

10 if ∥ep ,q∥ > ∥q,Rk ∥ then
11 break;

12 for each o ∈ N (ep ) do
13 if o ∉ V then
14 V ← V ∪ {o};

15 if ∥P(q), P(o)∥ < t · ∥q,Rk ∥ then
16 Compute ∥q,o∥;

17 Insert o into EPs;

18 Insert o into R;

19 if |R | > k then
20 Remove the furthest point to q in R;

21 return R;

by the data cardinality (Theorem 2). Then, we prove that when the

query terminates, the distance between returned points and the

query point is small enough. Finally, we compute the benefit of

LSH indexes on the query cost (Lemma 2). The rest parts are served

as illustrating these three conclusions, with secondary lemmas and

detailed proofs moved to the technical report [38].

Analysis of the query cost and quality. In our algorithm, the

query cost CQ mainly comes from the computation cost during

search in the graph, which depends on the hop number of the search
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l , i.e., the number of iterations from Line 7 to Line 20 in Alg. 3, and

the average degree of a vertex in IG , Te . Intuitively, CQ can be

expressed as CQ = lTe [17]. Since Te is bounded by T ′, we analyze
the query cost via l . As for the query quality, we prove the final

search radius s , i.e., the search radius when the query terminates,

is bounded. Assume the search in the graph begins from the entry

point ep with ∥q, ep ∥ = r , the query can terminate at ep or go to

the next hop with accessing another point en where ∥q, en ∥ = r ′.
If the query terminate at ep , l(r ) = 1 and s(r ) = r ; otherwise,
l(r ) = 1 + l(r ′) and s(r ) = s(r ′). Let p(r ) be the probability that the

query terminates at en and δ (r ) = r − r ′ be the hop length, l(r ) and
s(r ) satisfy the following equations:

l(r ) =p(r ) · 1 + [1 − p(r )][l(r − δ (r )) + 1],

s(r ) =p(r ) · r + [1 − p(r )]s(r − δ (r )).
(3)

If p(r ) and δ (r ) are computed, we can determine the values of l(r )
and s(r ). Since the query terminates at en if and only if en is closer

to q than ep , we have p(r ) = Pr[r ′ > r ] = Pr[δ (r ) > 0]. Obviously,

δ (r ) depends on the neighbors of ep . Thus, it is the local information

of ep and mostly independent on n. Hence, p(r ) is also independent
on n. Based on Eq. 3, we have the following conclusion:

Theorem 1. The query cost and query quality of LSH-APG is
independent on n.

In addition, it is obvious that s(r ) can be extremely small when

p(r ) ≈ 0. Fortunately, we can decrease p(r ) to nearly 0 by increasing
the number of edges Te when r > ro where ro is the average dis-

tance between ep and its neighbors. We aim to estimate the bound

of s(r ) by introducing some assumption. Assume Te neighbors of
ep are uniformly distributed around it with the average distance

ro . That is, for one of ep ’s neighbor oi , its normalized point o′i
satisfies epo

′
i
⃗ = epoi⃗ /∥epoi⃗ ∥. Then, o

′
i is uniformly drawn from a

LID-dimensional unit sphere centered at ep where LID is the local

intrinsic dimensionality of D. LID denotes how many “degrees of

freedom” are necessary to describe the dataset [10] and is used

to measure the difficulty of answering NN queries in the dataset

[1]. Similar assumptions can be found in [17, 37]. Under such an

assumption, s(r ) satisfies:

Theorem 2. Assume the expected edge length of ep is ro and its
neighbors are uniformly distributed around it, the final search radius
s is expected to be bounded by (1 + γ )ro where γ < 1.

Proof. (Sketch.) We derive the formation of δ (r ) and prove that
p(r ) can be as small as possible when Te is large. Then, the query
hardly terminates when s(r ) > (1+γ )ro . Due to the space limitation,

we put the detailed proof in our technical report [38]. □

Remark 4. In our cost model, we assume that ep ’s neighbors are
uniformly distributed around it. Additionally, this assumption shapes
the specific form of δ (r ), however, it does not impact the validity of
our conclusion that the values of l(r ) and s(r ) are independent of n.
This is because the neighbors of a vertex are primarily determined
by the points in close proximity to it, rather than the entire dataset,
which implies that the value of δ (r ) is not heavily impacted by n.

The benefit from IH . Since l(s) depends on the initial search

radius ri .IH provides us the closer entry point oh , which essentially
reduces the initial search radius. Assume that ∥q,oh ∥ = r1 and a

random entry point has the distance r2 to q (r0 < r1 < r2). Then,
we denote the benefit from IH as BIH = l(r2)− l(r1), which implies

how many the number of hops is reduced by using IH .

Lemma 3. Let ∆r = r2 − r1 be the reduction of the initial search
radius compared to the random entry point, the expected BIH is ∆r

λro
where λ < 1 and depends on the average degree Te .

Proof. (Sketch.) When r ≫ ro , δ (r ) changes little and thus BIH
is nearly directly proportional to ∆r . Due to the space limitation,

we put the detailed proof in our technical report [38]. □

This lemma indicates that the benefit of the entry point selection

is O(∆r ) . When r > r1, δ (r ) is nearly a constant and the search

radius decreases slowly, which incurs a large query cost in the

graph-based methods. On the contrary, although the LSH-based

methods are hard to achieve as a high query performance as graph-

based methods, they can quickly find a point o with ∥q,o∥ = r1 ≤
c ′r , and thus improve the query performance of LSH-APG.

4.5 Complexity Analysis
Following the mainstream graph-based methods [17, 34, 35], we

consider T and T ′ as a constant. According to Theorems 1 and 2,

we have the following conclusion:

Theorem 3. LSH-APG has the space complexity of O(n) and can
be built inO(ndCQ ) time, whereCQ is the expected computation cost
and independent on n. The query cost of LSH-APG is O(dCQ ).

5 LSH-BASED PRUNING CONDITION
The query cost of a graph-based method comes from the number

of distance computations between q and the neighbors of ep when

accessing ep . The previous query strategy checks all ep ’s neighbors,
which is unnecessary and time-consuming since some neighbors

are obviously far away from q and unlikely to be the required result.

Hence, we design an LSH-based pruning condition as follow to

filter out some neighbors that might be far:

∥P(q), P(o)∥ <
√︂
χ2pτ (m) · dk , (4)

where P(o) is the m-dimensional projected vector defined as in

Lemma 1, χ2p (m) is the quantile of χ
2(m) distribution at pτ and dk

is the current foundk-th best NN result. The intuition of the pruning

condition is that when ∥o,q∥ is greater than dk , ∥P(q), P(o)∥ will

also be greater than

√︂
χ2pτ (m) · dk with high probability pτ . Then,

it is reasonable to discard o without computing the distance ∥q,o∥.

Lemma 4 (Lemma 4 in [47]). Given a query q, an approximation
ratio c and parameter t , we define the following two events:
• E1: For a point o that ∥q,o∥ ≤ r , its projected distance to q,
∥P(q), P(o)∥, is smaller than tr .
• E2: There are fewer than βn (β > α2) points whose distances
to q exceed cr but projected distances to q are smaller than tr .

Then, we have that the probability that E1 occurs is at least α1, and
the probability that E2 occurs is at least 1 − α2

β , where α1 = F (t2;m)

and α2 = F (t2/c2;m).
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Lemma 4 reveals that ∥P(q), P(o)∥ can be a proper estimator of

∥q,o∥. Based on it, we have:

Lemma 5. With the LSH-based pruning condition, the probability
that a point o is filtered increases with ∥q,o∥. Assume pτ = 1

2
and

the current search radius is r , for any c > 1, the point whose distance
to q is less than r will not be filtered with at least the probability of
1

2
and we access at most O(nα ) points whose distance to q is greater

than cr , where α = 1 −
9κ(c−2/3−1)2

4
and κ = m

logn .

Proof. (Sketch.) We derive the upper bound of number of points

whose distance to q is greater than cr by using Lemma 4 and prove

the conclusion. Due to the space limitation, we put the detailed

proof in our technical report [38]. □

This lemma indicates the point whose distance to q is less than

the search radius r will be checked with at least the probability

of
1

2
. On the contrary, the farther a point is to q, the more likely

it is filtered out. The number of checked points whose distances

to q are greater than cr is bounded by O(nα ), which depends on

the values of c , n andm. The total number of points filtered by the

pruning condition depends on howmany “far” points we meet. This

pruning condition helps reduce the query cost and still guarantees

the query quality. Usually, a large pτ is used to better balance the

query quality and query efficiency. We only prove this lemma with

pτ =
1

2
as an example. For other values of pτ , α is also bounded.

Example 3. When conducting the kANN query with k = 2 in the
LSH-APG with LSH-based pruning condition, we need to access o10,
o12 and o9 in order, as that in Example 2. However, when accessing
o10, o15 can be filtered out. Likewise, when accessing o12, o13 and o14
can be filtered out. Thus, the computation cost is reduced to 5.

6 INDEX MAINTENANCE
As the data evolves, we need to update LSH-APG by reconstructing

some edges for related points. The updates of LSH-APG includes

the insertion and deletion. It is simple and natural to insert a new

point into LSH-APG since LSH-APG is built via the consecutive

insertion strategy. Therefore, we focus on designing an efficient

deletion strategy. To delete a point o, we need to discard all the out-
edges and in-edges of o in IG and remove o from IH . It is trivial to

remove a point from the IH , but it is challenging to delete in-edges

in IG since they are not recorded in the graph.

Let RN (o) = {v |(v,o) ∈ E} be the set of reverse neighbors of o in
IG and dm = maxv ∈RN (o) ∥o,v ∥ be the maximum length. We store

the in-degree of o, |RN (o)|, and dm in LSH-APG to facilitate the

deletion, which is much space-saving than storing all the in-edges.

Hence, Lines 1-2 only cost O(1) time. To delete o, we first mark o
and all the out-edges of o as the Deleting status (Line 4). Then, we

conduct a range search in LSH-APG with the search radius dm from

o’s closest neighbor in IG (Lines 9-15). Once a point u is found,

we check whether u is in the RN (o). If so, (u,o) is discarded and

the in-degree of o is decreased by one. Moreover, we increase the

number of u’s neighbors toT ′ by finding points in neighbors of u’s
neighbors once the degree of u is less than T . By this manner, we

maintain the degree of each vertex in the range [T ,T ′] and reduce

the bad influence of the deletion on the graph quality.

Algorithm 4: Delete-Point (o,IG ,IH ,CDm )

Input: A point to be deleted o, IG , IH , CDm
Output: The updated indexes IG and IH

1 RN (o) ← {v |(v,o) ∈ E};

2 dm ← maxv ∈RN (o) ∥o,v ∥;

3 Delete o from IH ;

4 Mark o and all the out-edges of o as the Deleting status;
5 EPs← {v |(o,v) ∈ E};

6 V ← ∅ stores the set of visited points;

7 m ← K , t ←
√︂
χ2pτ (m),cnt ← 0;

8 t ←
√︂
χ2pτ (m);

9 dk ← the current k-th while |EPs | > 0&&cnt < CDm do
10 cnt ← cnt + 1;

11 ep ← pop the nearest element in EPs to q;

12 for each u ∈ N (ep ) do
13 if u ∉ V then
14 V ← V ∪ {u};

15 call Access(u);

16 Function Access(u) is
17 if ∥P(q), P(u)∥ < t · dm then
18 Compute ∥q,u∥;

19 Insert u into EPs;

20 if u ∈ RN (o) then
21 Remove the edge (u,o) from IG ;

22 if |N (u)| < T then
23 N (u) ← N (u) ∪ {y |y ∈ N (N (u))};

24 N (u) ← The T ′ closest points in N (u) to u;

However, dm could be very large in some cases and it is costly to

check all the points whose distance to q is within dm . Moreover, IG
is a directed graph and some points in RN (o) is unreachable from
o. Hence, we first set a maximum search cost CDm to control the

cost of the range search during the deletion. The larger CDm , the

more likely it is to find an in-edge, but it incurs a higher cost. Then,

for an in-edge of o not found in the range search, we leave it to the

deletion procedure in the following queries. If it is found during an

ANN query later, we discard it and decrease the in-degree of o by
one. Once the in-degree of o becomes 0, we discard all the out-edges

of o and o itself. Finally, to avoid some in-edges not being found for

a long time and thus wasting the space, we also traverse the graph

and discard all the edges to be deleted when their amount reaches

10% of the total number of edges in IG .

The deletion cost of LSH-APG includes the cost of finding o’s
in-edges, adding new neighbors for some points and CDm . Due

to the property of the NN-graph, i.e., neighbors are more likely to

be neighbors of each other [13], CDm = CQ can ensure that the

most of in-edges are found. To add new neighbors for a point u, it
is sufficient to find points in neighbors of e’s neighbors rather than
conduct a query for u. CDm is bounded by CQ and thus we have

the following conclusion as follows:
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Table 2: Summary of Datasets

Datasets Cardinality Dim. LID Size (GB)
MNIST∗ 60,000 784 12.7 0.184

Deep1M∗ 1,000,000 256 26.0 1.00

Gauss10M† 10,000,000 32 26.3 1.19

Rand10M† 10,000,000 32 23.9 1.19

Gist1M∗ 1,000,000 960 36.2 3.58

SIFT10M∗ 10,000,000 128 22.0 4.77

SIFT100M∗ 100,000,000 128 23.7 47.7

Tiny80M∗ 79,302,017 384 44.6 113

∗
Real-world Datasets;

†
Synthetic Datasets

Theorem 4. The deletion cost of LSH-APG is independent on n.

7 EXPERIMENTAL STUDY
In this section, we conduct extensive experiments on real-world

and synthetic datasets to provide a comprehension analysis on

LSH-APG. We implement LSH-APG
1
and the competitors in C++

compiled with g++ using -Ofast optimization and openMP for

parallelism. All experiments are run on a Ubuntu server with 4

Intel(R) Xeon(R) Gold 6218 CPUs (160 threads) and 1.5 TB RAM.

7.1 Experimental Settings
Datasets. We employ 8 datasets varying in cardinality and dimen-

sionality, whose information is summarized in Table 2 in the as-

cending order of their sizes. LID 2
in the table is the estimated

local intrinsic dimensionality, as explained in Section 4.4. A larger

LID implies that it is harder to find NN on the dataset. Among

the datasets, Six are real-world datasets widely used in NN search

methods[17, 34, 42, 43], including our competitors. The rest 2 syn-

thetic datasets, Rand10M and Gauss10M are generated from uni-

form distributionU(−1, 1) andGaussian distributionN(0, 1) on each
dimensionality independently. For NN queries, we randomly select

100 points as query points and remove them from the datasets.

Competitors.To demonstrate the indexing and query performance

of LSH-APG, we compare it with the best existing NN search meth-

ods, including LSH-based and graph-based methods. Among LSH-

based methods, DB-LSH [42] is proven to have the lowest query

complexity. Among graph-based methods, a comprehensive ex-

perimental comparison of graph-based methods [43] has shown

that HNSW [34], HCNNG [35] and NSG [17] are always the best

three ones in terms of the query performance. Therefore, we choose

DB-LSH, HNSW, HCNNG and NSG as our competitor algorithms.

Parameter Settings.We consider the (c,k)-ANN queries with k =

50 for all algorithms in the default settings. Following the settings

in the paper or source code of our competitors, we adopt the fixed

parameters for each algorithm. For LSH-APG, K = 16, L = 2,T =
24,T ′ = 2T ,pτ = 0.95. For HNSW, M = 48, e f = 80. For NSG,

L = 40,R = 50,C = 500. For HCNNG, the maximum size of the

cluster is 500 and the number executions of hierarchical clustering

procedures is 10. For DB-LSH, c = 1.5,K = 12, L = 5.

1
https://github.com/Jacyhust/LSH-APG

2
There is no unified method to compute the LID and we estimate it based on the Def. 1

in [1] with x being the average distance between the query points and their 50-th NN.

2 4 6
QT(ms)

0.85

0.90

0.95

Recall

LSH-APG Naive-APG

0 50 100
IT(s)

88

113

(a) DEEP1M

2 4 6 8
QT(ms)

0.7

0.8

0.9

Recall

LSH-APG Naive-APG

0 10000 20000
IT(s)

12647

21038

(b) SIFT100M

Figure 3: Comparison on LSH-APG and Naive-G

Evaluation Metric.We compare the algorithms from four aspects:

indexing quality, indexing efficiency, query quality and query effi-

ciency. We report the index size (IS) of all algorithms and evaluate

the quality of them by using the normalized maximum common

subgraph (NMCS). Maximum common subgraph (MCS) is used to

measure the similarity of two graphs [15]. Here, we adopt NMCS,
a derived definition from MCS, to compute the similarity between

a graph index G for the ANN query and the exact NN graph. Let

G = (V , E) be an APG and GE = (V , E
′) be the exact NN graph of

V that satisfies: 1) For any a point v ∈ V , |G(v)| = |GE (v)| where
G(v) is the neighbors of v in G; 2) Let k ′ = |GE (v)|. GE (v) is the
k ′-NN result of v in V − {v}. Then

NMCS =
∑︁
v ∈V |G(e) ∩GE (e)|∑︁

v ∈V |G(e)|
(5)

Since the exact NN graph is nearly impossible to compute, we

randomly choose 200 vertexes in V to estimate the NMCS. We

evaluate the query quality via recall. Given a query point q, for
a (c,k)-ANN query, assume that the algorithm return the set R =
{o1, . . . ,ok } and the exact kNN ofq is R∗ = {o∗

1
, . . . ,o∗k }, then recall

are defined as follows [42],

Recall =
|R ∩ R∗ |

k
. (6)

We use the running time to evaluate the indexing and query effi-

ciency. The indexes are built with openMP parallelizing and the

query are conducted serially. We adopt the total Indexing Time (IT)
and query time (QT) to report the results..

7.2 Self Evaluation
In this subsection, we demonstrate the effectiveness of the LSH

framework on LSH-APG and analysis the effect of pτ .

7.2.1 Evaluation of the LSH framework. To demonstrate the

effectiveness of the LSH framework, we compare Naive-APG with

LSH-APG on DEEP1M and SIFT100M datasets, as shown in Figure

3. For the sake of brevity, the results of other datasets can be found

in the technical report. To evaluate the query performance, we

plot the Recall-Time curves and observe that LSH-APG reduces

the QT by approximately 20% on DEEP1M and 50% on SIFT100M,

thus indicating an improvement in query processing. As for the

indexing performance, LSH-APG and Naive-APG have almost the
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same graph index and the LSH framework only affects the indexing

cost. Hence, we present their indexing times and find that LSH-

APG reduces the indexing time by 20% on DEEP1M and 45% on

SIFT100M. This highlights the importance of the LSH framework

in the indexing phase.

7.2.2 Parameter study on L and K . To further study the LSH

framework, we evaluate the impact of L and K on the query perfor-

mance of LSH-APG by setting L in the range {0, 1, 2, 5, 10} and K
in the range {0, 6, 12, 18, 24, 30}, respectively. We only show results

for DEEP1M for brevity, but the results for other datasets can be

found in the technical report. As shown in Figure 4, the QT drops

significantly with L increasing from 0 to 2 but gradually with L in-

creasing from 2 to 10. The recall remains rather stable in the whole

range. As a larger L implies a higher space consumption, we choose

L = 2 as the default value. As shown in Figure 5, the QT keeps

decreasing with K . But the recall increases and then decreases with

K . This is because when L is fixed, a too large K will reduce the

candidates found in the LSH indexes. Considering these two factors,

we choose K = 18 as the default value.

7.2.3 Parameter study onpτ . We investigate the impact ofpτ on

query performance by varyingpτ in the range of {0.8, 0.9, 0.95, 1.0}.

For the sake of brevity, we present the results only for the SIFT100M

dataset, while the results for other datasets can be found in the

technical report. pτ determines the pruning threshold during the

search, and a smaller pτ increases the likelihood of filtering out

neighbors. As depicted in Figure 6, both recall and QT improve with

an increase inpτ , indicating that the pruning condition in LSH-APG
can reduce query cost, albeit at the cost of slightly degrading query

quality since it filters out exact results to some extent. Considering

both query efficiency and quality, we set pτ = 0.9.

7.2.4 Parameter study onT andT ′. In this experiment, we eval-

uate the impact of the parameters T and T ′ on the performance

of LSH-APG by setting (T ,T ′) to S1 = (24, 24), S2 = (48, 48),
S3 = (24, 48), S4 = (24, 72), and S5 = (24, 96), respectively. We
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Figure 6: Performance of LSH-APG when varying pτ
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Figure 7: Performance on DEEP1M when Varying T and T ′

only show the results for DEEP1M for brevity, but the results for

other datasets can be found in the technical report. As shown in

Figure 7, when comparing S2 and S3, we observe that the setting
of T ′ = 2T results in higher recall with nearly the same query time

(QT). However, the setting of T = T ′ = 48 results in higher index-

ing time (IT) than the setting of T = 24,T ′ = 48, but with a worse

query performance. When fixing T as 24, increasing T ′ results in a

higher IT, QT, and recall (as seen from S1, S3, S4, S5). The IT and

QT increase almost linearly with T ′, while recall remains almost

constant when T ′ = 2T . Therefore, T ′ = 2T is a good choice.

7.3 Evaluation of Indexing Performance
We evaluated the index quality and efficiency of all algorithms with

their default settings. Our results are depicted in Figure 8. NSG

failed to build an index for the Tiny80M dataset, so we omitted

its results for this dataset, including its query performance. We

have the following observations when comparing each evaluation

metric: (1) When comparing the index size of the different algo-

rithms, we found that LSH-APG has the largest index size among

the graph-based algorithms, smaller only than DB-LSH. This is

because LSH-APG adopts a simple neighbor selection strategy and

does not discard similar edges. The index size of IH is about 30%

of that of LSH-APG, which is acceptable. HNSW has a very small

index size on the Gist1M and Tiny80M datasets, but this is due to its

heuristic neighbor selection, which can negatively affect the query

performance. (2) LSH-APG consistently has the highest NMCS

among the graph-based algorithms, indicating that it is the most

similar to an exact NN graph and has the highest-quality edges,

which benefits the query quality. (3) DB-LSH has the smallest IT

among all the algorithms since it only needs to compute a small

number of hash functions, which is much faster than finding edges

for each point. Among the graph-based algorithms, LSH-APG has
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Figure 9: Performance on SIFT100M when Varying n

the smallest IT, comparable only to HNSW. NSG and HCNNG have

larger ITs. This is due to LSH-APG’s more efficient entry point se-

lection and LSH-based pruning conditions during insertion, which

avoid many unnecessary distance computations. Additionally, LSH-

APG does not use the time-consuming heuristic selection strategy

like HNSW or NSG. Building an NSG requires a large degree of

time, both in constructing an approximation kNN graph and in

selecting heuristic neighbors. Additionally, ensuring connectivity

also requires a lot of time, especially on datasets like Gauss10M

and Rand10M, accounting for 10-20% of the total indexing time. (4)

Comparing the NMCS and IT among different datasets, we found

that all algorithms follow similar trends. For example, LSH-APG has

a smaller IT and higher NMCS on DEEP1M compared to GIST1M.

Similarly, HNSW, NSG, and HCNNG all have smaller ITs and higher

NMCSs on DEEP1M compared to GIST1M. The IT and NMCS of

each algorithm also vary among the datasets. For LSH-APG, the

IT increases gradually with the data cardinality when comparing

SIFT10M and SIFT100M, which aligns with our cost model.
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7.4 Evaluation of Query Performance
In these experiments, we evaluate the query performance of all

algorithms by considering different factors such as data cardinality

n and dimensionality d , varying k , and increasing the number of

checked points. The results of DB-LSH are not included in the rest

of the experiments as it requires much higher query costs to achieve

similar recall compared to graph-based methods. For instance, the

QT of DB-LSH to reach a recall of 0.95 is approximately 7.96 seconds,

which is 500 times greater than that of the graph-based methods.

7.4.1 Effect of n. By randomly selecting a portion of the original

dataset, we evaluate the query performance of all algorithms in their

default settings. We present the results on the SIFT100M dataset in

Figures 9 and results of the rest datasets are shown in the technical

report [38]. The cardinality n ranges from {0.2N0, 0.4N0, . . . ,N0},

whereN0 is the original dataset’s cardinality. Asn increases, each al-

gorithm’s QT increases and recall decreases. However, the increase

in QT for LSH-APG is relatively small, supporting our conclusion

that LSH-APG’s query cost is less impacted by the data cardinality.

7.4.2 Effect of k . We compare the query performance of all algo-

rithms as k varies in the range {1, 10, 20, . . . , 100}. We only present

the results on the SIFT100M dataset in Figures 10. The figures show
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that the QT of each algorithm increases nearly linearly with k , but
LSH-APG has the smallest slope. Furthermore, LSH-APG consis-

tently achieves the smallest QT and the highest recall, indicating

it is the best-performing algorithm in terms of query processing

among the competitors. NSG and HNSW show surprisingly similar

recall values, and their QT-k curves have approximately the same

slope, further highlighting their similarities.

7.4.3 Effect of d . In the default settings, we compare the query

performance of all algorithms as the dimensionalityd of the datasets

varies. We only compare the algorithms on two synthetic datasets,

Rand10M andGauss10M, with the dimensions ranging from 8 to 128.

The results of Gauss10M are displayed in Figure 11 and the results

of Gauss10M are shown in the technical report [38]. As the figures

indicate, the QT of each algorithm increases with d . The increasing
tendencies of LSH-APG, HNSW, and HCNNG are sublinear, while

NSG’s are nearly linear, suggesting that NSG is more susceptible to

the effects of dimensionality. To our surprise, the recall of each al-

gorithm drops very rapidly with increasing d . When d is 8 or 16, all

algorithms reach a recall of almost 1.0, but when d increases to 32,

the recall drops to around 0.6 for Gauss10M and 0.75 for Rand10M.

When d reaches 64 or even 128, the recall drops to less than 0.3.

This result shows that the impact of dimensionality on recall is

much greater than the impact of cardinality. This phenomenon can

be attributed to the "curse of dimensionality," where as the dimen-

sionality increases, the distance between any two points becomes

nearly identical, making it difficult to differentiate NNs from other

points during a query. This "curse of dimensionality" becomes par-

ticularly pronounced on random datasets compared to real-world

datasets, even when d is only 64 or 128, due to their higher LID
(local intrinsic dimensionality) with the same dimensionality.

7.4.4 Recall-QT Curve. The accuracy of an ANN method can

be improved by increasing the number of checked points, but this

also reduces query efficiency. In these experiments, we analyze the

trade-off between recall and query time (QT) through the Recall-QT

curve. The algorithm with the smaller QT for a given target recall is

considered to have better query performance. The results for four

datasets are shown in Figure 12. From the figures, we make the

following observations: (1) As QT increases, all algorithms achieve

higher recall, which aligns with the principle of ANN methods,

where accuracy is traded for efficiency. Additionally, the required

QT to reach a given recall Rec increases nearly exponentially with

Rec , highlighting the difficulty and time-consuming nature of find-

ing exact nearest neighbors. (2) Among all algorithms, LSH-APG

requires the smallest QT to reach the same recall, indicating the best

trade-off between query quality and efficiency. This is due to the

better entry point selection in LSH indexes and the effective prun-

ing condition used to filter out neighbors. (3) NSG and HNSW have

similar performance, as evidenced by the nearly identical curves on

Rand10M. This is because they both use the same heuristic selection

strategy, as proven in [43]. However, HNSW generally performs

better. (4) HCNNG always has the worst query performance. On

Gauss10M and Rand10M, to reach the same recall, HCNNG requires

nearly 4 times the QT of LSH-APG. This can be explained by the

cluster-based approach used in HCNNG to construct subgraphs,

which may not be effective when data in high-dimensional space is

not well-clustered.
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Figure 13: Performance on DEEP1M when Updating

7.5 Evaluation of Updating
We evaluate the update performance of LSH-APG as described in

[24] by conducting batch insertions or deletions. Given the initial

graph index of LSH-APG, IG = (V0, E0), we represent a batch

insertion (or deletion) as a Y% update, where Y = |V |− |V0 |

|V0 |
and |V |

is the number of points in the graph after the update. In this set of

experiments, we examine the impact of Y on the DEEP1M dataset,

where V0 = 600K , by varying Y in {−60,−40,−20, 20, 40} (Y < 0

indicates a deletion operation). The results of query performance

and update time per point (UT) are shown in Figure 13. Regarding

the updating time, we observe that insertion time is lower than

deletion time and that 40% insertion has a slightly higher time

compared to 20% insertion. The increase in deletion time with |Y | is
due to the decrease in the total number of points in the graph and

the increase in the probability that a vertex connects to the points

being deleted, resulting in more time spent adding new edges. In

terms of query performance, we find that recall remains stable and

query time (QT) slightly increases with Y , as the number of points

increases. This suggests that update operations do not negatively

impact query performance.

8 CONCLUSION
In this paper, we have proposed a novel approach, called LSH-APG,

to efficiently build an APG and facilitate ANN query processing in

high-dimensional spaces with quality guarantees. LSH-APG han-

dles the high construction cost issue in the graph-based methods

by designing an efficient and accurate LSH-based query strategy to

consecutively insert data points in the APG. A high-quality entry

point selection technique and LSH-based pruning condition have

been developed to reduce the number of points to be checked in the

search. The expected query cost has been proven to be less affected

by dataset cardinality, allowing us to simultaneously reduce the

query processing time and the indexing time. Therefore, LSH-APG

is well positioned to deal with large-scale datasets. In addition,

It is proven that LSH-APG can be maintained incrementally in a

low cost as the dataset evolves. A thorough range of experiments

showed that LSH-APG can reduce the construction cost by an av-

erage of 40% compared to the best competitors, HNSW, while still

maintaining the best query performance.
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