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ABSTRACT

Approximating series of timestamped data points using a sequence
of line segments with a maximum error guarantee is a fundamental
data compression problem, termed as piecewise linear approxi-
mation (PLA). Due to the increasing need to analyze massive col-
lections of time-series data in diverse domains, the problem has
recently received significant attention, and recent PLA algorithms
that have emerged do help us handle the overwhelming amount of
information, at the cost of some precision loss. More specifically,
these algorithms entail a trade-off between the maximum preci-
sion loss and the space savings achieved. However, advances in the
area of lossless compression are undercutting the offerings of PLA
techniques in real datasets. In this work, we propose Sim-Piece, a
novel lossy compression algorithm for time-series data that opti-
mizes the space requirements of representing PLA line segments, by
finding the minimum number of groups we can organize these seg-
ments into, to represent them jointly. Our experimental evaluation
demonstrates that our approach readily outperforms competing
techniques, attaining compression ratios with more than twofold
improvement on average over what PLA algorithms can offer. This
allows for providing significantly higher accuracy with equivalent
space requirements. Moreover, our algorithm, due to the simplicity
of its merging phase, imposes little overhead while compacting
the PLA description, offering a significantly improved trade-off
between space and running time. The aforementioned benefits of
our approach significantly improve the efficiency in which we can
store time-series data, while allowing a tight maximum error in the
representation of their values.
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Figure 1: Compression ratio comparison of four lossy PLA

approaches for two error thresholds 𝜖: a modest 5% and a

strict one 0.5% of the dataset’s range, againstChimp, the state-

of-the-art lossless algorithm, ZStandard, a general purpose

compressor, and our novel Sim-Piece algorithm.

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/xkitsios/sim-piece.

1 INTRODUCTION

Contemporary applications generate massive amounts of stream-
ing data, often depicted as series of timestamped records. In many
cases, storing the data is quite challenging due to their volume,
and applying compression techniques as a means to reduce the
respective storage requirements is deemed necessary. Depending
on the problem at hand, one could use either lossless or lossy com-
pression techniques. The former reduce the size of data without
loss of information, whereas the latter aim for larger space savings
while tolerating a bounded maximum error.

Piecewise linear approximation (PLA) is a fundamental data com-
pression problem dating back to the 1960s [3], commonly used to
approximate time-series data. PLA algorithms represent time-series
measurements using a sequence of line segments, while keeping the
approximation error within a predetermined acceptable threshold.
Clearly, these algorithms are associated with a trade-off between
space efficiency and precision loss, i.e., the space savings grow with
the value of the error threshold.

PLA techniques have been shown to efficiently support the stor-
age of voluminous historical time-series data while also addressing
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many data analytics tasks, such as detecting seasonality and fore-
casting without sacrificing effectiveness [32]. Depending on the
selected maximum error tolerance, PLA methods can drastically
reduce the size of time-series data achieving compression ratio
values that are far beyond the capabilities of state-of-the art lossless
compression algorithms. In many applications however, there is
certain amount of imprecision in the collected data. For instance
sensor temperature measurements often have a 0.1 − 0.5 degree
accuracy. For such applications, we may want to use a tight error
threshold with respect to the range of values in order to reduce
data size without sacrificing fidelity. Unfortunately, the merits of
PLA approaches are not that evident in such a scenario and lossless
compression techniques may provide larger space savings.

Figure 1 illustrates the compression ratio of four PLA approaches
with two error thresholds 𝜖 , a modest one equal to 5%, and a strict
one equal to 0.5%, of the signal’s range (defined as the difference
between its maximum and minimum value). Additionally, Figure 1
shows the space requirements of Chimp [21], the state-of-the-art
approach for streaming lossless compression, and ZStandard [1],
a general purpose compression algorithm targeting real-time sce-
narios. As we can see, for the smallest value of 𝜖 (0.05%) the space
requirements of the two lossless approaches are comparable or even
smaller than those of the PLA approaches.

In this paper we propose Sim-Piece that seeks to exploit sim-
ilarities among PLA-produced line segments. As we see in Fig-
ure 1, Sim-Piece greatly extends the space-savings of lossy approx-
imations for the same error bounds. Moreover, Sim-Piece comes
up with lossy compressed representations that provide impressive
space savings, even in cases where the acceptable error threshold is
very small. When considering a line segment, Sim-Piece fixes its
starting point to a quantized value that is within 𝜖 of the original
value. Then, we add subsequent data points to the segment by main-
taining a pair of slopes, i.e., the extreme upper and lower slopes that
satisfy the required approximation guarantees, until a point falls
out of the area between them. As any of the lines between the two
slopes can approximate the data points of the segment, we can find
groups of segments with intersecting sets of candidate lines and
represent them jointly, to reduce the overall space requirements.
The latter process is illustrated in Figure 2. Sim-Piece computes
the optimal solution to this problem, coming up with the minimum
possible number of groups to induce impressive compression ratios.

The performance gains we achieve over a set of several real-
world datasets are evident, regardless of whether we seek to maxi-
mize the space savings or to achieve high accuracy by setting a large
or small value of 𝜖 , respectively. More specifically, we show that
our improvement over the best known PLA approaches in terms of
space requirements [10, 24, 28], is consistent as 𝜖 grows, for values
of 𝜖 that reach 30% of the dataset’s range of values. In cases where
accuracy is more important, we show that we achieve equivalent
compression ratio with the second best approach while setting 𝜖
below 37% of the threshold that this approach uses on average.
This is particularly important as the space requirements of earlier
approaches were no longer competitive with lossless compression
for small values of 𝜖 [21]. Finally, we investigate the execution
time of Sim-Piece against previous approaches and show that we
outperform competitive approaches in terms of speed as well, be-
ing on average 55× and 6× faster than the second and third best

Mergeable Segments
Group 1

Mergeable Segments
Group 2

Other Segments

Figure 2: Groups of segments that we can represent jointly

with Sim-Piece.

approaches with regard to space efficiency, respectively. In fact,
the running time of Sim-Piece is comparable to that of Swing
algorithm [10], which however offers very modest space savings.

We summarize here the key contributions of our proposed com-
pression algorithm. In particular, we:

• propose Sim-Piece, a novel lossy compression algorithm
that significantly reduces the space requirements of PLA ap-
proximations by identifying similar segments and merging
their descriptions. Our space gains allow for significantly
increasing the accuracy we can obtain, while offering better
compression ratio than lossless approaches.

• show that our solution is optimal in terms of always finding
the minimum number of groups of segments that can be
represented jointly.

• demonstrate that by operating on independent groups of
PLA segments, Sim-Piece is very efficient in terms of its
running time.

• achieve better space-efficiency thanwhat earlier approaches
can offer even when combined with general purpose com-
pression. Moreover, compressing the results of Sim-Piece
allows for providing even more impressive space savings.

2 PRELIMINARIES

Let us now outline the background that will be needed in order to
follow and understand our approach.

2.1 PLA methods with Error Threshold 𝜖

PLA techniques read as input a potentially infinite stream of times-
tamped values (𝑡𝑖 , 𝑣𝑖 )𝑖≥0 and generate a number of line segments.
For the setting we consider, these lines approximate the original
values within a maximum error tolerance 𝜖 selected by the applica-
tion.

Key to PLA segmentation is to derive the location and type
of the knots [29, 31]. There are methods that enforce continuity
conditions [29] at the knots (joint knots [10, 14, 16]), methods that
allow discontinuity [29] (disjoint knots [10, 28, 31]) and techniques
that actually consider both [24].

As mentioned in [29] the continuity requirement at the knots
increases the complexity of the problem. Our segment matching
algorithm can be adapted to work upon the output of an existing
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Figure 3: Angle-based PLA. The gray area denotes all possi-

ble line segments starting from (𝑡1, 𝑣1) that approximate the

original values 𝑣𝑖 within 𝜖 [10, 28].

PLA segmentation (with joint or disjoint knots) by i) adjusting
the value at the starting knot, ii) reading the existing values and
calculating upper and lower slopes of admissible approximation
lines, for a given maximum error threshold, and iii) in the case
of joint knots, trimming the last point of the segment, making it
essentially disjoint [29].

For ease of exposition in the next section, we initiate the discus-
sion of our algorithm via a pre-processing step (Sim-Piece𝑝ℎ𝑎𝑠𝑒1)
using a greedy PLA algorithm, which is an adaptation of Swing [10]
that uses disjoint instead of joint knots. Our segment matching al-
gorithm operates directly on the output of this greedy algorithm
without further modifications. In our exposition, a segment is de-
scribed by i) the timestamp 𝑡𝑖 and value 𝑣𝑖 of its starting point, and
ii) the slope 𝑎𝑖 of its line.

2.2 Angle-based Greedy PLA

A common approach for constructing an approximate segment
with a maximum error guarantee is to calculate extreme slope lines
while adding new points. These lines help evaluate whether a new
point can be approximated by the current segment, or is a break-up
point that will trigger the creation of a new segment.

Figure 3 illustrates a process that follows this approach to ap-
proximate signal < (𝑡1, 𝑣1), (𝑡2, 𝑣2), (𝑡3, 𝑣3), (𝑡4, 𝑣4) > using a fixed
origin. This origin is set to be (𝑡1, 𝑣1), i.e., the first point of the
signal. When adding (𝑡2, 𝑣2), the process of Figure 3 creates an
angle formed by the bounding slope lines 𝑎𝑢2 and 𝑎𝑙2 connecting
(𝑡1, 𝑣1) with (𝑡2, 𝑣2 + 𝜖) and (𝑡2, 𝑣2 − 𝜖), respectively. This angle
specifies all lines that may approximate the two points within error
threshold 𝜖 . The next point, i.e., (𝑡3, 𝑣3) is more than 𝜖 away from
both the upper and lower slopes. Therefore, when adding this point
we need to reduce the angle so that the new slopes 𝑎𝑢3 and 𝑎𝑙3 pass
through (𝑡3, 𝑣3 + 𝜖) and (𝑡3, 𝑣3 − 𝜖), respectively. Finally, adding
(𝑡4, 𝑣4) requires that the angle is further reduced, as the approxima-
tions provided by 𝑎𝑙3 are more than 𝜖 away from (𝑡4, 𝑣4). Thus, 𝑎𝑙4
connecting (𝑡1, 𝑣1) with (𝑡4, 𝑣4 − 𝜖) is set as the new lower slope.
The upper slope is not updated, as the approximations provided

by 𝑎𝑢3 are less than 𝜖 away from (𝑡4, 𝑣4). The grey area of Figure 3
bounded by 𝑎𝑢3 and 𝑎𝑙4 illustrates the final candidate lines that are
less than 𝜖 away from all the points of the signal. If the distance of
a point encountered was not within 𝜖 from either of the two slopes,
it would trigger the creation of a new segment.

There has been extensive work following an approach such
as the one described above, with the resulting segments being
joint (Swing [10]), disjoint (Slide [10]) or both (Mixed [24]). In the
case of disjoint knots, the break up point is set as the origin of a
new segment, whereas in the case of joint knots the immediately
previous point is used. Our suggested approach is an adaptation
of Swing that produces disjoint knots with quantized associated
values based on a maximum error threshold, and exploits the angle
formed by the upper and lower slopes of each segment to represent
them as intervals of slope values. As we will explain, these intervals
will be used to merge the descriptions of different segments into a
compact representation.

2.3 Interval Graphs

The grey area formed by the angle of slopes 𝑎𝑢3 and 𝑎𝑙4 in Figure 3
illustrates all the candidate lines that we may use to describe the
respective segment within the defined accuracy. Thus, we can come
up with an interval of slope values that captures all possible lines
within the grey area. Naturally, the intervals of different segments
will often intersect, enabling us to represent them jointly. We will
next present the theorem that we will use to justify our method,
along with the required definitions, to ease the understanding of
our approach.
Definition 2.1. Consider a set of intervals 𝐼 = {𝐼1, 𝐼2, . . . , 𝐼𝑛} on
a line for 𝑛 ∈ N, where 𝐼 𝑗 = [𝑎𝑙 𝑗 , 𝑎𝑢 𝑗

] and 𝑎𝑙 𝑗 ≤ 𝑎𝑢 𝑗
, for 𝑗 ∈ N

and 𝑗 ≤ 𝑛. The interval graph 𝐺 = (𝑉 , 𝐸) formed by 𝐼 contains one
vertex v𝑗 for each interval 𝐼 𝑗 , so 𝑉 = {v1, . . . , v𝑛}, and there is an
edge between vertices v𝑖 and v𝑗 if and only if 𝐼𝑖 and 𝐼 𝑗 intersect,
i.e., 𝐸 = {(𝑥𝑖 , 𝑥 𝑗 ) | 𝐼𝑖 ∩ 𝐼 𝑗 ≠ ∅}.
Definition 2.2. A vertex is called simplicial if its neighbors form
a clique, i.e., its neighbors are all linked to one another by edges.
Definition 2.3. A perfect elimination scheme in a graph with 𝑛

vertices is an ordering v1, . . . , v𝑛 of the vertices such that v𝑖 is
simplicial in the graph that contains only vertices v𝑖 , . . . , v𝑛 .

Interval graphs have the following characterization [13] that we
are going to use later on to justify the optimality of our method.
Theorem 1. A graph is an interval graph if, and only if, a perfect
elimination scheme exists.

3 OVERVIEW

We now discuss the details of our approach for high-precision
storage reduction of time-series data that is based on the idea that
the different line segments produced by PLA techniques exhibit
similarities. We first present a PLA technique that produces sets of
candidate lines for each segment, that we call intervals. Then, we
seek to merge intervals that look alike in terms of their slope as
well as their starting point, by identifying intersecting intervals.

In what follows, we provide algorithms for both these procedures
which constitute the two phases of our novel Sim-Piece approach
for highly accurate PLA with small storage footprint.
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3.1 Interval Extraction

The first phase of Sim-Piece considers as input a data signal in
the form of a sequence of discrete data points (𝑡𝑖 , 𝑣𝑖 ), where 𝑖 ∈
{1, . . . , 𝑛}. The respective pseudocode is given with Algorithm 1.

We use the first point of the signal as the first point of the starting
segment (Line 3). The number of discrete values that the starting
points of our segments may take, can be arbitrarily large. However,
we need to come up with a limited amount of discrete starting point
values that multiple different segments may share, so that we are
able to jointly represent them. In our context, we are interested in
providing approximations within an error threshold 𝜖 . Therefore,
we do not need to consider all the different original values. Instead,
we can apply a quantization function such as the following for a
value 𝑣 , to come up with a quantized value 𝑏:

𝑏 = ⌊𝑣/𝜖⌋ × 𝜖 (1)

As an example, values 1.1 and 1.4 would both result in 𝑏 = 1 for
𝜖 = 0.5. Using Eq. (1) we convert the first value 𝑣𝑠 to the smallest
multiple of 𝜖 that is within 𝜖 from the original value 𝑣𝑠 (Line 4). We
also initialize the upper (Line 5) and lower (Line 6) slopes forming
the angle of the segment with the maximum and minimum possible
values, respectively, so that we make sure the second point of the
segment lies within the angle. Then we proceed by processing
subsequent points in the signal, following the procedure discussed
in Section 2.2 and depicted in Fig. 3. More specifically, we examine
whether the distance of each point encountered is not within 𝜖

from the angle formed by the bounding lines with slopes 𝑎𝑢 and 𝑎𝑙
(Line 9). If so, we terminate the formation of the current segment by
producing an interval for starting point 𝑏 denoted by the final lower
and upper slopes 𝑎𝑙 and 𝑎𝑢 and the initial timestamp 𝑡𝑠 (Line 10),
and we repeat the process considering the newly encountered point,
i.e., (𝑡𝑐 , 𝑣𝑐 ), as the starting point of the next segment. Otherwise,
depending on the position of the newly encountered point, we may
need to update the angle by lowering the upper bounding slope or
increasing the lower bounding slope. We achieve this by properly
adjusting values 𝑎𝑢 (Lines 15- 16) and 𝑎𝑙 (Lines 17- 18), respectively.

Following this procedure for all points of the signal, we come
up with a list of intervals associated with each quantized 𝑏 value
encountered in the signal. The elements of the final lists comprise
the upper and lower slope of each interval, which form the angle
of each respective segment as illustrated in Fig. 3, as well as the
initial timestamp of each segment.

3.2 Merging Lists of Intervals

Using the intervals extracted through Algorithm 1, we aim to find
the optimal groups of intervals for each quantized 𝑏 value, so that
we can represent similar intervals jointly and induce space savings.

Figure 4a depicts the angles of five intervals that share a common
starting point 𝑏. We observe that the angles formed by the intervals
may overlap, and thus, there exist candidate lines thatmay represent
more than one intervals. The flexibility of using any of the candidate
lines of each interval –as they all satisfy the required approximation
guarantees– enables us to group different overlapping intervals
to minimize the space requirements of their representation. More
specifically, our goal is to come up with the minimum number of

Algorithm 1: Sim-Piece𝑝ℎ𝑎𝑠𝑒1
Input: A data signal 𝑠 : (𝑡𝑖 , 𝑣𝑖 ) ∀𝑖 ∈ {1, . . . , 𝑛}
Output: A list of intervals 𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 for each quantized b value

1 Function Sim-Piece𝑝ℎ𝑎𝑠𝑒1 (𝑠)
2 𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ← {};
3 (𝑡𝑠 , 𝑣𝑠 ) ← 𝑠.next() ;
4 𝑏 ← ⌊𝑣𝑠 /𝜖 ⌋𝜖 ;
5 𝑎𝑢 ←∞;
6 𝑎𝑙 ← −∞;
7 while s.hasNext() do
8 (𝑡𝑐 , 𝑣𝑐 ) ← 𝑠.next() ;
9 if 𝑣𝑐 > 𝑎𝑢 (𝑡𝑐 − 𝑡𝑠 ) + 𝑏 + 𝜖 or 𝑣𝑐 < 𝑎𝑙 (𝑡𝑐 − 𝑡𝑠 ) + 𝑏 − 𝜖 then

10 𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 [𝑏 ] .add( ⟨𝑎𝑙 , 𝑎𝑢 , 𝑡𝑠 ⟩) ;
11 (𝑡𝑠 , 𝑣𝑠 ) ← (𝑡𝑐 , 𝑣𝑐 ) ;
12 𝑏 ← ⌊𝑣𝑠 /𝜖 ⌋𝜖 ;
13 𝑎𝑢 ←∞;
14 𝑎𝑙 ← −∞;

15 if 𝑣𝑐 < 𝑎𝑢 (𝑡𝑐 − 𝑡𝑠 ) + 𝑏 − 𝜖 then

16 𝑎𝑢 ← 𝑣𝑐 +𝜖−𝑏
𝑡𝑐−𝑡𝑠 ;

17 if 𝑣𝑐 > 𝑎𝑙 (𝑡𝑐 − 𝑡𝑠 ) + 𝑏 + 𝜖 then

18 𝑎𝑙 ← 𝑣𝑐−𝜖−𝑏
𝑡𝑐−𝑡𝑠 ;

19 𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 [𝑏 ] .add( ⟨𝑎𝑙 , 𝑎𝑢 , 𝑡𝑐 ⟩) ;
20 return 𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ;

groups of intersecting intervals for each starting point 𝑏. A formal
description of this problem follows.

Problem description 1. Given a set of intervals 𝐼 = {𝐼1, 𝐼2, . . . , 𝐼𝑛}
as described in Definition 2.1, where 𝑎𝑙 𝑗 and 𝑎𝑢 𝑗

denote the mini-
mum and maximum slopes of interval 𝐼 𝑗 = [𝑎𝑙 𝑗 , 𝑎𝑢 𝑗

], respectively,
partition 𝐼 into disjoint sets, so that all intervals in each set intersect,
and the number of partitions is minimized.

In Figure 4b, we plot the sets of candidate lines of Figure 4a
as slope intervals, so that the overlapping areas are more evident.
We observe that if we choose to group the interval [𝑎𝑙2 , 𝑎𝑢2 ] with
[𝑎𝑙3 , 𝑎𝑢3 ], and the interval [𝑎𝑙1 , 𝑎𝑢1 ] with [𝑎𝑙4 , 𝑎𝑢4 ] and [𝑎𝑙5 , 𝑎𝑢5 ] we
will come up with a total of two groups. However, if we choose to
group [𝑎𝑙1 , 𝑎𝑢1 ] with [𝑎𝑙3 , 𝑎𝑢3 ], we will come up with three groups
in total, as we will form one with intervals [𝑎𝑙4 , 𝑎𝑢4 ] and [𝑎𝑙5 , 𝑎𝑢5 ]
and onewith a single interval [𝑎𝑙2 , 𝑎𝑢2 ]. That is, if we select tomerge
[𝑎𝑙1 , 𝑎𝑢1 ] with [𝑎𝑙3 , 𝑎𝑢3 ], we forfeit the possibility of merging all
three [𝑎𝑙1 , 𝑎𝑢1 ], [𝑎𝑙4 , 𝑎𝑢4 ] and [𝑎𝑙5 , 𝑎𝑢5 ] segments together, which
forces us to come up with at least three merged groups, instead of
just two which is the optimal solution for this example.

The intersections among the different intervals can be repre-
sented even more clearly using the interval graph of Figure 4c. An
interval [𝑎𝑙𝑖 , 𝑎𝑢𝑖 ] is represented by vertex v𝑖 , and there exists an
edge between two vertices v𝑖 and v𝑗 if the respective [𝑎𝑙𝑖 , 𝑎𝑢𝑖 ] and
[𝑎𝑙 𝑗 , 𝑎𝑢 𝑗

] intervals are overlapping. In this way, the problem of
finding the minimum possible number of groups of overlapping
intervals becomes equivalent with partitioning the vertices of the
interval graph of Figure 4c into the minimum number of groups
such that the vertices in each group are all linked to one another
by edges. This is a well studied problem, known as the ‘minimum
covering by disjoint completely connected sets or cliques’ [15]. As
the graph of Figure 4c is an interval graph, there exists a perfect
elimination scheme, which is very easy to determine. We simply
need to choose a simplicial vertex, i.e., one whose neighbors are
all linked to one another, and place it in the first position of our
scheme. We then delete this vertex from the graph and look for a
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Figure 4: Sets of candidate lines for 5 line segments, depicted by the maximum and minimum possible slope for each segment

(4a), the respective set of intervals (4b), and the respective interval graph (4c). There is no need to construct the interval graph

which is featured here only to ease understanding.

Algorithm 2: Sim-Piece𝑝ℎ𝑎𝑠𝑒2
Input: A list of intervals 𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 for each quantized b value
Output: A list 𝑔𝑟𝑜𝑢𝑝𝑠 containing one group ⟨𝑏, 𝑎𝑙 , 𝑎𝑢 , 𝑡 ⟩ for each quantized b value

1 Function Sim-Piece𝑝ℎ𝑎𝑠𝑒2 (𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)
2 𝑔𝑟𝑜𝑢𝑝𝑠 ← {};
3 for 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑏𝑖

∈ 𝑏_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 do

4 𝑔𝑟𝑜𝑢𝑝 ← ⟨𝑏 = 𝑏𝑖 , 𝑎𝑙 = −∞, 𝑎𝑢 = ∞, 𝑡 = [] ⟩;
// sort by ascending 𝑎𝑙 order

5 sort(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑏𝑖 ) ;
6 for 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∈ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑏𝑖 do

7 if 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑎𝑙 ≤ 𝑔𝑟𝑜𝑢𝑝.𝑎𝑢 and 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑎𝑢 ≥ 𝑔𝑟𝑜𝑢𝑝.𝑎𝑙 then
8 𝑔𝑟𝑜𝑢𝑝.𝑎𝑢 ← min(𝑔𝑟𝑜𝑢𝑝.𝑎𝑢 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑎𝑢 ) ;
9 𝑔𝑟𝑜𝑢𝑝.𝑎𝑙 ← max(𝑔𝑟𝑜𝑢𝑝.𝑎𝑙 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑎𝑙 ) ;

10 𝑔𝑟𝑜𝑢𝑝.𝑡 .add(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑡 ) ;
11 else

12 𝑔𝑟𝑜𝑢𝑝𝑠.add(𝑔𝑟𝑜𝑢𝑝) ;
13 𝑔𝑟𝑜𝑢𝑝 ←

⟨𝑏 = 𝑏𝑖 , 𝑎𝑙 = 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑎𝑙 , 𝑎𝑢 = 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑎𝑢 , 𝑡 = [𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑡 ] ⟩;

14 𝑔𝑟𝑜𝑢𝑝𝑠.add(𝑔𝑟𝑜𝑢𝑝) ;
15 return 𝑔𝑟𝑜𝑢𝑝𝑠 ;

simplicial vertex in the remaining graph, which we place in the
second position of our scheme and also delete from the graph. We
continue doing this until the remaining graph is empty. Indeed, we
can see that vertex v2 is simplicial, as it has only one neighbor, so
we can choose it for the first position of the elimination scheme.
After deleting v2, we can choose v3, which is also simplicial in the
remaining graph, as it has only one neighbor left, i.e., v1. Then, we
can choose v1, as its two remaining neighbors, i.e., v4 and v5 are all
linked to one another. Next, we can choose v4 and finally v5. The
final order of the perfect elimination scheme described above is:

v2 → v3 → v1 → v4 → v5

An optimal algorithm for coming up with a perfect elimination
scheme is to sort the intervals in ascending order of the lower
point of their interval, 𝑎𝑙𝑖 [15]. As we can see in Figure 4b, this
order of the intervals matches the order of the perfect elimination
scheme given above. Therefore, there is no need to construct the

actual interval graph.We can simply follow the procedure described
in Algorithm 2. We first initialize an empty list of groups to be
produced (Line 2). Then, we iterate over the list of intervals of every
𝑏 (Line 3), initialize the first group (Line 4) and order the respective
intervals in ascending value of the lower point of their interval,
𝑎𝑙𝑖 (Line 5). We go through the intervals in this order (Line 6) and
consider them for placement in the current group. If the bounds
of this group overlap with the bounds of the currently considered
interval (Line 7), we add the interval to the group, by adjusting the
bounds of the group accordingly and adding the timestamp of the
interval to the group’s list of timestamps (Lines 8-10). Otherwise,
we close the group, placing it to the list of groups to be returned at
the end of Algorithm 2 (Line 12), and place the interval in question
in a new group (Line 13).

3.3 Output of Sim-Piece
The output of Algorithm 2 is a list of groups that comprise the
quantized value of 𝑏, the upper and lower bounds 𝑎𝑢 and 𝑎𝑙 , and
the starting-point timestamps of the merged intervals of the group.
As we can use any of the lines within the area defined by the
upper and lower bounds, we choose to use the line in the middle of
this area, with 𝑎 =

𝑎𝑢+𝑎𝑙
2 . The final output of Sim-Piece uses the

following compact representation:

𝑜𝑢𝑡𝑝𝑢𝑡 = [𝑏1, [𝑎1,1, [𝑡1,1, . . .]], . . .], [𝑏2, [𝑎2,1, [𝑡2,1, . . .]], . . .], . . .

It is evident that the proposed representation does not alter the
original PLA segmentation, i.e., the position of knots, as denoted by
the included timestamps. Moreover, by construction, the maximum
error threshold guarantee still holds for the entire history of the
time-series.

3.4 Analysis of Sim-Piece
The correctness and optimality of our segment merging approach is
guaranteed by the perfect elimination scheme property for interval
graphs (Theorem 1). According to this property, which serves as the
greedy choice of Algorithm 2, there is a certain order to examine
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Table 1: Details about our time-series datasets, including the number of measurements (length), the minimum value, the

number of decimal places, the range, the median value, the standard deviation, the mean delta and the probability of a data

point to be higher (𝒑↑), equal (𝒑=) or lower (𝒑↓) than that of the previous data point.

Dataset Length

Min Decimal

Range (×0.5%) Median 𝝈 𝒑↑ − 𝒑= − 𝒑↓
Mean

Value Places Delta

UC
R

Cricket 702,000 -10.19918800 8 22.9 (0.115) -0.041 0.9 49% − 0% − 51% 0.03
FaceFour 39,200 -4.68758570 8 10.5 (0.053) -0.097 0.9 26% − 47% − 27% 0.03
Lightning 122,694 -1.78116300 8 24.9 (0.125) -0.235 0.9 41% − 17% − 42% 0.04
MoteStrain 106,848 -8.63799570 8 17.1 (0.086) -0.003 0.9 55% − 1% − 44% 0.08

Wafer 1,088.928 -3.0539799 7 15.1 (0.076) 0.281 0.9 25% − 50% − 25% 0.05

N
EO

N Wind Speed 4,119,081 0.00 2 20.3 (0.102) 1.380 1.9 47% − 8% − 45% 0.09
Wind Dir. 1,169,510 0.00 2 360 (1.800) 186.850 107.1 50% − 0% − 50% 22.96
Pressure 12,098,677 90.99386 5 13 (0.065) 113.079 3.2 9% − 82% − 9% 0.000004

the vertices, i.e., by ascending value of the lower point of their
corresponding interval, so that each group formed contains the
maximum possible number of vertices and no group is created un-
less it is really necessary. Therefore we come up with the minimum
possible number of intervals.

Algorithm 1 groups the 𝑛 input time-series values in batches
of intervals, and then Algorithm 2 sorts the batches of intervals
that share the same starting point (quantized 𝑏 value) and merges
them. For each interval produced by Algorithm 1, we store exactly
4 elements: the 𝑎𝑙𝑖 and 𝑎𝑢𝑖 that define the slope of the interval, as
well as the 𝑡𝑖 and 𝑣𝑖 that comprise the timestamped value. Hence the
processing of each data point of the time series requires a constant
amount of memory, and the number of intervals produced cannot
exceed 𝑛, hence 𝑂 (𝑛) space is needed. Moreover, as Algorithm 2
merges intervals, the space needed can only reduce, progressively.
Therefore, the space complexity of our approach is 𝑂 (𝑛).

Regarding the time complexity of the end-to-end process, Algo-
rithm 1 is𝑂 (𝑛) time, since it processes the input values sequentially.
Assume now that the number of intervals produced by Algorithm 1
is 𝑘 . In the worst case with respect to running time, all intervals may
be placed in the same batch, and the sorting step of Algorithm 2
will be computed in𝑂 (𝑘 log𝑘) time. In practice, input segments are
dispersed among multiple 𝑏 values based on their starting points,
resulting in even faster execution. The scanning and merging of
the sorted lists requires 𝑂 (𝑘) time.

4 EXPERIMENTAL RESULTS

We implemented our Sim-Piece algorithm using Java and tested its
performance against four PLA algorithms and one lossless floating
point data compression method. Our implementation as well as
reproducible tests are publicly available.1 In this section we first
present the dataset and technical details on our experiments. Then,
we evaluate our algorithm by answering the following questions:
i) What is the compression ratio that Sim-Piece achieves compared
to earlier approaches? ii) What is the highest level of accuracy that
Sim-Piece may offer when we cannot afford to employ lossless
compression? iii) How does Sim-Piece perform as we vary the
desired error threshold? iv) How do monotonicity and seasonal-
ity impact Sim-Piece? v) Can we induce further savings through

1https://github.com/xkitsios/sim-piece

general purpose compression? vi) For the same maximum error
threshold, is Sim-Piece as fast as other PLA algorithms?

4.1 Experimental Setting

We ran our experiments on a computer with an Intel® Core™
i7-10510U, with a Max Turbo Frequency of 4.90GHz, a 8MB L3
cache, and a total of 16GB DDR3 2133MHz RAM. We implemented
Sim-Piece, PMC-MR [20] and Swing [10] using Java and we used a
C++ implementation for Slide [10], and Mixed [24] PLA algorithms,
which the authors of [24] have generously provided. We note that
based on the observations made by the authors of [24], Slide com-
putes the minimum number of segments with disjoint knots for
a maximum error bound and is thus optimal space-wise in this
setting [28]. Moreover, Mixed has been shown [24] to provide even
better savings, as it further considers joint knots.

Our dataset consists of 8 time-series from two sources. The first
has been used in prior efforts [24, 34], and features datasets from
the UCR time-series data archive [2]. We also use 3 time series that
exhibit different characteristics in terms of standard deviation and
mean delta (absolute difference between consecutive values), and
are made available by the National Ecological Observatory Network
(NEON)2 The properties of the dataset are listed in Table 1, and the
different time-series are thoroughly discussed below:

• UCR Time Series Classification Archive [2]
- Cricket: Accelerometer data taken from actors per-
forming cricket gestures.

- FaceFour: Face outlines modelled as time-series data.
- Lightning: Transient electromagnetic events associ-
ated with lightning using a suite of optical and radio-
frequency (RF) instruments.

- MoteStrain: Humidity and temperature sensor data.
- Wafer: A collection of inline process control measure-
ments recorded from various sensors during the pro-
cessing of silicon wafers for semiconductor fabrication.

• NEON datasets
- WindSpeed [26]: Wind speed observations made by a
windmonitor consisting of a propeller and vane design
on lake and river buoys.

2https://data.neonscience.org/data-products/
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- WindDirection [26]:Wind direction observationsmade
by a wind monitor consisting of a propeller and vane
design on lake and river buoys.

- Pressure [25]: Barometric pressure on the meteorology
station on the buoy in lakes and rivers.

We also utilize synthetic datasets in order to examine the effect
of time series properties, such as monotonicity and seasonality, on
the different PLA algorithms.

4.2 Compression Ratio Comparison

We start our evaluation by measuring the space required to com-
press each of the 8 datasets. Figure 5 shows the compression ratio
achieved by our Sim-Piece compared to Mixed, Slide and Swing
PLA algorithms. The results of PMC-MR are omitted as they were
clearly inferior compared to that of the other approaches, as illus-
trated in Figure 1. We report the compression ratio for varying error
threshold 𝜖 values, expressed as a percentage of the total range of
each dataset, listed in Table 1. More specifically, we report results
for 0.5%×𝑟𝑎𝑛𝑔𝑒 ≤ 𝜖 ≤ 5%×𝑟𝑎𝑛𝑔𝑒 . We also provide for every dataset
the compression ratio achieved by the lossless Chimp compression
algorithm. We see in Figure 5 that our Sim-Piece clearly stands out
as the most space-efficient algorithm, offering compression ratios
that are far superior than the second best approach. The improved
performance of Sim-Piece over earlier PLA approaches is evident
for all values of 𝜖 investigated. The only exception is the Pressure
dataset for which all approaches manage to offer unusually large
compression ratios. This is due to the very high probability of iden-
tical consecutive values and extremely small mean delta this dataset
exhibits, as reported in Table 1. Thus, we additionally investigate
the performance of all algorithms for smaller values of 𝜖 for this
dataset, in the last plot of Figure 5. As we can see there, Sim-Piece
again outperforms all earlier approaches by a large margin.

The horizontal red dotted lines in the plots of Figure 5 is the
compression ratio achieved by the Chimp compression algorithm.
We see that in many cases a large value of 𝜖 is required for the use
of earlier PLA algorithms to make sense, as the recent advances in
the field of floating point compression offer very competitive space
requirements. Table 2 reports for every time series of our dataset
the smallest value of 𝜖 for which Sim-Piece and the second best
approach produce an equivalent compression ratio to that of Chimp.
In cases when one cannot satisfy the space requirements of lossless
compression and needs to employ a lossy representation, our results
clearly show how our Sim-Piece can provide significantly higher
accuracy than earlier PLA approaches, thus offering improved space
requirements even under very strict error threshold limits.

4.3 Quality of Approximation

Sim-Piece is designed to offer maximum error guarantees to each
and every value of the time-series. Thus, it is worth exploring i) how
the actual Mean Absolute Error (MAE) compares to the maximum
error threshold used, and ii) what is the Root Mean Square Error
(RMSE) of the approximation. For the latter we used an unmodified
version of Sim-Piece that does not seek to optimize this metric
by adjusting the computation of the slope values accordingly.

In Table 3 we report results for all datasets and PLA techniques
when the input maximum error threshold 𝜖 is set at 5%. We also

Table 2: Sim-Piece and Mixed (2𝑛𝑑 best) 𝜖 values that produce

an equivalent compression ratio to that of Chimp.

Dataset

𝜖

Sim-Piece Mixed

U
C
R

Cricket 0.15% 0.53%
FaceFour 1.25% 2.19%
Lightning 0.12% 0.42%
MoteStrain 0.15% 0.39%

Wafer 0.05% 0.20%

N
E
O
N Wind Speed 0.43% 2.69%

Wind Dir. 0.44% 1.84%
Pressure 0.03% 0.04%

report MAE as a fraction of the dataset range (MAEr%), in order
to have a comparison of the obtained approximation with respect
to the maximum error threshold 𝜖 used. We notice that all meth-
ods provide approximations that are significantly more accurate
than the requested threshold. In fact, the average MAEr% in all
algorithms is about half of the 𝜖 value requested. Moreover, the
reported RMSE values are very close to the measured MAE. This
implies that there is very small deviation among the errors obtained
on the individual measurements. Compared to the other techniques,
Sim-Piece provides the second-best average MAE and RMSE val-
ues. Swing provides marginally better approximation; however, we
need to keep into account that, on the average, Sim-Piece achieves
a compression ratio that is more than 3.2 times higher than that of
Swing in this setting.

In order to put into perspective the obtained accuracy of each al-
gorithm, we plot, in Figure 6, the compression ratio obtained by the
different methods with respect to the MAE of their approximations,
for the Wafer dataset. We notice that for the same MAE (x-axis
value), Sim-Piece achieves significantly higher compression ratio,
compared to earlier PLA algorithms. Figures for other datasets were
similar and are omitted for brevity.

4.4 Impact of Error Threshold

We continue investigating the performance of Sim-Piece by exam-
ining the impact of the error threshold 𝜖 on its compression ratio.
For every approach we measure the compression ratio achieved
as 𝜖 grows up to 50% of each dataset’s range. Larger values of 𝜖
are not meaningful as they would enable us to represent the entire
signal using a single constant value. The performance is similar for
all datasets and thus, for brevity, we illustrate (in logarithmic scale)
the results for only two of our datasets in Figure 7.

We see that Sim-Piece maintains its advantage over earlier
approaches for large values of 𝜖 , around 30% of the entire range.
Therefore, not only does Sim-Piece provide improved space ef-
ficiency when high accuracy is required, but it also outperforms
earlier approaches when the error threshold is large. For values of
𝜖 that are larger than 30% of the dataset’s range, only a handful
of PLA segments are produced by Angle-based PLA, resulting in
fewer opportunities for merging similar segments. As a result, the
Mixed and Slide algorithms perform better. However, the accuracy
in such settings is clearly very low.
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Figure 5: Compression ratio results varying error threshold 𝜖.

4.5 Impact of the Degree of Monotonicity

Sim-Piece applies a quantization function to the starting points
of segments, so that we come up with a limited amount of discrete
starting point values that multiple line segments may share. The
number of values we come up with depends on the error threshold
as well as the degree of monotonicity the input signal exhibits.
Our next experiment investigates the impact the latter has on the
performance of Sim-Piece.

We generate a synthetic signal that follows a random-walk-like
model. The value for each data point can be lower than or higher
than that of the previous data point according to the probabilities
𝑝 and (1 − 𝑝), respectively. The magnitude of decrease/increase in
the value follows a uniform distribution 𝑈 (0, 𝑣𝑚𝑎𝑥 ), where 𝑣𝑚𝑎𝑥

is set to be up to 300% of the error threshold 𝜖 . Figure 8 illustrates
the impact of the degree of the signal’s monotonicity on the com-
pression ratio. The probability 𝑝 is varied from 0 to 0.5, as the plot

is symmetric for higher values. When 𝑝 is set to 0, the signal is
monotonically increasing.

Figure 8 shows that Sim-Piece performs best when the proba-
bility is close to 0.5, as is the case with many real-world datasets.
Indeed, as we see in Table 1 the probability of a data point to be
lower or higher than that of the previous data point is almost identi-
cal for all datasets. The compression ratio of Sim-Piece decreases
with the probability 𝑝; however, Sim-Piece outperforms earlier
approaches for 0.45 < 𝑝 ≤ 0.5. When the probability of decrease
𝑝 is less than 0.45 the signal exhibits strong upwards trend with
very few chances of repeating starting points among segments that
Sim-Piece could utilize in the second phase of the algorithm.

In Figure 8 we also present results of Sim-Piece when we per-
form detrending to the input signal. There any many ways to re-
move trend, we here assume an additive model and simply sub-
tract a linear regression line from the entire signal before applying
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Table 3: Compression Ratio (CR), measured MAEr%, MAE and RMSE for 𝜖 = 5%.

Dataset

Swing Slide Mixed Sim-Piece

CR MAEr% MAE RMSE CR MAEr% MAE RMSE CR MAEr% MAE RMSE CR MAEr% MAE RMSE

UC
R

Cricket 22.8 2.48% 0.567 0.657 38.3 2.34% 0.535 0.626 45.2 2.32% 0.532 0.624 74.8 2.21% 0.506 0.597
FaceFour 10.2 2.49% 0.262 0.306 11.9 2.68% 0.281 0.327 15.6 2.62% 0.275 0.322 20.9 2.46% 0.258 0.302
Lightning 36.6 2.44% 0.608 0.704 67.9 2.72% 0.677 0.765 83.8 2.47% 0.615 0.707 115.4 2.26% 0.563 0.655
MoteStrain 13.4 2.50% 0.428 0.503 17.5 2.91% 0.497 0.562 20.4 2.97% 0.507 0.572 35.6 2.71% 0.464 0.528

Wafer 19.6 2.03% 0.307 0.374 26.1 2.98% 0.449 0.507 27.6 2.87% 0.434 0.434 61.4 2.77% 0.418 0.471

N
EO

N Wind Speed 9.8 2.63% 0.533 0.619 24.3 2.42% 0.491 0.583 27.2 2.30% 0.466 0.557 40.8 2.30% 0.467 0.560
Wind Dir. 4.4 2.29% 8.233 10.082 6.7 2.66% 9.576 11.320 7.6 2.64% 9.521 11.267 15.0 2.46% 8.841 10.451
Pressure 235.7 2.39% 0.310 0.362 534.2 2.10% 0.273 0.324 699.8 3.60% 0.468 4.296 769.4 2.12% 0.276 0.326
Average 44.1 2.41% 1.406 1.701 90.9 2.60% 1.597 1.877 115.9 2.72% 1.602 2.355 141.7 2.41% 1.474 1.736
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Figure 6: Compression ratio results over the MAE of the

approximation achieved by each PLA technique.

Sim-Piece [4, 17, 33]. This step requires linear time.Moreover, stor-
ing this line in order to decompress the signal requires just two val-
ues that are accounted for in the calculation of the compression ratio.
The result is that multiple segments share the same starting point
which substantially increases performance of Sim-Piece, even in
extreme cases of strongly monotonically increasing or decreasing
input signals. It should be noted that this simple workaround has
no effect on the competitive PLA methods, since subtracting a line
simply rotates the input signal over the starting point (altering the
slope of all points by the same amount). Thus, all these methods
produce exactly the same number of segments (rotated) compared
to the initial signal. Moreover, the total time required to come up
with the detrended signal and process it is 6.7𝑚𝑠 , a mere 4.4% over
the running time of Sim-Piece, which is 154𝑚𝑠 .

4.6 Effect of Seasonality

One key idea that Sim-Piece builds upon and contributes to its
performance is the existence of seasonal patterns in real-world
time series. Many similar repeated sequences can be represented
in a single group to help increase the compression ratio. Here,
we investigate how seasonality in the input signal impacts the
compression ratio of Sim-Piece, as well as earlier PLA methods.

In particular, we created a synthetic signal using the popular ad-
ditive model [17, 33], where a seasonal component is added together
with a random walk model. For the latter each point is generated
to be higher or lower (with the same probability) from the previous
one, by a magnitude selected uniformly in a range that is 10× the
error threshold value used. We generate a data point every 1 minute,
using a sine function to simulate a daily pattern.

Figure 9 shows the impact of the signal’s seasonality on the com-
pression ratio overtime. As expected, the Mixed, Slide and Swing
PLA algorithms cannot take advantage of the seasonal pattern, re-
sulting in an almost constant compression ratio. On the contrary,
Sim-Piece quickly discovers similarities between the produced
segments and utilizes them in order to achieve higher compres-
sion results. In the same figure we also depict the compression
ratio of an alternative implementation of Sim-Piece (denoted as
Sim-Piece-delta), which instead of processing all previous records,
it merges the newly created PLA intervals from the last day, with
the previously computed ones. This version of Sim-Piece necessi-
tates a small change in the compressed representation, were both
the upper and lower slopes are kept, instead of the middle one (see
Subsection 3.3). The modified algorithm achieves slightly smaller
compression ratio due to the increased space used for represent-
ing the PLA segments and the sub-optimal merging of intervals in
phase-2. However is still manages to take advantage of the seasonal
pattern in the data and outperforms earlier PLA techniques by a
large margin.

4.7 General Purpose Compression Gains

Our next experiment focuses on the use of general purpose com-
pression on top of PLA approaches, that may help further reduce
the space requirements of storing the input signal. More specifi-
cally, we use the ZStandard [1] algorithm to compress the output
of Swing, Slide and Mixed PLA algorithms, as well as our novel
Sim-Piece approach. Figure 10 illustrates the space gains we ob-
tain for each algorithm for all time series of our dataset. We set
𝜖 = 0.5% × 𝑟𝑎𝑛𝑔𝑒 for all time series, except Pressure, for which
we use 𝜖 = 0.05% × 𝑟𝑎𝑛𝑔𝑒 , as it exhibits very small mean delta.
For the earlier PLA approaches we see that ZStandard does help
increase the compression ratio, offering additional space savings.
The improvement is most evident for Slide, as when using Zstan-
dard its performance matches that of Mixed. However, even with
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Figure 7: Exploring larger error tolerances. Sim-Piece outperforms earlier approaches up to very large values of 𝜖.
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Figure 8: Impact of the degree of monotonicity. Sim-Piece
performs best when the probability of decrease is set to val-

ues that resemble real-world datasets. A simple detrending
procedure applied on the input signal significantly boosts the

performance of Sim-Piece even at extreme cases of mono-

tonicity, but has no effect on the alternative PLA methods.

the benefit of using an additional general purpose compression
algorithm, none of the earlier PLA approaches is able to compete
against our newly proposed Sim-Piece algorithm, which clearly
offers a better compression ratio without any added help. Moreover,
using Zstandard on top of Sim-Piece provides improvements that
are on par with those achieved for other PLA algorithms, leading
to far greater compression ratios. This shows that the advance-
ments offered by Sim-Piece on exploiting patterns that appear in
time sequences can be further strengthened by general purpose
compression algorithms, just as earlier PLA approaches.

4.8 Execution Time

Table 4 reports the time required to process each of the time-series
datasets using the Slide [10], Swing [10],Mixed [24], and Sim-Piece
algorithms. The results are averages of multiple executions and
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Figure 9: Effect of seasonality. The performance of both vari-

ations of Sim-Piece increases overtime, as they exploit simi-

larities due to the seasonal component.

consider two settings: the first one considers an error threshold 𝜖
equal to 0.5% of the dataset’s range, whereas the second one sets 𝜖
to be equal to 5% of the dataset’s range. Moreover, for Sim-Piece
we report the time needed overall, as well as for each of its two
phases.

We observe in Table 4 that Sim-Piece is faster by at least one
order of magnitude than the second best approach in terms of
compression ratio, i.e., Mixed. Furthermore, our results show that
the performance of Sim-Piece is most of the times faster than the
Slide algorithm as well. The only exceptions are for the WindSpeed
and WindDirection datasets, when the error threshold is set to
𝜖 = 0.5% × 𝑟𝑎𝑛𝑔𝑒 . In this case, as we see in Table 5, the number
of intervals produced after the first phase of Sim-Piece is very
large. This slows down the execution of phase-2, leading to an
overall execution time that is slightly larger than that of Slide.
The Swing algorithm, that provides the worst compression ratio
among the approaches investigated here, is shown to be the fastest
approach. However, the results of Table 4 clearly show that the
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Table 4: Execution time (in ms.) for 0.5% and 5% Epsilon.

Dataset

Swing Slide Mixed

Sim-Piece

Phase 1 Phase 2 Total

0.5% 5% 0.5% 5% 0.5% 5% 0.5% 5% 0.5% 5% 0.5% 5%

UC
R

Cricket 53 48 475 538 3,936 4,910 78 104 306 69 384 173
FaceFour 2 2 28 28 223 219 3 3 9 2 12 5
Lightning 8 5 63 62 532 536 9 7 16 1 25 8
MoteStrain 6 5 79 76 516 530 6 8 27 8 33 16

Wafer 35 26 829 817 4,882 4,869 50 45 99 48 149 93

N
EO

N Wind Speed 283 312 1,815 1,827 22,380 22,333 232 170 2,578 286 2,810 456
Wind Dir. 101 60 733 728 6,651 6,590 93 69 829 218 922 287
Pressure 190 228 3,840 3,919 50,299 49,027 319 326 32 1 351 327

execution time of Sim-Piece decreases as the value of 𝜖 grows.
This is due to the smaller number of segments produced during
the first phase of the algorithm, as shown in the results of Table 5.
Thus, even though Sim-Piece is not always faster than Slide for
small values of 𝜖 , it becomes much more efficient as the value of
𝜖 grows, providing significantly better compression ratio for all
possible error-thresholds values (e.g. Figure 7).

The superiority of Sim-Piece is evident in Figure 11, that illus-
trates the average trade-off between compression time and ratio
achieved for all algorithms of our experimental setting, when 𝜖

is set at 5%. We clearly see how Sim-Piece provides impressive
space savings while also being almost equivalently efficient with the
fastest approach. The findings depicted in Figure 11 establish our
algorithm as the undisputed preferable option for space-efficient
approximation of time series.

5 RELATEDWORK

We review here existing approaches that are used to approximate
time-series data. We also discuss compression techniques studied
in relevant fields, as well as two lossless compression algorithms.

An optimal algorithm for approximating sensor data using Piece-
wise Constant Approximation is given in [20]. A cache filter is used,
which predicts that the next data point will have a value within
the error threshold from the previous one. Thus, a new data point
needs to be recorded only when it violates the error constraint. A
similar approach is discussed in [27].

Elmeleegy et al. [10] propose Swing and Slide, a novel joint- and
a disjoint-segment PLA algorithm, respectively. Similar algorithms
had been independently discovered in earlier works, by Gritzali
and Papakonstantinou [14] and O’Rourke [28]. Swing constructs
the longest possible line segment starting from a fixed origin point
by adjusting two bounding slope lines until reaching a break-up
point, which will generate a new joint segment, starting from the
last point of the previous segment. Slide filters are different as they
generate disjoint segments as an approximation for the original data
points. This gives them more flexibility at the expense of having to
store an additional value for each segment. Updating the bounding
slope lines can be optimized with the use of the convex hull of the
observed data points, which allows for checking only against the
points of the convex hull, instead of the significantly larger number
of all the data points observed in the current filtering interval.

GreedyPLR [34] is a variant of Swing in which the point used to
swing up and down is set to be the intersection of the upper and
lower bounding slopes, instead of the starting point of a segment.
This variation provides a wider angle than Swing while preserving
a worst-case O(1) complexity. Similar to Slide [10] and the work
in [28], OptimalPLR [34] uses convex hulls to find the optimal PLA
with regard to the number of line segments using only disjoint
segments and may offer faster processing time [8].

Hakimi and Schmeichel [16] solve optimally the continuous PLA
problem, in which the approximation segments are forced to form
a continuous function. This allows for representing the segments
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Table 5: Intervals before and after the execution of phase-2

and respective reduction percentage.

Dataset

0.5% 5%

Before After Red.% Before After Red.%

Cricket 139,112 10,293 93% 16,660 1,678 90%
FaceFour 13,831 2,559 81% 2,944 631 79%
Lightning 18,012 2,330 87% 1,597 413 74%
MoteStrain 18,276 4,383 76% 5,260 591 89%

Wafer 70,636 6,046 91% 33,955 1,184 97%
Wind Speed 1,511,313 17,833 99% 195,216 5,358 97%
Wind Dir. 474,160 28,333 94% 149,325 5,543 96%
Pressure 36,646 17,588 52% 1,445 1,220 16%

with two values, instead of the three required when using disjoint
segments. The process is similar with that of OptimalPLR; however,
each new segment starts from the previous generated line instead
of the break-up point. The work in [16] is based on an algorithm
proposed by Imai and Iri [18]. A variation of the work in [16] is
given in [9], where a simple regression model is used to obtain the
best-fit line at the cost of increased complexity.

Luo et al. [24] introduce the problem of mixed-type PLA, aiming
to optimize the representation size through an adaptive solution
that uses a mixture of joint and disjoint segments. Their novel ap-
proach allows for enjoying the best of two worlds, i.e., the cheaper
representation of joint segments and the fewer number of segments
produced by disjoint-segment approaches. A dynamic program-
ming algorithm is presented that finds the optimal sized PLA in
under these settings. Moreover, the authors avoid wasting a bit for
each segment to differentiate between joint and disjoint segments.
Instead, the proposed representation exploits the strictly increas-
ing sequence of positive timestamps and uses negative values to
indicate a disjoint segment.

Compression of time series has been studied in the context of
other work as well. The authors of [5, 6] proposed a technique that
exploits the correlation and redundancy among multivariate sensor
readings to construct a dictionary of real measurements, used for
encoding piece-wise linear correlations among the collected data
values. [7, 12] extend these techniques to work in a distributed
setting of network-connected nodes, while also accounting for the
presence of outliers. In [35], the authors propose an approach for
efficiently processing time-series similarity matching queries, by
dividing time series into a fixed number of equal sized segments.
[19] also focuses on indexing time series and shows that APCA, a
piecewise constant approximation approach can be indexed using
a multidimensional index structure to allow for fast approximate
querying. Guerts [11] focuses on classification of time series and
uses regression trees to perform piecewise constant modelling of
temporal signals. Patterns are extracted from these models and
are combined in decision trees to give interpretable classification
rules. SAX [23] introduces a symbolic approach for time-series di-
mensionality reduction that allows distance measures to be defined
on the symbolic representation. This enables running certain data
mining algorithms on the symbolic representation, while producing
results that are similar to what the algorithms that operate on the
original data produce.
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scale) and space (compression ratio) for various algorithms.

In the field of lossless time series compression, Gorilla [30] is a
compression algorithm, particularly suited for floating-point time
series in which the neighboring data points do not change signifi-
cantly. Timestamps and values are compressed separately, similarly
to other time-aware schemes[22]. The more recent Chimp [21] loss-
less compression algorithm has been shown to be very competitive
in terms of space requirements with lossy PLA approaches. Our
Sim-Piece algorithm is motivated by the impressively low space
requirements of Chimp and achieves significant improvements with
regards to the state-of-the-art in PLA algorithms, offering better
compression than Chimp, even when the precision error threshold
is set extremely low.

6 CONCLUSIONS

In this paper we introduced Sim-Piece, a novel approach that
exploits similarities among the line segments produced by PLA
in order to provide a joint representation for multiple segments.
Our Sim-Piece algorithm, offers substantially better space savings
on a large range of maximum error values, including when the
acceptable error bound is small. This is particularly important as
recent lossless algorithms have been shown to outperform earlier
lossy approaches in such settings.

The experimental evaluation of our algorithm using real and
synthetic datasets shows that we attain compression ratios that
are far superior than the second best approach, for all the accept-
able error bounds that were investigated. Moreover, Sim-Piece
outperforms past PLA methods even in extreme cases of strongly
monotonically increasing or decreasing input signals, and manages
to exploit seasonal components to provide additional savings. As
far as the execution time is concerned, we show that Sim-Piece is
up to 150× faster than the second best approach in terms of com-
pression ratio, offering overall significantly improved efficiency
with regard to both space and speed. We plan to extend Sim-Piece
by investigating the parallelization opportunities of our scheme.
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