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ABSTRACT
Trajectory data has the potential to greatly benefit a wide-range of

real-world applications, such as tracking the spread of the disease

through people’s movement patterns and providing personalized

location-based services based on travel preference. However, pri-

vacy concerns and data protection regulations have limited the

extent to which this data is shared and utilized. To overcome this

challenge, local differential privacy provides a solution by allowing

people to share a perturbed version of their data, ensuring privacy

as only the data owners have access to the original information.

Despite its potential, existing point-based perturbation mechanisms

are not suitable for real-world scenarios due to poor utility, depen-

dence on external knowledge, high computational overhead, and

vulnerability to attacks. To address these limitations, we introduce

LDPTrace, a novel locally differentially private trajectory synthe-

sis framework. Our framework takes into account three crucial

patterns inferred from users’ trajectories in the local setting, al-

lowing us to synthesize trajectories that closely resemble real ones

with minimal computational cost. Additionally, we present a new

method for selecting a proper grid granularity without compromis-

ing privacy. Our extensive experiments using real-world as well as

synthetic data, various utility metrics and attacks, demonstrate the

efficacy and efficiency of LDPTrace.
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1 INTRODUCTION
The widespread availability of location sensing technology, such as

GPS, has revolutionized our ability to collect real-time data. As a re-

sult, there has been significant interest in studying human mobility

patterns on a large scale for a variety of location-based applications,
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including traffic prediction, route planning, and recommendation.

Despite the immense value of this data, privacy concerns surround-

ing the sensitive nature of trajectories have limited its use.

Differential privacy (DP) has become the de facto standard for

protecting sensitive data while ensuring individual privacy. Despite

the development of various DP algorithms for trajectory publish-

ing and analysis, these methods rely on a trustworthy aggregator
to collect users’ raw trajectories. In contrast, local differential pri-

vacy (LDP) allows users to directly share a noisy version of their

data to the aggregators, reducing the risk of data breaches from

untrustworthy data curators.

The LDP provides a more practical setting and improved pri-

vacy properties, however, it imposes challenges in preserving the

complex spatial patterns of trajectories due to its strict privacy

requirements. Currently, the only solution that meets the rigorous

privacy requirement of LDP is NGRAM [14]. This method uses the

exponential mechanism to directly perturb individual trajectory in

the local setting and leverages external knowledge (POIs, business

opening hours, etc.) and overlapped n-grams to enhance the real-

ism of the noisy trajectories. However, NGRAM has several major

limitations that hinder its effectiveness:

• Poor global utility.AsNGRAM only focuses on local trajectory

proximity for utility optimization (similarity between original

and perturbed trajectories), it results in poor global utilities, as

reported in Section 6.3. Most location-based applications rely on

population-level spatial statistics (e.g., range query and spatial

density) andmoving patterns (e.g., distribution of start/end points
and frequent travel patterns), rather than individual behaviors

(e.g., routing preference), and the failure to preserve global utility
significantly limits its applications.

• Dependence on auxiliary knowledge. The performance of

NGRAM heavily relies on external knowledge (e.g., POI cate-
gories and business opening hours), which may not always be

accessible and can become outdated easily. This leads to a dra-

matic decrease in utility and authenticity of generated trajecto-

ries. In addition, users are required to store the external data on

their own devices, which is highly impractical for wearable or

low-cost GPS devices with limited storage.

• High computational overhead. To obtain accurate perturbed

trajectories,NGRAM uses linear programming solvers, which are

time-consuming and require pre-processing to deal with external

knowledge (e.g., POI processing and hierarchical decomposition).

This can result in significant delays for users, reducing their

satisfaction with location-based services.
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• Vulnerable to attacks. Point-based privacy mechanisms are

vulnerable to location-based attacks, such as re-identification

attack [34, 42] and outlier leakage [23, 28], due to the strong

statistical correlation between the fake locations and user’s true

locations. This is even more concerning for NGRAM as it lever-

ages external knowledge to maintain geographic and semantic

similarities between real and perturbed points in the local setting

(as to be detailed in Section 6.8). As a result, alternative attack-

resilient approaches must be sought to address privacy concerns

and combat these attacks.

The existing shortcomings motivate us to develop a new local

privacy-preserving paradigm that is both utility-aware and efficient.

Instead of perturbing each trajectory individually, we aim to extract

the key movement patterns of each user and use them to synthesize

privacy-preserving and realistic trajectories. However, synthesizing

trajectories in the local setting is challenging due to the following

two reasons. First, previous trajectory synthesis methods either rely

on global statistical metrics [4, 23] or spatial-aware data structures

(e.g., prefix tree [9, 25]) to model the spatial distributions. However,

these are not feasible in local settings as there is no trusted data

curator to collect these information and it is infeasible to directly

collect the statistics from individual users, who typically only have

a few trajectory footprints, leading to severely biased estimations.

Second, existing LDP methods assume that each individual holds a

single data record (e.g., a single value) [11, 39], but this assumption

is no longer valid for trajectory data, which is a sequence of spatial

points with timestamps and has complex spatial context that cannot

be simply modeled by the methods.

Therefore, we present LDPTrace, a simple yet effective frame-

work for synthesizing locally differentially private trajectories,

which are resistant to various attacks. LDPTrace achieves the fol-
lowing four objectives: (i) robust, rigorous statistical privacy, (ii)

flexibility and low computational cost, (iii) strong preservation of

global spatial utilities and authenticity, and (iv) deterministic re-

silience against trajectory privacy attacks. Specifically, LDPTrace
approaches trajectory synthesis as a generative process, construct-

ing a probabilistic model based on users’ transition records to esti-

mate the global moving patterns. The transition records capture the

spatial relationship between adjacent points, while remaining low

computational complexity. To enhance the authenticity of synthe-

sized trajectories, LDPTrace includes virtual start and end points

to each trajectory in the generation process to indicate the begin-

ning and terminated transition states. Additionally, the framework

estimates the trajectory length distribution for optimal transition

budget allocation and deterministic generation constraints. We also

provide a theoretical guideline for selecting grid granularity with-

out consuming privacy budget. Last but not the least, an adaptive

synthesis algorithm is employed to generate realistic trajectories

without access to users’ real trajectories.

Our synthetic trajectory generation process is locally differen-

tially private, meaning that the global moving patterns are not

strongly dependent on any specific user and the generation of syn-

thetic trajectory is not bias towards any specific trajectory. We

have conducted an extensive experimental evaluation to compare

LDPTrace with the state-of-the-art method NGRAM. Experimental

results indicate that LDPTrace significantly outperforms the com-

petitor in terms of data utility, efficiency, and scalability, and it

is equipped with robust resistance against various location-based

attacks for superior privacy protection.

In summary, the key contributions of our work are below.

• We propose LDPTrace, the first trajectory synthesis solution

with local differential privacy guarantee that is able to generate

realistic trajectories without any external knowledge.

• We introduce a neat and effective framework that collects key

moving patterns fromusers’ trajectories with little computational

cost, and devise an adaptive synthesis algorithm to generate

authentic trajectories.

• Weperform comprehensive analysis on the errors and complexity

of the proposed framework, and present a guideline for selecting

the grid granularity without consuming privacy budget.

• We conduct extensive experiments to demonstrate the superi-

ority of LDPTrace in terms of utility, efficiency, and scalabil-

ity. Moreover, we show that LDPTrace is able to resist various

location-based attacks.

The rest of this paper is organized as follows. We review related

work in Section 2, and elaborate our motivation in Section 3. Then,

we present preliminaries in Section 4. Section 5 details the proposed

synthesis framework. The experimental results are reported in

Section 6. Finally, we conclude the paper, and offer directions for

future work in Section 7.

2 RELATEDWORK
Differential privacy (DP) [18] has become the de facto privacy stan-

dard. While centralized DP assumes data aggregators are reliable,

local differential privacy (LDP) [17] assumes that aggregators can-

not be trusted and relies on data providers to perturb their own

data. Early studies [3, 12, 21, 29, 31–33, 38] on DP and LDP mostly

focus on designing tailored algorithms for specific data analysis

tasks, which suffers from poor flexibility, inefficiency, and scalabil-

ity problems. One promising solution [6, 20, 46, 48, 49] to address

this problem is generating a synthetic dataset that is similar to the

private dataset while satisfying (local) differential privacy. How-

ever, these methods mainly aim at structured data like tables, which

cannot be applied to trajectory data due to its high dimensionality

and complex spatial dependence.

The privacy of trajectory data (surveyed in [26, 27]) has been a

significant concern for over a decade and various solutions have

been proposed to address the issue. Many existing solutions [1, 2, 5,

7, 28, 41, 47] employ spatial point perturbation techniques under the

constraint of DP that add noises to the point locations of trajectory

before it is published or used to answer predefined queries (e.g.,
range query). For example, GL [28] aims to preserve both privacy

and high utility by perturbing the local/global frequency distribu-

tions of important locations in a trajectory. SNH [47] introduces a

neural database for spatial range queries and adds DP-compliant

noise to the input queries to maintain the density features of lo-

cation data. More recently, NGRAM [14] has been proposed to

address the privacy concerns of trajectory sharing in a local setting.

The method includes three phases: (1) hierarchical decomposition

phase, where POIs are divided into spatial-temporal-category re-

gions; (2) perturbation phase, where trajectories are converted to
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sequences of overlapping n-grams and perturbed using exponential

mechanism; and (3) reconstruction phase, where NGRAM solves

an optimization problem to reconstruct the continuous trajectory

based on the perturbed n-grams. Despite its efforts, NGRAM still

has several limitations, such as low global utility, high computa-

tional overhead, and vulnerability to attacks.

To protect privacy, some researchers have investigated alterna-

tive methods to point perturbation, such as generating synthetic

trajectories [4, 9, 13, 22–25, 44]. The challenge is to create synthetic

data that resembles genuine user traces while providing practical

privacy protection. One approach, DPT [25], uses a hierarchical

reference system to model trajectory movements at different speeds

and encodes transitions between grid cells using prefix trees. By

injecting Laplace noise to the prefix trees, the transition probabili-

ties are distorted while still maintaining the movement patterns of

the original traces. Further studies [4, 22] have extended DPT by

incorporating trajectory semantics and temporal information. An-

other method, AdaTrace [23], extracts four essential spatial features

of trajectories and incorporates them into its private synopsis, in-

cluding a density-aware grid, Markov mobility, pickup/destination

and length distribution. The authors also design a synthesizer with

attack resilience constraints to balance both statistical privacy (dif-

ferential privacy) and syntactic privacy (attack resilience). Priv-

Trace [37] analyzes the usage of the Markov chain model and ap-

plies an adaptive strategy to choose crucial first- and second-order

Markov transitions for synthesis, resulting in better utilities than

previous methods. Although current trajectory synthetic methods

are effective, they all rely on a trustworthy data curator to aggre-

gate useful spatial statistics. Our work is the first to introduce an

utility-aware and efficient trajectory synthesis framework without

accessing users’ real traces.

3 MOTIVATION
Trajectory data, a time-ordered sequence of locations generated

from human mobility, can reveal sensitive information about a per-

son’s home, work place and travel patterns, and visiting preferences.

While collecting population-level aggregated spatial information on

residents’ commuting patterns could be useful for authorities and

companies to gain a better understanding of commuting patterns,

many individuals are unwilling to share their personal trajectories

due to privacy concerns.

To address this challenge, our goal is to propose a method that

allows various parties, such as authorities or service providers, to

collect useful mobility patterns from the crowd without accessing

individual’s real trajectories. We first present four critical design

principles that motivate and guide our solution: privacy protection,

global utility, practicability and efficiency, and attack resilience.

Privacy protection. The primary goal of our work is to protect

each individual’s privacy so that untrusted data curator cannot ac-

cess people’s real traces. To achieve this, we utilize LDP mechanism

to perturb user’s trajectories before sharing the data. The privacy

implications of our method are described in detail in Section 5.7.

Global utility. Based on the strong privacy guarantee provided

by the LDP mechanism, our solution is designed to maintain high

global utility for the synthetic trajectories generated. To enhance

global utility, we aim to extract key moving patterns from user’s

Table 1: Symbols and Description

Notation Description
𝑇 , T Trajectory, and a set of trajectories

𝐶 , C Grid cell, and a set of grid cells

𝐿, L Trajectory length, length distribution

𝑠 , S Intra-trajectory transition, mobility model

𝑀 ,M Aggregated transition, aggregated mobility model

𝐶𝑎 , 𝐶𝑏 Virtual start/end point

N , N∗ Neighborhood cells without/with virtual end point

𝑔̂(·), 𝑔̃(·) Report times, unbiased estimation of frequency

𝜖 Privacy budget

trajectories and use this information to guide the synthesis process.

By capturing the intrinsic features of user’s movements, the syn-

thetic trajectories can be utilized for a variety of spatial analysis

tasks, such as range query and frequent pattern mining, instead of

tailor-made for a single specific use case like in [14].

Practicability and efficiency. Considering the wide usage of tra-

jectory data, our solution is designed to simple and easily deployed

on local devices without heavy computation. At the same time, we

also strive to ensure that privacy and utility do not come at the cost

of the user experience.

Attack resilience. Despite LDP being a secure method for data

sharing with proven privacy guarantees, it can still be vulnerable

to various attacks, particularly when it comes to trajectory privacy

protection. Forcibly making the perturbed trajectories resemble the

original ones without taking proper precautions can make them sus-

ceptible to various location-based attacks, such as re-identification

and outlier leakage. Therefore, it is crucial that the synthetic trajec-

tories are robust and equipped to withstand common attacks.

Applications. Our focus is on synthesizing trajectories in such a

way that the global aggregate statistics are preserved to the greatest

extent possible. This is crucial for many important location-based

applications, including trajectory monitoring. This monitoring iden-

tifies people’s movement patterns and can be used to make policy

decisions, such as traffic control or disease spread forecasting (e.g.

Covid-19). Additionally, our work has implications for location-

based services and advertising. For example, a tourism recommen-

dation system could use common trajectories taken by people to

suggest popular trips or destinations, while an outdoor advertising

company could use people’s movement patterns to more accurately

estimate traffic flow at different locations.

4 PRELIMINARIES
In this section, we first introduce the definition of local differential

privacy (LDP) and discuss the choice of privacy budget. Then, we

formulate our problem. Table 1 lists the notations used in this paper.

4.1 Differential Privacy in the Local Setting
4.1.1 𝜖-Local Differential Privacy. In the local setting of differ-

ential privacy, there are many users and one untrusted data curator,
and each user perturbs the input value 𝑥 using an algorithm Ψ, then
sends perturbed value Ψ(𝑥) to the data curator for aggregation. The
formal privacy requirement is that the algorithm Ψ(·) satisfies the
following property:
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Definition 1 (𝜖-Local Differential Privacy). An algorithm
Ψ(·) satisfies 𝜖-local differential privacy (𝜖-LDP), where 𝜖 ≥ 0, if and
only if for any input 𝑥1, 𝑥2 and output 𝑦:

𝑃𝑟 [Ψ(𝑥1) = 𝑦] ≤ 𝑒𝜖𝑃𝑟 [Ψ(𝑥2) = 𝑦] . (1)

The privacy budget 𝜖 is a metric used to measure the level of

privacy protection in local differential privacy (LDP). It represents

the probability that an attacker can determine the true value of

the input based on the output. The higher the privacy budget, the

higher the probability that the attacker can infer the true value, and

the lower the privacy protection. In practice, the privacy budget

can be set according to the privacy requirements of the application.

For example, a smaller privacy budget may be chosen when col-

lecting highly sensitive data such as health information, while a

larger privacy budget may be used for less sensitive data such as

typing patterns. A privacy budget of less than 2 is typically con-

sidered acceptable [14–16, 19, 28, 39, 40, 47]. LDP provides privacy

protection by allowing the user to report a perturbed version of

the input Ψ(𝑥) instead of the true value 𝑥 to the aggregator. This

ensures that even if the aggregator is malicious, the user’s privacy

is still protected. LDP possesses two fundamental properties used in

our mechanism [11]: the composition theorem, which states that 𝑘

𝜖𝑖 -LDP mechanisms can be combined to achieve 𝜖-LDP protection,

where 𝜖 =
∑︁
𝑖 𝜖𝑖 ; and the ability to perform post-processing on

private outputs without affecting the privacy guarantee. For more

information on LDP, please refer to recent surveys [11, 43, 45].

4.1.2 Optimized Unary Encoding. A frequency oracle (FO) pro-
tocol enables the estimation of the frequency of any value 𝑥 , which

serves as a building block of many LDP tasks. In this paper, we opt

for Optimized Unary Encoding (OUE) as the FO protocol to achieve

frequency estimation under LDP, which consists of three stages:

encoding, perturbing, and aggregation [39].

• Encoding. The original value 𝑥 is first encoded as a length-𝑑

binary vector 𝑉 , where only the 𝑥-th bit is set to 1, i.e., 𝑉 [𝑖] =
1(𝑖 == 𝑥).

• Perturbing. When reporting the encoded vector 𝑉 , it is per-

turbed as follows:

𝑃𝑟 [𝑉̂ [𝑖] = 1] =
{︄
1

2
, if 𝑉 [𝑖] = 1

1

𝑒𝜖+1 , if 𝑉 [𝑖] = 0,
(2)

where 𝜖 is the privacy budget and 𝑉̂ is the reported noise vector.

• Aggregation. In order to obtain the unbiased estimation of the

real value from noise vectors, the data curator needs to aggregate

and adjust the received data as follows:

𝑔̃(𝑥) = 𝑔̂(𝑥) − 𝑛𝑞
1

2
− 𝑞

, 𝑞 =
1

𝑒𝜖 + 1 , (3)

where 𝑛 is the total number of reported noise vectors, and 𝑔̂(𝑥)
is the total number of the reported vectors 𝑉̂ whose 𝑥-th bit is 1,

i.e., 𝑔̂(𝑥) = |{𝑉̂ |𝑉̂ [𝑥] = 1}|. Notice that this adjustment requires

the budget 𝜖 to remain the same across all the reported data.

It can be theoretically proved [39] that the adjusted estimation 𝑔̃(𝑥)
is unbiased. The mean and variance of OUE are listed below.

E[𝑔̃(𝑥)] = 𝑓𝑥 , Var[𝑔̃(𝑥)] = 𝑛 4𝑒𝜖

(𝑒𝜖 − 1)2
, (4)

where 𝑓𝑥 is the frequency of value 𝑥 , and 𝜖 is the privacy budget.
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Figure 1: The LDPTrace framework.

4.2 Problem Statement
Consider there is a collection of trajectories generated by mobile

travelers on the roads, denoted by T . People are unwilling to report
their own trajectories to the untrusted data curator due to privacy

concerns. Thus, we want to build a generative model over T by ex-

tracting key moving patterns from T with provable guarantees on

individual privacy. We then employ the generative model to output

a set of synthesized trajectories, denoted by T𝑠𝑦𝑛 . The synthesized
trajectories T𝑠𝑦𝑛 should collectively retain a high resemblance to

the real trajectories T , so that T𝑠𝑦𝑛 has many useful statistical and

spatial features in common with T . Finally, the synthetic trajecto-
ries T𝑠𝑦𝑛 should be robust against various location-based attacks,

in order to strengthen privacy by maximizing attackers’ probability

of errors in identifying the true traces of users.

5 OUR METHODOLOGY
In this section, we provide an overview of our proposed method

LDPTrace and explain the importance and process of trajectory

discretization. We then dive into the three key components of

LDPTrace, which are derived from collaborative mobility patterns

while ensuring strict privacy protection through LDP. Afterwards,

we outline the adaptive generation process, which involves con-

structing a probabilistic model utilizing learned spatial patterns.

Finally, we engage in an in-depth discussion on the privacy and

computational cost of LDPTrace and present an method to select a

proper grid granularity.

5.1 Solution Overview
As illustrated in Figure 1, the LDPTrace process involves both user

and data curator. On the user side, LDPTrace first discretizes the
trajectory into a sequence of adjacent cells, and exacts three key

features of the trajectory by perturbing the trajectory length, intra-

trajectory mobility, and beginning/terminated transitions. On the

data curator side, LDPTrace collects the perturbed information (i.e.,
three features mentioned earlier) from all the users and creates a

probabilistic model by estimating the key mobility features (i.e.,
length distribution and aggregated transitions). Finally, LDPTrace
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synthesizes the start point and subsequent transitions using the

learned patterns, with its termination regulated by the estimated

trajectory length and the sampled end point.

Since the synopsis of LDPTrace consists of three features learned
from user’s trajectory, the security budget 𝜖 is divided into three

sub-budgets 𝜖1, 𝜖2, and 𝜖3, such that

∑︁
3

𝑖=1 𝜖𝑖 = 𝜖 . A detailed analysis

on the privacy is presented in Section 5.7.

5.2 Geospatial Discretization
The representation of a trajectory as a sequence of points in a

continuous two-dimensional domain, such as latitude-longitude

coordinates, can be challenging to model. To overcome this, one

common approach is to discretize the geographic space into grid

cells. This is achieved by partitioning the entire space into equal-

sized cells using a grid granularity of 𝑁 .

Each trajectory is then transformed into a sequence of enumer-

able cells, 𝑇 = {𝐶1,𝐶2, · · · ,𝐶 |𝑇 | }, where 𝑇 [𝑖] refers to the 𝑖-th cell

visited by the trajectory 𝑇 and |𝑇 | is the length of the trajectory

in grid cells. The choice of 𝑁 affects the size of each grid cell, and

thus the granularity of the discretized trajectory.

When 𝑁 is small, the space is partitioned into a limited number

of grid cells, and each cell covers a large spatial region. Many points

in the original trajectory will be represented by one single cell, and

thus, the mobility patterns captured by the discretized trajectory

would be very general and uninformative. On the other hand, if

𝑁 is big, each grid cell covers a very small region, resulting in

the risk of having many empty cells that have not been passed

by any trajectories. Perturbing these empty cells leads to high

noise and inefficiency. While some literature [23, 35] has provided

guidelines for selecting a proper grid granularity, they all rely on

global statistics like spatial density, which are typically not available

in the local setting where a user only has access to his/her own

trajectories. Instead of estimating the global statistics which costs

extra privacy budget, we theoretically analyze the trade-off between

estimation errors and the granularity of grid cells, and propose a

novel method to choose 𝑁 in the local setting without consuming

any budget, as to be detailed in Section 5.9.

5.3 Trajectory Length Distribution
The first component is the estimated length distribution of trajec-

tories, which provides crucial information about the probability of

a user’s travel distance and serves as a deterministic constraint for

trajectory synthesis. However, estimating the length distribution is

challenging in the local setting since aggregated statistics are not

available. Instead, we aim to collect the length information from

each user and approximate the distribution using frequency.

To achieve this, we define the domain of lengths as |C|, and
assume the maximum travel distance of any trajectory is |C| (note
other maximum distances can also be used). On the user side (③

in Figure 1), for a trajectory 𝑇 with length𝑚 (i.e., |𝑇 | = 𝑚), it is

encoded into a binary vector 𝑉 with |C| bits, where only the𝑚-th

bit is set to 1 and all other bits are set to zero. This vector 𝑉 is then

locally perturbed with a privacy budget of 𝜖1 according to Equation

(2), and the noisy vector 𝑉̂ is reported to the untrusted data curator.

On the data curator side (④ in Figure 1), the noisy vectors 𝑉̂

collected from different users are used to estimate the frequency

of each length value𝑚 by counting the non-zero entries in each

vector and adjusting the total count of each length using an un-

biased statistic (i.e., Equation (3)). Finally, the length distribution

is viewed as a categorical distribution L, and the probability of

length𝑚 is 𝑃𝑟 (𝑚) = 𝑔̃(𝑚)/∑︁ | C |
𝑖=1

𝑔̃(𝑖), where 𝑔̃(𝑚) is the unbiased
OUE estimator of the true frequency of length𝑚.

Error analysis. We analyze the error of estimated length distribu-

tion L in our online version
1
. 𝑃𝑟 (𝑚) is the unbiased estimator of

length probabilities:

E
∗ [𝑃𝑟 (𝑚)] = 𝑓𝑚/

∑︂ | C |
𝑖=1

𝑓𝑖 , (5)

where 𝑓𝑖 is the frequency of trajectory length 𝑖 in the whole trajec-

tory set T . Thus, the estimated length distribution L approximates

the true distribution with the error:

Error(L) =
∑︂ | C |

𝑖=1
( 𝑓𝑖|T | )

2 [ 𝜎
2

(𝑓𝑖 )2
− 2𝜎2

𝑓𝑖 |T |
+ 8𝜎2

|T |2
], (6)

where 𝜎2 = |T | 4𝑒𝜖1

(𝑒𝜖1−1)2 is the variance of OUE estimator in Equa-

tion (4), and |T | is the number of trajectories. Given the fixed

statistics of trajectories (e.g., size and frequency of each length), the

error of estimated length distribution L is on the order of 𝑒−𝜖 , i.e.,
a higher budget could help reduce the length error.

5.4 Intra-Trajectory Mobility Model
To generate high utility and realistic synthetic trajectories, it is

necessary to mimic actual intra-trajectory mobility (i.e., the transi-
tion from 𝑇 [𝑖] to 𝑇 [𝑖 + 1]). We achieve this by building a Markov

chain for mobility modelling. A first-order Markov chain asserts

that a location𝑇 [𝑙 + 1] in a trajectory depends only on its previous

location 𝑇 [𝑙] instead of all previous locations:

𝑃𝑟 (𝑇 [𝑙 + 1] = 𝐶 | 𝑇 [1] ...𝑇 [𝑙]) = 𝑃𝑟 (𝑇 [𝑙 + 1] = 𝐶 | 𝑇 [𝑙]), (7)

which simplifies the complex sequential dependency 𝑇 [1] ...𝑇 [𝑙]
with closest grid 𝑇 [𝑙] for 𝑇 [𝑙 + 1]. We assume that the main mobil-

ity patterns of trajectories can be captured by the Markov chain,

which is a collection of such probability 𝑃𝑟 (𝑇 [𝑙 + 1] = 𝐶𝑛𝑒𝑥𝑡 | 𝑇 [𝑙]).
Considering the continuity of trajectories, we interpolate each tra-

jectory to ensure that consecutive points in a trajectory correspond

to two adjacent grid cells, i.e., 𝑇 [𝑖] is adjacent to 𝑇 [𝑖 + 1]. Accord-
ingly, we can define the transition state 𝑠𝑖 𝑗 from grid cell 𝐶𝑖 to

another grid cell 𝐶 𝑗 as follows:

𝑃𝑟 (𝑠𝑖 𝑗 ) =
{︄
𝑃𝑟 (𝑇 [𝑙 + 1] = 𝐶 𝑗 | 𝑇 [𝑙] = 𝐶𝑖 ), if 𝐶 𝑗 ∈ N𝐶𝑖

0, otherwise,
(8)

where 𝑃𝑟 (𝑠𝑖 𝑗 ) is the transition probability from 𝐶𝑖 to 𝐶 𝑗 , N𝐶𝑖
cap-

tures the set of adjacent cells of 𝐶𝑖 , and the transition model S is a

set of all transition probabilities aggregated from trajectories.

Similar to the estimation of length distribution, we aim to collect

the transition information from each user (① in Figure 1) and then

aggregate them on the data curator side to estimate the overall

transition states. Thus, each user’s trajectory 𝑇 can be represented

as a sequence of transition states 𝑆𝑇 with length |𝑇 | − 1. On the

user side, for each state in 𝑆𝑇 , we also opt for OUE to encode it into

a |S|-bit binary vector and then report the perturbed noisy version,

where |S| is the domain of possible states. Since we only consider

1
https://arxiv.org/abs/2302.06180
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transition between two adjacent cells and each grid cell has up to 8

adjacent cells, we have |S| ≈ 8|C|.
However, if we directly perturb each trajectory’s transition by

averaging the privacy budget 𝜖2 with its own length |𝑆𝑇 |, it is im-

possible to estimate the unbiased frequency of each transition state

𝑠 from all trajectories since OUE protocol demands the budget used

to be same across different users/trajectories. A straightforward

solution to this problem is to equally divide budget 𝜖2 across |C|,
the maximum length of 𝑇 , meaning that each trajectory is allowed

to have up to |C| transitions, and each transition is assigned a bud-

get of 𝜖2/|C|. Nevertheless, this approach suffers from huge waste

of budget as the length of most trajectories could be far shorter

than |C|. Therefore, we set the number of transitions as the 𝑘-th

quantile of estimated length distribution 𝐿𝑘 , so that we only upload

𝐿𝑘 transition states for all trajectories, and omit the remaining if

the number of transitions |𝑆𝑇 | is larger than 𝐿𝑘 . Here, 𝑘 is a hyper-

parameter to balance the noise error and bias error. On one hand,

we would like 𝑘 to be large, i.e., every transition in trajectory data

T can be captured for modelling mobility patterns, and the amount

of noise added to state 𝑠 can be measured by:

𝑁 (𝑠, 𝜖2, 𝐿𝑘 ) = Var
∗ [𝑃𝑟 (𝑠), 𝜖2/𝐿𝑘 ], (9)

whereVar
∗ (𝑃𝑟 (𝑠), 𝜖2/𝐿𝑘 ) is the approximated variance of transition

probability 𝑃𝑟 (𝑠) with budget 𝜖2/𝐿𝑘 (proofed in online version). On

the other hand, omitting the transitions for trajectories with length

longer than 𝐿𝑘 will introduce bias into the model (i.e., some of the

transitions are not accurately captured), and the bias of transition 𝑠

is expressed as (1 − 𝑘)2 · 𝑓 2𝑠 , where 𝑓𝑠 is the frequency of transition

𝑠 . The sum of the noise and bias terms defines the total error of S:
Error(S, 𝜖2, 𝐿𝑘 ) =

∑︂
𝑠∈S [𝑁 (𝑠, 𝜖2, 𝐿𝑘 ) + (1 − 𝑘)

2 · 𝑓 2𝑠 ] . (10)

If 𝑘 is large, more transition information would be reported, which

can effectively reduce the bias error. However, the budget of each

transition will be small, which results in large noise for estimated

frequency and hence more noise error. On the other hand, if 𝑘

is small, many useful transition states are omitted, leading to in-

sufficiency to capture the global moving patterns from crowds.

Therefore, the optimal 𝑘 is chosen to optimize the total error of S:
𝑘∗ = argmin

0<𝑘≤1 Error(S, 𝜖2, 𝐿𝑘 ) . (11)

However, due to the unavailability of true frequency of transitions

in the local setting, it is impossible to directly derive the optimal 𝑘 .

We analyze the impact of 𝑘 on utility in Section 6.5.3.

Discussion. In LDPTrace, we model the intra-trajectory moving

patterns with the first-order Markov chain (aka. transition states),

while we can naturally apply a higher-order Markov chain. How-

ever, since the size of Markov chain grows quickly w.r.t. the order,
the noise introduced by the randomness mechanism in LDP can

drown out the real signal due to the limited budget. Empirical results

in Section 6.3 show that the first-order Markov chain is sufficient

to model the intra-mobility, and generates authentic trajectories.

5.5 Beginning/Terminated Transitions
Real-world trajectory databases often consist of various trips, such

as taxi trips, home-work commutes, etc. These trips usually exhibit

special start point and end point, which reveal the important spatial

semantic of trajectories: pickups, home/work places, destinations,

etc. Besides, the start/end points are also useful to guide the random

walk during synthesis. Although we have a mobility model S for

intra-trajectory movement, we still need a start state and an end

state to specify the two endpoints of generated trajectory. We can

naively assume a uniform distribution to randomly choose a cell

from𝐶 as a start point to perform randomwalk and to terminate the

synthesis process when the trajectory reaches the assigned length,

but it contradicts with a well-known fact that the distribution of

start/end points of real trajectories is often heavily skewed [23].

For example, many trips might start from or end at homes, while

residential areas are not uniformly distributed in a city. Thus, naive

solution mentioned above, even though simple, will incur bogus

synthetic trajectories that jeopardize utility and authenticity.

To model the distribution of starting and ending points in tra-

jectories, we add two special cells, namely, virtual start point 𝐶𝑎
and virtual end point 𝐶𝑏 . These cells are connected to all the geo-

graphic cells in C, and serve as the starting and ending points for

any trajectories 𝑇 to record 𝑇 ’s beginning and terminated states.

The transition state 𝐴𝑖 represents the beginning of a trajectory 𝑇

with 𝐶𝑖 from virtual point 𝐶𝑎 , and the terminated transition state

𝐵 𝑗 signifies the end of the trajectory 𝑇 with 𝐶 𝑗 , terminating at the

virtual end point𝐶𝑏 . On the user side, the beginning and terminated

transition states are reported using the OUE protocol with a pri-

vacy budget of 𝜖3. This noise is separated from the intra-trajectory

transitions during reporting to reduce the noise since they only

occur once per trajectory (② in Figure 1). On the data curator side,

we combine the intra-transitions with the beginning and termi-

nated transitions to form the aggregated mobility modelM (⑤ in

Figure 1). Specifically, the transition probability from 𝐶𝑖 to 𝐶 𝑗 can

be calculated as:

𝑃𝑟 (𝑀𝑖 𝑗 ) =
𝑔̃(𝑀𝑖 𝑗 )∑︁

𝑟 ∈N∗
𝐶𝑖

𝑔̃(𝑀𝑖𝑟 )
, (12)

where𝑀𝑖 𝑗 represents the transition state from 𝐶𝑖 to 𝐶 𝑗 . If 𝐶𝑖 is the

virtual start point 𝐶𝑎 , then𝑀𝑖 𝑗 = 𝐴 𝑗 ; if 𝐶 𝑗 is the virtual end point

𝐶𝑏 , then 𝑀𝑖 𝑗 = 𝐵𝑖 ; otherwise 𝑀𝑖 𝑗 = 𝑠𝑖 𝑗 . The aggregated neighbor

N∗ is defined as follows:

N∗𝐶𝑖
=

{︄
N𝐶𝑖
∪ {𝐶𝑏 }, if 𝐶𝑖 ∈ C

C, otherwise (i.e., 𝐶𝑖 ∈ {𝐶𝑎,𝐶𝑏 }).
(13)

Hence, the intra-transitions and the beginning/terminated transi-

tions are seamlessly integrated into the aggregated mobility model

M, which can denote the overall moving patterns of trajectories.

5.6 Trajectory Synthesis
LDPTrace builds a probabilistic model for private synopsis, which

consists of length distribution L and aggregated mobility model

M. Accordingly, the synthesis algorithm can be described in three

steps, as depicted in Algorithm 1. First, it determines the length 𝐿

of trajectory by sampling from the length distribution L (line 1).

Second, it initializes 𝑇𝑠𝑦𝑛 by assigning its starting point to the cell

sampled from N∗
𝐶𝑎

with probability proportional toM (lines 2-3).

Third, it extends 𝑇𝑠𝑦𝑛 by including a new cell 𝐶𝑛𝑒𝑥𝑡 based on its

current location. It repeats the extension process until 𝐶𝑛𝑒𝑥𝑡 is the

virtual end point 𝐶𝑏 or the length of 𝑇𝑠𝑦𝑛 reaches 𝐿, whichever is

earlier (lines 4-10). Although the above synthesis scheme makes

full use of the estimated patterns, a notable weakness is that the

generated trajectory𝑇𝑠𝑦𝑛 might be much shorter than 𝐿 if it reaches
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Algorithm 1: Trajectory synthesis

Input: a grid C, a length distribution L, an aggregated mobility

modelM, virtual start point/end point𝐶𝑎/𝐶𝑏

Output: a candidate synthetic trajectory𝑇syn
1 trajectory length 𝐿 ← sample(L)
2 sample𝐶𝑠𝑡𝑎𝑟𝑡 ← from N∗

𝐶𝑎
with probability proportional toM

3 initialize𝑇𝑠𝑦𝑛 :𝑇𝑠𝑦𝑛 [1] ← 𝐶𝑠𝑡𝑎𝑟𝑡

4 for 𝑙 ← 2 to 𝐿 do
5 reweight the terminated condition according to Equation (14)

6 sample𝐶𝑛𝑒𝑥𝑡 from N∗𝑇𝑠𝑦𝑛 [𝑙−1] with probability proportional

toM
7 if 𝐶𝑛𝑒𝑥𝑡 = 𝐶𝑏 then
8 return𝑇𝑠𝑦𝑛

9 else
10 set𝑇𝑠𝑦𝑛 [𝑙 ] ← 𝐶𝑛𝑒𝑥𝑡

11 return𝑇𝑠𝑦𝑛

𝐶𝑏 in the early part of its extension. Since the distribution of tra-

jectory terminated points is heavily skewed (i.e., some points are

more likely to be the destination than others), directly sampling

the end point according to the transition probability would lead to

the inauthenticity and uninformativeness of synthetic trajectories.

Thus, we re-weight the terminated probability 𝑃𝑟 (𝑀𝑖𝑏 ) by taking

the current length 𝑙 into consideration:

𝑃𝑟̃ (𝑀𝑖𝑏 ) = (𝛼 + 𝛽𝑙) × 𝑃𝑟 (𝑀𝑖𝑏 ), (14)

where 𝑃𝑟̃ (𝑀𝑖𝑏 ) is the adjusted termination probability from current

location 𝐶𝑖 to virtual end point 𝐶𝑏 , and 𝛼 and 𝛽 are two hyperpa-

rameters to control the influence of length, i.e., large 𝛼 and 𝛽 implies

that the synthesis process tends to be stopped even when the length

is small, and small 𝛼 and 𝛽 allows the model to synthesize trajec-

tories with more points. The final adaptive synthesis algorithm is

presented in Algorithm 1. To obtain an authentic trajectory data-

base with good utilities, we run the synthesis algorithm multiple

times until the number of synthetic trajectories reaches the number

of trajectories in T . Then, this set of trajectories T𝑠𝑦𝑛 = ∪𝑇𝑠𝑦𝑛
becomes the substitution of the real trajectory set T for various

spatial analysis tasks without sacrificing users’ privacy.

5.7 Privacy Analysis
We now analyze the privacy of the synthesis solution through a

sketch proof, and discuss the budget allocation strategy.

Theorem 5.1. The while process of LDPTrace satisfies 𝜖-LDP.

Proof of Theorem 5.1. LDPTrace treats 𝜖 as the total privacy
budget, and distributes it to three sub-budgets (one for each key

feature in the synopsis) such that

∑︁
3

𝑖=1 𝜖𝑖 = 𝜖 . Perturbing and re-

porting a feature (length, intra-transition, and start/end transition)

consumes the 𝜖𝑖 allocated to it, and thus, depleting the total 𝜖 after

the reporting phase is complete, based on the sequential compo-

sition property. Besides, during the intra-mobility modelling, we

divide the budget 𝜖2 for each transition state of trajectory, which

also satisfies the sequential composition property. Then, any addi-

tional data-independent operations like aggregation and sampling

on the perturbed statistics are viewed as post-processing. As a

result, LDPTrace remains 𝜖-locally differentially private. □

The allocation of privacy budget 𝜖 in LDPTrace can be adjusted

automatically or according to specific application requirements.

The current implementation of LDPTrace comes with a default bud-

get distribution, which assigns 𝜖1 = 𝜖/10 for length distribution

and 𝜖2 + 𝜖3 = 9𝜖/10 for transitions, with equal budget allocation for

each transition. While the default budget allocation is effective in

maximizing overall utility, the budget allocation is highly flexible

and can be easily modified to meet the unique needs of various

applications. For example, more budget may be allocated to begin-

ning/terminated transition estimation for pickup identification.

5.8 Computational Cost
We also discuss the computational cost of the proposed LDPTrace,
which highlights how it is far more practical than other alternatives.

We analyze the computational cost from both user side and data

curator side in the following.

Computation on users. We assume that each user keeps one tra-

jectory of his/her own. Since each perturbation is done locally on

individual device, we only analyze the computational cost for each

user/trajectory. First, the cost of perturbing a binary vector of length

is O(|C|), where |C| is the number of grids. Second, the computa-

tional complexity of intra-transition modelling is O(|𝑇 | |C|), where
|𝑇 | is the trajectory length. Finally, the cost of adding noise to the

beginning/terminated transitions is also O(|C|). Thus, the overall
computation on the user side is O(|𝑇 | |C|). As all the perturbation
can be implemented with bit operations, the computation is almost

negligible and also affordable for any location-aware devices.

Computation on data curator. After collecting all the perturbed

information from users, data curator first estimates the unbiased

frequency with OUE, and calculates the quantile of length, at the

cost of O(|T ||C|), where |T | is the number of trajectories/users.

Besides, the computational complexity of pattern estimations is

O(|C|). Moreover, the synthesis algorithm would cost O(|T |𝐿)
to synthesize the same number of trajectories as real trajectories

T , where 𝐿 denotes the mean of length distribution L. Empirical

experiments in Section 6.4 suggest that the synthesis process dom-

inates the running time of LDPTrace, and LDPTrace significantly
outperforms the competitor by more than two orders of magnitude.

5.9 Selecting the Grid Granularity 𝑁
Finally, we propose a guideline for selecting proper grid granularity

𝑁 in the local setting. As mentioned before, grid granularity 𝑁

is an important hyperparameter for trajectory representation. We

follow [35] and analyze the effect of 𝑁 by considering the range

query on trajectories, which is the most common spatial task used

by various real-world applications. The task of a range query is to

retrieve all locations of trajectories that fall within the query region.

Given a rectangular shape query region, let 𝑟 be the portion of the

entire space covered by the query region. There are mainly two

sources of errors in LDPTrace when performing a range query. The

first is estimation error. In our framework, noise is added to each

transition locally, and the error of estimated transition probability

is in the order of

√︁
𝑛𝑒𝜖/(𝑒𝜖 − 1)2. Since the query covers about 𝑟𝑁 2

cells, the total error introduced by perturbation in this query is in

the order of 𝑁
√︁
𝑛𝑟𝑒𝜖/(𝑒𝜖 − 1)2. The second is non-uniformity error

that is proportional to the number of data points in the trajectories

1903



that fall on the boundary of the query region [35]. For a query

region that covers 𝑟 portion of the entire space (i.e., grid), the length
of each side is proportional to

√
𝑟 of the domain length, and thus,

the number of cells overlapped with the query’s boundary is in the

order of𝑁
√
𝑟 , and the total number of points fallen on the boundary

is in the order of 𝑁𝑝/𝑁 2 × 𝑁
√
𝑟 =
√
𝑟𝑁𝑝/𝑁 , where 𝑁𝑝 represents

the total number of points in all synthetic trajectories. The goal is

to minimize the sum of two errors:

minimize 𝑁

√︄
𝑛𝑟𝑒𝜖

′

(𝑒𝜖 ′ − 1)2
+
√
𝑟𝑁𝑝

𝑁
, (15)

where 𝜖′ = 𝜖2/𝐿 is the budget for each transition. Since we cannot

obtain trajectory length 𝐿 before descretization, we replace it with

the geographic distance, which is on the order of 𝐿R/𝑓 , where 𝐿R
is the average number of points in trajectory, and 𝑓 is the sampling

ratio of the device. Besides, we also use the number of points on

real trajectories |T |𝐿R to approximate 𝑁𝑝 . Finally, by minimizing

Equation (15), 𝑁 should be set as follows:

𝑁 = 𝜆 · 4

√︄
|T |𝐿R (𝑒𝜖 𝑓 /𝐿R − 1)2

𝑒𝜖 𝑓 /𝐿R
, (16)

where 𝜆 is the hyperparameter which depends on the uniformity of

the points distribution in the dataset. Note that all the parameters

are easily obtained from the statistics of trajectory data (such as

sampling ratio, average point count, and the data size), and we also

evaluate the effectiveness of this guideline in Section 6.5.2.

6 EXPERIMENTAL EVALUATION
In this section, we first introduce the detailed experimental setup.

Next, we conduct experiments on utility as well as efficiency to illus-

trate the superiority of LDPTrace. Then, we conduct insight studies
to evaluate the impact of each component in LDPTrace. Finally, we
evaluate the scalability of LDPTrace and its attack-resilient ability

to various real-word location-based attacks.

6.1 Experimental Setup
6.1.1 Datasets. We conduct our experiments on four benchmark

trajectory datasets, namely Oldenburg
2
, Porto

3
, Hangzhou and

Campus
4
. Oldenburg is a synthetic dataset simulated by Brinkhoff’s

network-based moving objects generator, Porto and Campus are

two real-world public trajectory datasets, and Hangzhou is a private

trajectory database. Table 2 summarizes the overall statistics.

6.1.2 Baseline. We compare ourmethodwithNGRAM [14], which

is the state-of-the-art (and the only) private trajectory publication

method that satisfies rigorous LDP. For fair comparison, we discard

the auxiliary temporal and POI information, and only leverage phys-

ical distance to ensure the closeness between original and sampled

n-grams in geospatial space.

6.1.3 Experimental Settings. Based on the guideline described

in Section 5.9, the grid granularity parameter 𝑁 is set to 6 for

Oldenburg, Porto, and Campus dataset, and 8 for Hangzhou dataset.

As for the 𝑘 quantile of estimated length distribution, we set it to

2
http://iapg.jade-hs.de/personen/brinkhoff/generator/

3
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html

4
https://github.com/UBCGeodata/ubc-geospatial-opendata

Table 2: Statistics of the datasets used in our experiments.

Dataset Size Average Length Sampling Interval
Oldenburg 500,000 69.75 15.6 sec

Porto 361,591 34.13 15 sec

Hangzhou 348,144 125.02 5 sec

Campus 1,000,000 35.98 25 sec

0.9 for all the experiments. We generate synthetic database T𝑠𝑦𝑛
with cardinality |T𝑠𝑦𝑛 | = |T | for utility comparison. We set 𝛼 = 0.3

and 𝛽 = 0.2 for the reweighting function defined in Equation (14).

We set 𝜆 = 2.5 for selecting the grid granularity. Our experiments

are conducted on a computer with Intel Xeon 2.1GHz CPU and 32

GB main memory.

6.2 Utility Metrics
To comprehensively quantify the utility of the synthetic trajectories,

we adopt various utility metrics from three categories, including

global level, trajectory level, and semantic level.

Global level utility measures the spatial patterns of trajectories

in a global view, which serves as a building block of various spatial

applications like range query and traffic forecasting. We use the

following metrics for evaluation:

• Density error evaluates the density difference between syn-

thetic trajectory set T𝑠𝑦𝑛 and real trajectory set T .
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐸𝑟𝑟𝑜𝑟 = 𝐽𝑆𝐷

(︁
D(T ),D(T𝑠𝑦𝑛)

)︁
, (17)

where D(P) denotes the grid density distribution in a given

set P, and 𝐽𝑆𝐷 (·) represents the Jenson-Shannon divergence

between two distributions.

• Query error is a popular measure for evaluating data synthe-

sis algorithms ranging from tabular data to graph and location

data [8, 10, 30]. We consider range queries of trajectories in a

random spatial region 𝑅, i.e., 𝑄 (P) returns the number of points

in any trajectory of a specified set P that are within the spatial

region 𝑅.

𝑄𝑢𝑒𝑟𝑦 𝐸𝑟𝑟𝑜𝑟 =
|𝑄 (T ) −𝑄 (T𝑠𝑦𝑛) |
𝑚𝑎𝑥{𝑄 (T ), 𝑧)} , (18)

where 𝑧 is the sanity bound to weaken the influence of queries

that return very small counts.We set the sanity bound 𝑧 to

∑︁
T |𝑇 |
100

,

and report the average result of 200 random queries.

• Hotspot query error measures a model’s ability of preserving

spatial hotspots. Specifically, we choose top-𝑛ℎ mostly visited

cells in T and T𝑠𝑦𝑛 as the hotspots set𝐻 and𝐻𝑠𝑦𝑛 , respectively.

𝐻𝑄 𝐸𝑟𝑟𝑜𝑟 = 1 −
∑︁
𝐶𝑖 ∈𝐻𝑠𝑦𝑛

𝑟𝑒𝑙 (𝐶𝑖 )/log(𝑟𝑎𝑛𝑘𝐻𝑠𝑦𝑛
(𝐶𝑖 ) + 1)∑︁𝑛ℎ

𝑗=1
1/( 𝑗 · log( 𝑗 + 1))

, (19)

where 𝑟𝑎𝑛𝑘𝐻𝑠𝑦𝑛
(𝐶𝑖 ) represents the position/ranking of 𝐶𝑖 in

𝐻𝑠𝑦𝑛 (e.g., 𝑟𝑎𝑛𝑘𝐻𝑠𝑦𝑛
(𝐶𝑖 ) = 1 for themost popular cell𝐶𝑖 ), 𝑟𝑒𝑙 (𝐶𝑖 )

is the relativity score of 𝐶𝑖 : if 𝐶𝑖 ∈ 𝐻 , 𝑟𝑒𝑙 (𝐶𝑖 ) = 1/𝑟𝑎𝑛𝑘𝐻 (𝐶𝑖 ),
otherwise 𝑟𝑒𝑙 (𝐶𝑖 ) = 0. We set 𝑛ℎ = 5.

• Kendall’s tau coefficient is for modelling the discrepancies in

locations’ popularity ranking [23]. Let D(𝐶𝑖 ) be the density of

cell 𝐶𝑖 , and (𝐶𝑖 ,𝐶 𝑗 ) be a concordant pair if and only if D(𝐶𝑖 ) ≥
D(𝐶 𝑗 ) orD(𝐶𝑖 ) ≤ D(𝐶 𝑗 ) holds both on T and T𝑠𝑦𝑛 . Otherwise,
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Table 3: Utility performance comparison. The best result in each category is shown in bold. For Kendall-tau and FP F1 Similarity,
higher values are better. For remaining metrics, lower values are better.

Oldenburg Porto Hangzhou Campus
𝜖 = 0.5 𝜖 = 1.0 𝜖 = 1.5 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 1.5 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 1.5 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 1.5

Density Error NGRAM 0.0323 0.0301 0.0274 0.3311 0.3218 0.3049 0.1930 0.1847 0.1831 0.1184 0.1172 0.1105

LDPTrace 0.0094 0.0077 0.0085 0.0090 0.0081 0.0069 0.0210 0.0194 0.0193 0.0042 0.0043 0.0037

Query Error NGRAM 0.3362 0.3321 0.3206 0.8171 0.8102 0.8055 0.6454 0.6411 0.6332 0.7605 0.7579 0.7611

LDPTrace 0.2691 0.2595 0.2522 0.3520 0.3312 0.3011 0.2933 0.2814 0.2792 0.2014 0.2011 0.1980

Hotspot Query Error NGRAM 0.2972 0.2972 0.2972 1.0000 1.0000 1.0000 0.1529 0.1529 0.1529 0.7001 0.7001 0.7001

LDPTrace 0.0593 0.0593 0.0530 0.0000 0.0000 0.0000 0.0131 0.0131 0.0131 0.0013 0.0013 0.0000

Kendall-tau NGRAM 0.7479 0.7512 0.7498 0.5442 0.5791 0.5934 0.6164 0.6242 0.6623 0.3794 0.3841 0.3852

LDPTrace 0.8874 0.8944 0.8942 0.6672 0.7114 0.7581 0.6782 0.7044 0.7174 0.8603 0.8574 0.8667

Trip Error NGRAM 0.1251 0.1231 0.1230 0.5122 0.5043 0.4979 0.4493 0.4490 0.4421 0.3052 0.3024 0.2995

LDPTrace 0.0697 0.0683 0.0672 0.0762 0.0778 0.0771 0.0531 0.0513 0.0504 0.0744 0.0740 0.0729

Length Error NGRAM 0.1142 0.1134 0.1112 0.1812 0.1823 0.1791 0.02922 0.02736 0.02607 0.1102 0.1041 0.1045

LDPTrace 0.0373 0.0370 0.0379 0.0410 0.0399 0.0392 0.0036 0.0037 0.0032 0.0984 0.0981 0.0987

Diameter Error NGRAM 0.1244 0.1242 0.1221 0.2201 0.2180 0.2174 0.2013 0.1989 0.1972 0.0682 0.0663 0.0658

LDPTrace 0.0568 0.0570 0.0562 0.0354 0.0340 0.0331 0.0572 0.0569 0.0563 0.0591 0.0589 0.0587

Pattern F1 NGRAM 0.33 0.33 0.34 0.19 0.18 0.19 0.24 0.26 0.26 0.32 0.32 0.33

LDPTrace 0.69 0.69 0.69 0.67 0.63 0.65 0.80 0.80 0.80 0.71 0.71 0.72

Pattern Error NGRAM 0.8033 0.8004 0.7982 0.9206 0.9232 0.9181 0.8782 0.8725 0.8754 0.7992 0.7912 0.7789

LDPTrace 0.5693 0.5632 0.5594 0.6498 0.6687 0.6692 0.4593 0.4552 0.4554 0.5502 0.5508 0.5501

it’s a discordant pair.

𝐾𝑒𝑛𝑑𝑎𝑙𝑙-𝑡𝑎𝑢 =
𝑁𝑐 − 𝑁𝑑

|C|( |C| − 1)/2 , (20)

where 𝑁𝑐 and 𝑁𝑑 represent the number of concordant pairs and

the number of discordant pairs respectively, and |C| captures the
total number of grid cells.

Trajectory level utility denotes the spatial features within each

trajectory, which also fascinates a wild range of applications like

origin-destination analysis and commutes studies. We employ the

following three evaluation metrics:

• Trip error measures how well the correlations between trips’

starting points and ending points are preserved [23]. Specifically,

we calculate the probability distribution of start/end points in

T and that in T𝑠𝑦𝑛 , and utilize Jensen-Shannon divergence to

measure their difference.

• Length error focuses on the difference between real and syn-

thetic datasets in terms of lengths (i.e., distance travelled by each
trajectory), which calculates the total distance in a trajectory by

adding up the Euclidean distance between consecutive points.

• Diameter error is defined as the difference of maximum dis-

tance frequency between real and synthetic datasets, where the

maximum distance refers to the maximum Euclidean distance

between two points in a trajectory [25, 28].

Since travel distance and diameter are continuous, we follow [23]

to separate them into 20 equi-width buckets, and calculate the dis-

tribution of the obtained histogram. We then use Jenson-Shannon

divergence to quantify the above errors.

Semantic level metrics. Apart from the aforementioned statis-

tic metrics of trajectories’ attributes, we also adopt two semantic

level metrics to mine the mobility patterns that are hidden behind

those statistics. A pattern 𝑃 is defined as an ordered sequence of

consecutive cells, and we select top-𝑛 most occurred patterns in T
and T𝑠𝑦𝑛 , denoted as pattern sets 𝐹𝑃 and 𝐹𝑃𝑠𝑦𝑛 respectively, and

calculate the following metrics:

• Pattern F1 evaluates the similarity between the selected most

frequent pattern sets 𝐹𝑃 and 𝐹𝑃𝑠𝑦𝑛 :

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐹1 = 2×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐹𝑃, 𝐹𝑃𝑠𝑦𝑛) × 𝑅𝑒𝑐𝑎𝑙𝑙 (𝐹𝑃, 𝐹𝑃𝑠𝑦𝑛)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐹𝑃, 𝐹𝑃𝑠𝑦𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙 (𝐹𝑃, 𝐹𝑃𝑠𝑦𝑛)

. (21)

• Pattern Error measures the relative difference between the

number of pattern occurrences in each dataset:

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐸𝑟𝑟𝑜𝑟 =
1

|𝐹𝑃 |
∑︁
𝑃∈𝐹𝑃

|𝑛𝑃 −𝑛𝑃
𝑠𝑦𝑛 |

𝑛𝑃 , (22)

where 𝑛𝑃 and 𝑛𝑃𝑠𝑦𝑛 are the number of occurrence of pattern 𝑃 in

the datasets 𝐹𝑃 and 𝐹𝑃𝑠𝑦𝑛 , and we set |𝐹𝑃 | = 100 for evaluation.

6.3 Utility Evaluation
In our first set of experiments, we compare the utility performance

of LDPTrace and NGRAM with various privacy budgets 𝜖 . For each

experiment, we perform the synthesis 5 times, and report the aver-

age results in Table 3. We have the following observations:

• We first analyze the performance w.r.t. different types of utility
metrics. Since NGRAM fails to take the global features of tra-

jectories into consideration, it suffers from severe performance

degradation on the global level utility. Especially, the density

error in LDPTrace is three times smaller than that in NGRAM,

and LDPTrace also shows strong performance in both the tra-

jectory level and the semantic level utilities. We contribute the

improvement to the mobility modelling and adaptive synthesis of

LDPTrace: (1) By collecting transitions from both intra-trajectory

and start/end points, LDPTrace is able to synthesize trajectories

whose mobility patterns (e.g., moving directions) assemble users’

real traces. (2) Benefited from the adaptive synthesis algorithm,

LDPTrace can generate authentic trajectories with proper length

to maintain the relationship between start points and end points.

• Next, we evaluate the effectiveness w.r.t. different datasets. We

find that the performance of our framework is robust, which

keeps good utility on both synthetic and real-world datasets.
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Table 4: Average runtime in seconds. We report the average running time per 1,000 trajectories of each component.

LDPTrace: User side LDPTrace: Curator side Total NGRAM TotalLength Intra-traj tran. Beg./Ter. tran. Preparation Pattern est. Synthesis
Oldenburg 0.030 0.192 0.104 0.010 0.001 0.219 0.556 183

Porto 0.028 0.148 0.092 0.015 0.001 0.179 0.463 132

Hangzhou 0.028 0.302 0.098 0.012 0.002 0.304 0.746 418

Campus 0.028 0.138 0.083 0.009 0.001 0.189 0.448 197

Table 5: Impact of beginning/terminated transitions. Best result is shown in bold. HQ Error denotes “Hotpot Query Error”.

Dataset Model Density Error Query Error HQ Error Kendall-tau Trip Error Length Error Diameter Error Pattern F1 Pattern Error

Oldenburg

RandSyn 0.0569 0.7491 0.0724 0.6623 0.1779 0.0694 0.0611 0.58 0.4313
CombTran 0.0168 0.2794 0.0593 0.8108 0.1052 0.0371 0.0570 0.67 0.5596

NoAdapt 0.0081 0.3754 0.0013 0.8866 0.0971 0.0713 0.0932 0.69 0.6822

LDPTrace 0.0077 0.2595 0.0593 0.8944 0.0683 0.0370 0.0570 0.69 0.5632

Porto

RandSyn 0.2687 7.4933 0.2583 0.2191 0.4372 0.1244 0.1460 0.39 0.6658

CombTran 0.0243 0.6741 0.0464 0.5784 0.0932 0.0412 0.0351 0.59 0.6730

NoAdapt 0.0098 0.3607 0.0464 0.6828 0.1052 0.0579 0.0631 0.63 0.7674

LDPTrace 0.0081 0.3312 0.0000 0.7114 0.0778 0.0399 0.0340 0.63 0.6687

Hangzhou

RandSyn 0.1928 2.4842 0.0144 0.5252 0.4471 0.0549 0.1344 0.49 0.3821
CombTran 0.0361 0.3426 0.0464 0.6492 0.0762 0.0040 0.0594 0.78 0.4890

NoAdapt 0.0322 0.3641 0.0131 0.7062 0.0593 0.0041 0.0921 0.80 0.5866

LDPTrace 0.0194 0.2814 0.0131 0.7044 0.0513 0.0037 0.0569 0.80 0.4552

Campus

RandSyn 0.0914 1.5203 0.3055 0.5587 0.2811 0.0982 0.0589 0.64 0.4109
CombTran 0.0103 0.3025 0.0304 0.8539 0.0862 0.0973 0.0593 0.71 0.5780

NoAdapt 0.0046 0.3766 0.0593 0.8571 0.0502 0.1496 0.0590 0.71 0.6892

LDPTrace 0.0043 0.2011 0.0013 0.8571 0.0740 0.0981 0.0587 0.71 0.5508

However, the performance of NGRAM varies across datasets.

Specifically, it achieves competitive results in terms of density

error and trip error on Oldenburg, but the results of these metrics

are much worse in the three real datasets. We argue that this

is because the mobility patterns of real-world trajectories are

much more complex than synthetic ones, and NGRAM is unable

to capture these patterns with n-gram model.

• We also examine the effects w.r.t. different privacy budgets 𝜖 .

It is worth mentioning that LDPTrace could achieve good per-

formance even when the budget is small (e.g., 𝜖 = 0.5), which

confirms the effectiveness of capturing trajectories’ key patterns

with only a few distributions. However,NGRAM relies on a large

budget to achieve reasonable performance, meaning that it needs

to relax the privacy guarantee for practical use. For privacy bud-

get 𝜖 , the protection is acceptable as long as the budget is less

than 2 [19, 36, 39, 47]. To align with other real-world deploy-

ments of LDP by Google [19] and Microsoft [15], we set 𝜖 = 1 in

the following experiments.

6.4 Efficiency Evaluation
Since efficiency is equally important as utility for real-world de-

ployments, we conduct comprehensive experiments to evaluate

the average running time of each component, which is detailed in

Table 4. Generally speaking, LDPTrace is a very efficient privacy-

preserving trajectory publication framework, which is more than

300 times faster than NGRAM. The reason is that NGRAM suffers

from time-consuming processes like solving linear programming

problem and recursive reconstructions, not to mention the expen-

sive cost of pre-processing for POIs and external knowledge.

As for the breakdown of time spent on each component, we find

that the major computation on the user side is the perturbation of

intra-trajectory transitions because it has to perturb and upload

multiple times to report the holistic transition states. Other one-

time operations like trajectory length perturbation are much faster,

consistent with the computational analysis presented in Section 5.8.

On the data curator side, the main computation is incurred by the

synthesis process, since it needs to generate location points sequen-

tially according to the transition probability. Overall, LDPTrace is
highly efficient and practical for real-world applications, and the

time cost for privacy protection is nearly imperceptible for users.

6.5 Analysis of LDPTrace
As the pattern modelling is at the core of LDPTrace, we also conduct
insight experiments to investigate its effectiveness, i.e., how the

presence of beginning/terminated transitions, grid granularity, and

the adaptive synthesis algorithm affect our model.

6.5.1 Impact of beginning/terminated transitions. We first

verify the effectiveness of the beginning/terminated transitions. To

this end, we construct three variants of LDPTrace, including (1)

RandSyn that discards the virtual start/end points from LDPTrace,
and synthesizes trajectories according to intra-transition probabili-

ties, (2) CombTran that combines the beginning/terminated transi-

tions with intra-transitions, and perturbs/reports them as a whole,

and (3) NoAdapt that removes the adaptive synthesis strategy (i.e.,
Equation (14)). We summarize the results in Table 5.

Comparedwith the completemodel LDPTrace, the absence of the
beginning/terminated transitions (i.e., RandSyn) dramatically de-

grades the utility, indicating the necessity of modelling the start/end

point distribution. However, it is noticed that the pattern error

of RandSyn remains small, since it measures the frequent intra-

mobility patterns that are less irrelevant with endpoints.CombTran
introduces unnecessary noise for estimating beginning/terminated

transitions as they will be perturbed along the intra-transitions.
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of granularity 𝑁 on total runtime (seconds).

Thus, it also results in some utility loss. Last but not the least, di-

rectly synthesizing trajectory without considering current length

will make the synthetic trajectory too short to represent useful

spatial patterns, incurring suboptimal performance.

6.5.2 Impact of grid granularity 𝑁 . We analyze the influence

of different grid granularity settings to empirically verify the ef-

fectiveness of our guideline for choosing 𝑁 . Specifically, we utilize

the query error metric to measure the impact of grid granularity.

Figure 2 depicts the results, we can observe that the performance

reaches near optimal at the estimated granularity which is derived

from Equation (16). In addition, we see similar trend with respect

to the performance of NGRAM. The reason behind is that our esti-

mation only depends on the statistics of trajectory dataset, which

is model-agnostic, and can be a good reference to choose the grid

granularity for all locally private methods.

Besides, since the granularity will influence the trajectory length

and the number of transition states, we also test the running time

of LDPTrace under different 𝑁 values in Figure 3(c). There is a

clear increasing trend of runtime as 𝑁 increases its value and each

grid becomes more fine-grained. Consequently, a wrong choice of

granularity will not only cause the utility degradation, but also

result in larger computational complexity.

6.5.3 Impact of quantile 𝑘 . For space reason, we only choose

one representative utility metric each from global, trajectory, and

semantic levels (i.e., query error, diameter error, and pattern F1)

to explore the influence of quantile 𝑘 . In general, the selection of

trajectory length has different impacts on different utilities. When

the quantile 𝑘 is small, more transitions will be truncated, and a

large bias will be introduced to intra-transition modelling, leading

to a large query error. On the other hand, when 𝑘 becomes larger,

the budget of each reported transition is smaller, and thus, the added

noise increases and the synthetic trajectories may be unreliable,

which results in a larger diameter error. In conclusion, we choose

𝑘 = 0.9, since it achieves a good trade-off among different utilities.

The choice of 𝑘 also impacts the efficiency of LDPTrace. As
illustrated in the last subfigure of Figure 4, the running time grows

plainly with the growth of 𝑘 . It is consistent with our expectation

because a larger 𝑘 requires a longer amount of time for perturbation

and reporting. However, the magnitude of the time increase is

insignificant, because our algorithm is super efficient. Hence, the

influence of more perturbations is almost negligible.

6.5.4 Impact of 𝜆 and query size 𝑟 . We conduct experiments

to further analyze the effectiveness of our granularity selection

method by varying the hyperparameter 𝜆 and the query size 𝑟 . As

the uniformity of the points distribution in the dataset affects 𝜆, our

goal is to find the value of 𝜆 that would achieve the best balance

between non-uniformity error and transition estimation error. Our

results, as shown in Figure 3(a), indicate that 𝜆 = 2.5 performs well

across different datasets.

Additionally, we find that increasing the query size 𝑟 has a nega-

tive impact on performance of the model, as shown in Figure 3(b).

The query error increases as the size of 𝑟 grows larger, due to two

competing factors: an aggregation of error from more grid cells and

a reduction of noise as the actual counts become larger. Our results

show that the first effect is stronger, leading to an overall increase

in error as the query size increases. These findings are consistent

with prior studies [47].

6.6 Scalability
We also study the scalability of LDPTrace by varying the cardi-

nality of the trajectory datasets. We observe similar trends in all

four datasets. Due to space limitation, We only report the total

running time under Porto and Campus datasets in Figure 5. As

observed, LDPTrace is consistently faster than NGRAM in all dif-

ferent dataset scales, and has two orders of magnitude improvement.

LDPTrace also has stable performance, and the processing time will

not grow sharply with the growth of the dataset size. For NGRAM,

it takes more than two days in processing all the trajectories when

the dataset is at the scale of millions, while LDPTrace can finish

the whole process in less than 10 minutes. Therefore, LDPTrace is
suitable for large-scale deployment with little computational cost.
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Table 6: Utility performance comparison with unmodified NGRAM on Campus dataset.

Model Density Error Query Error HQ Error Kendall-tau Trip Error Length Error Diameter Error Pattern F1 Pattern Error
NGRAM 0.1172 0.7579 0.7001 0.3841 0.3024 0.1041 0.0663 0.32 0.7912

unmodified NGRAM 0.0536 0.4371 0.8108 0.6349 0.2006 0.1122 0.0638 0.55 0.8215

LDPTrace 0.0043 0.2011 0.0013 0.8571 0.0740 0.0981 0.0587 0.71 0.5508
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6.7 Comparison with Unmodified NGRAM
To further demonstrate the superiority of LDPTrace, we compare

it against the unmodified NGRAM with external knowledge using

Campus dataset [14]. We attach auxiliary knowledge, including

POIs, temporal information and hierarchical category, to the origi-

nal traces. The results of unmodified NGRAM are reported in Ta-

ble 6. The results show that LDPTrace outperforms both NGRAM
and unmodifiedNGRAM by a large margin in terms of all the utility

metrics. Although unmodified NGRAM benefits from the determin-

istic constraints imposed by the external knowledge to maintain

semantic similarity between the original and perturbed locations,

it still fails to accurately capture the moving patterns.

6.8 Attack Resilience
In our last set of experiments, we investigate LDPTrace’s resistance
to two common attacks (i.e., re-identification attach and outlier

attack) , which are proposed in [23]. Detailed definitions and set-

tings can be found in our online version. The results on Oldenburg

dataset in Figure 6 indicate that LDPTrace has impressive ability

to resist these two attacks: more than 88% trajectories can be suc-

cessfully protected in re-identification attack, and all trajectories

are hidden from outliers when the privacy parameter 𝜅 changes

its value from 2 to 10. On the contrary, NGRAM cannot provide

provable protections to these attacks, especially when the demand

of protection is more strict (large privacy parameter 𝜅). We con-

tribute the superiority of LDPTrace to the synthesis design: since

the published trajectories are synthesized from learned patterns,

they do not resemble any real trajectory. Thus, it is much more

difficult for attackers to identify traces that they are interested in.

7 CONCLUSIONS
In this paper, we develop a neat yet effective trajectory synthesis

framework under the rigorous privacy of LDP, called LDPTrace,
which achieves strong utility and efficiency simultaneously. Be-

sides, LDPTrace can provide deterministic resilience against com-

mon location-based attacks. We also provide a theoretical guideline

for selecting the grid granularity without consuming any privacy

budgets. Extensive experiments conducted on four datasets demon-

strate the superiority of LDPTrace. In the near future, we aim to

extract more complex patterns from user’s trajectory (like second-

order Markov chain and average speed) to further enhance the

authenticity of synthetic trajectories, and to investigate the LDP-

based synthesis problem on streaming trajectories to empower

real-time location-based applications.
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