
Efficient framework for operating on data sketches
Jakub Lemiesz

Wrocław University of Science and Technology

Wrocław, Poland

jakub.lemiesz@pwr.edu.pl

ABSTRACT
We study the problem of analyzing massive data streams based on

concise data sketches. Recently, a number of papers have investi-

gated how to estimate the results of set-theory operations based

on sketches. In this paper we present a framework that allows to

estimate the result of any sequence of set-theory operations.

The starting point for our solution is the solution from 2021.

Compared to this solution, the newly presented sketching algo-

rithm is much more computationally efficient as it requires on aver-

age O (log𝑛) rather than O (𝑛) comparisons for 𝑛 stream elements.

We also show that the estimator dedicated to sketches proposed in

that reference solution is, in fact, a maximum likelihood estimator.

PVLDB Reference Format:
Jakub Lemiesz. Efficient framework for operating on data sketches. PVLDB,

16(8): 1967 - 1978, 2023.

doi:10.14778/3594512.3594526

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://doi.org/10.6084/m9.figshare.22095122.v1

1 INTRODUCTION
1.1 Data sketches
While dealing with massive data streams, it is often infeasible in

the long term to store all data for future analysis. Typically, a

concise summary - in the literature often referred as data sketch -

that allows to keep crucial information should be created online, as

the elements of a stream are observed. The standard way to create

a data sketch is based on using hash functions to assign to identical

elements of the stream the same pseudorandom value.

data stream 𝔐

1, 2, 3, 1, 2, 3 1, 2, 3

set S sketchM
�̂� ≈ 3

estimator

Figure 1: The typical schema of creating a data sketch.

The schema goes as follows (see: Figure 1). We model a stream

as a multiset 𝔐 = (S,𝑚), where S is called the underlying set

of elements and𝑚 : S → N≥1 is a function that determines the

multiplicity of the elements. By using the hash function, we get

rid of information about duplicates and create a sketch M that

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 8 ISSN 2150-8097.

doi:10.14778/3594512.3594526

summarizes the underling set S. Next, based on the sketch M we

try to construct estimators to infer about some properties of set S.
The best known solutions that fit into this scheme are cardinal-

ity estimation algorithms allowing to estimate the number 𝑛 of

distinct stream elements by using storage that is sub-linear in 𝑛.

In this category we havewell-known algorithms such as KMV [4, 6]

or HyperLogLog [12, 15, 16].

The generalized version of the cardinality estimation problem

takes into account the weights of elements. Namely, the task is

to estimate the total sum of weights of unique stream elements

|S|𝑤 =
∑︁
𝑖∈S 𝜆𝑖 , where an element 𝑖 has immutable weight 𝜆𝑖 ∈ R+.

The weighted cardinality estimation problem was analyzed, for ex-

ample, in [3, 7, 11, 18, 19]. Many practical applications for the

weighted version of the problem are discussed in [18]. In particular,

it is applicable in network traffic analysis, executing queries to dis-

tributed data sets or data aggregation in wireless sensor networks.

1.2 Operations on data sketches
The idea of using data sketches to estimate results of the set theory

operations on corresponding data sets has been lately considered

in a number of papers (see [2, 5, 8, 13, 18, 22]). For a thorough and

up-to-date overview of the previous results see [18], which is a

starting point of the solution presented in this paper. In essence,

common to all these solutions is that it is quite straightforward to

estimate the cardinality of the unions |A1 ∪ A2 ∪ . . .A𝑘 | based on

sketches S1, S2, . . . , S𝑘 that represent sets A1,A2, . . .A𝑘 . However,

what is crucial, estimating an intersection |A1 ∩ A2 ∩ . . .A𝑘 | is
significantly more challenging. Obviously, one could try using the

inclusion-exclusion principle |A1 ∩ A2 | = |A1 | + |A2 | − |A1 ∪ A2 | ,
but for larger number of sets it becomes very inaccurate and expen-

sive (see [8]). Luckily, in some solutions it turns out that based on

sketches S1 and S2 one could quite naturally and efficiently estimate

Jaccard Similarity:

𝐽 (A1,A2) =
|A1 ∩ A2 |
|A1 ∪ A2 |

.

Then, by taking the product of estimates of 𝐽 (A1,A2) and |A1 ∪ A2 |
we can get a reasonable estimate of |A1 ∩ A2 |.

As shown in [18], this idea can be generalized to a larger number

of sets and can also be used to estimate the weighted cardinality.

The trick is to estimate the generalized weighted Jaccard Similarity:

𝐽𝑤 (A1,A2, . . .A𝑘) =
|A1 ∩ A2 ∩ . . .A𝑘 |𝑤
|A1 ∪ A2 ∪ . . .A𝑘 |𝑤

.

Based on this trick paper [18] propose a solution that allows to

estimate the result of using the same operation multiple times.

Namely, the proposed solution allows to estimate:

|A1 ∩ A2 ∩ . . .A𝑘 |𝑤 and |A1 ∪ A2 ∪ . . .A𝑘 |𝑤 .

1967

https://doi.org/10.14778/3594512.3594526
https://doi.org/10.6084/m9.figshare.22095122.v1
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3594512.3594526
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1.3 Our contribution
There are three main contributions of this paper. First, we offer a

generalization that allows to estimate the weighted cardinality of a

set constructed from any sequence of set-theory operations.

Second, we significantly reduce the time of creating a sketch

by reducing the average number of comparisons from O (𝑛) to
O (log𝑛), where 𝑛 is the number of stream elements.

Third, we show that the estimator proposed in [18] and dedicated

to considered sketches is, in fact, a maximum likelihood estimator.

2 EXP-SKETCH ALGORITHM
In this section we briefly describe the algorithm proposed in [18]

that is the starting point for further development (see: Algorithm 1).

We assume that elements of the stream𝔐 are pairs (𝑖, 𝜆𝑖), where
𝑖 is a unique identifier and 𝜆𝑖 ∈ R+ is a weight. Without loss of

generality we also assume that if there are 𝑛 distinct elements in

a stream then 𝑖 ∈ {1, 2, . . . , 𝑛}. The problem is to construct a data

sketch that allows to estimate Λ = 𝜆1 + 𝜆2 + . . . 𝜆𝑛 .

Note that in the algorithm presented in [18] each element has

𝑑 weights and each weight is connected to a different feature.

However, each feature correspond to a separate row of a data sketch

and could be considered separately. Therefore, for the sake of clarity,

we consider only elements with one feature.

At first, for each element (𝑖, 𝜆𝑖) one calculates𝑚 hashes:

ℎ(𝑖 | | 1) , ℎ(𝑖 | | 2) , . . . , ℎ(𝑖 | |𝑚) ,
where symbol 𝑖 | | 𝑘 denotes the concatenation of two numbers

𝑖 and 𝑘 , each represented by a fixed length binary sequence. For the

purpose of the formal analysis hashes are considered to be indepen-

dent random variables uniformly distributed in the unit interval.

Each of𝑚 generated hashes is transformed using the inverse cu-

mulative distribution function of the exponential distribution with

parameter 𝜆𝑖 :

𝐹 −1 (𝑢) = − ln𝑢
𝜆𝑖

.

From the inverse transform sampling theorem (see [10]) follows

that for each 𝑘 = 1, . . . ,𝑚 we obtain an exponentially distributed

random variable:

− lnℎ (𝑖 | | 𝑘)
𝜆𝑖

∼ 𝐸𝑥𝑝 (𝜆𝑖) .

Then, in line 5 of Algorithm 1 we compare point-wise these 𝑚

random variables with the values currently stored in sketchM.

Algorithm 1 ExpSketch (𝔐 ,𝑚)

Initialization:
1: set each of𝑚 positions of sketchM = (M1, . . . ,M𝑚) to∞

Upon arrival of an element (𝑖, 𝜆𝑖) ∈ 𝔐 :
2: for all 𝑘 ∈ {1, 2, . . . ,𝑚} do
3: 𝑈 ← ℎ (𝑖 | | 𝑘)
4: 𝐸 ← − ln𝑈 /𝜆𝑖
5: M𝑘 ← min {M𝑘 , 𝐸}
6: end for

Upon request, at any time:
7: return:M

For 𝑖 = 1, . . . , 𝑛 let us define 𝐸𝑖 ∼ 𝐸𝑥𝑝 (𝜆𝑖) and note that a value

stored in M𝑘 after 𝑛 elements has been observed corresponds to

M𝑘 = min {𝐸1, 𝐸2, . . . , 𝐸𝑛} . (1)

Since the minimum of exponentially distributed random variables

is also exponentially distributed we obtain that

M𝑘 ∼ 𝐸𝑥𝑝 (Λ) . (2)

Note that random variablesM1,M2, . . . ,M𝑚 are independent copies

of the same experiment. The independence can be justified by the

fact that all the hashes ℎ(𝑖 | | 𝑘) generated for different values 𝑖 or 𝑘

are considered to be independent random variables.

The sum 𝐺𝑚 = M1 +M2 + . . . +M𝑚 of𝑚 independent exponen-

tially distributed random variables with the same mean Λ follows

the gamma distribution:𝐺𝑚 ∼ Γ(𝑚,Λ),where𝑚 ∈ N+ andΛ ∈ R+ .
Based on the properties of gamma distribution, one can show that

an estimator defined as

Λ =
𝑚 − 1
𝐺𝑚

(3)

for𝑚 ≥ 2 is an unbiased estimator of the parameter Λ , namely:

E[Λ] = Λ . (4)

For𝑚 ≥ 3 we get its variance and standard error:

Var[Λ] = Λ2

𝑚 − 2 and SE[Λ] = 1

/︂√
𝑚 − 2 . (5)

The memory/precision trade-off is similar as for well known KMV

sketches [6], which do not allow weights and offer only basic op-

erations on sketches. In both solutions for a sketch with𝑚 hash

values we get SE ≈ 1/
√
𝑚 . For the discussion on how to adjust the

length of hash values to the number of distinct elements 𝑛 see [18].

3 MAXIMUM LIKELIHOOD ESTIMATOR
In [18] experimental results gave reason to believe that estimator Λ
defined in formula (3) follows the normal distribution. In this sec-

tion we present the proof that Λ is a maximum likelihood estimator.

This guarantees its converges in distribution to a normal distribu-

tion as parameter𝑚 increases. Moreover, it guarantees an asymp-

totic consistency and efficiency of estimator Λ with the growth of

parameter𝑚. Note that an efficient estimator is the minimum vari-

ance unbiased estimator. Let us also remark that in [3] the authors

have proven the cardinality estimator analogous to estimator Λ
(but not allowing weights) is a maximum likelihood estimator.

Consider random variablesM1,M2, . . . ,M𝑚 corresponding to the

content of the sketch in Algorithm 1. Since M𝑖 ∼ 𝐸𝑥𝑝 (Λ) the prob-
ability density function of M𝑖 is 𝑓 (𝑥𝑖) = Λ𝑒−Λ𝑥𝑖 . Then, we can ex-

press the log-likelihood function in terms of unknown parameter Λ

log𝐿(Λ) = log

𝑚∏︂
𝑖=1

Λ𝑒−Λ𝑥𝑖 = 𝑚 log(Λ) − Λ
𝑚∑︂
𝑖=1

𝑥𝑖 .

To find the value of parameter Λ that maximizes the value of

log𝐿(Λ) we compare its first derivative to zero

log𝐿(Λ)
𝑑Λ

=
𝑚

Λ
−

𝑚∑︂
𝑖

𝑥𝑖 = 0 and get Λ =
𝑚∑︁𝑚
𝑖 𝑥𝑖

.

Finally, by changing in the above formula 𝑚 to 𝑚 − 1 for bias

correction and replacing 𝑥𝑖 byM𝑖 we get estimator (3).

1968

4 FAST-EXP-SKETCH ALGORITHM
All the computational cost in Algorithm 1 comes from generating

for each element of the stream𝑚 values and comparing them point-

wise to the current content of the sketchM. While the algorithm is

very simple, in practice for large values of parameter𝑚 and large

number of stream elements the process of creating a sketch can

take an unacceptable amount of time. From our experience, this

is the case not only for devices with limited computational power

like sensors, but also for more powerful machines (see Section 6.2).

In this section we will show how to significantly reduce the total

number of values generated in Algorithm 1 and thus the number

of required comparisons. The main idea is based on the following

result (cf. [10]).

Theorem 4.1. Let 𝐸1, 𝐸2, . . . , 𝐸𝑚 be a sequence of i.i.d. exponential
random variables and let

𝐸 (1) ≤ 𝐸 (2) ≤ . . . ≤ 𝐸 (𝑚)

denote their order statistics, i.e. 𝐸 (𝑘) denotes the 𝑘-th smallest value.
Then for each 𝑘 ∈ {1, 2, . . . ,𝑚} we have the distributional equality:

𝐸 (𝑘)
d

= 𝐸 (𝑘−1) +
𝐸𝑘

𝑚 − 𝑘 + 1 . (6)

4.1 Algorithm construction
Note that in Algorithm 1 for each element (𝑖, 𝜆𝑖) we generate𝑚
values 𝐸1, 𝐸2, . . . 𝐸𝑚 and 𝐸𝑘 ∼ 𝐸𝑥𝑝 (𝜆𝑖) for each 𝑘 ∈ {1, 2, . . . ,𝑚}.
Then we compare these values with the values currently stored in

the sketch and assign M𝑘 ← min {M𝑘 , 𝐸𝑘 }. Note that 𝐸𝑘 surely

will not be assigned toM𝑘 if

𝐸𝑘 > max {M1,M2, . . . ,M𝑚} .

Based on the above observation, we can get identical results as

in the procedure described in Algorithm 1 but with much smaller

number of generated values. Namely, rather than generating vari-

ables 𝐸1, 𝐸2, . . . as in Algorithm 1, we generate order statistics

𝐸 (1) , 𝐸 (2) , . . . in increasing order until we get 𝐸 (𝑖) > 𝑀𝐴𝑋 and com-

pare 𝐸 (1) , 𝐸 (2) , . . . , 𝐸 (𝑖−1) to values at random positions of sketchM.

Let us remark that we cannot just compare 𝐸 (𝑘) to value of M𝑘 .

In such an approach rather than obtaining i.i.d. random variables

M1, . . . ,M𝑚 we would have a positive correlation between the po-

sition of the sketch 𝑘 and the value stored in this position.

The pseudo-code precisely describing the new procedure is pre-

sented below as Algorithm 2. In lines 1-3 we initialize the variables.

Upon arrival of a new element (𝑖, 𝜆𝑖) in line 4 we reset to zero

variable 𝑆 used to store the value of consecutive order statistics.

In line 5 we reset variable 𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝐴𝑋 that indicates whether an

element has caused the change of the maximal value in the sketch.

In line 6 we reset variable 𝑃 used to store a random permutation

generated for an element.

In line 7 we start the loop. In the 𝑘-th step of the loop we compute

the 𝑘-th order statistic and assign it to a random position 𝑗 of M
based on the random permutation 𝑃 . Lines 8-9 generate pseudo-

random values from the exponential distribution with parameter 𝜆𝑖
and are exactly the same as in Algorithm 1. In line 10 we compute

the value of the 𝑘-th order statistic based on the formula (6).

In line 11, if the value of the 𝑘-th order statistic is greater than

the current value of𝑀𝐴𝑋 then neither this order statistic, nor any

subsequent will be stored in the sketch, thus we break the loop.

Otherwise, in lines 12-13 we take a single step of Fisher–Yates

shuffle to compute the value at the 𝑘-th position of permutation 𝑃 .

Note that in line 12 the seed is set to be an identifier 𝑖 and thus,

if an element (𝑖, 𝜆𝑖) appears in the stream multiple times, we al-

ways get the same associated permutation. Note also that after 𝑘-th

step of Fisher–Yates shuffle the first 𝑘 positions of the permuta-

tion are computed and fixed (see e.g. [17] and Algorithm 3 below).

Generating the whole permutation 𝑃 at once would be unneces-

sary and costly, because, as we will show, most often only a small

initial part of 𝑃 is used before the loop is broken in line 11.

In line 14we assign a randomposition 𝑗 for the𝑘-th order statistic

based on permutation 𝑃 . In line 15 we check whether there is a

maximum at position 𝑗 and in such case we set the flag𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑎𝑥 ,

which indicates that the maximum has been changed. In line 16 we

compare the 𝑘-th order statistic 𝑆 to the value stored inM𝑗 .

When the loop is finished and the maximum in the sketch has

been changed, in line 18 we compute the new maximum.

Algorithm 2 FastExpSketch (𝔐 ,𝑚)

Initialization:
1: 𝑝𝑒𝑟𝑚𝐼𝑛𝑖𝑡 ← (1, 2, 3, . . . ,𝑚) O (𝑚)
2: set all values ofM = (M1, . . . ,M𝑚) to∞ O (𝑚)
3: 𝑀𝐴𝑋 ←∞ O (1)

Upon arrival of an element (𝑖, 𝜆𝑖) ∈ 𝔐 :
4: 𝑆 ← 0 O (1)
5: 𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝐴𝑋 ← 𝑓 𝑎𝑙𝑠𝑒 O (1)
6: 𝑃 ← 𝑝𝑒𝑟𝑚𝐼𝑛𝑖𝑡 O (1)
7: for all 𝑘 ∈ {1, 2, . . . ,𝑚} do
8: 𝑈 ← ℎ (𝑖 | | 𝑘) O (1)
9: 𝐸 ← − ln𝑈 /𝜆𝑖 O (1)
10: 𝑆 ← 𝑆 + 𝐸/(𝑚 − 𝑘 + 1) O (1)
11: if 𝑆 > 𝑀𝐴𝑋 then break O (1)
12: 𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟 ([𝑘,𝑚], 𝑠𝑒𝑒𝑑 = 𝑖) O (1)
13: exchange 𝑃 [𝑘] and 𝑃 [𝑟] O (1)
14: 𝑗 ← 𝑃 [𝑘] O (1)
15: if M𝑗 == 𝑀𝐴𝑋 then 𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝐴𝑋 ← 𝑡𝑟𝑢𝑒 O (1)
16: M𝑗 ← min

{︁
M𝑗 , 𝑆

}︁
O (1)

17: end for
18: if updateMAX then𝑀𝐴𝑋 ← max {M1, . . . ,M𝑚} O (𝑚)

Upon request, at any time:
19: return:M

Algorithm 3 Fisher–Yates shuffle

1: 𝑃 ← (1, 2, 3, . . . ,𝑚)
2: for all 𝑘 ∈ {1, 2, . . . ,𝑚} do
3: 𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟 ([𝑘,𝑚])
4: exchange 𝑃 [𝑘] and 𝑃 [𝑟]
5: end for
6: return: 𝑃

1969

4.2 Average number of comparisons
In Algorithm 1 for each element of a stream, we have always𝑚

executions of the loop in line 2 or equivalently𝑚 comparisons in

line 5. Thus, in total for 𝑛 elements there are𝑚 · 𝑛 comparisons.

In this section we will show that in case of Algorithm 2 for most

cases we have on the average O (log𝑛) comparisons in total.

Without loss of generality we assume (𝑖, 𝜆𝑖) is the 𝑖-th element

of a stream (note 𝑖 is only used as an input to the hash function).

Let𝑀𝐴𝑋𝑖 denotes the value of the maximum used in line 11 and

let𝐶𝑖 be a random variable denoting the number of comparisons in

line 16 of Algorithm 2 for this 𝑖-th element. Note that for element

(1, 𝜆1) we have𝑀𝐴𝑋1 = ∞ and the condition in line 11 never holds.

Thus, we have 𝐶1 =𝑚.

Theorem 4.2. For 𝑖 ≥ 2 ,

Λ𝑖 = 𝜆1 + 𝜆2 + . . . 𝜆𝑖 and 𝑟𝑖 =
𝜆𝑖

Λ𝑖−1

we have

E[𝐶𝑖] =𝑚
⎛⎜⎝1 −

𝑚∏︂
𝑗=1

𝑗

𝑗 + 𝑟𝑖
⎞⎟⎠ . (7)

Proof. Since always 0 ≤ 𝐶𝑖 ≤ 𝑚 we get:

E[𝐶𝑖] =
𝑚∑︂
𝑘=1

𝑘 Pr[𝐶𝑖 = 𝑘] =
𝑚∑︂
𝑘=1

Pr[𝐶𝑖 ≥ 𝑘] . (8)

Note that

Pr[𝐶𝑖 ≥ 𝑘] = Pr

[︁
𝐸 (𝑘) < 𝑀𝐴𝑋𝑖

]︁
, (9)

where 𝐸 (𝑘) corresponds to the 𝑘-th order statistic computed in

line 10 of Algorithm 2 (cf. Section 4.1). Note also that we have

Pr

[︁
𝐸 (𝑘) ≤ 𝑀𝐴𝑋𝑖

]︁
=∫ ∞

0

Pr

[︁
𝐸 (𝑘) ≤ 𝑀𝐴𝑋𝑖 | 𝑀𝐴𝑋𝑖 = 𝑥

]︁
𝑚𝑖 (𝑥) 𝑑𝑥 =∫ ∞

0

Pr

[︁
𝐸 (𝑘) ≤ 𝑥

]︁
𝑚𝑖 (𝑥) 𝑑𝑥 =∫ ∞

0

𝐹𝑘 (𝑥) 𝑚𝑖 (𝑥) 𝑑𝑥 , (10)

where

𝑚𝑖 (𝑥) = 𝑒−Λ𝑖−1𝑥
(︂
1 − 𝑒−Λ𝑖−1𝑥

)︂𝑚−1
𝑚 Λ𝑖−1 (11)

is the probability density function of the random variable 𝑀𝐴𝑋𝑖
(see Lemma 4.3) and

𝐹𝑘 (𝑥) =
𝑚∑︂
𝑗=𝑘

(︃
𝑚

𝑗

)︃
𝑝 𝑗 (1 − 𝑝)𝑚−𝑗 for 𝑝 = 1 − 𝑒−𝜆𝑖𝑥 (12)

is the cumulative density function of the 𝑘-th order statistic 𝐸 (𝑘)
for random variables 𝐸1, 𝐸2, . . . , 𝐸𝑚 ∼ 𝐸𝑥𝑝 (𝜆𝑖) (see Lemma 4.4).

By using formulas (8), (9) and (10) we get

E[𝐶𝑖] =
∫ ∞

0

(︄
𝑚∑︂
𝑘=1

𝐹𝑘 (𝑥)
)︄
𝑚𝑖 (𝑥) 𝑑𝑥 , (13)

where by the Lemma 4.5 we have

∑︁𝑚
𝑘=1

𝐹𝑘 (𝑥) =𝑚

(︂
1 − 𝑒−𝜆𝑖𝑥

)︂
.

Next, by using standard techniques and the properties of the

gamma function Γ(𝑥), we can calculate the value of the definite

integral in the formula (13):

E[𝐶𝑖] =𝑚

(︃
1 − Γ(𝑚 + 1)Γ(1 + 𝑟𝑖)

Γ(𝑚 + 1 + 𝑟𝑖)

)︃
.

The above result of the integration can also be easily verified in a

symbolic computation system (e.g. Wolfram Mathematica).

Finally, to obtain the formula (7), we use the properties of the

gamma function (see e.g. [1]). Namely, we use the fact that for

𝑚 ∈ N and 𝑥 ∈ R+ we have Γ(𝑚 + 1) =𝑚! and

Γ(1 + 𝑥)
Γ(𝑚 + 1 + 𝑥) =

1∏︁𝑚
𝑗=1 (𝑗 + 𝑥)

.

□

Lemma 4.3. Let M1,M2, . . . ,M𝑚 be independent random vari-
ables such that for each 𝑘 we have M𝑘 ∼ 𝐸𝑥𝑝 (Λ𝑖−1) and

𝑀𝐴𝑋𝑖 = max {M1,M2, . . . ,M𝑚} .
Then the probability density function𝑚𝑖 (𝑥) of random variable𝑀𝐴𝑋𝑖
is given by the formula (11).

Proof. Since M1,M2, . . . ,M𝑚 are independent, we can easily

obtain the cumulative distribution function of𝑀𝐴𝑋𝑖 :

Pr[𝑀𝐴𝑋𝑖 ≤ 𝑥] = Pr[M1 ≤ 𝑥 ∧ . . . ∧M𝑚 ≤ 𝑥]

= Pr[𝑀1 ≤ 𝑥]𝑚 =

(︂
1 − 𝑒−Λ𝑖−1𝑥

)︂𝑚
.

To obtain formula (11) one can just compute derivative of the above

function in terms of variable 𝑥 . □

Lemma 4.4. Let 𝐸1, . . . , 𝐸𝑚 ∼ 𝐸𝑥𝑝 (𝜆𝑖) be i.i.d. random variables.
The cumulative distribution function of their 𝑘-th order statistic 𝐸 (𝑘)
is given by the formula:

𝐹𝑘 (𝑥) =
𝑚∑︂
𝑗=𝑘

(︃
𝑚

𝑗

)︃
𝑝 𝑗 (1 − 𝑝)𝑚−𝑗 where 𝑝 = 1 − 𝑒−𝜆𝑖𝑥 .

Proof. Note for each 𝑗 ∈ {1, 2 . . . ,𝑚} we have 𝑝 = Pr

[︁
𝐸 𝑗 ≤ 𝑥

]︁
.

Observe that 𝐸 (𝑘) ≤ 𝑥 if and only if at least𝑘 of variables𝐸1, . . . , 𝐸𝑚
is not greater then 𝑥 . Therefore, we can define a random variable

with the binomial distribution 𝑋𝑚,𝑝 ∼ 𝐵𝑖𝑛(𝑚, 𝑝) and note that

𝐹𝑘 (𝑥) = Pr

[︁
𝐸 (𝑘) ≤ 𝑥

]︁
= Pr

[︁
𝑋𝑚,𝑝 ≥ 𝑘

]︁
.

□

Lemma 4.5. Let 𝐹𝑘 (𝑥) be defined as in Lemma 4.4. Then we have
𝑚∑︂
𝑘=1

𝐹𝑘 (𝑥) =𝑚

(︂
1 − 𝑒−𝜆𝑖𝑥

)︂
.

Proof.

𝑚∑︂
𝑘=1

𝐹𝑘 (𝑥) =
𝑚∑︂
𝑘=1

𝑚∑︂
𝑗=𝑘

(︃
𝑚

𝑗

)︃
𝑝 𝑗 (1 − 𝑝)𝑚−𝑗

=

𝑚∑︂
𝑗=1

𝑗

(︃
𝑚

𝑗

)︃
𝑝 𝑗 (1 − 𝑝)𝑚−𝑗 =𝑚𝑝 .

The last equality follows from the fact that E
[︁
𝑋𝑚,𝑝

]︁
=𝑚𝑝 . □

1970

4.3 The edge case scenarios
The general conclusion from Theorem 4.2 is that the total average

number of comparisons E [𝐶] = E [𝐶1] + . . . + E [𝐶𝑛] depends on
the value of the ratio

𝑟𝑖 =
𝜆𝑖

Λ𝑖−1
where Λ𝑖 = 𝜆1 + 𝜆2 + . . . + 𝜆𝑖

for consecutive elements 𝑖 ∈ {1, . . . , 𝑛}. In this section we analyze

the edge case scenarios.

Scenario 1. Assume 𝜆1 = 𝜆2 = . . . = 𝜆𝑛 . From Theorem 4.2 for

𝑖 ≥ 2 we get

𝑟𝑖 =
1

𝑖 − 1 and E[𝐶𝑖] =𝑚
⎛⎜⎝1 −

𝑚∏︂
𝑗=1

𝑗

𝑗 + 1

𝑖−1

⎞⎟⎠ .

Using properties of Stirling numbers of the first kind (or Wolfram

Mathematica) it is easy to show that in this case

lim

𝑖→∞
𝑖 E[𝐶𝑖] =𝑚𝐻𝑚 and E[𝐶𝑖] ≤

𝑚𝐻𝑚

𝑖
,

where 𝐻𝑚 is the𝑚-th harmonic number. Therefore,

E[𝐶] ≤
𝑛∑︂
𝑖=1

𝑚𝐻𝑚

𝑖
=𝑚𝐻𝑚 𝐻𝑛 ,

where 𝐻𝑛 = ln𝑛 + 𝛾 + O (1/𝑛) , while in the original algorithm

we would have E[𝐶] = 𝑚 · 𝑛. Note that𝑚 is a sketch size and is

considered to be constant.

From Scenario 1we can deduce that if values of weights 𝜆1, . . . , 𝜆𝑛
are comparable then 𝑟𝑖 ≈ 1

𝑖 and E[𝐶] is logarithmic in 𝑛. In the

next example we consider scenario in which weights of consecutive

elements systematically grows.

Scenario 2. Assume 𝜆𝑖 = 𝑖 for each 𝑖 . Then for 𝑖 ≥ 2

Λ𝑖−1 =
(𝑖 − 1)𝑖

2

and 𝑟𝑖 =
2

𝑖 − 1 .

By using exactly the same line of reasoning as in the Scenario 1 we

can show that in this case

E[𝐶] ≤
𝑛∑︂
𝑖=1

2𝑚𝐻𝑚

𝑖
= 2𝑚𝐻𝑚 𝐻𝑛 .

Note that if in the Scenario 2 we scale all elements by some factor

𝑓 > 1 to increase the distance between them, we would get exactly

the same ratio 𝑟𝑖 =
2

𝑖−1 and thus the same bound on E[𝐶].
Finally, we consider an extremely pessimistic scenario, in which

the weights of consecutive elements increase exponentially.

Scenario 3. Assume 𝜆1 = 1 and for 𝑖 ≥ 2 we have 𝜆𝑖 = 2
𝑖−2

. Then

for 𝑖 ≥ 2

Λ𝑖−1 = 2
𝑖−2

and 𝑟𝑖 = 1 .

Thus we have

E[𝐶] =𝑚 +
𝑛∑︂

𝑘=2

𝑚
⎛⎜⎝1 −

𝑚∏︂
𝑗=1

𝑗

𝑗 + 1
⎞⎟⎠ =𝑚 +

𝑛∑︂
𝑘=2

𝑚

(︃
1 − 1

𝑚 + 1

)︃
=𝑚

(︃
1 + (𝑛 − 1)

(︃
1 − 1

𝑚 + 1

)︃)︃
≈𝑚 · 𝑛 .

Note that Scenario 3 is the worst-case scenario in the sense that for

each element we almost always have the maximal possible number

of comparisons, which is𝑚, and thus𝑚 · 𝑛 comparisons in total.

4.4 Average-case time complexity
Let us note that in the previous section we consider the pessimistic

scenarios in the sense that elements appear in the ascending order.

In the average case the order of the elements could be expected to

be more random, and thus the values of ratio 𝑟𝑖 for consecutive

elements should be smaller, which in turn reduce values of E[𝐶𝑖].
In general, if we assume that for element (𝑖, 𝜆𝑖) we have

𝑟𝑖 =
𝜆𝑖

Λ𝑖−1
=

1

𝑚𝛼+1 for 𝛼 ≥ 0

we can show that

E[𝐶𝑖] =
ln𝑚 + 𝛾
𝑚𝛼

+ O
(︃
1

𝑚

)︃
.

This fact can be interpreted as follows. For some number of initial

elements, for which the value of 𝑟𝑖 is large, the number of compar-

isons is also large. However, as soon as the ratio 𝑟𝑖 drops below

1/𝑚2
, the value of E[𝐶𝑖] starts approaching zero. Therefore, even if

the number of elements 𝑛 grows, we can still have E[𝐶] = O (ln𝑛).
Note that the above analysis concerns the number of compar-

isons and does not include the pre-processing of stream elements.

Let 𝑡2 be the time to pre-process a stream element in Algorithm 2

(element pre-processing = all steps up to the first call of line 11).

Note also that there is no pre-processing of elements in Algorithm 1

and let 𝑡1 be the time of a single loop execution in this algorithm.

Therefore, if we include pre-processing, the total time for 𝑛 ele-

ments in Algorithm 1 is 𝑡1𝑚𝑛 and in Algorithm 2 is 𝑡2𝑛 + O (ln𝑛).
Term O (ln𝑛) follows from the fact that the total number of loop

steps in line 7 corresponds to the total number of comparisons 𝐶 .

Moreover, computing the maximum in line 18 can be executed

only for elements for which we have at least one comparison.

Note that the number of such elements can not be greater than the

total number of comparisons 𝐶 . Obviously, for sufficiently large 𝑛

term 𝑡2𝑛 dominates O (ln𝑛) and then Algorithm 2 is approximately

𝑚 times faster than Algorithm 1 (since times 𝑡1 and 𝑡2 are similar).

In the analysis presented in this section we do not consider

the possibility of multiple occurrences of an element in a stream.

Note that only the first occurrence of an element affects the sum Λ𝑖 .

Note also that for each occurrence of an element (𝑖, 𝜆𝑖) the number

of comparisons in line 16 of Algorithm 2 depends on the ratio of 𝜆𝑖
and the current sum of weights of different elements that appeared

before the considered instance of (𝑖, 𝜆𝑖). Therefore, repetitions of
elements do not significantly affect the results presented in this sec-

tion, except in situations where there is a small number of distinct

elements in the stream and the ratio 𝑟𝑖 does not decrease with 𝑖

(see experiments in Section 6.1, in particular Figure 3c).

5 SET-THEORY OPERATIONS ON SKETCHES
In this section we show how the results presented in [18] can be

generalized to allow estimating the weighted cardinality of a set

constructed from any sequence of set-theory operations.

5.1 Summary of previous results
First, let us briefly summarize the results obtained in [18]. Assume

we have two sketches created by Algorithm 1 for sets A and B:

A = (A1,A2, . . . ,A𝑚) and B = (B1,B2, . . . ,B𝑚) .

1971

Based on the formulas (1) and (2) we know that A𝑘 and B𝑘 are

minimums of generated values and therefore correspond to expo-

nentially distributed random variables:

A𝑘 ∼ 𝐸𝑥𝑝 (|A|𝑤) and B𝑘 ∼ 𝐸𝑥𝑝 (|B|𝑤) .

5.1.1 Sum. To estimate |A ∪ B|𝑤 based on sketches A and B we

can create sketch A ∪· B by using the point-wise minimum:

A ∪· B := (min{A1,B1} , . . . , min{A𝑚,B𝑚}) .

Namely, since each position of the sketch is a minimum and since

min{min{A} , min{B} } = min{A ∪ B} ,

then sketch A ∪· B corresponds to the sketch we would get by

observing elements of set A ∪ B and for its positions we have:

min{A𝑘 ,B𝑘 } ∼ 𝐸𝑥𝑝 (|A ∪ B|𝑤) .

Therefore, based on definition (3) we can define an unbiased esti-

mator of |A ∪ B|𝑤 for𝑚 ≥ 2 as

𝑈 (A,B) := 𝑚 − 1∑︁𝑚
𝑘=1

min{A𝑘 ,B𝑘 }
. (14)

This approach can be generalized for any number of sketches

𝑈 (A,B,C, ...) by changing summands in (14) tomin{A𝑘 ,B𝑘 ,C𝑘 , ...}.

5.1.2 Jaccard Similarity. The weighted Jaccard similarity on sets

A and B can be defined as

𝐽𝑤 (A,B) :=
|A ∩ B|𝑤
|A ∪ B|𝑤

. (15)

In [18] it has been shown that

𝐽𝑤 (A,B) = Pr[A𝑘 = B𝑘] (16)

and thus for an estimator based on the Iverson bracket notation

𝐽𝑤 (A,B) :=
1

𝑚

𝑚∑︂
𝑘=1

JA𝑘 = B𝑘K (17)

we have

E[𝐽𝑤 (A,B)] = 𝐽𝑤 (A,B)

and

Var
[︂
𝐽𝑤 (A,B)

]︂
=

𝐽𝑤 (A,B) (1 − 𝐽𝑤 (A,B))
𝑚

.

Formula (15) can be generalized to a larger number of sets

𝐽𝑤 (A,B,C, . . .) :=
|A ∩ B ∩ C . . . |𝑤
|A ∪ B ∪ C . . . |𝑤

(18)

and it has been shown that estimator

𝐽𝑤 (A,B,C, . . .) :=
1

𝑚

𝑚∑︂
𝑘=1

JA𝑘 = B𝑘 = C𝑘 = . . .K (19)

is unbiased estimator of (18).

5.1.3 Intersection of sketches. Using sketches A and B one can

define an estimator of the intersection |A ∩ B|𝑤 as:

𝐼 (A,B) := 𝐽𝑤 (A,B) 𝑈 (A,B) . (20)

In [18] it has been shown that for𝑚 ≥ 2 we have

E
[︂
𝐼 (A,B)

]︂
= |A ∩ B|𝑤

and for𝑚 ≥ 3, 𝑝 = |A ∩ B|𝑤 and 𝑠 = |A ∪ B|𝑤 we get:

Var
[︂
𝐼 (A,B)

]︂
=

𝑝2

(𝑚 − 2)𝑚 +
(𝑚 − 1)𝑝𝑠
(𝑚 − 2)𝑚 ≈

𝑝𝑠

𝑚
. (21)

Moreover, the estimator

𝐼 (A,B,C, . . .) := 𝐽𝑤 (A,B,C, . . .)𝑈 (A,B,C, . . .) (22)

is an unbiased estimator of |A ∩ B ∩ C . . . |𝑤 and its variance can

be expressed as in equation (21) with 𝑝 = |A ∩ B ∩ C . . . |𝑤 and

𝑠 = |A ∪ B ∪ C . . . |𝑤 .

Let us emphasize that formula (22) is in practice very easy to

use. Namely, to estimate 𝐽𝑤 we use formula (19) and find a number

𝑚′ of positions that are equal in all the sketches. Next, to estimate

the weighted cardinality of the sum of all sets, we use formula (14)

with the minimum𝑚𝑘 = min{A𝑘 ,B𝑘 ,C𝑘 , . . . } for each position 𝑘 .

Finally, we deal with a neat formula:

𝐼 (A,B,C, . . .) = 𝑚′

𝑚

𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

. (23)

5.1.4 Relative complement. Similarly as in formula (16) for the

weighted Jaccrad similarity one can show that for the complement

over union we have

|A \ B|𝑤
|A ∪ B|𝑤

= Pr[A𝑘 < B𝑘] .

Thus, by analogy to the weighted Jaccard similarity estimator (17)

an unbiased estimator of the complement over union has been

defined in [18] as

𝐶𝑜𝑈 (A,B) := 1

𝑚

𝑚∑︂
𝑘=1

JA𝑘 < B𝑘K . (24)

Then, it has been shown that for𝑚 ≥ 2 and estimator

𝑅(A,B) := 𝐶𝑜𝑈 (A,B)𝑈 (A,B) (25)

we have

E[𝑅(A,B)] = |A \ B|𝑤 .

The variance of estimator 𝑅(A,B) can be expressed by formula (21)

with parameter 𝑝 redefined to 𝑝 = |A \ B|𝑤 .

The value of estimator (25) is also easy to evaluate in practice.

Namely, one can use formula (23) with

𝑚′ =
𝑚∑︂
𝑘=1

JA𝑘 < B𝑘K and 𝑚𝑘 = min{A𝑘 ,B𝑘 } .

1972

5.2 Scheme for three sets
In this section we will show how to generalize the solution de-

scribed in the previous section in such a way that any sequence

of set-theory operations on three sets can be mimic with the cor-

responding operations on sketches. In the next section we will

show that the proposed scheme can be generalized also for a larger

number of sets.

First, let us note that any expression consisted of set-theory

operations can be transformed to a full disjunctive normal form.

Namely, it can be expressed as the sum of disjoint intersections

of sets and in every intersection each set appears exactly once.

The appearance could be a set itself or its complement (see Figure 2).

For example, let us consider three sets A,B,C and the following

sequence of operations, where for the sake of brevity of the notation,

we omit the intersection symbol:

(A \ C) ∪ ABC = ABC ∪ ABC ∪ ABC . (26)

By A = Ω \ A we denote the set complement, and we assume that

Ω = A ∪ B ∪ C .

Therefore, we know that ABC = ∅ and thus |ABC|𝑤 = 0.

The expression on the right hand side of equation (26) is in a full

disjunctive normal form. Since all intersections in this expression

are disjoint, to estimate

| (A \ C) ∪ ABC |𝑤
one can estimate the weighted cardinality of each intersection

separately:

|ABC|𝑤 , |ABC|𝑤 , |ABC|𝑤 .

Obviously, to estimate |ABC|𝑤 we can use formula (23). To es-

timate |ABC|𝑤 let us prove the following lemma, which is an

extension of Lemma 4.1 from [18].

Lemma 5.1.

Pr[A𝑘 = B𝑘 < C𝑘] =
|ABC|𝑤
|Ω |𝑤

. (27)

Proof. For sets A, B, C let SA, SB, SC be sets of values gen-

erated in line 4 of Algorithm 1 for a fixed position 𝑘 of a sketch.

Note that

A𝑘 = min{SA} ∼ 𝐸𝑥𝑝 (|A|𝑤) ,
B𝑘 = min{SB} ∼ 𝐸𝑥𝑝 (|B|𝑤) ,
C𝑘 = min{SC} ∼ 𝐸𝑥𝑝 (|C|𝑤) .

Consider element (𝑖, 𝜆𝑖) and corresponding value 𝐸𝑖 generated in
line 4 of Algorithm 1. Surely, if (𝑖, 𝜆𝑖) ∈ ABC then 𝐸𝑖 ∈ SA SB SC .

The reverse implication also holds except the negligible collisions.

Then we must have

Pr[A𝑘 =B𝑘 <Ck] = Pr

[︂
min

{︂
SA SB SC

}︂
< min

{︂
ΩS \ SA SB SC

}︂]︂
,

where ΩS = SA ∪ SB ∪ SC .

Finally, since the minimum of exponentially distributed random

variables is also exponentially distributed:

min

{︂
SA SB SC

}︂
∼ 𝐸𝑥𝑝

(︂
|ABC|𝑤

)︂
,

min

{︂
ΩS \ SA SB SC

}︂
∼ 𝐸𝑥𝑝

(︂
|Ω \ ABC|𝑤

)︂

and since for independent

𝑋 ∼ 𝐸𝑥𝑝 (𝑥) and 𝑌 ∼ 𝐸𝑥𝑝 (𝑦)
we have

Pr[𝑋 < 𝑌] = 𝑥/(𝑥 + 𝑦)
we can write

Pr[A𝑘 = B𝑘 < C𝑘] =
|ABC|𝑤

|ABC|𝑤 + |Ω \ ABC|𝑤
.

□

Using the Iverson bracket notation we get:

E
[︁
JA𝑘 = B𝑘 < C𝑘K

]︁
= Pr[A𝑘 = B𝑘 < C𝑘] .

Thus, based on Lemma 5.1 we can construct an unbiased estimator:

E

[︄
1

𝑚

𝑚∑︂
𝑘=1

JA𝑘 = B𝑘 < C𝑘K

]︄
=
|ABC|𝑤
|Ω |𝑤

.

Then, we can define an unbiased estimator of |ABC|𝑤 as the

product of two unbiased estimators for

|ABC|𝑤
|Ω |𝑤

and |Ω |𝑤 .

Namely, analogously to formula (23) for

𝑚′ = |{𝑘 : A𝑘 = B𝑘 < C𝑘 }|
we have

E

[︄
𝑚′

𝑚

𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

]︄
= |ABC|𝑤 . (28)

Note that the two estimators don’t have to be independent and to

formally justify equation (28) we need to show that for any 𝑥 ≥ 0

Pr[𝑚𝑘 ≤ 𝑥 | A𝑘 = B𝑘 <C𝑘] = Pr[𝑚𝑘 ≤ 𝑥] . (29)

We skip the proof of equation (29) as the line of reasoning is identical

to the proof of Lemma 4.2 in [18].

To derive an estimator for |ABC|𝑤 we use the following lemma.

Lemma 5.2.

Pr[A𝑘 < min{B𝑘 ,C𝑘 }] =
|ABC|𝑤
|Ω |𝑤

. (30)

Proof. The proof is very similar to the proof of Lemma 5.1.

We only need to observe that

Pr[A𝑘 <min{B𝑘 ,C𝑘 }] = Pr

[︂
min

{︂
SASBSC

}︂
<min

{︂
ΩS\SASBSC

}︂]︂
and thus that

Pr[A𝑘 <min{B𝑘 ,C𝑘 }] =
|ABC|𝑤

|ABC|𝑤 + |Ω \ ABC|𝑤
.

□

Based on Lemma 5.2 we define unbiased estimator for |ABC|𝑤
by the formula (28), but in this case

𝑚′ = |{𝑘 : A𝑘 < min{B𝑘 ,C𝑘 }}| .
In the same way we derive estimator for any other intersection.

The correspondence between sets intersections and the appropriate

formula for parameter𝑚′ is given in Figure 2.

1973

set A set B

set C

ABC

A𝑘 <min{B𝑘 ,C𝑘 }
ABC

B𝑘 <min{A𝑘 ,C𝑘 }

ABC

C𝑘 <min{A𝑘 ,B𝑘 }

ABC

A𝑘 = B𝑘 < C𝑘

ABC

A𝑘 = C𝑘 < B𝑘

ABC

B𝑘 = C𝑘 < A𝑘

ABC

A𝑘 = B𝑘 = C𝑘

Figure 2: Venn diagram representing correspondence
between sets intersections and expressions required to
compute the value of parameter𝑚′ used in estimator (28) .

5.3 General scheme
The scheme presented in the previous section can be general-

ized for any number of sets. For some 𝑑 ≥ 2 let us consider sets

A1,A2, . . . ,A𝑑 that constitute the universe Ω = A1∪A2∪ . . .∪A𝑑 .

Any sequence of set-theory operations on these sets could be

transformed to a full disjunctive normal form – an alternative of dis-

joint intersections, each consisted of 𝑑 sets (or their complements).

Let us consider one of such intersections. Since the intersection

operation is commutative, without loss of generality we can assume

that it has a form

A1 . . . A𝑟 A𝑟+1 . . . A𝑑 ,

where 𝑟 ≥ 1. Note that for 𝑟 = 0 we get A1 . . . A𝑑 = ∅ .
Let A𝑖,𝑘 be the 𝑘-th position in sketch A𝑖 that represents set A𝑖 .

Then we can prove the following lemma.

Lemma 5.3.

Pr

[︁
A
1,𝑘 = . . . = A𝑟,𝑘 < min{A𝑟+1,𝑘 , . . . , A𝑑,𝑘 }

]︁
=

|A1 . . . A𝑟 A𝑟+1 . . . A𝑑 |𝑤
|Ω |𝑤

.

Proof. The proof is very similar to the proof of Lemma 5.1.

We only need to observe that for set Y = SA1
. . . SA𝑟 SA𝑟+1 . . . SA𝑑

we have

Pr

[︁
A
1,𝑘 = . . . = A𝑟,𝑘 < min{A𝑟+1,𝑘 , . . . , A𝑑,𝑘 }

]︁
=

Pr

[︂
min{Y} < min{Y }

]︂
.

□

Therefore, analogously to formula (28), for

𝑚′ = |{𝑘 : A
1,𝑘 = . . . = A𝑟,𝑘 < min{A𝑟+1,𝑘 , . . . , A𝑑,𝑘 }}|

and

𝑚𝑘 = min{A
1,𝑘 , . . . , A𝑑,𝑘 }

we get an unbiased estimator:

E

[︄
𝑚′

𝑚

𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

]︄
= |A1 . . . A𝑟 A𝑟+1 . . . A𝑑 |𝑤 . (31)

We can also easily justify that the variance of the above estimator

can be expressed by the formula (21) with parameters

𝑝 = |A1 . . . A𝑟 A𝑟+1 . . . A𝑑 |𝑤 and 𝑠 = |Ω |𝑤 . (32)

Namely, we can treat

𝑚′

𝑚
and

𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

as independent random variables (cf. Lemma 4.2 in [18]) and use

the fact that if 𝑋 and 𝑌 are independent random variables, then

Var [𝑋𝑌] = E[𝑋]2Var [𝑌]+E[𝑌]2Var [𝑋]+Var [𝑋] Var [𝑌] . (33)
Expected value and variance of estimator𝑚′/𝑚 can be computed

based on the fact that𝑚′ is the sum of indicator random variables

𝑚′ =
𝑚∑︂
𝑘=1

JA
1,𝑘 = . . . = A𝑟,𝑘 < min{A𝑟+1,𝑘 , . . . , A𝑑,𝑘 }K .

From that we can infer that𝑚′ must have the binomial distribution.

Therefore, using Lemma 5.3 and notation given by equations (32)

we get

E

[︃
𝑚′

𝑚

]︃
=
𝑝

𝑠
and Var

[︃
𝑚′

𝑚

]︃
=

1

𝑚

𝑝

𝑠

(︂
1 − 𝑝

𝑠

)︂
. (34)

From equation (4) we know that (𝑚 − 1)/∑︁𝑚
𝑘=1

𝑚𝑘 is an unbiased

estimator. We also know that its variance is given by formula (5).

Thus, by using the notation given by equations (32) we get that

E

[︄
𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

]︄
= 𝑠 and Var

[︄
𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

]︄
=

𝑠2

𝑚 − 2 . (35)

Using formulas (33), (34) and (35) we obtain formula (21).

To sum up, a general scheme for estimating the weighted cardi-

nality of any setX constructed with the use of set-theory operations

on sets A1,A2, . . . ,A𝑑 can be described as follows.

(1) Create sketches A1, . . . ,A𝑑 representing sets A1, . . . ,A𝑑 .
(2) Express set X with the use of sets A1,A2, . . . ,A𝑑 in a full

disjunctive normal form to obtain an alternative of 𝑏 disjoint

intersections for some 𝑏 ≥ 1.

(3) Assume 𝑖-th intersection has the formA1 . . . A𝑟 A𝑟+1 . . . A𝑑 .
For 𝑖 ∈ {1, 2, . . . , 𝑏} compute the value of

𝑚′𝑖 =
𝑚∑︂
𝑘=1

JA
1,𝑘 = . . . = A𝑟,𝑘 < min{A𝑟+1,𝑘 , . . . , A𝑑,𝑘 }K .

(4) Estimate |X|𝑤 by summing up all the unbiased estimates for

disjoint intersections based on formula (31)

E

[︄
𝑚′

1
+𝑚′

2
+ . . . +𝑚′

𝑏

𝑚

𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

]︄
= |X|𝑤 . (36)

1974

(5) Since 𝑚′ = 𝑚′
1
+𝑚′

2
+ . . . +𝑚′

𝑏
is a random variable with

the binomial distribution and

E

[︃
𝑚′

𝑚

]︃
=
|X|𝑤
|Ω |𝑤

by using formula (21) with 𝑝 = |X|𝑤 and 𝑠 = |Ω |𝑤 we get

Var

[︄
𝑚′

𝑚

𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

]︄
≈ |X|𝑤 |Ω |𝑤

𝑚
. (37)

(6) For 𝑋 being an estimator of 𝑥 and 𝜎 [𝑋] =
√︁
Var [𝑋] being

its standard deviation, we define a relative standard error as

SE [𝑋] = 𝜎 [𝑋/𝑥] . Thus, by using formula (37) we get

SE

[︄
𝑚′

𝑚

𝑚 − 1∑︁𝑚
𝑘=1

𝑚𝑘

]︄
≈

√︄
|Ω |𝑤

𝑚 |X|𝑤
. (38)

5.4 Conversion to FDNF
The issue that remains to be clarified is how to find a full disjunctive

normal form (abbreviated as FDNF) in step (2) of the above scheme.

An intuitive approach is to consider all 2
𝑑
possible intersections of

length 𝑑 of sets A1,A2, . . . ,A𝑑 and their complements and decide

which are subsets of set X. This approach is analogous to creating

truth tables and converting them into FDNF boolean expressions.

Obviously, it could be used only if the value of parameter 𝑑 is small.

The following syntactic approach (see [9]) is more convenient,

but also carries the risk of the time complexity exponential in 𝑑 .

(1) Use the fact that A \ B = A ∩ B and de Morgan’s laws to

reduce an original expression to the form consisted only of

sets A𝑖 and A𝑖 combined by the unions and intersections

(i.e. push negations down to the leaves of the syntax tree).

(2) Use the distributive law A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
repeatedly, to obtain a union of intersections.

(3) The requirement that each set A𝑖 occurs, either negated
or not, only once in each intersection is achieved by drop-

ping any intersections containing both A𝑖 and A𝑖 , for any 𝑖 .

If neither A𝑖 nor A𝑖 occurs in an intersection I , note that

I = I ∩ (A𝑖 ∪ A𝑖) = (I ∩ A𝑖) ∪ (I ∩ A𝑖) . (39)

Let us remark that performing the step described by formula (39)

might be unnecessary from the perspective of the estimator (36).

Namely, to be able to simply add all estimates 𝑚′
1
+𝑚′

2
+ . . .𝑚′

𝑏
we only require that all 𝑏 intersections are disjoint. For example,

by joining two first intersections in the formula (26) we get

(A \ C) ∪ ABC = AB ∪ ABC . (40)

SinceAB andABC are disjoint, to use estimator (36) we can simply

add

𝑚′
1
=

𝑚∑︂
𝑘=1

JA𝑘 = B𝑘K and 𝑚′
2
=

𝑚∑︂
𝑘=1

JA𝑘 < min{B𝑘 ,C𝑘 }K .

The form that is built as the union of disjoint intersections is

called in the literature a disjoint disjunctive normal form (DDNF).

A minimal DDNF formula can be obtained by Quine–McCluskey

algorithm (see [21]). Let us remark that obtaining a minimal DDNF

formula can be computationally costly (it’s an NP-complete task).

On the other hand, it may significantly reduce the computational

cost of the considered estimation process.

6 EXPERIMENTS
In this section we present the experimental results. We imple-

mented ExpSketch algorithm proposed in [18] (see: Algorithm 1)

and newly proposed FastExpSketch algorithm (see: Algorithm 2)

in the Wolfram Mathematica language. We make our implementa-

tion and experiments public (see: PVLDB Artifact Availability).

They can be run in Wolfram Mathematica or in Wolfram Player,

which is available for free. All results presented in this section were

obtained onMacBook Air (1,6 GHz Intel Core i5, 16 GB 2133 MHz).

6.1 Verification of analytical results
In this section we verify analytical results presented in previous

sections. Since the order of elements in a stream determines the

number of comparisons we consider four representative scenarios:

(1) 𝜆1 = 𝜆2 = . . . = 𝜆𝑛 ,

(2) 𝜆𝑖 = 𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑛} ,
(3) 𝜆𝑖 = 2

𝑖
for 𝑖 ∈ {1, 2, . . . , 𝑛} ,

(4) (𝜆1, 𝜆2, . . . , 𝜆𝑛) is a random permutation of {1, 2, . . . , 𝑛} .
Scenarios (1) - (3) were already presented and analytically examined

in Section 4.3. In Scenario (4) we consider a random arrangement.

For the sake of figures readability, instead of the total number of

comparisons we use average number of comparisons per element.

In Figure 3a we present the average number of comparisons per

element for FastExpSketch in scenarios (1) – (4) when𝑚 = 100 and

the number of stream elements 𝑛 is changing from 1 to 500. As

expected by the analytical analysis, in scenario (3) we always have

𝑚 ≈ 100 comparisons per element and the average number of com-

parisons in scenario (2) is asymptoticly approximately two times

larger than in scenario (1). In scenario (4) the values of weights are

the same as in scenario (2) but they are arranged in random order.

One can observe that for scenario (4) the number of comparisons

is almost the same as in the most optimistic scenario (1). This con-

firms that scenarios in which the order of elements is ascending

are pessimistic and in the average case the number of comparisons

should be similar to this in scenario (1). Note that in ExpSketch we

always have𝑚 comparisons per each element.

In Figure 3b we present the upper bounds for the average number

of comparisons per element for FastExpSketch in scenarios (1) - (3)

when𝑚 = 100 and the number of stream elements 𝑛 is changing

from 1 to 500. The upper bounds are derived from the analytical

formulas obtained in Sections 4.3. When comparing the graphs

to the corresponding graphs in Figure 3a we see that these upper

bounds are quite strict.

In case of FastExpSketch repetitions of elements also may have

some impact on the computational complexity (see Section 4.4).

Therefore, we analyze how the number of repeating elements in

a stream affects the average number of comparisons per element.

In Figure 3c we present the average number of comparisons per

element for FastExpSketch when𝑚 = 100 and the number of stream

elements 𝑛 changes from 1 to 500 but there are many copies of an

element in the stream. We consider three cases. Namely, we take

a set of 𝑗 elements Ω = {(1, 1), (2, 2), . . . , (𝑗, 𝑗)} for 𝑗 = 1, 5, 50 and

copy each element of this set 500, 100 and 10 times, respectively, to

obtain 500 elements in total. To create a stream of 𝑛 elements, we

take first 𝑛 values in a random permutation of these 500 elements.

1975

(a) The average number of comparisons per element in different
scenarios for𝑚 = 100 as 𝑛 changes from 1 to 500.

(b) Analytical upper bounds for the average number of comparisons
per element for𝑚 = 100 as 𝑛 changes from 1 to 500.

(c) The average number of comparisons per element when there is
1, 5 and 50 unique elements in a stream and𝑚 = 100.

(d) Comparisons of analytical and experimental results on set given
by formula (26) as𝑚 changes from 1 to 1000 .

Figure 3: Experimental verification of analytical results for FastExpSketch algorithm.

The experiment shows that if there is only one unique element in a

stream, for each copy of this element we need𝑚 = 100 comparisons.

However, as we mentioned in Section 4.4, when the number of

unique elements grows, the average number of comparisons per

element drops. For 50 unique elements the results are already similar

to the results for scenario (4) in Figure 3a, in which we have a

random permutation of the unique elements.

To experimentally verify the results of Section 5 we have defined

the set of all possible elements as Ω = {(1, 1), (2, 2), . . . , (100, 100)}
and constructed sets A,B and C to be random subsets of Ω such

that |A| = |B| = |C| = 50 . Then, by using FastExpSketch for all

three sets, we have constructed sketches A,B and C, respectively,
for all values of parameter𝑚 from 3 to 1000. Then we use these

sketches and estimator defined by formula (36) to estimate the

weighted cardinality of the set defined by formula (26). We repeat

this experiment 10 times for each value of𝑚 to approximate the

mean and standard error of the estimator. In each experiment we

use a different seed provided to the hash function. In Figure 3d we

present the results of this experiment. By comparing the experi-

mental and analytical results we can conclude that estimator (36) is

actually unbiased and formula (38) for the standard error is correct.

6.2 Twitter dataset
In this and next sections we show that proposed sketches are suit-

able for online processing of massive data streams and enable time

and memory efficient offline analysis. First, we analyze a stream of

geotagged tweets from Twitter generated in Europe in April 6-8

2016 (see [20]). The entire stream contains 468 709 tweets and takes

1 GB of memory. In experiments we use user identifier (element id),

user number of followers (element weight) and additionally user

geolocalization, tweet language and time of tweet publication. We

create 30 data sketches containing information about the distinct

number of users and the average number of followers in the entire

stream (Ω), in different times of a day, countries and languages.

We use sketches to run more precise queries, for example concern-

ing users posting only in the afternoon, never posting in English and

users from France or Spain posting only in English (see: Table 1).

In order to obtain the desired precision of estimates for queries

on many sketches, we need to properly set the size𝑚 of a sketch.

For this purpose we use standard error formula (38) expressing how

much in percent an estimate differs from the exact value on average.

Assume that we aim at a standard error not greater than 10% and

that for a set X being analyzed we have |X|𝑤 / |Ω |𝑤 ≈ 1/10 .
Then, by formula (38) for𝑚 = 10

3
we get SE ≈ 10%.

For𝑚 = 10
3
FastExpSketch needed 6 minutes to generate all

30 sketches. ExpSketch for the same task needed 157 minutes.
All sketches take in total 30 ×𝑚 × 32 bits = 0.12MB of memory.

Note that all sketches are generated independently, so they can

be generated in parallel 30 times faster. The code and results of

presented experiments are available in Mathematica notebooks

Twitter_ExpSketch.nb and Twitter_FastExpSketch.nb.
Based on sketches created by FastExpSketch for 𝑚 = 10

3
we

obtain the results in Table 1. For each set, we give the exact number

of distinct users and the exact average number of followers per user.

Below each exact number we give the standard error for an estimate

based on sketches (expressed in percent). The average number of

followers in a set is estimated as the estimate of the sum of followers

for distinct users (𝜆𝑖 = nr of followers) divided by the estimate of

the number of distinct users (𝜆𝑖 = 1). Note that the standard error

is at the level of 10% or lower in all cases except the last query,

where the estimate for the average number of followers has the

standard error equal to 28.3%. This is due to the fact that in this

1976

Table 1: Number of distinct users and average number of fol-
lowers for different sets. For each exact number, we give the
standard error of the estimate based on sketches (𝑚 = 10

3).

Ω Morning Afternoon Evening Night

distinct users 171 890 67 445 89 609 68 445 17 694

SE (%) 0.6 0.1 2.5 0.2 1.9

av. followers 1 535 1 591 1 613 1 466 1 578

SE (%) 3.3 0.9 7.2 2.1 4.9

UK Spain Germany France Poland

distinct users 23 076 20 141 5 042 7 791 1 103

SE (%) 3.1 0.2 1.6 3.6 0.8

av. followers 2 340 1 514 1 938 2 735 1 111

SE (%) 0.3 2.0 3.6 10.1 4.8

English Spanish German French Polish

distinct users 60 216 16 779 4 078 6 355 1 110

SE (%) 6.1 1.5 2.4 0.9 1.4

av. followers 1 869 1 445 1 426 2 672 821

SE (%) 7.9 1.3 1.8 2.2 0.3

Afternoon \ (Morning ∪ Evening ∪ Night)

distinct users 53 768 av. followers 1 755

SE (%) 12.3 SE (%) 6.1

(Spanish ∪ German ∪ French ∪ Polish) \ English
distinct users 24 144 av. followers 1 588

SE (%) 5.1 SE (%) 8.1

(France ∪ Spain) ∩ (English \ (French ∪ Spanish))

distinct users 1 965 av. followers 1380

SE (%) 9.4 SE (%) 28.3

case |X|𝑤 / |Ω |𝑤 ≈ 2/100 and this ratio is too small for𝑚 = 10
3
.

To increase the granularity of the query we need to increase 𝑚.

For example, if |X|𝑤 / |Ω |𝑤 ≈ 1/100 and we aim at SE ≈ 10%, we

need to set𝑚 = 10
4
. In practice, we can use a rough initial estimate

of |X|𝑤 / |Ω |𝑤 to adjust𝑚. The time of performing queries and

operations on sketches is negligible (given in milliseconds).

6.3 Twitter API
To test FastExpSketch in the streaming scenario we created a note-

book Twitter_API.nb that allows to connect to Twitter API and build
30 sketches analogous to these in Section 6.2. Due to Twitter’s policy,

we were able to fetch only 6 million tweets in 6 · 104 batches, each
batch containing approximately 100 tweets. Most of the time was

spent waiting for the API to respond (also Twitter’s policy).

In Table 2 we analyze the time of experiment broken down to

different activities for𝑚 = 10
3
. Waiting for the API and fetching

data take almost 97% of the time. Updating a sketch takes 1.03 hour,

which does not exceed 3% of the time. On average, updating a

sketch by a single batch took 0.06[𝑠]. The relatively large standard

deviation from the mean (0.05[𝑠]) results from the fact that initial

batches consume much more time than later ones (cf. Section 6.1).

Estimates based on created sketches are shown in Twitter_API.nb.
Their accuracy is similar to accuracy of estimates from Section 6.2.

Due to Twitter’s policy, we cannot share the obtained dataset, how-

ever, we share a file with 𝑖𝑑𝑠 of collected tweets and the code that

allows to fetch them (so called hydrating tweets).

Table 2: Building 30 sketches for 6 million tweets (𝑚 = 10
3).

For each activitywe show total time inhours andpercentage,
mean time and standard deviation for a single batch [sec].

Total [h] Total [%] Mean [s] SD [s]

Waiting for API 22.22 58.55 1.19 10.8

Fetching data 13.23 38.32 0.78 0.13

Processing data 0.04 0.13 0.002 0.0005

Updating sketch 1.03 2.98 0.06 0.05

6.4 Stream simulator
Since the Twitter API did not allow to fully show the efficiency of

FastExpSketch (too little data coming in too slowly), in notebook

simulator.nb we share the code for modeling a data stream. It allows

to specify elements in a stream, the batch size and the time of fetch-

ing a batch. The latter can be defined by a probability distribution.

In the notebook we run three trials for 𝑛 = 10
9
elements and the

batch size equal to 1000. Since the fetching time can be modeled

arbitrarily, in Table 3 we only report times for the sketch updates.

Let us compare the first two rows of Table 3. We can say that the

total time cost of increasing𝑚 from 10
3
to 10

4
is not very significant.

By comparing the mean and maximal time for a single batch one

can deduce that the substantial difference is only for initial batches.

By comparing the second and third row of Table 3 one can also

say that in a pessimistic scenario, in which weights of elements

gradually grow, there is no significant increase of the total time cost.

As previously, the substantial difference is only for initial batches.

Table 3: Sketching 10
9 elements (𝑖, 𝜆𝑖) with FastExpSketch.

For given𝑚 and 𝜆𝑖 we show total time of sketch updates in
hours and mean and maximal time for a single batch [sec].

𝑚 𝜆𝑖 Total [h] Mean [s] Max [s]

10
3

rand(0,1) 4.33 0.016 1.127

10
4

rand(0,1) 5.45 0.020 30.112

10
4 𝑖 5.79 0.021 61.609

7 CONCLUSIONS
Our three main contributions form a complete solution.

Contribution 1: Proof that estimator Λ = 𝑚−1
𝐺𝑚

defined in [18]

is a maximum likelihood estimator and thus is asymptotically most

efficient and normally distributed when𝑚, the number of experi-

ments, increases to infinity. Showing that to estimate the weighted

cardinality of any set constructed as a sequence of set-theory oper-

ations with the desired level of precision, one need to choose the

appropriate value of parameter𝑚 according to formula (38).

Contribution 2:Much faster algorithm for updating a sketch.

The idea is to reduce the number of hashes that are computed

for each element from 𝑚 to a constant by considering them in

increasing order and having an early stopping criterion.

Contribution 3: Generalization of the solution of [18] allowing

simple set operations to a solution allowing arbitrary set operations.

The idea is to transform a set-theory expression to a full disjunc-

tive normal form consisting of disjoint set intersections, estimate

every intersection separately, and then sum up all these estimates.

We believe that is the most important contribution of this paper.

1977

REFERENCES
[1] Milton Abramowitz and Irene A. Stegun. 1964. Handbook of Mathematical Func-

tions with Formulas, Graphs, and Mathematical Tables. Dover, New York.

[2] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei

Wei, and Ke Yi. 2012. Mergeable Summaries. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Scottsdale,
Arizona, USA) (PODS ’12). Association for Computing Machinery, New York, NY,

USA, 23–34. https://doi.org/10.1145/2213556.2213562

[3] Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. 2009. Fast Estima-

tion of Aggregates in Unstructured Networks. In Proceedings of the 2009 Fifth
International Conference on Autonomic and Autonomous Systems. IEEE Computer

Society, 88–93.

[4] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. 2002.

Counting Distinct Elements in a Data Stream. In RANDOM. 1–10.

[5] Kevin Beyer, Rainer Gemulla, Peter J. Haas, Berthold Reinwald, and Yannis

Sismanis. 2009. Distinct-Value Synopses for Multiset Operations. Commun. ACM
52, 10 (Oct. 2009), 87–95. https://doi.org/10.1145/1562764.1562787

[6] Philippe Chassaing and Lucas Gerin. 2006. Efficient estimation of the cardinal-

ity of large data sets. In 4th Colloquium on Mathematics and Computer Science.
DMTCS Proceedings, 419–422.

[7] Reuven Cohen, Liran Katzir, and Aviv Yehezkel. 2015. A Unified Scheme for

Generalizing Cardinality Estimators to Sum Aggregation. Inf. Process. Lett. 115, 2
(Feb. 2015), 336–342. https://doi.org/10.1016/j.ipl.2014.10.009

[8] Anirban Dasgupta, Kevin J. Lang, Lee Rhodes, and Justin Thaler. 2016. A Frame-

work for Estimating Stream Expression Cardinalities. In 19th International Confer-
ence on Database Theory, ICDT 2016, Bordeaux, France, March 15-18, 2016 (LIPIcs),
Wim Martens and Thomas Zeume (Eds.), Vol. 48. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 6:1–6:17. https://doi.org/10.4230/LIPIcs.ICDT.2016.6

[9] B.A. Davey and H.A. Priestley. 2002. Introduction to Lattices and Order. Cambridge

University Press.

[10] Luc Devroye. 1986. Non-Uniform Random Variate Generation. Springer-Verlag,
New York, NY, USA.

[11] Nick Duffield, Carsten Lund, and Mikkel Thorup. 2007. Priority Sampling for

Estimation of Arbitrary Subset Sums. J. ACM 54, 6 (Dec. 2007), 32–es.

[12] M. Durand and P. Flajolet. 2003. Loglog Counting of Large Cardinalities. In

Annual European Symposium on Algorithms (ESA03) (Lecture Notes in Computer
Science), G. Di Battista and U. Zwick (Eds.), Vol. 2832. Springer Berlin Heidelberg,

605–617.

[13] Otmar Ertl. 2017. New Cardinality Estimation Methods for HyperLogLog

Sketches. CoRR (2017). arXiv:1706.07290 http://arxiv.org/abs/1706.07290

[14] Otmar Ertl. 2021. SetSketch: Filling the Gap between MinHash and HyperLogLog.

Proc. VLDB Endow. 14, 11 (jul 2021), 2244–2257. https://doi.org/10.14778/3476249.

3476276

[15] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. 2007. HyperLogLog: the anal-

ysis of a near-optimal cardinality estimation algorithm. In Proceedings of the
Conference on Analysis of Algorithms (AofA’07). 127–146.

[16] Stefan Heule, Marc Nunkesser, and Alex Hall. 2013. HyperLogLog in Practice:

Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.

In Proceedings of the EDBT 2013 Conference. Association for ComputingMachinery,

Genoa, Italy, 683–692.

[17] Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2: Seminumer-
ical Algorithms (third ed.). Addison-Wesley, Boston.

[18] Jakub Lemiesz. 2021. On the algebra of data sketches. Proc. VLDB Endow. 14, 9
(2021), 1655–1667. https://doi.org/10.14778/3461535.3461553

[19] Damon Mosk-Aoyama and Devavrat Shah. 2006. Computing separable functions

via gossip. In Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing (PODC ’06). Association for Computing Machinery,

113–122.

[20] Wolfram Research. 2016. Geotagged Public Tweets (Europe, April 6-8 2016).

https://doi.org/10.24097/wolfram.73020.data

[21] W.G. Schneeweiss. 2012. Boolean Functions: With Engineering Applications and
Computer Programs. Springer Berlin Heidelberg.

[22] Daniel Ting. 2016. Towards Optimal Cardinality Estimation of Unions and

Intersections with Sketches. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Francisco, California,

USA) (KDD ’16). ACM, New York, NY, USA, 1195–1204. https://doi.org/10.1145/

2939672.2939772

1978

https://doi.org/10.1145/2213556.2213562
https://doi.org/10.1145/1562764.1562787
https://doi.org/10.1016/j.ipl.2014.10.009
https://doi.org/10.4230/LIPIcs.ICDT.2016.6
https://arxiv.org/abs/1706.07290
http://arxiv.org/abs/1706.07290
https://doi.org/10.14778/3476249.3476276
https://doi.org/10.14778/3476249.3476276
https://doi.org/10.14778/3461535.3461553
https://doi.org/10.24097/wolfram.73020.data
https://doi.org/10.1145/2939672.2939772
https://doi.org/10.1145/2939672.2939772

	Abstract
	1 Introduction
	1.1 Data sketches
	1.2 Operations on data sketches
	1.3 Our contribution

	2 Exp-Sketch algorithm
	3 Maximum likelihood estimator
	4 Fast-Exp-Sketch algorithm
	4.1 Algorithm construction
	4.2 Average number of comparisons
	4.3 The edge case scenarios
	4.4 Average-case time complexity

	5 Set-theory Operations on Sketches
	5.1 Summary of previous results
	5.2 Scheme for three sets
	5.3 General scheme
	5.4 Conversion to FDNF

	6 Experiments
	6.1 Verification of analytical results
	6.2 Twitter dataset
	6.3 Twitter API
	6.4 Stream simulator

	7 Conclusions
	References

