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ABSTRACT
This paper studies how to determine temporal orders on attribute
values in a set of tuples that pertain to the same entity, in the absence
of complete timestamps. We propose a creator-critic framework to
learn and deduce temporal orders by combining deep learning and
rule-based deduction, referred to as GATE (Get the lATEst). The
creator of GATE trains a ranking model via deep learning, to learn
temporal orders and rank attribute values based on correlations
among the attributes. The critic then validates the temporal orders
learned and deduces more ranked pairs by chasing the data with
currency constraints; it also provides augmented training data as
feedback for the creator to improve the ranking in the next round.
The process proceeds until the temporal order obtained becomes
stable. Using real-life and synthetic datasets, we show that GATE
is able to determine temporal orders with 𝐹 -measure above 80%,
improving deep learning by 7.8% and rule-based methods by 34.4%.
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1 INTRODUCTION
Real-life data keeps changing. As reported by Royal Mail, on aver-
age, “9590 households move, 1496 people marry, 810 people divorce,
2011 people retire and 1500 people die” each day in the UK [60]. It is
estimated that inaccurate customer data costs organizations 6% of
their annual revenues [60]. Outdated data incurs damage not only
to Royal Mail. When the data at a search engine is out of date, a
restaurant search may return a business that had closed three years
ago. When the data about the condition of infrastructure assets is
obsolete, it may delay the maintenance of equipment and cause
outage. Moreover, data-driven decisions based on outdated data
can be worse than making decisions with no data [49]. Indeed, “as a
healthcare, retail, or financial services business you cannot afford to
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make decisions based on yesterday’s data” [25]. Unfortunately, “82%
of companies are making decisions based on stale information” [8].

These highlight the need for determining the currency of data,
i.e., how up-to-date the information is. This is, however, highly
nontrivial. Consider a set of tuples that pertain to the same entity.
Their attribute values may become obsolete and inaccurate over the
time. Worse yet, only partial reliable timestamps might be available,
where a timestamp is reliable if it is precise, correct and moreover,
it indicates that at the time, the values are correct and up-to-date.
Apart from mechanical reasons (malicious attacks or hardware
failures), the logical reasons below are the major temporal issues in
data quality [5], and account for the absence of reliable timestamps.
(1) Missing timestamps. Timestamps may simply not be recorded,
e.g., in an e-health database [40], only 16 out of 26 relations are
timestamped. Even when a relation has timestamps, it may not be
complete, e.g., 25.36% missing in [53], up to 82.28% in [40].

(2) Imprecise timestamps. Timestamps may be too coarse, leading to
unreliable ordering. An e-form may be submitted multiple times to
an OA system by employees during a day. If the forms are recorded
in datestamps, it is not clear which form (all on the same day) is
the latest. Similar problems are often encountered in hospital data,
where only dates are recorded [5]. Another example concerns in-
consistent granularity of timestamps (e.g., minutes vs. days [5, 40]).
If two values have timestamps “12-8-2021” and “12-8-2021 20:41”,
it is not clear which one is more up-to-date. As reported in [53],
90.41% of appointment records have imprecise timestamps.

(3) Incorrect timestamps.Many factors can lead to incorrect times-
tamps. Taking medical data [5] as an example, an X-ray machine
has many asynchronous modules, each of which has a local clock
and a local buffer. There can be a discrepancy between when a
value is actually updated and when it is recorded since the value is
first queued in the buffer before it is recorded. Moreover, 36.96% of
appointments have the overlapping issue (i.e., the next appointment
in a particular room appears to have started before the current one
has ended) [53], indicating incorrect timestamps.

As remarked earlier by Royal Mail [60], customer data changes
frequently. To prevent the data from being outdated, the sales de-
partment may contact the customers and get regular updates on
some critical information (e.g., email and phone). Due to the im-
patience of customers and high cost (e.g., man power) of contact,
the rest (e.g., jobs, marital status) may not be frequently updated
and may gradually become obsolete, no longer having a reliable
timestamp. Add to this the complication that data values are often
copied or imported from other sources [21, 22], and even in the
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FN LN sex address status job kids SZ
𝑡1, 𝑒1: Mary Goldsmith F 19 xin st single n/a - 5
𝑡2, 𝑒1: Mary Taylor F 6 gold plaza married journalist 1 6
𝑡3, 𝑒1: Mary Taylor F 19 mall st espoused assoc editor 2 7
𝑡4, 𝑒1: Mary Taylor F 7 ave divorced chief editor 2 7
𝑡5, 𝑒1: Mary Taylor F 7 ave detached chief editor 2 7
𝑡6, 𝑒1: Mary Goldsmith F 6 const. ave wed producer 3 7

Figure 1: Customer records dataset

same database, values may come from multiple relations (e.g., by
join), where no uniform scheme of timestamps is granted, e.g., some
values are more frequently timestamped than the others [40]. This
calls for an attribute-level time-stamping scheme (i.e., each value
has a timestamp). It subsumes the tuple-level scheme (i.e., all values
in the same tuple have the same timestamp) as a special case.

Nomatter how desirable, the percentage of reliable timestamps is
far lower than expected. How can we determine the temporal orders
on the attribute values, i.e., for tuples 𝑡1 and 𝑡2, whether the value in
the𝐴-attribute of 𝑡1 is more current than the value in the𝐴-attribute
of 𝑡2, denoted by 𝑡2 ≺𝐴 𝑡1, in the absence of complete timestamps?

Example 1: Consider customer records 𝑡1-𝑡6 shown in Figure 1,
which have been identified to refer to the same person Mary. Each
tuple 𝑡𝑖 has attributes FN (first name), LN (last name), sex, address,
marital status, job, kids and SZ (shoe size). Some attribute values of
these tuples have become stale since Mary’s data changes over the
years, e.g., her job, address and last name have changed 4 times, five
times and twice, respectively. Only some attribute values might be
associated with reliable timestamps, e.g., the timestamp of 𝑡5 [job]
and 𝑡6 [job] are 2016 and 2019 (not shown), respectively, indicating
that at that time, the values are up-to-date. In the absence of com-
plete timestamps, it is hard to knowwhether 𝑡2 ≺LN 𝑡6, i.e.,whether
the value of 𝑡2 [LN] is more up-to-date than 𝑡6 [LN]?Moreover, what
Mary’s current job title is, e.g., whether 𝑡𝑖 ≺job 𝑡6 for 𝑖 ∈ [1, 4]? 2

One may want to approach this problem by training a ranking
model that sorts objects according to their degrees of relevance or
importance [51]. The state-of-the-art systems in this regard employ
deep learning [7, 36, 57, 63] or reinforcement learning [37, 68], and
have been used in search engine [11] and machine translation
[24, 70]. By means of ranking models one can learn temporal orders
and decide whether 𝑡1 ≺𝐴 𝑡2 for all tuples 𝑡1, 𝑡2 and attribute 𝐴.
However, it is hard to justify whether the ranking conforms to the
temporal orders in the real world. For data-driven decision making,
we need to ensure that the learned orders are reliable. Moreover,
these approaches cannot explain the ranking of objects that follow
a complex interlinked structure (e.g., address in Figure 1).

Another approach is to employ logic rules, e.g., currency con-
straints (CCs) [19, 23, 28, 30, 44, 48, 66]. These rules help us deduce
temporal orders. Taking Example 1 as an example, the shoe sizes of
the same person typically monotonically increases (before 20 years
old), and the address of a person may be associated with the marital
status. As will be seen in Section 2, using CCs one can deduce that
𝑡2 ≺SZ 𝑡3 and 𝑡1 ≺address 𝑡2. However, it is hard to find enough
rules to deduce relative orders on each and every pair of values.
For instance, we cannot find rules to decide whether 𝑡2 ≺LN 𝑡6.
When testing existing rule-based methods on a dataset with 5%
initial timestamps, even the best of them can only deduce 16.3%
temporal orders (Section 6), leaving the remaining 78.7% undecided.
Besides, it is hard to generalize rules to handle lexically different

but semantically similar values, since tuples might be extracted
from different sources (e.g., status in Figure 1: married vs. wed).

Neither deep/ML learning nor logic rules work well when used
separately. A natural question is whether it is possible to combine
MLmodels and logic rules in a uniform framework, such that we can
learn temporal orders, and use the rules to validate the ranking and
improve the learning? How well can this framework improve the
accuracy of the ML models and logic rules when being used alone?

Contributions & organization. This paper makes a first effort to
answer these questions, all in the affirmative.
(1) Temporal orders (Section 2). We define the notion of temporal
orders 𝑡1 ≺𝐴 𝑡2 and 𝑡1 ⪯𝐴 𝑡2 on attributes, and formulate the
problem for determining temporal orders. We also review the cur-
rency constraints (CCs) of [30], for deducing temporal orders by
our framework. We show that CCs can specify interesting temporal
properties, e.g., the monotonicity, comonotonicity and transitivity.
(2) GATE (Section 3). We propose GATE (Get the lATEst), a creator-
critic framework to determine temporal orders by combining deep
learning and logic deduction. GATE iteratively invokes a creator to
rank the temporal orders on attribute values, followed by the critic
that validates the ranking of the creator and deduces more ranked
pairs via discovered CCs. The critic also produces augmented train-
ing data for the creator to improve its ranking in the next round.
This process proceeds for the creator and critic to mutually enhance
each other, until the temporal order cannot be further improved.

(3) Creator (Section 4). We propose a deep learning model under-
lying the creator of GATE, to learn temporal orders on attribute
values. It departs from previous ranking models in that it learns the
temporal orders based on contexts (i.e., attribute correlations) and
calculates the confidence of the ranking, by employing chronologi-
cal embeddings and adaptive pairwise ranking strategies.

(4) Critic (Section 5). The critic complementsGATEwith discovered
rules (CCs). We show how it justifies the ranked pairs learned by the
creator, and (incrementally) deduces latent temporal orders with the
chase [62] using CCs. The chase has the Church-Rosser property
(cf. [2]), i.e., it guarantees to converge at the same result no matter in
what orders the CCs are applied. Moreover, the critic augments the
training data for the creator to improve its model in the next round.

(5) Experimental study (Section 6). Using real-life and synthetic
data, we find that (a) the 𝐹 -measure ofGATE on dataset Career [41]
is 0.866, versus 0.41 and 0.39 by rule-based UncertainRule [44] and
Improve3C [18] (resp. 0.54 and 0.53 by ML-based RANKBert [56]
and DittoRank [47]). (b) On average, GATE is 34.4% and 7.8% more
accurate than the critic and the creator, respectively, verifying
the effectiveness of combining deep learning and logic rules. (c)
GATE is feasible in practice; it only takes 7 rounds to terminate
on a real-life dataset of 1,983,698 tuples, with a single machine.

Related work. We categorize the related work as follows.
Rule-based methods. Currency constraints (CCs) were first studied
in [29, 30] by employing partial currency orders and later extended
in [27, 28] for conflict resolution, by considering both CCs and con-
ditional functional dependencies (CFDs) [26]. A class of currency
repairing rules (CRRs) was proposed in [43], which combines logic
rules and statistics. A two-step approach was developed in [17] to
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determine the currency of dynamic data, by means of a topolog-
ical graph. A class of uncertain currency rules was supported by
UncertainRule [44] that considers both temporal orders and data
certainty. Improve3C [18] and Imp3C [19] are 4-step data cleaning
frameworks, including data consistency, completeness and currency,
which use a metric to repair noisy data using CFDs [26] and cur-
rency orders. There has also been work [23] on parallel incremental
updating algorithms by employing traditional currency rules.

This work differs from the prior work. To the best of our knowl-
edge, we make the first effort to combine deep learning and rules
for timeliness, for the two to enhance each other, while the prior
work at most extends rules with statistic. We propose a model for
inferring temporal orders and use logic deduction to derive more.

ML models. There have also been efforts on inferring temporal or-
ders by ML models [6, 10, 35, 54, 55, 64]. A related topic is to in-
corporate temporal information into knowledge graphs, e.g., for
temporal link predictions [20, 61] and reasoning [16, 65, 69]. These
methods often embed temporal information in ML models, for infer-
ence varying over time. Learning temporal orders has been modeled
as a learning-to-rank problem (pointwise, pairwise and listwise),
where global orders are learned for currency attributes. Temporal
problems have also been studied in, e.g., search and recommenda-
tion [31, 67], IR [50] and NLP [47, 56]. In particular, ranking in NLP
(e.g., in question-answering tasks) can be handled by pre-trained
language models with cross-entropy loss or by a ranking function
with a binary classifier as the comparison operator; we adopted a
baseline from each kind (i.e., RANKBert and DittoRank) in Section 6.

In contrast, we propose a creator-critic framework that not only
learns temporal orders via deep learning, but also adopts rules
to deduce new ones and help ML models learn better. The prior
models can be embedded into our framework.

Entity resolution (ER). Temporal clustering methods were proposed
in [46] based on a concept of time decay, to improve ER with times-
tamps. [12] dynamically assesses and adjusts similarities among
records based on their attributes and temporal differences. [42] es-
timates the probability that a value changes, and shows how to link
tuples in a correct time period. To cope with incorrect timestamps,
[66] adopts matching dependencies (MDs) and currency constraints
to capture the attributes that were changed over time.

This work focuses on deducing temporal orders of each entity,
while the prior work mainly adopts temporal information for ER.

2 DETERMINING TEMPORAL ORDERS
In this section we first formulate temporal orders and the problem
for determining temporal orders (Section 2.1). We then review cur-
rency constraints (CCs) of [30] and show that such rules are able to
express monotonicity, comonotonicity and transitivity (Section 2.2).

2.1 The Problem
Consider a relation schema 𝑅 = (EID, 𝐴1, . . . , 𝐴𝑛), where 𝐴𝑖 is
an attribute (𝑖 ∈ [1, 𝑛]), and EID is an entity id as introduced by
Codd [14]. For a tuple 𝑡 of schema 𝑅, we denote by 𝑡 [𝐴] the value in
the 𝐴-attribute of 𝑡 , and by 𝑡 [EID] the entity represented by tuple
𝑡 . We assume that each tuple is associated with a tuple id, denoted
by tid. We refer to a relation 𝐷 of 𝑅 as a normal instance 𝐷 of 𝑅.

Temporal orders and temporal instances. An entity instance is
(𝐷𝑒 ,𝑇𝑒 ), where (a)𝐷𝑒 is a normal instance of schema 𝑅 such that all
tuples 𝑡1 and 𝑡2 in 𝐷𝑒 refer to the same real-life entity 𝑒 and hence,
𝑡1 [EID] = 𝑡2 [EID]; and (b) 𝑇𝑒 is a partial function that associates
a timestamp 𝑇𝑒 (𝑡 [𝐴]) with the 𝐴-attribute of a tuple 𝑡 in 𝐷𝑒 . We
refer to (𝐷𝑒 ,𝑇𝑒 ) as an entity instance pertaining to 𝑒 .

Here the timestamp indicates that at the time 𝑇𝑒 (𝑡 [𝐴]), the 𝐴-
attribute value of tuple 𝑡 is correct and up-to-date; it does not nec-
essarily refer to the time when 𝑡 [𝐴] was created or last updated. If
𝑇𝑒 (𝑡 [𝐴]) is undefined, a reliable timestamp is not available for 𝑡 [𝐴].

Intuitively, an entity instance extends a normal instance with
available timestamps. Its tuples may be extracted from a variety
of data sources, and are identified to refer to the same entity 𝑒

via entity resolution. In the same tuple 𝑡 , 𝑡 [𝐴] and 𝑡 [𝐵] may bear
different timestamps (or even no timestamp) for different 𝐴 and 𝐵.
Note that we do not assume a timestamp for the entire tuple, since
we often find only parts of a tuple to be correct and up-to-date.

Temporal orders. A temporal order on attribute 𝐴 of 𝐷𝑒 is a partial
order ⪯𝐴 such that for all tuples 𝑡1 and 𝑡2 ∈ 𝐷𝑒 , 𝑡2 ⪯𝐴 𝑡1 if the value
in 𝑡1 [𝐴] is at least as current as 𝑡2 [𝐴]. We also use a strict partial
order 𝑡2 ≺𝐴 𝑡1 if 𝑡1 [𝐴] is more current than 𝑡2 [𝐴]. To simplify the
discussion we focus on ⪯𝐴 in the sequel; ≺𝐴 is handled analogously.

In particular, if 𝑇𝑒 (𝑡1 [𝐴]) and 𝑇𝑒 (𝑡2 [𝐴]) are both defined and if
𝑇𝑒 (𝑡2 [𝐴]) ≤ 𝑇𝑒 (𝑡1 [𝐴]), i.e., when timestamp𝑇𝑒 (𝑡1 [𝐴]) is no earlier
than 𝑇𝑒 (𝑡2 [𝐴]), then 𝑡2 ⪯𝐴 𝑡1, i.e., 𝑡1 [𝐴] is confirmed at a later
timestamp and is thus considered at least as current as 𝑡2 [𝐴].

Temporal order ⪯𝐴 is represented as a set of tuple pairs such
that (𝑡2 [tid], 𝑡1 [tid]) ∈ ⪯𝐴 iff 𝑡2 ⪯𝐴 𝑡1. Wewrite (𝑡2 [tid], 𝑡1 [tid]) as
(𝑡2, 𝑡1) if it is clear in the context. Note that the same value may bear
different timeliness in different tuples, e.g.,Mary’s marital status
changed frommarried (𝑡2) to divorced (𝑡4) to married (𝑡7, not shown
in Figure 1). While 𝑡2 [status] = 𝑡7 [status], 𝑡2 ≺status 𝑡7. Here
𝑡2 ≺status 𝑡7 ranks the timeliness of the status-attributes of tuples
𝑡2 and 𝑡7, not values (married vs. married) detached from the tuples.

We say that a temporal order ⪯1
𝐴
extends ⪯2

𝐴
, written as ⪯2

𝐴
⊆⪯1

𝐴
,

if for all tuples 𝑡1, 𝑡2 in 𝐷𝑒 , if 𝑡2 ⪯2
𝐴
𝑡1 is defined, then so is 𝑡2 ⪯1

𝐴
𝑡1.

That is, ⪯1
𝐴
includes all tuple pairs in ⪯2

𝐴
and possibly more.

Temporal instances. A temporal instance 𝐷𝑡 of 𝑅 is given as (𝐷, ⪯𝐴1 ,

. . . , ⪯𝐴𝑛
,𝑇 ), where each ⪯𝐴𝑖

is a temporal order on 𝐴𝑖 (𝑖 ∈ [1, 𝑛]),
𝐷 =

⋃
𝑖∈[𝑘 ] 𝐷𝑒𝑖 , 𝑇 =

⋃
𝑖∈[𝑘 ] 𝑇𝑒𝑖 , and for all 𝑖 ∈ [1, 𝑘], (𝐷𝑒𝑖 ,𝑇𝑒𝑖 ) is

an entity instance of 𝑅. Here tuples 𝑡1 and 𝑡2 in 𝐷 are compatible
under ⪯𝐴 if they pertain to the same entity, i.e., 𝑡1 [EID] = 𝑡2 [EID].

Intuitively, 𝐷𝑡 is a collection of entity instances, such that each
(𝐷𝑒𝑖 ,𝑇𝑒𝑖 ) pertains to the same entity 𝑒𝑖 . We do not rank the currency
of tuples if they refer to different entities. A temporal instance 𝐷𝑡 =

(𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛
,𝑇 ) is said to extend another temporal instance

𝐷′
𝑡 = (𝐷, ⪯′

𝐴1
, . . . , ⪯′

𝐴𝑛
,𝑇 ) if for all 𝑖 ∈ [1, 𝑛], ⪯𝐴𝑖

extends ⪯′
𝐴𝑖
.

Problem statement. We study the problem for determining the
temporal orders of a temporal instance, stated as follows.
◦ Input: A temporal instance 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ).
◦ Output: An extended temporal instance 𝐷′

𝑡=(𝐷, ⪯′
𝐴1
, . . . , ⪯′

𝐴𝑛
,

𝑇 ) such that for all 𝑖 ∈ [1, 𝑛], (a) ⪯′
𝐴𝑖

extends ⪯𝐴𝑖
and (b) ⪯′

𝐴𝑖
is

a total order on all compatible 𝑡1 and 𝑡2 with 𝑡1 [EID] = 𝑡2 [EID].
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Intuitively, our goal is to extend ⪯𝐴𝑖
such that for all tuples 𝑡1

and 𝑡2 in𝐷 , if 𝑡1 [EID] = 𝑡2 [EID], we can decide which of 𝑡1 [𝐴𝑖 ] and
𝑡2 [𝐴𝑖 ] is more up-to-date. As a consequence, we can deduce the lat-
est value for all attributes. Note that we define a total order on each
attribute, not a global order on tuples. The total orders on different
attributes can be different. This said, we can use the temporal orders
learned on one attribute to help the deduction on other attributes,
via correlation expressed as currency constraints (see below).

2.2 Currency Constraints
We next review the class of currency constraints proposed in [30].
The predicates over a relation schema 𝑅 are defined as:

𝑝 ::= 𝑡 [𝐴] ⊕ 𝑐 | 𝑡1 [𝐴] ⊕ 𝑡2 [𝐴] | 𝑡1 ⪯𝐴 𝑡2,
where 𝑡, 𝑡1, 𝑡2 are tuple variables denoting tuples of 𝑅, 𝐴 is an at-
tribute of 𝑅, 𝑐 is a constant, ⊕ is an operator from {=,≠, >, ≥, <, ≤};
𝑡 [𝐴] ⊕ 𝑐 and 𝑡1 [𝐴] ⊕ 𝑡2 [𝐴] are defined on attribute values, while
𝑡1 ⪯𝐴 𝑡2 compares the timeliness of 𝑡1 [𝐴] and 𝑡2 [𝐴]. In particular,
𝑡1 [EID] = 𝑡2 [EID] says that 𝑡1 and 𝑡2 refer to the same entity.

A currency constraint (CC) over schema 𝑅 is defined as follows:
𝜑 = 𝑋 → 𝑝0,

where 𝑋 is a conjunction of predicates over 𝑅 with tuple variables
𝑡1, . . . , 𝑡𝑚 , and 𝑝0 has the form 𝑡𝑢 ⪯𝐴𝑖

𝑡𝑣 for 𝑢, 𝑣 ∈ [1,𝑚]. We refer
to 𝑋 as the precondition of 𝜑 , and 𝑝0 as the consequence of 𝜑 .

As defined in [30], a CC can be equivalently expressed as a
universal first-order logic sentence of the following form:
𝜑 = ∀𝑡1, . . . , 𝑡𝑚

( ∧
𝑗∈[1,𝑚]

(𝑡1 [EID] = 𝑡 𝑗 [EID]) ∧ 𝑋 → 𝑡𝑢 ⪯𝐴 𝑡𝑣
)
.

Semantics. Currency constraints are defined over temporal in-
stances 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ) of 𝑅. A valuation of tuple vari-
ables of a CC 𝜑 in 𝐷𝑡 , or simply a valuation of 𝜑 , is a mapping ℎ
that instantiates variables 𝑡1, . . . , 𝑡𝑚 with tuples in 𝐷 that refer to
the same real-world entity, as required by 𝑡1 [EID] = 𝑡 𝑗 [EID].

A valuation ℎ satisfies a predicate 𝑝 over 𝑅, written as ℎ |= 𝑝 ,
if the following is satisfied: (1) if 𝑝 is 𝑡 [𝐴] ⊕ 𝑐 or 𝑡1 [𝐴] ⊕ 𝑡2 [𝐴],
then it is interpreted as in tuple relational calculus following the
standard semantics of first-order logic [2]; and (2) if 𝑝 is 𝑡1 ⪯𝐴 𝑡2,
then 𝑡2 [𝐴] is at least as current as 𝑡1 [𝐴] i.e., (𝑡1, 𝑡2) is in ⪯𝐴 .

For a conjunction𝑋 of predicates, we write ℎ |= 𝑋 if ℎ |= 𝑝 for all
𝑝 in 𝑋 . A temporal instance 𝐷𝑡 satisfies CC 𝜑 , denoted by 𝐷𝑡 |= 𝜑 ,
if for all valuations ℎ of 𝑋 → 𝑝0 in 𝐷𝑡 , if ℎ |= 𝑋 then ℎ |= 𝑝0.

Properties. Currency constraints are able to specify interesting
temporal properties. Below we exemplify some properties.
Monotonicity. A temporal order ⪯𝐴 over relation schema 𝑅 ismono-
tonic if for any tuples 𝑡1 and 𝑡2 of 𝑅 that refer to the same entity, if
𝑡1 [𝐴] ≤ 𝑡2 [𝐴] then 𝑡1 ⪯𝐴 𝑡2. For instance, consider the SZ (shoe
size) attribute of the customer relation of Example 1. Then ⪯SZ is
monotonic. It can be expressed as the following CC:

𝜑1 = 𝑡1 [SZ] ≤ 𝑡2 [SZ] → 𝑡1 ⪯SZ 𝑡2 .

As another example, marital status only changes from single to
married, not the other way around [9]. This is expressed as CC:
𝜑2 = 𝑡1 [status] = “single”∧𝑡2 [status] = “married” → 𝑡1 ⪯status 𝑡2 .

With slight abuse of terminologies by considering timestamps
as an “attribute” associated with attribute 𝐴, we have:

𝜑3 = 𝑇𝑒 (𝑡1 [𝐴]) ≤ 𝑇𝑒 (𝑡2 [𝐴]) → 𝑡1 ⪯𝐴 𝑡2,

since 𝑡2 [𝐴] is confirmed at a later timestamp.

Comonotonicity. For attributes 𝐴 and 𝐵 of 𝑅, we say ⪯𝐴 and ⪯𝐵 are
comonotonic in a temporal instance 𝐷𝑡 of 𝑅 if for all tuples 𝑡1 and 𝑡2
in 𝐷𝑡 that refer to the same entity, 𝑡1 ⪯𝐴 𝑡2 if and only if 𝑡1 ⪯𝐵 𝑡2.

Intuitively, ⪯𝐴 and ⪯𝐵 are comonotonic if the two are correlated
such that when one is updated, the other will also change. For
instance, ⪯status and ⪯address are often comonotonic: when the
marital status of a person changes from single to married, this
person may move to a larger house. This can be expressed as a CC:

𝜑4 = 𝑡1 ⪯status 𝑡2 → 𝑡1 ⪯address 𝑡2 .

Transitivity. Transitivity can also be expressed for any attribute 𝐴:
𝜑5 = 𝑡1 ⪯𝐴 𝑡2 ∧ 𝑡2 ⪯𝐴 𝑡3 → 𝑡1 ⪯𝐴 𝑡3 .

Correlating different attributes. One can correlate multiple different
attributes to capture implicit temporal ordering. For example, mar-
ital status may change from “married" to “divorced" and further
from “divorced" to “married" again. To deduce an order on 𝑡 [status],
we can use the number of kids as an additional condition:

𝜑6 = 𝑡1 [status] = “married” ∧ 𝑡2 [status] = “divorced”∧
𝑡1 [kids] < 𝑡2 [kids] → 𝑡1 ⪯status 𝑡2.

Deduction. Making use of CCs, we can deduce certain temporal
orders, e.g., from 𝜑1-𝜑6 and Figure 1, we can deduce the following:
◦ 𝑡1 ⪯status 𝑡2 by 𝜑2, 𝑡2 ⪯status 𝑡4 by 𝜑6 and 𝑡1 ⪯status 𝑡4 by 𝜑5;
◦ 𝑡1 ⪯address 𝑡2 by 𝜑4; hence 𝑡2 [address] is more current for Mary;
◦ 𝑡1 ⪯SZ 𝑡2 ⪯SZ 𝑡3 by 𝜑1; hence Mary’s current shoe size is 7.
However, we cannot determine whether 𝑡2 ⪯LN 𝑡6 or 𝑡6 ⪯LN 𝑡2 by
deduction with the currency constraints 𝜑1-𝜑6.

Discovery ofCCs. As noted in [30],CCs are a special case of denial
constraints (DCs) [3] extended with temporal orders ⪯𝐴 and ≺𝐴 .
Algorithms are in place for discovering DCs, e.g., [4, 13, 52, 58]. We
can readily extend these algorithms for discovering CCs (see [1]).

3 GATE: A CREATOR-CRITIC SYSTEM
In this section, we propose a creator-critic framework for determin-
ing temporal orders, and develop system GATE to implement it. A
unique feature of GATE is its combined use of deep learning and
logic deduction. Below we start with the architecture of GATE, and
then present its overall workflow, with termination guarantee.

Architecture. The ultimate goal of GATE is to obtain a total order
⪯𝐴 for each attribute 𝐴. As shown in Figure 2, GATE first discovers
a set Σ of CCs on 𝐷𝑡 offline for performing logic deduction. Then it
takes a temporal instance 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ) as input, and
learns and deduces more temporally ranked pairs for 𝐷𝑡 online.
For simplicity, we assume w.l.o.g. that 𝐷 consists of a single entity
instance𝐷𝑒 , i.e., all tuples in𝐷 pertain to the same entity 𝑒 and thus
their attributes can be pairwisely compared; the methods of this
paper can be readily extended to 𝐷𝑡 with multiple entity instances.

More specifically, the learning and deducing process in GATE it-
eratively executes two phases, namely, creator and critic, as follows.

(1) Creator (Sections 4). In this phase, GATE (incrementally) trains
a ranking model Mrank via deep learning. By taking 𝐷𝑡 and the
augmented training data 𝐷aug (see its definition shortly) from the
critic as input, it predicts new orders for extending each ⪯𝐴 of 𝐷𝑡 .
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Figure 2: Architecture of GATE

Our model has three features: (a) For each tuple 𝑡 in 𝐷 , the embed-
ding for 𝑡 [𝐴] is created using both 𝑡 [𝐴] and other correlated values
in 𝑡 , so that 𝑡 [𝐴] can be ranked comprehensively. (b) The attribute
embeddings [15] are arranged to preserve chronological orders. (c)
We adopt an attribute-centric adaptive pairwise ranking strategy in
Mrank, so that the ranking result can be justified semantically. More-
over, the temporal instance 𝐷𝑡 will also be extended based on 𝐷aug.

Given an attribute 𝐴, we associate each (𝑡1, 𝑡2) ∈⪯𝐴 with a con-
fidence, denoted by conf (𝑡1⪯𝐴𝑡2), indicating how likely 𝑡1 ⪯𝐴 𝑡2
holds. If 𝑡2 [𝐴] has a later timestamp than 𝑡1 [𝐴], then conf (𝑡1⪯𝐴𝑡2)
is 1. If 𝑡1 ⪯𝐴 𝑡2 is predicted by Mrank, its confidence is from 0 to 1.
We only consider (𝑡1, 𝑡2) predicted byMrank with conf (𝑡1 ⪯𝐴 𝑡2) ≥
𝛿 , where 𝛿 is a predefined threshold, as candidate pairs to be ex-
tended to ⪯𝐴 . We denote the set of all candidate pairs of ⪯𝐴 by ⪯M

𝐴
.

The input and output of the creator are as follows:
◦ Input: A temporal instance 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ) and the
augmented training data 𝐷aug from the critic.

◦ Output: An extended temporal instance 𝐷′
𝑡 = (𝐷, ⪯′

𝐴1
, . . . , ⪯′

𝐴𝑛
,

𝑇 ) based on 𝐷aug and the predicted orders (⪯M
𝐴1

, . . . , ⪯M
𝐴𝑛

).
(2) Critic (Sections 5). In this phase, the critic of GATE justifies and
deduces more temporally ranked pairs, by applyingCCs in Σ via the
chase [62]. Denote the result of chasing by ⪯Σ

𝐴
. Depending on the

validity of ⪯Σ
𝐴
, we construct an augmented training data, denoted

by𝐷aug, containing the ranked pairs justified (resp. conflicts caught
by CCs); 𝐷aug will be fed back to the creator, for the next round of
model learning, so that the creator can learn frommore unseen data
and get higher accuracy iteratively. Specifically, 𝐷aug is a temporal
instance extended with a validity flag fvalid, i.e., 𝐷aug = (𝐷, ⪯′

𝐴1
,

. . . , ⪯′
𝐴𝑛

,𝑇 , fvalid): (a) if fvalid is true, ⪯Σ
𝐴
is valid and all temporal

order deduced by the chase will be added to𝐷aug; and (b) otherwise,
the chasing is invalid, i.e., both (𝑡1, 𝑡2) ∈⪯𝐴 and (𝑡2, 𝑡1) ∈⪯𝐴 are
deduced, and either 𝑡1 ≺𝐴 𝑡2 and 𝑡2 ≺𝐴 𝑡1. In this case, these two
conflicting orders will be added to 𝐷aug, and the creator will be
asked to resolve this conflict, by revising its model accordingly.

Formally, the input and output of the critic are as follows:
◦ Input: A temporal instance 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ), the
predicted temporal orders (⪯M

𝐴1
, . . . , ⪯M

𝐴𝑛
) and a set Σ of CCs.

◦ Output: Augmented data 𝐷aug = (𝐷, ⪯′
𝐴1
, . . . , ⪯′

𝐴𝑛
,𝑇 , fvalid).

The novelty of the critic consists of (a) the deduction using the
chase, and (b) an efficient algorithm implementing the chase.

Workflow. As shown in Figure 3, GATE takes a temporal instance
𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ) and a set Σ of CCs discovered offline as
input, and it outputs an extended temporal instance 𝐷′

𝑡 = (𝐷, ⪯′
𝐴1
,

. . . , ⪯′
𝐴𝑛

,𝑇 ) with a total order ⪯′
𝐴
defined for each attribute 𝐴.

GATE first initializes the augmented training data 𝐷aug = (𝐷,
⪯′
𝐴1
, . . . , ⪯′

𝐴𝑛
,𝑇 , fvalid = true) (Line 1, details omitted) for the first

Input: A temporal instance 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛 ,𝑇 ) , and a set Σ of CCs.
Output: An extended temporal instance 𝐷 ′

𝑡 = (𝐷, ⪯′
𝐴1

, . . . , ⪯′
𝐴𝑛

,𝑇 ) such
that for all 𝑖 ∈ [1, 𝑛], (a) ⪯′

𝐴𝑖
extends ⪯𝐴𝑖

and (b) ⪯𝐴𝑖
is a total order.

1. 𝐷aug := Initialize(𝐷𝑡 , fvalid = true, Σ) ; Initialize the ranking model Mrank;
2. while true do
3. /* The Creator of GATE */
4. 𝐷𝑡 := Extend(𝐷𝑡 , 𝐷aug ) ;
5. Train Mrank incrementally based on 𝐷𝑡 ;
6. (⪯M

𝐴1
, . . . , ⪯M

𝐴𝑛
) := the predicted temporal orders by Mrank;

7. /* The Critic of GATE */
8. (⪯Σ

𝐴1
, . . . , ⪯Σ

𝐴𝑛
) := Chase(𝐷𝑡 , Σ) ;

9. 𝐷aug := ConstructAugmented(𝐷, ⪯M
𝐴1

, . . . , ⪯M
𝐴𝑛

, ⪯Σ
𝐴1

, . . . , ⪯Σ
𝐴𝑛

,𝑇 ) ;
10. if 𝐷𝑡 no longer changes then
11. break;
12. 𝐷𝑡 = Extend(𝐷𝑡 ,Mrank ) ;
13. return 𝐷𝑡 ;

Figure 3: Workflow of GATE

round of GATE, by deducing its initial temporal orders ⪯′
𝐴
via CCs

in Σwhose preconditions do not involve timeliness comparison, e.g.,
we can create temporal orders for those tuples with available times-
tamps using 𝜑3. The initialization can be done efficiently by [33].

Then GATE iteratively executes the creator and the critic in
rounds. In the 𝑖-th round, (a) the creator extends the temporal in-
stance 𝐷𝑡 (Line 4, see Section 4) based on the augmented training
data 𝐷aug returned by the critic in the (𝑖 − 1)-th round, by pos-
sibly revising its model to resolve the conflicts. Then the creator
incrementally trainsMrank (Line 5, see Section 4) and predicts new
temporal orders (⪯M

𝐴1
, . . . , ⪯M

𝐴𝑛
) (Line 6), which are candidate pairs

(𝑡1, 𝑡2) with confidences at least 𝛿 ; and (b) the critic deduces more
ranked pairs (⪯Σ

𝐴1
, . . . , ⪯Σ

𝐴𝑛
) by chasing with CCs in Σ (Line 8).

Based on the result of chasing, the critic constructs augmented
training data 𝐷aug via procedure ConstructAugmented (Line 9, see
Section 5); this 𝐷aug is fed back to the creator for the next round.

Finally, when 𝐷𝑡 no longer changes (Line 10-11), the iteration
ends. If 𝐷𝑡 is still not a temporal instance with total orders defined
on all attributes, we extend it using procedure Extend (Line 12),
such that for each pair (𝑡1, 𝑡2), one of (𝑡1, 𝑡2) and (𝑡2, 𝑡1) learnedwith
a higher confidence is in ⪯𝐴 , until each ⪯𝐴 becomes a total order.

Termination. We prove in [1] that eventually, GATE will terminate
(Line 10), i.e., with more iterations, 𝐷𝑡 is gradually extended with
more orders and finally, becomes stable and does not change.

Theorem 1: GATE is guaranteed to terminate. 2

Example 2: Continuing with Example 1, assume that Σ = {𝜑1-𝜑6}
and 𝐷𝑡 has empty temporal orders. We first initialize the training
data 𝐷aug by applying CCs in Σ that do not compare timeliness in
their preconditions, e.g., we can deduce 𝑡5 ⪯job 𝑡6 by 𝜑3. Suppose
that after training Mrank based on the initial 𝐷aug, no tuple pair
predicted by Mrank is at least 𝛿-confident in the first round. The
creator outputs empty ⪯M

𝐴
for each𝐴 due to the lack of information.

Then by applying the CCs in Σ, the critic can deduce new temporal
orders ⪯Σ

𝐴
, e.g., 𝑡1 ⪯address 𝑡2 by 𝜑4 and 𝑡1 ⪯status 𝑡4 by 𝜑5. Both

⪯M
𝐴

and ⪯Σ
𝐴
will be used to construct the augmented training data

𝐷aug, based on which the creator extends 𝐷𝑡 and incrementally
trainsMrank in the second round. This time the creator might be
able to predict confident temporal orders, e.g., 𝑡1 ⪯LN 𝑡2, based on
the augmented training data 𝐷aug. The iteration continues until
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𝐷𝑡 does not change anymore. Each temporal order ⪯𝐴 in 𝐷𝑡 will
be extended to a total order byMrank if it is still not total. 2

Remark.We adopt a confidence threshold 𝛿 to ensure the reliability
of ML predictions, so that only reliable orders are considered. When
confident orders cannot be decided for the lack of initial information,
we may opt to invite user inspection to ensure the correctness of a
few initial ranked pairs, from which more reliable orders can be it-
eratively deduced/learned. The parameter 𝛿 plays an important role
in modelMrank, e.g.,when testingMrank on procedural billing data
(with 82.28% real missing timestamps [40]), we find that 22.6% pairs
are identified as confident when 𝛿 = 0.55. The percentage decreases
to 16.7% when 𝛿 = 0.6. We will test the impact of 𝛿 in Section 6.

4 CREATOR
In this section, we develop the creator ofGATE. Given a temporal in-
stance 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ) and the augmented training data
𝐷aug (from the critic), the creator (a) extends each ⪯𝐴 of𝐷𝑡 based on
𝐷aug and (b) trains a ranking modelMrank to predict new orders.
Review on rankingmodels. Learning to Rank [50] aims to learn a
ranking model so that objects can be ranked based on their degrees
of relevance, preference, or importance (in our setting, timeliness).

We adopt pairwise ranking since (a) its semantics is consistent
with temporal orders, which is a set of tuple pairs on which partial
orders are defined (Section 2); and (b) by transitivity of temporal
orders, pairwise ranking helps us get a total order for all attributes.

Challenges. One naturally wants to adopt an existing model. How-
ever, it is hard to directly apply one, since the unique features of tem-
poral orders are not well considered, resulting in poor performance.
(1) Attribute correlation. Due to the correlated nature of temporal
order, we often need to reference other attributes to determine the
orders of a given attribute. Moreover, since a value may change
back and forth (e.g., the marital status changes from “married" to
“divorced", and back from “divorced" to “married"), it is hard to
determine the up-to-date value based on a single attribute only.
(2) Limitation of embedding models. To determine the timeliness,
care should be taken for lexically different but semantically similar
values (e.g., “baby” vs. “birth” and “dead” vs. “expired” for attribute
status). Although existing embedding models (e.g., ELMo [59] or
Bert [15]) are widely adopted, they cannot be directly used here
since they are not trained to organize data chronologically.
(3) Adaptive margin. Existing ranking strategies do not consider
real-life characteristics of timeliness, e.g., the timespan for a per-
son’s status to move from “birth” to “engaged” is typically longer
than from “engaged” to “married” (Figure 4). Instead of ranking
status with a fixed margin as most existing strategies did, we need a
new methodology to embed values using adaptive margins, to con-
form to their real-life behaviors and justify the semantic of ranking.

Model overview. We propose a ranking model to tackle the above
challenges, whose novelty includes (a) a context-aware scheme that
embeds each value along with other correlated values, (b) an encod-
ing mechanism to re-organize the embeddings in a chronological
manner, and (c) an attribute-centric adaptive ranking strategy.

As shown in Figure 4, our ranking modelMrank takes the cur-
rent 𝐷𝑡 as input, and outputs new ranked pairs, where each (𝑡1, 𝑡2)

is associated with a confidence, indicating how likely 𝑡1 ⪯𝐴 𝑡2 holds.
Our ranking model consists of three stages as follows: context-

aware embedding, chronological encoding and order prediction.

(1)Mrank first builds a context-aware embedding for each attribute
value using pre-trained language models (ELMo [59] or Bert [15]),
in a way that information of correlated values is also embedded.

(2) Based on the embeddings,Mrank encodes a target vector 𝜙𝐴 for
attribute 𝐴, via non-linear transformation (see below). Similarly, a
value vector𝜙𝑡 [𝐴] is encoded for each𝐴-attribute value of tuple 𝑡 , so
that (a) if 𝑡 [𝐴] is more current, 𝜙𝑡 [𝐴] is closer to 𝜙𝐴 and (b) the gap
between𝜙𝑡 [𝐴] and𝜙𝐴 is trained adaptively, to reflect real semantics.

(3) Finally, given 𝜙𝑡1 [𝐴] and 𝜙𝑡2 [𝐴] of 𝑡1 and 𝑡2, Mrank predicts the
order, i.e., whether 𝑡1 ⪯𝐴 𝑡2 holds with high enough confidence.

We next briefly elaborate the context-aware embedding and the
chronological encoding scheme with the adaptive margin.

Context-aware embedding. To reference correlated values, we treat
tuples as sequences and adopt the idea of serialization [47] (so that
tuples can be meaningfully ingested by models) to embed values.

Following [47], given a tuple 𝑡 in 𝐷𝑡 , we serialize its values:
serialize(𝑡) = ⟨COL⟩𝐴1⟨VAL⟩𝑡 [𝐴1] . . . ⟨COL⟩𝐴𝑛 ⟨VAL⟩𝑡 [𝐴𝑛],

where ⟨COL⟩ and ⟨VAL⟩ are special tokens, denoting the start of
attribute and value, respectively (see Figure 4). This serialization
is fed as input to a pre-trained language model emb(·) to compute
a 𝑑-dimensional embedding for each 𝐴-attribute value, denoted by
emb(𝑡 [𝐴]) ∈ R𝑑 . Besides, we average out the embedding vectors
for all 𝑡 [𝐴] to get a context representation of tuple 𝑡 , i.e., emb(𝑡) =
1
𝑛

∑𝑛
𝑖=1 emb(𝑡 [𝐴𝑖 ]). Finally for each 𝐴-attribute value of 𝑡 , we get

the context-aware embedding of 𝑡 [𝐴], denoted by 𝐸𝑡 [𝐴] ∈ R2𝑑 :
𝐸𝑡 [𝐴] = [emb(𝑡 [𝐴]); emb(𝑡)],

where [; ] denotes vector concatenation. In this way, 𝐸𝑡 [𝐴] embeds
not only the 𝐴-attribute value, but also the contextual information
from other attribute values, to allow comprehensive ranking.
Similarly, a schema embedding for each attribute𝐴 is computed: 𝐸𝐴
= emb(𝐴), by feeding the attribute name, e.g., status, to the model.

Chronological encoding with adaptive margins. While pre-trained
embeddings are widely adopted to capture semantics, they are not
trained to organize temporal orders. Thus we propose chronological
encoding to re-organize the embeddings to preserve timeliness. The
idea is to use schema embedding as the target and make the embed-
ding of a more current value closer to the target; moreover, instead
of ranking in fixed margins, embeddings are ordered adaptively.

Specifically, given the embedding of the 𝐴-attribute of 𝑡 , i.e.,
𝐸𝑡 [𝐴] , we encode it using a context encoder ENCcxtx (·) as follows:

𝜙𝑡 [𝐴] = ENCcxtx (𝐸𝑡 [𝐴] ) = 𝜎 (W2 ∗ 𝜎 (W1 ∗ 𝐸𝑡 [𝐴] )),
whereW1 andW2 are learnable parameters of the encoder, and 𝜎 is
the non-linear sigmoid activation function given by 𝜎 (𝑥) = 1

1+𝑒−𝑥 .
Similarly, the target vector for attribute 𝐴 is encoded as

𝜙𝐴 = ENCattr (𝐸𝐴), where ENCattr (·) denotes the schema encoder.
To train the encoders with ordered embeddings and adaptivemar-

gins, we adopt an attribute-centric adaptive margin-based triplet
loss. Given ⪯𝐴 in 𝐷𝑡 , the loss on 𝐴 is formulated as follows:

loss (𝐴) = ∑
(𝑡1,𝑡2 ) ∈⪯𝐴

{
max{−tanh(⟨𝜙𝑡2 [𝐴] , 𝜙𝐴⟩)
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Figure 4: The Network Architecture of Creator

+𝛾𝑡1,𝑡2 + tanh(⟨𝜙𝑡1 [𝐴] , 𝜙𝐴⟩), 0}
}
,

where ⟨·, ·⟩ is the inner product and 𝛾𝑡1,𝑡2 is the adaptive margin
between the two tuples; we set 𝛾𝑡1,𝑡2 to be 1 + cos(𝜙𝑡1 [𝐴] , 𝜙𝑡2 [𝐴] ) in
practice, which characterize the co-occurrence of 𝑡1 [𝐴] and 𝑡2 [𝐴].

Intuitively, by minimizing the loss, for each training instance
𝑡1 ⪯𝐴 𝑡2, (a) we make the encoded vector of the more current
value 𝑡2 [𝐴] closer to target 𝜙𝐴 (the first term) and (b) we ensure
an adaptive margin 𝛾𝑡1,𝑡2 between the two tuples (the second term).
In other words, the attribute values in the encoded space are not
only arranged chronologically by their “distances” to 𝜙𝐴 , from
which temporal orders can be easily derived, their margins are also
adaptively determined, to reflect the semantic of timeliness ranking.

Model training and instance extension. In each round, the
creator receives augmented training data 𝐷aug = (𝐷, ⪯′

𝐴1
, . . . , ⪯′

𝐴𝑛
,

𝑇 , fvalid), based on which it (a) extends the temporal instance 𝐷𝑡

with𝐷aug and (b) incrementally trainsMrank via back-propagation.
In the first round, 𝐷aug is initialized to be the temporal orders

constructed by applying those CCs in Σ without timeliness com-
parison in their preconditions [33]. In the following rounds, 𝐷aug is
constructed by the critic, based on the result of chasing with CCs.

Specifically, depending on flag fvalid in 𝐷aug, we have two cases:

(1) If fvalid is true, the result of chasing is valid and Mrank is incre-
mentally trained based on the orders in 𝐷aug (see below). Moreover,
the temporal instance 𝐷𝑡 = (𝐷, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇 ) is extended with
the ranked pairs in 𝐷aug, i.e., for each (𝑡1, 𝑡2) in ⪯′

𝐴
of 𝐷aug, (𝑡1, 𝑡2)

is added to ⪯𝐴 . In this case, we say that (𝑡1, 𝑡2) becomes stable. Once
a temporal order becomes stable, it will not be removed from 𝐷𝑡 .

(2) If fvalid is false, the result of chasing is invalid, i.e., there is an
attribute 𝐴 such that conflicting orders (𝑡1, 𝑡2) and (𝑡2, 𝑡1) are both
in ⪯′

𝐴
of 𝐷aug i.e., {(𝑡1, 𝑡2), (𝑡2, 𝑡1)} ⊆⪯′

𝐴
, and either 𝑡1 ≺𝐴 𝑡2 or

𝑡2 ≺𝐴 𝑡1. In this case, we decide that either (𝑡1, 𝑡2) or (𝑡2, 𝑡1) is
added to ⪯𝐴 using Mrank, with a higher confidence (and possibly
user inspection). Assume w.l.o.g. that (𝑡1, 𝑡2) is added to ⪯𝐴 (i.e., it
becomes stable). Then, the creator fine-tunes Mrank so that 𝑡1 and
𝑡2 are better separated in the encoded space (see [1] for details).

Incremental training. Incremental training ofMrank might lead
to the catastrophic forgetting issue [39], i.e., the model might forget
some temporal orders learned in prior rounds. To overcome this, we
adopt a simple strategy to retain prior knowledge: In each round,
𝐷𝑡 is augmented with 𝐷aug and Mrank is incrementally trained on

𝐷𝑡 from the last checkpoint. In this way, the model is able to learn
from previous training instances and avoid catastrophic forgetting.

Monotonicity. One can verify that the number of stable tempo-
ral orders in 𝐷𝑡 is (strictly) monotonically increasing when more
roundsGATE are performed (see a detailed lemma in [1]). The termi-
nation of GATE (Theorem 1) partly depends on this monotonicity.

Confidence. Given ⪯𝐴 , a tuple pair (𝑡1, 𝑡2) and a closeness function
𝑓𝐿 , Mrank predicts (𝑡1, 𝑡2) ∈⪯𝐴 if 𝑓𝐿 (𝜙𝑡2 [𝐴] , 𝜙𝐴) > 𝑓𝐿 (𝜙𝑡1 [𝐴] , 𝜙𝐴);
its confidence indicates how likely 𝑡1 ⪯𝐴 𝑡2 holds, i.e., we have

conf (𝑡1 ⪯𝐴 𝑡2) = 𝜎 (𝑓𝐿 (𝜙𝑡2 [𝐴] , 𝜙𝐴) − 𝑓𝐿 (𝜙𝑡1 [𝐴] , 𝜙𝐴))

and set conf (𝑡2 ⪯𝐴 𝑡1) to 0. Thus, given a confidence threshold 𝛿 >

0, we will not predict both 𝑡1 ⪯𝐴 𝑡2 and 𝑡2 ⪯𝐴 𝑡1 as confident orders.
We use the negative Euclidean distance −𝐿2 (𝜙𝑡 [𝐴] , 𝜙𝐴) in prac-

tice to measure the “closesness” between 𝜙𝑡 [𝐴] and 𝜙𝐴 , where the
one with a larger closeness value is more current. The distance gap
between 𝜙𝑡1 [𝐴] and 𝜙𝑡2 [𝐴] quantifies the confidence: the larger the
gap, the larger the confidence, which ranges from 0 to 1.

Example 3: Consider the example in Figure 4, where we focus on
attribute status. After creating the context-aware embedding based
on a pre-trained model, it chronologically encodes a target vector
𝜙status and value vectors for all values, so that they are arranged by
their distances to 𝜙status. To illustrate, we also label the unknown
timestamp of each value vector in the figure (e.g., 𝑇𝑒 (Married) =
2018). Since 𝜙Married is the closest to 𝜙status, it is predicted to be the
latest status value and new ranked pairs are constructed accord-
ingly for ⪯status, as augmented training data in the next round. 2

Remark. Our creator learns temporal orders by utilizing context-
aware embedding, chronological encoding and attribute-centric
adaptive ranking. However, it does not explicitly take into account
of some temporal properties, such as the transitivity. This motivates
us to use critic to deduce and justify the orders in the next section.

5 CRITIC
In this section, we develop the critic under GATE for justifying and
deducing temporal orders. Taking a temporal instance 𝐷𝑡 , the tem-
poral orders (⪯M

𝐴1
, . . . , ⪯M

𝐴𝑛
) predicted by the creator and a set Σ of

mined CCs as input, the critic (a) deduces more ranked pairs (⪯Σ
𝐴1
,

. . . , ⪯Σ
𝐴𝑛

) by applying CCs via the chase, and (b) constructs the
augmented training data 𝐷aug and feeds 𝐷aug back to the creator.
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5.1 Chasing with CCs
We extend the classic chase in [32] for CCs under GATE. In the
following, we first specify fixes and ground truth. We then present
the chase for CCs, with the Church-Rosser property.
Fixes. We extend temporal orders in 𝐷𝑡 by applying CCs in Σ to
deduce fixes, which are modeled as sets of ranked pairs, denoted
by 𝑈 = (𝑈𝐴1 , . . . ,𝑈𝐴𝑛

), where each ranked pair (𝑡1, 𝑡2) in 𝑈𝐴 is
referred to as a fix and it means that 𝑡1 ⪯𝐴 𝑡2 or 𝑡1 ≺𝐴 𝑡2 is deduced.
We only apply a CC if its precondition is satisfied by a collection Γ
of “ground truth”. Intuitively, the fixes are logical consequences of Σ
and Γ, i.e., as long as the CCs in Σ and Γ are correct, so are the fixes.

Validity. We say 𝑈 is valid if it has no conflicting fixes, i.e., there
exist no attribute 𝐴 and tuples 𝑡1, 𝑡2 such that (𝑡1, 𝑡2) ∈ 𝑈𝐴 and
(𝑡2, 𝑡1) ∈ 𝑈𝐴 at the same time, and either 𝑡1 ≺𝐴 𝑡2 or 𝑡2 ≺𝐴 𝑡1.

Ground truth. To justify the correctness of fixes, we maintain and
employ a collection Γ = (Γ𝐴1 , . . . , Γ𝐴𝑛

) of validated data, enclosed in
𝑈 . In our setting, block Γ is initialized by applying CCs in Σ whose
preconditions do not involve timeliness comparison (e.g., initial
temporal orders with partial timestamps via 𝜑3), and is iteratively
expanded with the temporal orders learned by the creator with
confidence above threshold 𝛿 or deduced by the chase in the critic.

The chase. Given a temporal instance 𝐷𝑡 , the chase deduces
fixes by chasing 𝐷𝑡 with CCs in Σ and ground truth in Γ. It uses
sets ⪯Σ= (⪯Σ

𝐴1
, . . . , ⪯Σ

𝐴𝑛
) to keep track of the affected fixes in 𝑈 .

Specifically, the 𝑖-th chase step of 𝐷𝑡 by Σ at (𝑈 𝑖 , ⪯Σ
𝑖
) is:

(𝑈 𝑖 , ⪯Σ
𝑖 ) ⇒(𝜑,ℎ) (𝑈 𝑖+1, ⪯Σ

𝑖+1),

where 𝜑 : 𝑋 → 𝑝0 is a CC in Σ, ℎ is a valuation of 𝜑 in D𝑡 , and
the application of (𝜑,ℎ) should satisfy the following conditions:

(1) All predicates 𝑝 ∈ 𝑋 are validated, i.e., if 𝑝 is 𝑡 [𝐴] ⊕ 𝑐 or 𝑡1 [𝐴] ⊕
𝑡2 [𝐴], then ℎ |= 𝑝; and if 𝑝 is 𝑡1 ⪯𝐴 𝑡2, then (𝑡1, 𝑡2) is in𝑈𝐴 .

(2) The consequence 𝑝0 : 𝑡1 ⪯𝐴 𝑡2 extends 𝑈 𝑖 to 𝑈 𝑖+1, such that
(𝑡1, 𝑡2) is added to𝑈𝐴 of𝑈 𝑖 ; similarly, 𝑝0 extends ⪯Σ

𝑖
to ⪯Σ

𝑖+1.

Chasing. Starting from a set 𝑈 0 of fixes, initialized to be Γ, and an
empty ⪯Σ

0 , a chasing sequence 𝜉 of 𝐷𝑡 by (Σ, Γ) is

(𝑈 0, ⪯Σ
0 ), . . . , (𝑈 𝑘 , ⪯Σ

𝑘
),

where (𝑈 𝑖 , ⪯Σ
𝑖
) ⇒(𝜑,ℎ) (𝑈 𝑖+1, ⪯Σ

𝑖+1) is a valid chase step, i.e., a val-
uation ℎ of 𝜑 extends (𝑈 𝑖 , ⪯Σ

𝑖
) to (𝑈 𝑖+1, ⪯Σ

𝑖+1) where𝑈 𝑖+1 is valid.
The chasing sequence is terminal if there exist no CC 𝜑 in Σ and

valuation ℎ of 𝜑 such that (𝜑,ℎ) leads to another valid chase step.
A chase sequence 𝜉 terminates in one of the following cases:

(1) No more CCs in Σ can be applied. If so, we say that 𝜉 is valid,
with (𝑈 𝑘 , ⪯Σ

𝑘
) as its result.

(2) Either 𝑈 0 is invalid or there exist 𝜑,ℎ,𝑈 𝑘+1 and ⪯Σ
𝑘+1 such that

(𝑈 𝑘 , ⪯Σ
𝑘
) ⇒(𝜑,ℎ) (𝑈 𝑘+1, ⪯Σ

𝑘+1) but 𝑈 𝑘+1 is invalid. Such 𝜉 is
invalid, and the result of the chase is ⊥ (undefined).

Intuitively, the chase helps us deduce more ranked pairs when
it terminates with enriched (𝑈 𝑘 , ⪯Σ

𝑘
); moreover, it justifies and

explains the learned order if no invalid chase step is taken. When
its result is ⊥, it detects invalid ranked pairs of the learner.

Example 4: Consider𝐷𝑡 in Figure 1. Assume that Σ = {𝜑1-𝜑6} and
⪯Σ= (⪯Σ

𝐴1
, . . . , ⪯Σ

𝐴𝑛
), where each ⪯Σ

𝐴𝑖
is empty. We initialize 𝑈 0

and Γ by applying CCswithout timeliness comparison, as we did in
Example 2, e.g., since 𝑡1 [status] (resp. 𝑡2 [status]) is “single” (resp.
“married”) in Figure 1, 𝑡1 ⪯status 𝑡2 is initialized in Γ by applying 𝜑2.

We have the following chase steps of 𝐷𝑡 by (Σ, Γ):
(1) By applying (𝜑4, ℎ4), where 𝜑4 is 𝑡1 ⪯status 𝑡2 → 𝑡1 ⪯address 𝑡2
and ℎ4 maps the variables of 𝜑4 to tuples 𝑡1 and 𝑡2 in 𝐷𝑡 , we deduce
𝑡1 ⪯address 𝑡2 by the chase step (𝑈 0, ⪯Σ

0 ) ⇒(𝜑4,ℎ4 ) (𝑈 1, ⪯Σ
1 ), i.e.,

𝑈 1 extends𝑈 0 by adding (𝑡1, 𝑡2) to𝑈 address; similar to ⪯Σ
1 .

(2) The chase proceeds to deduce 𝑡1 ⪯status 𝑡4 by applying 𝜑5.
This chasing sequence is valid since each chase step in the se-

quence is valid and no more CCs in Σ can be applied anymore. 2

Church-Rosser property. Following [2], we say that chasing with
CCs is Church-Rosser if for any temporal instance 𝐷𝑡 , any set Σ
of CCs, any collection Γ of ground truth, all chasing sequences of
𝐷𝑡 by (Σ, Γ) are terminal and converge at the same result. Below
we show that chasing with CCs is Church-Rosser (proven in [1]).

Corollary 2: Chasing with CCs is Church-Rosser. 2

5.2 Deduction with the Chase
Nomatter how desirable, the chase could be expensive if we enumer-
ate valuations of CCs in an exhaustive manner. Below we provide
an efficient algorithm to implement the chase.

Challenges. A brute-force implementation of the chase is by enu-
merating valuations ℎ of each CC 𝜑 in Σ. If (𝜑,ℎ) can be applied, a
chase step is performed, until the chasing sequence terminates. This
method is, however, costly since valuation enumeration is inher-
ently exponential. To tackle this challenge, we develop an efficient
algorithm to implement the chase; the key idea is to only evoke valu-
ations pertaining to the affected fixes in the chase lazily (see below).

We assume w.l.o.g. that for each 𝜑 : 𝑋 → 𝑝0 in Σ, 𝑋 has a pred-
icate 𝑝 in the form of 𝑡1 ⪯𝐴 𝑡2 (e.g., 𝜑4). For those CCs that do not
compare timeliness in their precondition (e.g., 𝜑1), we apply them
in a pre-processing step, to generate initial temporal orders in 𝐷𝑡 .

Lazy evocation. To allow lazy evocation, the valuations of CCs in
Σ are generated only when they are evoked by some newly deduced
orders, instead of constructing all at the beginning of the chase.

Specifically, when a new temporal order 𝑜 is deduced, we check
each 𝜑 : 𝑋 → 𝑝0 in Σ and evoke a new valuation ℎ of 𝜑 if (a) 𝑜
corresponds to a predicate in 𝑋 (i.e., 𝑜 is validated in ℎ); in this case,
we say that ℎ is a valuation pertaining to 𝑜 since ℎ is “activated” by
𝑜 , (b) ℎ has not been evoked before and (c) the order that ℎ deduces,
i.e., ℎ(𝑝0), is not deduced by other valuations before. We maintain
designated data structures for checking conditions (a), (b) and (c)
efficiently. See [1] for a detailed description of the data structures.

Algorithm. Putting these together, we present Chase in Figure 5.
It returns new orders ⪯Σ if the chase is valid, and ⊥ otherwise.

Chase starts with the initialization (Line 1). (a) Ground truth Γ is
initialized with all stable ranked pair in 𝐷𝑡 via procedure Initialize
(omitted). (b) It initializes𝑈 and ⪯Σ as stated in Section 5.1 to be Γ
and ∅, respectively. (c) The set Δ of newly validated orders is ini-
tialized to be the newly stable orders in Γ via procedure NewStable
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(omitted); and they are the temporal orders “triggering” the chase.
(d) The set H of evoked valuations is initialized to be empty.

Then for each order 𝑜 in Δ, Chase does the following (Line 5-15):
(a) Evoke the valuations pertaining to 𝑜 via the lazy evocation strat-
egy stated above, by calling CCEvoke (omitted), and add them toH
(Line 5). (b) For each valuation ℎ ∈ H pertaining to 𝑜 that deduces
unknown ranked pair (checked in Line 7-8), mark 𝑜 as validated inℎ
(Line 9). If all predicates in the precondition of ℎ are validated (Line
10), (ℎ, 𝜑) can be applied and the consequence 𝑡1 ⪯𝐴 𝑡2 of ℎ is de-
duced (Line 11). The ranked pair (𝑡1, 𝑡2) is added to𝑈𝐴 and ⪯Σ

𝐴
(Line

12). (c) Check conflicts (Line 13-14): if (𝑡1, 𝑡2) conflicts with (𝑡2, 𝑡1)
that is already in𝑈𝐴 or ⪯M

𝐴
, the chase terminates with ⪯Σ= ⊥. In

this case, the valuations inH are kept temporally so that they can be
re-used in the next round of GATE when the conflicts are resolved
(not shown). (d) Add the newly deduced order to the set Δnew (Line
15) for iterative processing, by assigning Δnew to Δ (Line 16).

Finally, the result of chasing, ⪯Σ, is returned (Line 17).

Example 5: Recall that 𝜑4 is 𝑡1 ⪯status 𝑡2 → 𝑡1 ⪯address 𝑡2 and 𝜑5
is 𝑡1 ⪯status 𝑡2 ∧ 𝑡2 ⪯status 𝑡3 → 𝑡1 ⪯status 𝑡3. Let Σ = {𝜑4, 𝜑5} and
Δ = {𝑡1 ⪯status 𝑡2}. We process 𝑡1 ⪯status 𝑡2 in Δ as follows. It first
evokes valuations ℎ4 and ℎ5 which map the variables of 𝜑4 and 𝜑5
to tuples 𝑡1 and 𝑡2 in 𝐷𝑡 , respectively, with 𝑡1 ⪯status 𝑡2 validated.
Since the predicate 𝑡2 ⪯status 𝑡3 in ℎ5 is not validated, ℎ5 is kept in
H for later processing. In contrast, all predicates in the precondition
ofℎ4 are validated and 𝜑4 deduces 𝑡1 ⪯address 𝑡2. Suppose that there
is no conflicting order in𝑈 address and ⪯M

address. Then 𝑡1 ⪯address 𝑡2
forms a new set Δ and the process continues, until Δ is empty. 2

Complexity. The loop of Chase executes at most O(|𝑅 | |𝐷 |2) times,
since there are at most |𝑅 | |𝐷 |2 temporal orders to be deduced. For
each temporal order 𝑜 deduced, we evoke CCs based on 𝑜 and
update data structures in O(𝑐val |Σ|) time, where 𝑐val denotes the
unit cost of constructing valuations for fixed 𝑜 and 𝜑 , and there are
at most |Σ| CCs. Thus Chase takes at most O(𝑐val |Σ| |𝑅 | |𝐷 |2) time.

Augmented training data construction. Recall that the result
of chasing, denoted by ⪯Σ, is valid or invalid. Based on ⪯Σ, we
construct the augmented training data 𝐷aug as follows.

(1) If ⪯Σ is valid, both the temporal orders deduced by the chase
and predicted by the creator are used to create 𝐷aug = (𝐷, ⪯′

𝐴1
,

. . . , ⪯′
𝐴𝑛

,𝑇 , fvalid = true) where ⪯′
𝐴𝑖
=⪯M

𝐴𝑖
∪ ⪯Σ

𝐴𝑖
(𝑖 ∈ [1, 𝑛]).

(2) If ⪯Σ is ⊥, then there exist conflicting ranked pairs, i.e., both
(𝑡1, 𝑡2) and (𝑡2, 𝑡1) are in𝑈𝐴 or ⪯M

𝐴
with 𝑡1 ≺𝐴 𝑡2 or 𝑡2 ≺𝐴 𝑡1. In this

case, we construct 𝐷aug to be (𝐷, ⪯′
𝐴1
, . . . , ⪯′

𝐴𝑛
,𝑇 , fvalid = false)

where ⪯𝐴𝑖
= {(𝑡1, 𝑡2), (𝑡2, 𝑡1)} if 𝐴𝑖 = 𝐴 and ⪯𝐴𝑖

= ∅ otherwise.

As shown in Section 4, the creator fine-tunes its model by using
the deduced ranked pairs or the detected conflicts in 𝐷aug.

6 EXPERIMENTAL STUDY
Using real-life and synthetic data, we evaluated (1) the effectiveness
and (2) the efficiency of GATE for determining temporal orders. We
also (3) conducted a case study to showcase the usefulness ofGATE.
Experimental settings. We start with the experimental setting.
Datasets. We used three real-life datasets and one synthetic dataset.

Input: A temporal instance 𝐷𝑡 , the set Σ of CCs, the predicted (⪯M
𝐴1

, . . . , ⪯M
𝐴𝑛

)
Output: The result of chasing, ⪯Σ .
1. Γ := Initialize(𝐷𝑡 ) ;𝑈 := Γ; ⪯Σ:= ∅; Δ = NewStable(Γ) ; H := ∅;
2. while Δ is not empty do
3. Δnew = ∅;
4. for each 𝑜 ∈ Δ do
5. H := H ∪ CCEvoke(𝐷𝑡 , Σ, 𝑜 ) ;
6. for each ℎ of 𝜑 : 𝑋 → 𝑡1 ⪯𝐴 𝑡2 in H s.t. ℎ pertains to 𝑜 do
7. if the order between 𝑡1 [𝐴] and 𝑡2 [𝐴] is already settled then
8. H := H \ {ℎ}; continue ;
9. Mark 𝑜 as validated in ℎ;
10. if all predicates in the precondition of ℎ are validated then
11. H := H \ {ℎ}; /* 𝑡1 ⪯𝐴 𝑡2 is a newly deduced order */
12. 𝑈𝐴 := 𝑈𝐴 ∪ (𝑡1, 𝑡2 ) ; ⪯Σ

𝐴
:=⪯Σ

𝐴
∪(𝑡1, 𝑡2 ) ;

13. if (𝑡2, 𝑡1 ) ∈ 𝑈𝐴 or ⪯M
𝐴

with 𝑡1 ≺𝐴 𝑡2 or 𝑡2 ≺𝐴 𝑡1 then
14. ⪯Σ:= ⊥; return ⪯Σ;
15. Δnew := Δnew ∪ {𝑡1 ⪯𝐴 𝑡2};
16. Δ := Δnew;
17. return ⪯Σ;

Figure 5: Procedure Chase

(1) Career [41], a benchmark about the careers of football players
from FIFA-15 to FIFA-22; it contains 108.5K tuples from 27.2K enti-
ties with 20 attributes. We determine the timeliness of potential, po-
sition, reputation and league name. (2) NBA [18], a dataset that en-
compasses the careers of basketball players; it contains 10.6K tuples
with 12 attributes. We determine the currency of team, pts (points)
and weight. (3) COM [34], an open-source dataset about self-
employed entrepreneurs in Shenzhen. After removing duplicated
tuples and digital attributes (e.g., the organization code), the dataset
has 1,983,698 tuples and 8 attributes. We derive the timeliness of en-
trepreneur names. (4) Person, a synthetic dataset with 12.3K tuples
from 1K entities. Just like Figure 1, we adopted 7 attributes and de-
termine the currency of LN, Status, Kids. Here Person is generated
by enforcing CCs (e.g., 𝜑1-𝜑6), to simulate real-world scenarios.

All the datasets have ground truth, i.e., all tuples carry times-
tamps and are grouped by entities. The timestamps of COM are
in seconds, while the others are in years; it is reasonable since, e.g.,
it is uncommon for NBA players to frequently change teams in one
year. We randomly selected 5% data with initial timestamps and
masked the remaining. This default ratio ts% of initial timestamps
is set intentionally small (so that the problem is more challenging);
we will test the impact of ts% by varying ts% (Exp-1).

Currency constraints. We extended DCFinder [58] to discover CCs
as discussed in Section 2. Note that CC discovery is conducted once
on each dataset offline. Besides, we manually checked and adjusted
the CCs discovered to ensure their correctness. We found 42, 32,
40 and 36 CCs for Career, NBA, COM and Person, respectively.

ML model. To learn the ranking model Mrank, we used Bert [15]
(distilbert) with 768 dimension to initialize the embeddings. We
adopted 2 hidden layers in our encoders with sizes 200 and 100,
respectively. The margin 𝛾 was adaptively computed and the model
was trainedwith 30 epochs using Adam optimizer [38]. The learning
rate is 1e-4. We used 5% data with timestamps as training data.
Baselines. GATE was implemented in Python and we compared it
with the following baselines: (1) Creator, a variant of GATE with
the creator only, i.e., it predicts temporal orders using Mrank; (2)
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Critic, a variant of GATE with the critic only, i.e., it deduces tempo-
ral orders by chasing with CCs; (3) Creatoritr, a variant of Creator
that iteratively updates its training data with predicted but unjusti-
fied temporal orders. (4)CreatorNC,CreatorNE,CreatorNA, another
three variants ofCreator that implementMrank without contextual
information, without chronological encoding, and using regular
cross entropy loss instead of adaptive margin-based loss, respec-
tively; (5) GATENC, a variant of GATE that adopts the brute-force
method for the chase, by enumerating all valuations exhaustively.

We also tested (6) UncertainRule [44], which uses uncertain
currency rules to evaluate data currency; (7) Improve3C [18], a
data quality framework that combines completeness, consistency
and currency [28]; we only compare its accuracy for currency; (8)
RANKBert [56], a state-of-the-art ML ranking model based on Bert;
and (9)DittoRank, a rankingmodel that first trains a dittomodel [47]
to conduct binary classification on attribute values (with contextual
information) and then sorts all attribute values using ditto as the
comparison operator, i.e., we used bubble-sort to sort the values,
where the comparison between two values is conducted by ditto.

Among the baselines, (a) Critic, UncertainRule and Improve3C
are rule-based, where rules for the latter two are converted from
same CCs mined by DCFinder; if total orders cannot be deduced
by rules, the unknown temporal orders are randomly decided, (b)
RANKBert, DittoRank, Creator and its variants are ML-based, and
(c) GATENC is a hybrid method, which produces same results as
GATE. Thus, we compared GATENC mostly for efficiency.

We did the experiments on a single machine powered by 256GB
RAM and 32 processors with Intel(R) Xeon(R) Gold 5320 CPU
@2.20GHz. We ran each experiment 3 times and report the average.

Experimental results. We next report our findings.
Exp-1: Effectiveness. Since we adopted the pairwise ranking set-
ting to deduce ranked pairs, we evaluated the accuracy of GATE
following [18, 27, 45]: (1) precision, the ratio of temporal orders de-
termined correctly to all ranked pairs predicated true, (2) recall, the
ratio of temporal orders predicted correctly to all true orders, and (3)
𝐹 -measure = 2 × recall×precision

recall+precision . To evaluate the ranking of GATE,
for each entity instance pertaining to entity 𝑒 , we computeMRR(𝑒)
= 1

𝑛

∑𝑛
𝑖=1

1
rank𝑖

, the mean reciprocal rank over a set of 𝑛 ranking
results, where 𝑛 is the number of currency attributes and rank𝑖
denotes the rank of the latest value of the 𝑖-th attribute for entity 𝑒 ,
andMAP@K(𝑒) = 1

𝑛

∑𝑛
𝑖=1 AP@K(𝑖), the mean average precision at

K that assesses whether the top-K values predicted are relevant and
whether the latest K values are at the top, where AP@K(𝑖) is the av-
erage precision at K of the 𝑖-th attribute for entity 𝑒 . Let 𝐷𝑡 be a col-
lection of 𝑘 entity instances. We report (4)MRR = 1

𝑘

∑𝑘
𝑗=1MRR(𝑒 𝑗 )

and (5) MAP@K = 1
𝑘

∑𝑘
𝑗=1MAP@K(𝑒 𝑗 ), with K = 3 by default.

Rounds.We report the performance ofGATE from the first round till
its termination; at the end of the fixed round, we use currentMrank
in the creator. As shown in Figures 6(a)-6(i),GATE takes 11, 12, 7 and
9 rounds to terminate on Career, NBA, COM and Person, respec-
tively, i.e., GATE converges quickly. Besides, we find the following.

(1) Although the performance of GATE might fluctuate (e.g.,
Figure 6(h)), which is common in ML models [15], all metrics
increase with more rounds in most cases, e.g., 𝐹 -measure,MRR and

MAP increase from 0.767 to 0.866, 0.786 to 0.857, and 0.752 to 0.809,
respectively, after 11 rounds on Career, verifying that GATE is able
to deduce the latest values and produce good currency ranking. This
is because the creator iteratively accumulates training data from
the critic such that the model is better trained with more rounds;
meanwhile, with better results predicted by the creator, the critic
deduces more orders as augmented training data for the creator
in subsequent rounds. Moreover, in Figures 6(b) and 6(c), precision
and recall are 0.859 and 0.873, respectively, indicating that GATE
achieves a good balance between the two and is fairly accurate.
Note that Creatoritr suffers from the accuracy fluctuation (e.g., Fig-
ure 6(i)) since its model is affected by noisy (unjustified) temporal
orders accumulated over rounds. The performance of other meth-
ods does not depend on rounds, as shown in flat lines. Since GATE
behaves similarly under all metrics, below we focus on 𝐹 -measure.

(2) On average GATE outperforms Creator and Critic by 7.8% and
34.4% in 𝐹 -measure, respectively, up to 11.0% and 45.6%, improving
both. The creator and critic benefit each other: (a) Creator produces
“hidden” temporal orders for Critic to preform deduction, and (b)
Critic deduces and justifies the orders, which are in turn provided as
augmented training data toCreator; on average, the critic generates
6K new training data (tuple pairs) per round on COM, improving
𝐹 -measure of GATE from 0.701 to 0.748 after 5 rounds.

(3) Creator is more accurate than all its variants, e.g., the average
𝐹 -measure of Creator is 0.722, as opposed to 0.641, 0.613 and 0.714
by CreatorNC, CreatorNE and CreatorNA, respectively. Intuitively,
(a) without utilizing the contextual information, CreatorNC cannot
reference correlated attributes; (b)CreatorNE has low accuracy with
existing embedding models, and (c) compared to the regular cross
entropy loss used in CreatorNA, the adaptive pairwise ranking loss
helps by considering the semantics in ranking. Moreover, GATE
is 5.6% more accurate than Creatoritr on average. This verifies the
need for justifying the temporal orders learned by Creator.

(4) The accuracy ofGATE is higher thanUncertainRule, Improve3C,
RANKBert and DittoRank, e.g., the average 𝐹 -measure of GATE is
0.802 as opposed to 0.455, 0.428, 0.659 and 0.651 for the four, re-
spectively. This shows the benefits of combining deep learning and
logic rules: (a) compared with rule-based methods, GATE can learn
from unseen data and has better generalizability; and (b) compared
with ML-based methods, GATE is able to justify the reliability of
deduction and produces more training data for the model.

Varying K. We varied parameter K of MAP@K from 1 to 5 in Fig-
ure 6(f). GATE consistently achieves the highest MAP@K, e.g., 5%
higher than the best baseline on average, up to 10.1%. This verifies
that GATE ranks attribute values better than the baselines.

Varying |Σ|. Varying |Σ|, we evaluated the impact of the number
of CCs in Figure 6(j). The accuracy of GATE, UncertainRule and
Improve3C improves given more rules. For GATE, its 𝐹 -measure
changes from 0.805 to 0.866 when |Σ| varies from 20% to 100%. In-
deed, the critic deduces more orders with more CCs for the creator
to fine-tune its model, to get a higher accuracy in an earlier stage.

Varying initial ts%. We varied the ratio ts% of initial timestamps
(randomly selected) from 4% to 20%. More initial timestamps help
since (a) the creator has more training data and can have better
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Figure 6: Performance evaluation

initial performance; and (b) the critic gets temporal orders as ground
truth to perform deduction at the beginning of the chase. As shown
in Figure 6(k), the 𝐹 -measure of GATE increases (from 0.75 to 0.796
on Person) when ts% varies from 4% to 20%, as expected.

As remarked earlier, some attribute values may have more reli-
able timestamps than the others [40]. To study the impact of times-
tamp distributions, we assigned a weight to each attribute, where
a larger weight indicates that the values of this attribute is more
likely to be selected with initial timestamps, e.g., on Person, values
on Status are more likely to have timestamps than Kids. Consistent
with Figure 6(k), Figure 6(l) shows that the accuracy under weighted
sampling is also improved with larger ts%. Note that the accuracy
under weighted sampling (Figure 6(l)) is slightly lower than random
sampling (Figure 6(k)), e.g.,when ts%=20% on Person, its 𝐹 -measure
is 2.5% lower than random sampling. This is because weighted sam-
pling is impacted by distribution discrepancy between training and

testing data, which is a common out-of-distribution issue for ML.

Varying entities%.As reported in Figure 6(m), we varied the percent-
age of entities that are used for the chase from 20% to 100%. As ex-
pected, GATE improves its 𝐹 -measure since with more entities, the
critic can deducemore orders via the chase, and the creator can have
more augmented data to train the model, achieving higher accuracy.
For instance, 𝐹 -measure of GATE is improved by 5.3% on average.

Varying 𝛿 . We next tested the impact of confidence threshold 𝛿 . As
shown in Figure 6(n), (a) although when 𝛿 is small, less confident
predictions may appear in subsequent deductions, more temporal
orders could be used for training; (b) when 𝛿 is too large, few ranked
pairs learned are retained, and hence less augmented training data
is returned. Since the creator receives less data to fine-tune its
model, the accuracy may not be improved and it converges slowly.
When 𝛿 = 0.52, GATE has the highest accuracy on NBA. Thus, we
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set 𝛿 = 0.52 as its default; for other datasets, 𝛿 is set similarly.

Exp-2: Efficiency. We tested the efficiency of GATE, GATENC,
Creator, RANKBert and DittoRank. Denoted by CT (resp. OT) the
chase time (resp. the overall time, for training, chasing and order ex-
tension). For GATE, OT is accumulated over all rounds; its order ex-
tension time is the time for extending stable orders to total orders by
Mrank (Line 12 of Figure 3). For other baselines, the order extension
time is the inference time of models for generating total orders. We
did not report rule-based methods, which are fast, since they do not
need to train models; but as shown in Exp-1, they are not accurate.

Chase time (rounds). We report CT of GATE and GATENC in the
iterative process. As shown in Figure 6(o), GATE is substantially
faster than GATENC for all rounds; it is 3.99X faster than GATENC
on average, up to 6.30X on COM. The speedup of GATE is due to
the lazy evocation strategy we adopted, which accelerates the chase
by maintaining designated structures. In contrast,GATENC enumer-
ates valuations and incurs redundant computation. SinceGATE and
GATENC produces the same results, their total rounds are the same.

Overall time.We next report OT in Figure 6(p). AlthoughGATE has
multiple rounds, its overall time is comparable to most ML methods,
e.g., GATE is 3.15X faster than DittoRank on average. In particular,
the order extension time of GATE is smaller than most baselines
except Creator, since GATE has to perform extra checks so that the
total order generated is consistent with the known stable orders.

Varying |𝐷𝑡 |. We evaluated CT (resp. OT) of GATE and GATENC
(resp. ML methods) by varying |𝐷𝑡 | from 20% to 100% in Figure 6(q)
(resp. 6(s)). With larger |𝐷𝑡 |, all methods take longer, as expected.
Nonetheless, GATE is faster than GATENC when |𝐷𝑡 | gets larger,
since GATE maintains structures to avoid recomputation and does
deduction pertaining to affected orders, e.g., GATE is 11.3X faster
than GATENC when |𝐷𝑡 | is 100%; the result for OT is consistent.

Varying |Σ|.We varied |Σ| from 20% to 100% on Person in Figure 6(r)
and 6(t). As shown there,GATE is 7.54X faster thanGATENC on aver-
age, up to 12.2X, which again verifies the effectiveness of lazy evoca-
tion. OT of GATE increases as |Σ| is larger, since more training data
(i.e., temporal orders) is deduced by CCs to train the ranking model.

Exp-3: Case study. We use Career to illustrate why GATE works.

(1) Initial prediction. In the first round, GATE trains the creator
on data with initial timestamps. Due to the limited (5%) training
data, its 𝐹 -measure is 0.77 and some ranked pairs are mispredicted.
One of confident and correct predictions is 𝑡1 ⪯height 𝑡2, where
𝑡1 and 𝑡2 denote the same player with heights 186cm and 188cm,
respectively. While this player moved from team PARMA to SPAL,
i.e., 𝑡1 ⪯team 𝑡2, the creator makes a wrong prediction 𝑡2 ⪯team 𝑡1.

(2) Critic helps Creator. After the creator stage, the critic uses CCs
to correct mispredicted temporal orders. By applying𝜑7 : 𝑡𝑎 ⪯height
𝑡𝑏 → 𝑡𝑎 ⪯team 𝑡𝑏 to the known 𝑡1 ⪯height 𝑡2, it deduces 𝑡1 ⪯team 𝑡2,
correcting the mistake ofCreator. Intuitively,𝜑7 holds since ⪯height
is monotonic, and ⪯height and ⪯team correlate for young players.

Moreover, Critic provides augmented training data to Creator.
For instance, if 𝑡0 ⪯league_name 𝑡1 and 𝑡1 ⪯potential 𝑡2 are in the
ground truth, the critic could apply CC 𝜑8 : 𝑡𝑎 ⪯league_name 𝑡𝑏 ∧
𝑡𝑏 ⪯potential 𝑡𝑐 ∧ 𝑡𝑎 [height] ≤ 𝑡𝑐 [height] → 𝑡𝑎 ⪯position 𝑡𝑐 , and

deduces a new pair 𝑡0 ⪯position 𝑡2 that is unknown before. Here𝜑8 is
learned from the data; intuitively, if a player moves to a new league
(as indicated by monotonic ⪯height) and if his potential changes, his
position is likely adjusted, e.g., from LM to CAM. In the first 5 round,
the critic creates 20K new ranked pairs per round as augmented
training data, and the creator improves its model with the new data.

(3) Creator helps Critic. Critic cannot correctly deduce total orders
from limited initial 5% timestamps. Nonetheless, with augmented
training data provided by Critic, Creator can learn more ranked
pairs with high confidence. On average it ranks hundreds of tuple
pairs with high confidence in each round. These ranked pairs are in
turn provided toCritic, forCritic to deduce more new ranked pairs.

(4) The creator learns better with more data. MLmodels are inclined
to get more accurate when given more training data. Creator con-
tinually receives more augmented training data and incrementally
trains its model accordingly. As a consequence, its 𝐹 -measure in-
creases from 0.77 to 0.82 (resp. 0.87) after the first (resp. last) round.

Summary. We find the following. (1) Combining deep learning and
logic rules makes a promising approach to deducing currency.GATE
is the most accurate, e.g., 0.866 in 𝐹 -measure on Career, as opposed
to 0.41 and 0.39 by rule-based UncertainRule and Improve3C, and
0.54 and 0.53 by ML-based RANKBert and DittoRank. (2) GATE only
takes 7 rounds to terminate onCOM, which has 1,983,698 tuples. (3)
On average, GATE is 34.4% and 7.8% more accurate than Critic and
Creator, respectively, i.e., the creator and critic indeed benefit each
other. (4)GATE beatsGATENC in efficiency (with the same accuracy)
by 8.05X on average, up to 12.2X, verifying the usefulness of lazy
evocation. (5) GATE has competitive overall time against existing
ML methods, e.g., 1359s on COM, as opposed to 2514s by the fastest
of them. Although rule-based methods are fast (they do not train
models), their accuracy are low. (6) Creator (resp.GATE) is more ac-
curate than its variants CreatorNC, CreatorNE and CreatorNA(resp.
Creatoritr) by 8.1%, 10.9% and 1% (resp. 5.6%), respectively, verifying
the need for context-aware embedding, chronological encoding
and adaptive margin (resp. order justification), respectively.

7 CONCLUSION
The novelty of the work consists of the following. (1) We formulate
a new problem for determining the timeliness of attribute values. (2)
As a solution to the problem, we propose a creator-critic framework
by combining deep learning and logic deduction, for the two to
enhance each other. (3) We develop a novel ranking model to learn
temporal orders on attribute values. (4) We show how to justify the
learned orders, deduce more ranked pairs and provide feedback for
the learner, by extending the chase using CCs. The experimental
study has verified that GATE is promising in practice.

One future topic is to study how to catch conflicts and missing
values given temporal orders. Another topic is to extend CCs [30]
by embedding ranking models as predicates, to improve the ranking
accuracy with logic conditions and interpret ranking in logic.
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