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ABSTRACT
Given the growing adoption of AI, cloud data lakes are facing
the need to support cost-effective “just-in-case” data archival over
long time periods to meet regulatory compliance requirements.
Unfortunately, current media technologies suffer from fundamental
issues that will soon, if not already, make cost-effective data archival
infeasible. In this paper, we present a vision for redesigning the
archival tier of cloud data lakes based on a novel, obsolescence-
free storage medium–synthetic DNA. In doing so, we make two
contributions: (i) we highlight the challenges in using DNA for data
archival and list several open research problems, (ii) we outline
OligoArchive-DSM (OA-DSM)–an end-to-endDNA storage pipeline
that we are developing to demonstrate the feasibility of our vision.
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1 INTRODUCTION
Over the past few years, driven by the popularity of analytics and
AI, we have witnessed a rapid growth in the popularity of cloud
data lakes like GCS, ADLS, and S3. Naturally, an enormous amount
of effort is being made in advancing various aspects of data man-
agement for data lakes, from standardizing open file formats, to
supporting transaction updates in addition to “just-in-time” opti-
mizations for BI/AI analytics. However, as these data lakes continue
to accumulate more data, it is becoming increasingly more impor-
tant to focus on yet another task that has historically received much
less attention, one related to “just-in-case” data archival.
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Enterprises have always had the need to archive data in order to
meet “just-in-case” safety, legal and regulatory compliance require-
ments. Today, over 80% of data stored is archival in nature [20].
Archival data is the fastest growing data segment with over 60%
cumulative annual growth rate [33]. As enterprises migrate to the
cloud, cloud data lakes will soon be (if not already) in need of
archival storage technologies that can provide high-density, low-
cost storage of such data for decades without degradation.

Unfortunately, current media technologies are unable to meet
these requirements as they have fundamental limitations. First,
all media technologies suffer from decay due to a limited lifetime
(around 5 years for HDD and 30 years for tape) [13]. Cloud vendors,
in contrast, will be tasked with preserving archival data for much
longer duration. For instance, a recent survey of enterprise execu-
tives that manage Petabyte-sized data lakes have reported archive
retention periods of several decades. Second, current media tech-
nologies tightly couple the storage medium with the technology to
read data off the medium. This coupling leads tomedia obsolescence,
with data stored in an older medium no longer being readable by
newer readers. For instance, Linear Tape Open (LTO) drives are
backwards compatible only with two tape generations for read and
one generation for write.

Both aforementioned hardware issues necessitate expensive,
cumbersome, periodic remastering, where data is migrated from
an older generation of archival media to a newer one. This prob-
lem is particularly acute for tape. Although tape media can last
a few decades, obsolescence issues caused by LTO compatibility
effectively reduce the remastering window to 5–7 years. A recent
article summarized the financial impact of such data migration on
the movie industry, where several independent productions are no
longer being archived on tape due to rising migration costs [30].
Given the rate of growth of cloud data lakes, it is inevitable that
cloud vendors will face similar problems in the near future. This has
prompted researchers to investigate the use of new storage media
that has radically different density and durability characteristics
compared to HDD and tape [29, 34]. We believe that time is ripe
for the data management community to join this effort and take on
the challenges related to “just-in-case” data archival in addition to
“just-in-time” data analytic.

In this paper, we make two contributions. First, we present
our vision for migration-free data archival for cloud data lakes
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of the future using a novel, obsolescence-free, biological medium–
synthetic DNA. We show how synthetic DNA opens up new av-
enues of research by highlighting several open challenges that
need to be addressed to make long-term data archival durable and
cost effective. As our second contribution, we take the first steps
towards concretely realizing the aforementioned vision by present-
ing OligoArchive-DSM(OA-DSM), an end-to-end pipeline for data
archival using synthetic DNA. In doing so, we set the stage for a
new line of research in “just-in-case” data archival on synthetic
DNA by (i) showing how database-inspired techniques can be used
in the context of DNA storage to reduce read/write costs compared
to other state-of-the-art (SOTA) approaches, and (ii) making the
OA-DSM framework and related data publicly available.

2 BACKGROUND & VISION
In order to make long-term data archival cost effective, it is nec-
essary to eliminate the non-scalable, expensive, periodic data mi-
gration procedure. Recently, several new initiatives have emerged
from both industry and academia in an effort to develop new long-
term storage technologies that can overcome the media decay and
obsolescence issues faced by contemporary media.

2.1 Obsolescence-Free Storage
Analog medium. Historically, analog media like microfilm and
paper have been used by libraries and museums for protecting
journals across several decades [8, 31]. More recently, film has
been used for the preservation of the Declaration of Children’s
Rights document in collaboration with the UN in the Arctic World
Archive [31]. The advantage of analog media is the longevity. For
instance, LE-500 rated microfilms and ISO 9706 rated archival paper,
are designed to last 500 years. Some analog media, like paper, also
does not have obsolescence issues, as any scanning technology
can be used to read data off the medium. However, others still
suffer from obsolescence as they require dedicated readers that are
customized to the media technology which can become obsolete. A
major disadvantage with analog media is its density, as all current
analog technologies have density much lower than tape (O(KB-MB)
per unit for paper/microfilm and O(GB) per unit for film).
Optical medium. On the optical front, optical discs (like BluRay,
Panasonic Archival Disc, etc.) have been used for data archival
by cloud-scale systems in production [29]. Recent efforts, like Mi-
crosoft Project Silica [2], are pushing the limits of optical storage
by using femtosecond lasers to create layers of three-dimensional,
nanoscale deformations in quartz glass. Data is read back by shin-
ing polarized light through the glass and analyzing the retrieved
image to decode back digital data. Albeit being in its nascency,
project Silica has demonstrated the feasibility and durability of
glass by storing 76GB of data. While optical media provides much
higher density than analog media, their resistance to obsolescence
is unclear, as they still require dedicated readers to retrieve data.
Biological medium. On the biological front, a medium that has
received a lot of attention recently is synthetic Deoxyribo Nucleic
Acid (DNA). DNA is a macro-molecule that is composed of four
submolecules called nucleotides (nts) (Adenine (A), Guanine (G),
Cytosine (C), Thymine (T)). DNA used for data storage is a single-
stranded sequence of these nts. In order to use DNA as an archival

medium, digital data is mapped from its binary form into a quater-
nary sequence of nts using an encoding algorithm. Once encoded,
the nt sequence is used to manufacture actual DNA molecules, also
referred to as oligonucleotides (oligos), through a chemical process
called synthesis that assembles the DNA one nt at a time. Data
stored in DNA is read back by sequencing the DNA, which essen-
tially reads out the nt composition of each oligo to produce strings
called reads, and then decoding the information back from the reads
into the original binary form.

DNA possesses several key advantages over current storage
technologies. First, it is a three-dimensional storage medium with
a capacity of storing 1 Exabyte/𝑚𝑚3 which is 108× higher than
tape [13]. Second, DNA is very durable and can last millennia when
stored at room temperature under proper conditions [12]. Third, the
technologies used for storing data in DNA (synthesis) and reading
data from DNA (sequencing) have eternal relevance, as there will
always be the need to synthesize and sequence DNA for biological
applications. Further, as a storage medium, DNA is decoupled from
the reader (sequencer), as DNA can be read by any sequencing
platform. Hence, DNA does not suffer from media obsolescence.

2.2 Vision and Challenges
The aforementioned advances in obsolescence-free media clearly
paint the vision of a paradigm shift that is under way in replac-
ing the migration-based, tape-based archival infrastructure today
with passive, migration-free archival in the future. Given its bene-
fits, synthetic DNA is clearly a promising candidate as an archival
medium. However, the use of DNA creates three major challenges:
(i) media encoding and decoding, (ii) metadata archival, and (iii)
format obsolescence.
Media Encoding. There are several challenges in designing en-
coders for DNA storage. First, there are several biological con-
straints that must be respected during encoding to ensure that
DNA molecules can be synthesized and sequenced: (i) Experiments
have demonstrated that DNA sequences that have a high number
of repeated nts, also known as homopolymers (e.g. TTTT) create
problems for sequencing [14]. Thus, the encoder must avoid long
homopolymer repeats; (ii) Oligos with a low GC-ratio (fraction of
Cs and Gs in the oligo) are known to be unstable, while those with
a high GC-ratio are known to have higher melting temperatures
and create problems for synthesis and sequencing [14]. Thus, the
encoder must maintain GC-ratios in a well-defined range.

Second, current synthesis processes cannot synthesize oligos
longer than a few hundred nts. Thus, as a single oligo can not store
more than a few hundred bits at best, it is necessary to fragment
the data and encode it across several oligos. As DNA molecule itself
has no addressing, it is necessary to add addressing information
explicitly in the oligo during encoding in order to be able to reorder
the oligos later during decoding. Thus, SOTA approaches reserve a
few bits per oligo to encode this indexing information.

Third, as mentioned earlier, synthesis and sequencing are error
prone. There can be insertion errors, where extra nts are added to
the original oligo resulting in a sequenced read being longer than
the oligo, deletion errors where nts are deleted resulting in shorter
reads, and substitution errors. DNA storage also suffers from a
coverage bias [10]. The average number of reads per oligo gener-
ated after sequencing is called coverage. Coverage bias refers to the
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fact that some oligos can be covered by multiple reads, and others
can be completely missing as they are not covered by any reads.
Coverage bias happens due to the fact DNA synthesis itself creates
multiple copies of each DNA molecule. On top of this “physical”
redundancy, DNA is also amplified using library preparation steps
(like Polymerase Chain Reaction) before sequencing. This amplifi-
cation creates multiple copies of each synthesized DNA molecule,
adding further redundancy. As these amplification procedures are
stochastic, different DNA molecules get copied at different rates,
leading to coverage bias.
Metadata archival. In order to provide reliable data storage on
DNA despite such errors, encoders need to add additional redun-
dancy to data in the form of parity bits generated by using error
control coding techniques. Error-control logic often uses additional
metadata, like parity check matrices, in order to derive these parity
bits from data. As this metadata is required to decode the data back
from DNA, it cannot be stored on DNA itself. Typically, with con-
temporary media like tape, such error-control metadata is stored
in the tape reader where the encoding/decoding logic is also imple-
mented. However, as we mentioned earlier, one of the key benefits
of DNA–its obsolescence free nature–is due to the separation of
the reader (sequencers) from the media itself (DNA). This raises the
question of how and where should this auxiliary metadata be stored.
One possibility is to store metadata and data separately, with the
former on tape and latter on DNA. However, decades of experience
from the digital preservation domain argues against this separation
and favors self-contained information storage that physically and
logically groups together related data and metadata [32]. Thus, it is
necessary to develop tiered storage strategies for passive archival
of data and metadata.
Format obsolescence. Data stored over long time periods suffers
not only from media obsolescence (where data stored on a storage
media can no longer be read), but also format obsolescence (data,
even if it can be read back from the media, cannot be understood
as it is in an “extinct” file format). While DNA solves the media
obsolescence problem, it does not solve format obsolescence. Mod-
ern data lakes use sophisticated file formats that are optimized for
fast querying of data, like Arrow, Parquet, Iceberg, and DeltaLake.
The open source nature of these formats and associated tooling
is certainly a step towards eliminating format obsolescence. How-
ever, they are far from ideal as archival storage formats, as they
are continuously evolving without a focus on ensuring backwards
compliant data access (future query engines being able to access
data stored in older format versions).

In order to use DNA as an archival medium, it is necessary to
overcome the three aforementioned challenges. In this paper, we
take the first steps towards this goal by presenting OligoArchive-
DSM (OA-DSM), an encoding/decoding pipeline for DNA storage
that solves the first challenge, in Section 3. After presenting OA-
DSM, we outline our future work that must be done to overcome
the last two challenges, among others, in Section 5.

3 DESIGN
Several researchers have proposed encoding solutions to demon-
strate the feasibility of using DNA as a digital storage medium [4,
7, 9, 11, 15, 18, 19, 23, 28]. In order to ensure reliable data storage
despite errors listed in Section 2, all SOTA encoding methods rely

on two functionalities: (i) error control coding and (ii) consensus
calling. During the write pipeline, input data bits are grouped into
blocks (Fig 2(a)), and each block is encoded using error-correction
codes to generate parity bits. Each block of data and parity bits is
then converted into a set of oligos (Fig 2(b)).

During the read pipeline, the sequencer produces noisy reads. As
several reads could correspond to a single oligo, SOTA methods use
a consensus caller whose goal is to cluster similar reads and infer
the original sequences from each cluster [5, 24, 25]. It is important
to note here that these consensus sequences will not be error-free,
accurate reproductions of original oligos. Some sequences will be
inferred correctly by consensus, but others could have insertion,
deletion, or substitution errors, or could go missing due to coverage
bias. Hence, it is the job of the error-control decoder to use the
additional parity bits to recover original input data despite these
errors. In order to provide reliable data storage on DNA, SOTA
approaches rely on using a significant amount of redundancy in
both writing (in the form of parity bits generated by error control
coding) and reading pipelines (in the form of very high sequencing
coverage). The added redundancy has the undesirable side effect
of amplifying the read/write cost as we show in Section 4. Thus,
efficient handling of errors is crucial to reducing overall cost. In
the rest of this section, we provide an overview of the OA-DSM
write and read pipelines, and explain why the use of a database-
inspired columnar oligo layout in OA-DSM can provide substantial
reduction in read/write cost.

3.1 OA-DSMWrite Pipeline
Figure 1 shows the OA-DSM data writing pipeline. The input to
the write pipeline is a stream of bits. Thus, any binary file can be
stored using this pipeline. The first few steps in OA-DSM are similar
to SOTA pipelines. The input data is grouped into blocks of size
256,000 bits. Each block of input is then randomized to improve the
accuracy of read clustering in the data decoding stage as explained
in Section 3.2. After randomization, error correction encoding is
applied to protect the data against errors. We use Low-Density
Parity Check (LDPC) codes [17] with a block size of 256,000 bits.
Prior work has demonstrated that such a large-block-length LDPC
code is resilient to errors caused by synthesis and sequencing [9].

The LDPC encoded bit sequence is fed as input to the DSM-oligo-
encoder which converts bits into oligos. OA-DSM differs from SOTA
approaches in this encoding process. SOTA approaches design each
oligo as a random collection of nts and map each block of data to a
group of oligos, one oligo at a time (Figure 2(b)). As a result of this
encoding, a group of oligos becomes the unit of recovery; before
data can be decoded, the entire group of oligos must be reassembled
by consensus. This is the reason why SOTA pipelienes strictly
separate consensus calling from decoding and perform consensus
calling first.

The key idea in OA-DSM is to integrate decoding and consensus
into a single step, where the error-correction provided by decoding
is used to improve consensus accuracy, and the improved accuracy
in turn reduces the burden on error correction, thereby providing a
synergistic effect. In order to do this, the DSM-oligo-encoder de-
signs oligos using composable building blocks called motifs. Each
motif is itself a short DNA sequence that obeys all the biological
constraints enforced by synthesis and sequencing. In order to per-
form the conversion of bits into motifs, the DSM-oligo-encoder
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Figure 1: OA-DSM data writing pipeline (top) showing encod-
ing and storage in an encapsulated container like Imagene
DNAShell™. OA-DSM reading pipeline (bottom) showing de-
coding. The blocks in red are unique to OA-DSM (versus
SOTA).
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Figure 2: Comparison of SOTA versus OA-DSM layout of oli-
gos. The figures show input data being grouped into blocks
with associated parity (a), each block being mapped to multi-
ple oligos with SOTA approaches (b), and each block being
mapped to a column of motifs with OA-DSM (c).

maintains an associative array with a 30-bit integer key and a 16nt
motif value. This array is built by enumerating all possible motifs
of length 16nt (AAA, AAT, AAC, AAG, AGA...) and eliminating
motifs that fail to meet a given set of biological constraints (up
to two homopolymer repeats and GC content in the range 0.25
to 0.75 based on our prior experimental work [25]). With these
constraints, using 16nt motifs, out of 416 possible motifs, we end
up with 1,405,798,178 that are valid. By mapping each motif to an
integer in the range 0 to 230, we can encode 30-bits per motif. Thus,
at the motif level, the encoding density is 1.875 bits/nt.

The second major difference of our approach to SOTA is the
layout of motifs across oligos which is reminiscent of Decomposi-
tion Storage Model (DSM) adopted by modern analytical database
engines. If we view oligos as rows, then the traditional approach
of encoding one oligo at a time by using nts (Figure 2(b)) can be
seen as a “row”-based encoding. Instead of this approach, OA-DSM-
encoder uses the motifs generated from an error-control coded data
block to build oligos by adding a new column at a time as shown in
Figure 2(c). This process of column-at-a-time encoding is repeated
until the oligos reach a configurable number of columns after which
the process is reset to generate the next batch of oligos again from
the first column. The generated oligos can then be synthesized to
produce DNA molecules that archive data.

There are two subtle aspects of OA-DSM design that we would
like to mention explicitly. First, while we organize motifs in a colum-
nar fashion, it is also possible to organize nts in a columnar fashion.
As we show later, columnar organization enables us to integrate
consensus calling and error-control decoding as we decode col-
umn at a time. Central to this approach is the ability to identify
where a column ends and a new column begins. With columnar
organization of motifs, we can use edit similarity-based alignment
algorithms to identify these boundaries even if there are errors in
motifs. With single nts, this is not possible, as a single insertion
or deletion error can result in complete misalignment of columns.
Second, while the figure shows all columns as being of the same
size, a small subtlety in the practical implementation is the distinc-
tion between the first column and the rest. As we need to index
the oligos to enable reordering during decoding, the first column

of motifs is generated by using a 15-bit address and a 15-bit data
to generate a 30-bit integer. Thus, the first LDPC encoded block is
decomposed into 15-bit integers. However, from the second column,
there is no need to add addressing information. Thus, rest of the
LDPC blocks are decomposed into 30-bit integers. As a result, all
columns except the first encode 2 LDPC blocks, while the first col-
umn encodes only 1 LDPC block. Note that with 15-bit addresses,
we can address up to 32,768 oligos. In ongoing work, we are using
OA-DSM to develop a block-addressed, randomly-accessible, DNA
file system. Similar to traditional file systems, OA-DSM allows us
to view a column like a disk block, and a collection of columns like
an extent. The 15-bit address here provides intra-extent addressing.
Extents themselves will be addressed separately using a separate
mechanism. We explicitly mention this here to clarify that OA-DSM
can scale to much larger oligo pools. But for the rest of this paper,
we focus on columnar design and consensus.

3.2 OA-DSM Read Pipeline
Asmentioned before, data stored in DNA is read back by sequencing
the DNA to produce reads, which are noisy copies of the original
oligos that can contain insertion, deletion, or substitution errors. As
each oligo can be covered by multiple reads, the first step in decod-
ing is clustering to group related reads together. In prior work, we
developed an efficient clustering technique based on edit similarity
joins [24, 25] that exploits the fact that due to randomization during
encoding, reads corresponding to the same original oligo are “close”
to each other despite errors and “far” from the reads related to
other oligos. The output of this algorithm is a set of clusters, each
corresponding to some unknown original oligo.

After the clustering stage, other SOTA methods apply consensus
in each cluster followed by decoding in two separate phases. In OA-
DSM, we exploit the motif design and columnar layout of oligos to
iteratively perform consensus and decoding in an integrated fashion
as shown in Figure 1. Unlike other approaches, OA-DSM processes
the reads one column at a time. Thus, the first step is columnar
consensus which takes as input the set of reads and produces one
column of motifs. The choice of consensus algorithm is orthogonal
to OA-DSM design. We use an alignment-based bitwise majority
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algorithm we developed previously for consensus [25], as we found
this to provide accuracy comparable to other state-of-the-art trace
reconstruction solutions [5]. The motifs obtained from consensus
are then fed to the DSM-oligo-decoder which is the inverse of the
encoder, as it maps the motifs into their 30-bit values. Note here
that despite consensus, the inferred motifs can still have errors.
These wrong motifs will result in wrong 30-bit values. These errors
are fixed by the LDPC-decoder, which takes as input the 30-bit
values corresponding to one LDPC block and produces as output
the error-corrected, randomized input bits. These input bits are
then derandomized to produce the original input bits for that block.

Asmentioned earlier, SOTAmethods do not use the error-corrected
input bits during decoding. OA-DSM, in contrast, uses these bits
to improve accuracy as shown in the bottom part of the integrated
columnar consensus in Figure 1. The error-corrected bits produced
by the LDPC-decoder are reencoded again by passing them through
the LDPC-encoder and DSM-oligo-encoder. This once again pro-
duces a column of motifs as it would have been done during input
processing. The correct column of motifs is used to realign reads so
that the next round of columnar decoding starts at the correct offset.
The intuition behind this realignment is as follows. An insertion or
deletion error in the consensus motifs will not only affect that motif,
but also all downstream motifs also due to a variation in length. For
instance, if we look at the example in Figure 1, we see a deletion
error in read 𝐴 −𝑇𝐺𝐴𝑇 .. which should have been 𝐴𝐶𝑇𝐺𝐴𝑇𝐶𝑇 ....
This results in the first motif being incorrectly interpreted as𝐴𝑇𝐺𝐴
(instead of 𝐴𝐶𝑇𝐺 , and second motif as 𝑇𝐶𝑇𝐺 (instead of 𝐴𝑇𝐶𝑇 ).
Thus, an error early in consensus keeps propagating. Without a
knowledge of the correct motif, there is no way to fix this error.
But in OA-DSM, by reencoding the error-corrected bits, we get
the correct motifs. By aligning these motifs against the reads, we
can ensure that consensus errors do not propagate. Note here that
such realignment is only possible because we use motifs, as two
sequences can be aligned accurately only if they are long enough to
identify similar subsequences. Thus, columnar layout without mo-
tifs, or with just nts, would not make realignment possible. Similarly,
integrating consensus and decoding is possible only because of the
columnar layout, as the SOTA layout that spreads a LDPC block
across several oligos cannot provide incremental reconstruction.

4 EVALUATION
In this section, we will present the results from our experimental
evaluation of the OA-DSM pipeline. Due to lack of space, we present
only results from our real wetlab experiments that validate the OA-
DSM pipeline and demonstrate the feasibility of our vision here.
A more in-depth evaluation and simulation studies can be found
in an extended version of the paper [26]. The core components of
the OA-DSM pipeline shown in Figure 1 have been implemented
in C++17. All experiments were run on a server equipped with a
12-core Intel(R) CPU and 128GB of RAM.

To validate OA-DSM, we used the TPC-H dbgen utility to gen-
erate a compressed, TPC-H database archival file of 1.2MB. We
limited the size to 1.2MB to limit the cost of actual synthesis. Us-
ing OA-DSM configured with 30% LDPC redundancy, we encoded
the archive file to generate 44376 oligos, with each oligo of length
160nts (length chosen to optimize synthesis cost). The oligos were
synthesized by Twist Biosciences. We sequenced the synthesized

Table 1: OA-DSM vs. SOTA rd/wt costs: RS-RL [28], LDPC [9],
Fountain+RS [15]

OA-DSM LDPC-30% RS+RLL Fountain+RS
Read Cost 2.10 4.46 4.50 6.8
Write Cost 0.70 0.78 0.92 0.65

oligos using Oxford Nanopore PromethION platform generating
approximately 43 million noisy reads.

In order to test end-to-end decoding, we first used the full 43M
read dataset as input to the decoding pipeline. Unsurprisingly, we
were able to achieve full data reconstruction, given the ability of
OA-DSM to handle much lower coverage levels and higher error
rates. In order to stress test our decoding pipeline and identify
the minimum coverage that allows fully reconstruction of data,
we repeated the decoding experiment on smaller readsets which
were derived by randomly sampling a fraction of reads from the
43M read dataset. In doing so, we found that OA-DSM was able to
perform full recovery using just 200K reads, which corresponds
to a coverage of 4×. At this coverage, nearly 3500 out of 44376
reference oligos were completely missing. However, the LDPC code
and columnar decoding were able to successfully recover data.
As further reduction in coverage led to data loss, we validate 4×
as the minimum coverage OA-DSM can handle with our wetlab
experiment.

We will now present a comparison of OA-DSM with SOTA ap-
proaches [9, 15, 28] in terms of reading and writing cost. We use
the definition of read/write cost as introduced in prior work [9].
Writing cost is defined as #𝑛𝑡𝑠−𝑖𝑛−𝑜𝑙𝑖𝑔𝑜𝑠

#𝑏𝑖𝑡𝑠 , where the numerator is
the product of the number of oligos and the oligo length, and the
denominator is the input data size. Thus, higher the redundancy
and encoding overhead, higher the write cost. The reading cost
is defined by #𝑛𝑡𝑠−𝑖𝑛−𝑟𝑒𝑎𝑑𝑠

#𝑏𝑖𝑡𝑠 . The numerator is the sum total of all
read lengths, and denominator is the input size. Thus, higher the
coverage required, higher the read cost. Table 1 shows the read and
write cost for OA-DSM and other SOTA algorithms. Computing
the costs for minimum coverage of 4×, we get a read cost of 3.37
nts/bit, and a write cost of 0.72 nts/bit. For OA-DSM, we compute
these costs based on the values from our wet-lab experiment. For
SOTA approaches, we use the values as reported by prior work [9].

There are several observations to be made. First, let us compare
the OA-DSM with row-based SOTA approach that also uses LDPC
(by S. Chandak et al. [9]). Both these cases use the same LDPC
encoder configured with 30% redundancy. The cost reported here is
for 1% error rate in both cases. Clearly, the OA-DSM approach has
both a lower write and read cost. The difference in write cost can be
explained due to the fact that in the row-based LDPC approach, the
authors also added additional redundancy in each oligo in the form
of markers which they used in their decoder. OA-DSM is able to
achieve 100% data reconstruction using the same LDPC encoder at
a much lower coverage level without such markers as demonstrated
by the lower read cost.

Comparing OA-DSMwith the other two efficient encoders (large-
block Reed-Solomon coding by Organick et al. [28] and fountain
codes by Erlich et al. [15]), we see that OA-DSM provides substan-
tially better read cost, but slightly worse write cost than fountain
coding approach. As we mentioned earlier, we can further improve
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the write cost for OA-DSM using several approaches. First, the
OA-DSM results in Table 1 were obtained with a 30% redundancy
based on its ability to handle even 12% error rate. For lower error
rates (less than 1%), as was the case with the Fountain coding work,
even 10% redundancy would be able to fully restore data. Second, as
mentioned in Section 3, scaling the motif set by using longer motifs
(17nt and 33 bits) could allow us to increase bit-level density further
from 1.87 bits/nt to over 1.9 bits/nt. These two changes would lead
to further reduction in write cost without any adverse effect on the
read cost. We leave open these optimizations to future work.

5 DISCUSSION & CONCLUSION
As cloud data lakes grow in popularity, it is becoming increasingly
important to scale the archival practices used by these systems. In
this work, we argued that the current tape-driven, migration-based
archival suffers from fundamental problems which will soon make
cost-efficient data archival infeasible. Given recent advances in the
design of obsolescence-free storage media, we believe that time is
ripe to investigate the impact of such media on the archival tier of
data lakes. In this work, we considered synthetic DNA–one such
medium that has received a lot of attention recently. We presented
OA-DSM, an end-to-end pipeline for DNA data archival that uses
a database-inspired, columnar data organization. We showed how
such an approach enables the integration of consensus calling and
decoding to reduce read/write costs.

While OA-DSM solves the first challenge related to archiving
data on DNA mentioned in Section 2, there are other challenges
that we do not address in this work. Some of these challenges
are out of context for data management research. For instance,
current DNA synthesis and sequencing procedures enable writing
and reading data from DNA at the rate of Kilobases/second and
Megabases/second with a latency of several hours. A large and
highly collaborative “DNA storage alliance” has developed around
this topic and rapid advances in automation are being investigated
for scaling throughput and latency. However, there are several
other research directions that are particularly relevant to the data
management community.

Metadata archival. In order to recover the data stored in DNA,
the OA-DSM decoder needs additional metadata (LDPC matrices
and derandomization seed). As the decoder will be run in the future,
it will be necessary to save this metadata. As described in Section 2,
this metadata should be preferably archived together with the data
to ensure completely passive archival. In prior work, we developed
a solution that enables data archival on analog media, like archival
paper or microfilm by converting digital data into printable, visual
barcodes [3]. In ongoing work, we are developing a tiered solution,
where data will be stored on DNA with OA-DSM, and metadata will
be stored on analog media. The two can then be stored together as
a unit passively, completely eliminating the need for migration.

Format obsolescence. As mentioned in Section 2, DNA solves
the media obsolescence problem but not format obsolescence. Mu-
seums and archives have long suffered from this problem as cul-
turally significant digital data that is stored in databases cannot be
preserved over long duration due to proprietary file formats. To
circumvent this issue, the SOTA approach for long-term database
preservation is to extract data from databases, convert it into a tex-
tual representation based on CSV and XML [27], and archive the text

file. Unfortunately, the switch from binary to text leads to severe
data bloat and is not suitable for large cloud data lakes. Thus, more
work is required to understand the applicability of open-source,
binary file formats like Parquet, Arrow, Deltalake, and Iceberg, as
the basis for long-term archival in terms of forward compatibility,
conformance to SQL standards, and their ability to archive applica-
tion logic expressed in stored procedures, SQL queries, and views
which provide the context in which data is accessed.

New synthesis techniques and consensus calling. At its
current price point, DNA storage is six orders of magnitude more
expensive than tape. The key bottleneck when it comes to DNA
storage cost is the phosphoramidite synthesis chemistry that is
used for manufacturing DNA. Recently, innovative solutions have
emerged in order to dramatically reduce the writing cost based on
enzymatic DNA synthesis [21, 22]. While these techniques have
the potential to reduce cost by several orders of magnitude, they
are highly error prone. As a result, novel consensus algorithms
that can decode oligos from highly noisy reads are required. In
prior work, we showed that the consensus calling problem can be
modeled as a database edit similarity join problem [24]. Thus, we are
developing accurate similarity join algorithms for enzymatically-
synthesized DNA archives that can scale well while providing very
high accuracy [35].

Abstractions for DNA storage. SOTA work on DNA storage
has focused on using an object interface to DNA storage [28] which
has several limitations. First, only large objects can be efficiently
supported as the storage of small objects would incur very high
overhead in terms of indexing. Second, objects with non-uniform
sizes can lead to data recovery issues due to coverage bias–a small
object would correspond to few sequences compared to a large
object, and during library preparation, the small objects can be
covered by fewer reads than large objects leading to data loss [10].
Tape archives, in contrast, support other abstractions to facilitate
data access. At the lowest level, tape exposes storage as a sequence
of blocks. Tape also provides the distinction between an index
partition and a data partition. Together, these abstractions are used
to build higher-level abstractions, like hierarchical file systems,
to enable searching and indexing. The columnar design of OA-
DSM suggests a natural extension to the block interface, with each
column acting like a disk block and a collection of columns acting
like an extent. Thus, we are extending OA-DSM to provide block-
based access interface to data stored in DNA.

Uncertain data management over DNA storage. Unique to
DNA storage is the fact that sequencing DNA not only provides
reads but also quality scores, also called Phred scores, that represent
the probability of each nt in the read being correct. Current research
primarily focuses on using DNA as a precise storage media. An
interesting avenue of research is developing techniques that can
map phred scores back to higher-level constructs, like attributes or
tuples, and use them with uncertain data models [1] for answering
queries with error estimates. Doing so will transform DNA into an
approximate storage medium [6, 16].
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