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ABSTRACT
When analyzing confidential data through a privacy filter, a data

scientist often needs to decide which queries will best support their

intended analysis. For example, an analyst may wish to study noisy

two-way marginals in a dataset produced by a mechanismM1. But,

if the data are relatively sparse, the analyst may choose to examine

noisy one-way marginals, produced by a mechanismM2, instead.

Since the choice of whether to useM1 orM2 is data-dependent, a

typical differentially private workflow is to first split the privacy

loss budget 𝜌 into two parts: 𝜌1 and 𝜌2, then use the first part 𝜌1
to determine which mechanism to use, and the remainder 𝜌2 to

obtain noisy answers from the chosen mechanism. In a sense, the

first step seems wasteful because it takes away part of the privacy

loss budget that could have been used to make the query answers

more accurate.

In this paper, we consider the question of whether the choice be-

tweenM1 andM2 can be performed without wasting any privacy

loss budget. For linear queries, we propose a method for decom-

posing M1 and M2 into three parts: (1) a mechanism M∗ that
captures their shared information, (2) a mechanismM ′

1
that cap-

tures information that is specific toM1, (3) a mechanismM ′
2
that

captures information that is specific toM2. RunningM∗ andM ′1
together is completely equivalent to runningM1 (both in terms of

query answer accuracy and total privacy cost 𝜌). Similarly, running

M∗ andM ′2 together is completely equivalent to runningM2.

SinceM∗ will be used no matter what, the analyst can use its

output to decide whether to subsequently runM ′
1
(thus recreating

the analysis supported by M1) or M ′2 (recreating the analysis

supported byM2), without wasting privacy loss budget.
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1 INTRODUCTION
Consider an analyst who is workingwith confidential demographics

data through a differential privacy filter – the analyst poses queries
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and receives noisy answers. The analyst has a privacy loss budget 𝜌

and wishes to use it to study age and race distributions in a region.

The analyst wishes to get a noisy age by race marginal (115 age

values and 63 race categories used by the census, for a total of

63 × 115 cells). But, for small populations, this marginal would be

sparse and the noise would swamp the data. In that case, the analyst

could prefer two one-way marginals: one marginal on race and a

separate marginal on age. The analyst does not know in advance

whether the two-way race by age marginal (Option 1) is better for

this region or if two one-way marginals (Option 2) are better.

In a typical workflow, the analyst would split the privacy loss

budget 𝜌 into two pieces 𝜌1 and 𝜌2 (with 𝜌1+𝜌2 = 𝜌). The first piece

would be used to somehow determine which of the two options

would provide a good signal to (privacy) noise ratio. For example,

the analyst could ask for a noisy population total to make the

decision, or could use the exponential mechanism [54], which is

a common technique for selecting among several options. The

remaining privacy loss budget 𝜌2 would be used to provide a noisy

answer to the chosen option (either a noisy age by race marginal,

or the two one-way marginals).

Now, this procedure comes with some regret because, if the

analyst had known in advance which option to pick, then the entire

privacy loss budget 𝜌 (instead of only 𝜌2) could have been used

to provide a noisy marginal, providing more accuracy. Thus the

analyst may feel that 𝜌1, the portion of the privacy loss budget used

to select between the two options, was wasted or lost.

In this paper, we consider the question of how the analyst can

choose between Options 1 and 2 so that no privacy loss budget

is lost, and the entire 𝜌 is spent on the chosen analysis. Suppose

M1 is the mechanism used to provide noisy answers in Option 1

with privacy budget 𝜌 andM2 is the mechanism used to provide

noisy answers in Option 2 with privacy budget 𝜌 . We show how

to splitM1 into two mechanismsM∗ andM ′1, so that running

M1 with privacy budget 𝜌 is completely equivalent to runningM∗
andM ′

1
together. Similarly, we splitM2 intoM∗ andM ′2. This

“common” mechanismM∗ represents information that is common

to bothM1 andM2. That is, this is a piece of information that

would be provided to the analyst by either mechanism. Meanwhile,

the “residual”M ′
1
encapsulates information that is specific toM1

(one can think ofM ′
1
as the result of removing the information in

M∗ fromM1). Similarly,M ′
2
is the information that is specific to

M2. The analyst’s workflow becomes the following.

1. Given a dataset D, first runM∗ (D) to get an output 𝜔∗.
2a. Based on 𝜔∗, the analyst can choose to run the residual mecha-

nismM ′
1
(D) to get an output 𝜔 ′

1
,

2b. Or, based on 𝜔∗, the analyst can instead run the residual mecha-

nismM ′
2
(D) to get an output 𝜔 ′

2
.
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If the analyst runsM∗ followed byM ′
1
, the total privacy budget

spent is 𝜌 and the resulting outputs 𝜔∗ and 𝜔 ′
1
provide the same

information as ifM1 had been run with privacy budget 𝜌 . Similarly,

if the analyst runs M∗ followed by M ′
2
, then the total privacy

budget spent again is 𝜌 and the resulting outputs𝜔∗ and𝜔 ′
2
provide

the same information as runningM2 with privacy budget 𝜌 . Thus,

the analyst adaptively chooses which mechanism to run without

any wasted privacy budget.

Our technique works for any mechanism that answers linear

queries with Gaussian noise. It is compatible with Renyi differential

privacy [56], zCDP [8], Gaussian Differential Privacy [20], (𝜖, 𝛿)-
differential privacy [21], and personal differential privacy [24].

This kind of scenario, where an analyst needs to choose between

pre-specified analyses depending on which provides an appropriate

signal to (privacy) noise ratio, is expected to become more common.

For example, the 2020 Census Detailed Demographic and Housing

Characteristics data products are going to include sex-by-age tab-

ulations where the binning of age in a region is data-dependent

[29]. For small regions, only the population totals will be published.

For more populous regions, the age will be binned into 4, 9, or 23

buckets, depending on how populous the region is. To choose which

bucketization to use, noise will be first added to the population in

a region [29]. This noisy count will be checked against manually-

specified thresholds to determine the buckets to use. We empirically

show that our proposed approach is better at selecting the correct

analysis, reduces the need for manual tuning, and uses all of the

privacy loss budget on the sex-by-age histograms instead of taking

away some of it for the purposes of selecting the histogram to use.

Another application for our framework is privacy budget savings

in interactive query systems (e.g., Apex [27, 50]). Suppose an analyst

has already run mechanismsM𝑎,M𝑏 ,M𝑐 to obtain noisy answers

to linear queries, and then wishes to runM𝑑 . In our framework

one can view the set {M𝑎,M𝑏 ,M𝑐 } as the combined linear query

mechanismM1 and one can viewM𝑑 asM2. Then the common

mechanismM∗ is the part ofM2 that is already answerable from

M1 (i.e., from the results ofM𝑎,M𝑏 ,M𝑐 ). The residualM ′2 is the
extra information needed to recover the answer toM2. Running

M ′
2
would therefore save the analyst some privacy budget as it

would avoid re-asking for information the analyst already has.

The contributions of this paper are the following:

• A framework for adaptively choosing between two linear mech-

anismsM1 andM2 without additional expenditure of privacy

loss budget.

• We formalize the definition of the common mechanismM∗ of
M1 and M2 as an optimization problem, and also formalize

the associated residual mechanismsM ′
1
,M ′

2
. This framework

can be extended to choosing among multiple mechanisms (e.g.,

M1,M2,M3, . . . ), but there are analytical solutions when choos-

ing among two mechanisms.

• Algorithms for computing common and residual mechanisms.

• We give suggestions on how to use the output of the common

mechanism to decide betweenM1 andM2, thus providing an-

other tool for the construction of differentially private systems.

• We demonstrate the efficacy of this approach using real datasets

and apply it to a real-world application involving census data.

We present notation and background in Section 2. We formally

define the problem statement in Section 3. Related work is discussed

in Section 4. Algorithms for the common and residual mechanisms

are in Section 5. Suggestions on how to decide betweenmechanisms

based on the output of the common mechanism are in Section 6.

Experiments are in Section 7 and conclusions are in Section 8. All

proofs can be found in the full version of this paper [70].

2 NOTATION AND BACKGROUND
In this section, we explain our notation (summarized in Table 1)

and provide background information on differential privacy and

the type of mechanisms we consider.

We denote vectors as bold lower-case letters (e.g., x), matrices

as bold upper-case (e.g., B), scalars as non-bold lower-case (e.g., 𝜎).

If A and B are positive semidefinite matrices, we say B⪯A if A − B
is positive semidefinite (⪰ is defined analogously). The relation

⪯ defines a partial ordering on semidefinite matrices called the

Loewner order [33].
A dataset D is a table of records. Following earlier work on

differentially private linear queries [40, 69, 72, 73], we assume the

record attributes are categorical (or have been discretized). As in

prior work, we represent the dataset D as a vector x of counts and

we refer to it as the data vector. That is, letting {𝑡0, 𝑡1, . . . 𝑡𝑑−1}
be the set of possible record values, x[𝑖] is the number of times

record 𝑡𝑖 appears in D. For example, if each record consists of two

attributes, adult (yes/no) and Hispanic (yes/no), then there are 4

possible types of records, which are 𝑡0 = "not adult, not Hispanic",

𝑡1 =“adult, not Hispanic”, 𝑡2 =“not adult, Hispanic”, 𝑡3 =“adult,

Hispanic”. In our representation, x[3] is the number of Hispanic

adults in the dataset D. We say that two dataset vectors x and x′

are neighboring (denoted as x ∼ x′) if x can be obtained from x′

by adding or subtracting 1 from some component of x′ (this means

| |x − x′ | |1 = 1) – this is the same as adding or removing 1 person

from the underlying dataset.

A single linear query q is a vector, whose answer is q · x. A
query set is a set of 𝑚 linear queries represented by an 𝑚 × 𝑑

matrix B, where each row corresponds to a single linear query. We

let 𝑘 denote the rank of B. The answers to the queries are obtained

by matrix multiplication: Bx. Continuing our running example of

a two-attribute dataset, if B =
(
0 1 0 1

1 1 1 1

)
, then this is a set of two

queries. The first query is the number of times records 𝑡1 or 𝑡3 appear

in the dataset (i.e., the number of adults) and the second query is the

total number of people. AmechanismM is an algorithm whose

input is the confidential data (either D or x) and whose output 𝜔

is considered safe to release (because it protects privacy). When we

have two mechanismsM𝑎 andM𝑏 , we let (M𝑎,M𝑏 ) denote the
mechanism that runs both of them on the data and releases their

results. In other words, its output is (M𝑎 (D),M𝑏 (D)).

2.1 Differential Privacy
Differential Privacy [8, 20–22, 56] is a family of privacy definitions

that place restrictions on how a mechanismM can work. It has

become a de facto standard for protecting confidentiality when

creating publicly available data products, with an ever-increasing

list of real-world deployments, including the U.S. Census Bureau

[1, 10, 49], Uber [35, 36], Apple [64], Facebook [55, 57], Microsoft
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[17], andGoogle [26, 28, 66]. Differential privacy provides a rigorous

plausible deniability guarantee – it limits the ability of an attacker

to determine whether a target person’s record was in the dataset

or not. The most common variation of differential privacy is:

Definition 2.1 (Approximate Differential Privacy [21]). Given pri-
vacy parameters 𝜖 > 0 and 𝛿 ∈ (0, 1), a randomized algorithm
M satisfies (𝜖, 𝛿)-differential privacy if for all pairs of neighboring
dataset vectors x and x′ and all sets 𝑆 , the following equations hold:

𝑃 (M(x) ∈ 𝑆) ≤ 𝑒𝜖𝑃 (M(x′) ∈ 𝑆) + 𝛿

A mechanism 𝑀 typically satisfies approximate differential pri-

vacy for infinitely many (𝜖, 𝛿) pairs, which defines a curve in space.

There is also another popular variant known as zero-concentrated
differential privacy (zCDP):

Definition 2.2 (zCDP [8]). Given a privacy parameters 𝜌 > 0, a ran-
domized algorithmM satisfies 𝜌-zCDP if for all pairs of neighboring
dataset vectors x and x′ and all numbers 𝛼 > 1,∫

𝜔

𝑃 (M(x) = 𝜔) 𝑃 (M(x) = 𝜔)𝛼−1
𝑃 (M(x′) = 𝜔)𝛼−1

𝑑𝜔 ≤ 𝑒 (𝛼−1)𝛼𝜌 ,

where 𝑃 (M(x) = 𝜔) is interpreted as a probability density function
in the continuous case.

The parameters (𝜖, 𝛿) are known as the privacy loss budget of
approximate differential privacy and the privacy parameter 𝜌 is

known as the privacy loss budget of zCDP. Note that the privacy

parameter of zCDP is difficult to interpret (see [37] for an extended

discussion) but easier to compute than approximate differential

privacy. Thus, one typically determines the zCDP privacy loss pa-

rameter 𝜌 of a mechanismM and then converts it to 𝜖 and 𝛿 for

interpretability [8, 12].

Each version of differential privacy also has a “personalized” ver-

sion, in which each possible record type 𝑡𝑖 is assigned a privacy loss

budget. The privacy parameter for record type 𝑡𝑖 can be obtained

from Definition 2.1 or 2.2 by considering only neighbors x and x′

that differ in their 𝑖th coordinate [24].

2.2 The Linear Gaussian Mechanism
The linear Gaussian mechanism adds Gaussian noise to the output

of linear queries and is compatible with many versions of differen-

tial privacy. It is defined as follows.

Definition 2.3 (Linear GaussianMechanism). Given a query matrix
B and nonsingular covariance matrixΣ (not necessarily diagonal), the
linear Gaussian mechanismM is defined asM(x) = Bx + 𝑁 (0,Σ).
The quantity B𝑇Σ−1B is called the privacy cost matrix ofM.

The importance of the privacy cost matrix is that the privacy

parameters of the Gaussian mechanism for (𝜖, 𝛿)-differential pri-
vacy and 𝜌-zCDP (both the basic and personalized versions) are

all functions of this privacy cost matrix, as the following result

shows:
1

Lemma 2.4 ([69]). LetM be the linear Gaussian mechanism (Defini-
tion 2.3) defined as M(x) = Bx + 𝑁 (0,Σ) with privacy cost ma-
trix C = B𝑇Σ−1B. Let 𝑐𝑖 be the 𝑖th diagonal entry of C and let

1
This is also true of Renyi [56] and Gaussian [20] differential privacy.

Table 1: Table of Notation

D: Dataset

x: Data vector representation of D
𝑑 : Number of possible records

M: Mechanism.

𝜔 : Output of a mechanism.

(M𝑎,M𝑏 ) Combined mechanism that runsM𝑎 andM𝑏

B: Query matrix.

𝑚: Number of rows of B (B has size𝑚 × 𝑑).
𝑘 : Rank of B.
Σ: Covariance matrix.

B𝑇Σ−1B: Privacy cost matrix of mechanismM(x) = Bx + 𝑁 (0,Σ) .
⪯, ⪰ Loewner order (A2⪯A2 iff A1 − A2 is positive semidefinite)

𝑐𝑚𝑎𝑥 = max𝑖 𝑐𝑖 be the largest diagonal entry of C. Let Φ be the
CDF of the standard normal distribution. Then:
• M satisfies (𝜖, 𝛿)-differential privacy for

𝛿 = Φ

(√
𝑐𝑚𝑎𝑥

2

− 𝜖
√
𝑐𝑚𝑎𝑥

)
− 𝑒𝜖Φ

(
−
√
𝑐𝑚𝑎𝑥

2

− 𝜖
√
𝑐𝑚𝑎𝑥

)
and 𝛿 is an increasing function of 𝑐𝑚𝑎𝑥 . In particular, this means
the entire (𝜖, 𝛿) curve ofM is determined by 𝑐𝑚𝑎𝑥 .

• The personalized approximate differential privacy parameters (𝜖𝑖 , 𝛿𝑖 )
for record type 𝑡𝑖 are obtained from the formula:

𝛿𝑖 = Φ

(√
𝑐𝑖

2

− 𝜖𝑖√
𝑐𝑖

)
− 𝑒𝜖𝑖Φ

(
−
√
𝑐𝑖

2

− 𝜖𝑖√
𝑐𝑖

)
• M satisfies 𝜌-zCDP for 𝜌 = 𝑐𝑚𝑎𝑥/2.
• The personal zCDP privacy parameter for record 𝑡𝑖 is 𝑐𝑖/2.

3 PROBLEM DEFINITION AND SOLUTION
OVERVIEW

The motivation for our problem is the following. An analyst is

interested in obtaining noisy linear query answers either from

mechanismM1 orM2, defined as follows:

M1 (x) = B1x + 𝑁 (0,Σ1)
M2 (x) = B2x + 𝑁 (0,Σ2) .

whereM1 andM2 both satisfy zCDP with the same privacy param-

eter 𝜌 .2 For example,M1 could compute all the one-way marginals

of a dataset, andM2 could compute all the two-way marginals.

However, the choice of which mechanism to use depends on the

properties of the data that the analyst does not know.

For instance, if the dataset is “large enough” then the noisy two-

way marginals (i.e.,M2) will be very accurate with low relative

error. Otherwise, the analyst would prefer to use the noisy one-way

marginals produced byM1. The problem is that the analyst does

not know whether the dataset is “large enough”, or even how to

precisely define what “large enough” means (i.e., exactly how many

records are needed for the dataset to be considered large enough).

Thus, the analyst needs extra information about the data in

order to make a choice betweenM1 andM2. One option is to take

some privacy budget 𝜌0 away fromM1 andM2. This 𝜌0 would

be assigned to some other mechanismM◦ that queries that data.
2
For concreteness, we focus on zCDP, but, as we show later, this approach works for

any post-processing invariant privacy definition.
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Based on the answers toM◦, the analyst would modify eitherM1

orM2 to use the remaining privacy budget 𝜌 − 𝜌0 (by rescaling

the Gaussian covariance matrices Σ1 and Σ2) and then run it on the

data. This option produces noisier answers than the analyst wants,

because only 𝜌 − 𝜌0 instead of 𝜌 is allocated towards the noisy

answers. In this sense, this 𝜌0 can feel like a wasted expenditure of

privacy loss budget since it takes away from the accuracy of the

query answers that the analyst desires.

In this paper, we consider a second option – whether the analyst

can make an informed choice without wasting any privacy loss

budget. The main idea is to rewrite mechanismM1 as a sequence

of two mechanismsM∗ andM ′1 such that runningM1 is exactly

equivalent, both in terms of information content and privacy cost,

to runningM∗ andM ′1 together. We similarly decomposeM2 into

M∗ andM ′2. This means that if the analyst wants to runM1 or

M2, thenM∗ is going to be run no matter what. Thus the analyst

can first runM∗ and then can decide whether to runM ′
1
(to finish

the execution ofM1) or to runM ′2 (to finish the execution ofM2).

We refer toM∗ as the mechanism that is common toM1 andM2

since it represents the information that they share. We refer to

M ′
1
andM ′

2
as the residual mechanisms since they represent the

information that is specific toM1 andM2, respectively.

We next formalize this discussion. We examine what it means

for two mechanisms to be equivalent in Section 3.1, we formally

define the common mechanism ofM1 andM2 in Section 3.2, we

formally define the residual mechanisms in Section 3.3, and then we

present the technical problem statement in Section 3.4. The use of

more than 2 mechanisms in the framework is discussed in Section

3.5. Limitations are discussed in Section 3.6.

3.1 Exact Answerability and Equivalence of
Linear Gaussian Mechanisms

Suppose there are two mechanismsM𝑎 andM𝑏 and a randomized

postprocessing algorithm A such that for all data vectors x, the
output distribution ofM𝑏 (x) is the same as the output distribution

of A(M𝑎 (x)). This means that we can simulate the output ofM𝑏

by taking the output ofM𝑎 and feeding it to A.

When this is the case, we say thatM𝑏 is exactly answerable from
M𝑎 and it means thatM𝑎 produces at least as much information

asM𝑏 . For any post-processing invariant privacy definition (such

as 𝜌-zCDP, Gaussian differential privacy, approximate differential

privacy, etc.), the privacy cost ofM𝑎 is also at least as large as the

privacy cost ofM𝑏 (e.g., the 𝜌 parameter ofM𝑎 under zCDP is

greater than or equal to the 𝜌 parameter ofM𝑏 ). For linear Gaussian

mechanisms, exact answerability can be defined as follows.

Definition 3.1. LetM𝑎 (x) = B𝑎x + 𝑁 (0,Σ𝑎) andM𝑏 (x) = B𝑏x +
𝑁 (0,Σ𝑏 ) be linear Gaussian mechanisms. We say thatM𝑏 is exactly
answerable fromM𝑎 if there exist matrices A and C such that for
every x,M𝑏 (x) has the same distribution as AM𝑎 (x) + C𝑁 (0, I),
where I is the identity matrix. In other words,M𝑏 can be obtained
fromM𝑎 by applying a linear transformation and adding additional
noise (that does not depend on the data).

For linear Gaussian mechanisms, exact answerability is easy to

check using the following result whose proof is straightforward.

Lemma 3.2. Let M𝑎 (x) = B𝑎x + 𝑁 (0,Σ𝑎) and M𝑏 (x) = B𝑏x +
𝑁 (0,Σ𝑏 ) be linear Gaussian mechanisms.M𝑏 is exactly answerable
fromM𝑎 if and only if there exist matrices A and C such that:

B𝑏 = AB𝑎

Σ𝑏 = AΣ𝑎A𝑇 + CC𝑇

Example 3.3. Suppose x is two-dimensional and consider the

mechanisms:

M𝑎 (x) =
[
1 1

1 0

0 1

]
x + 𝑁

( [
0

0

0

]
,

[
2 0 0

0 2 0

0 0 2

] )
M𝑏 (x) =

[
1 0

0 1

]
x + 𝑁

( [
0

0

]
,

[
4/3 −2/3
−2/3 4/3

] )
Both mechanisms satisfy 𝜌-zCDP with 𝜌 = 1/2. For any x, the
output distribution ofM𝑏 is the multivariate Gaussian with mean

x and covariance matrix

[
4/3 −2/3
−2/3 4/3

]
. This is exactly the same as the

distribution of

[
1

3

2

3
− 1

3

1

3

−1
3

2

3

]
M𝑎 (x) and soM𝑏 is exactly answerable

fromM𝑎 .

Similarly, the output distribution ofM𝑎 (x) is the same as the

distribution of

[
1 1

1 0

0 1

]
M𝑏 (x) +

√︃
2

3

[
1 0 0

−1 0 0

−1 0 0

]
𝑁

( [
0

0

0

]
,

[
1 0 0

0 1 0

0 0 1

] )
and

thusM𝑎 is also exactly answerable fromM𝑏 .

Remark 3.4. It is noteworthy that even thoughM𝑎 andM𝑏 in Exam-
ple 3.3 are exactly answerable from each other,M𝑎 is obtained from
M𝑏 by linear postprocessing followed by noise addition. The reason

is because the rows of the query matrix B𝑎 =

[
1 1

1 0

0 1

]
in mechanism

M𝑎 are linearly dependent. The sole purpose of the noise is to convert
the 2-dimensional Gaussian distribution obtained by linear postpro-
cessing ofM𝑏 into the 3-dimensional Gaussian distribution thatM𝑎

uses. This noise does not add or remove privacy, sinceM𝑏 can also
be obtained fromM𝑎 by linear postprocessing. Another way to view
this phenomenon is to note that the linear dependency in B𝑎 causes
inconsistency – the first component of the output ofM𝑎 is a noisy
sum, and the sum of the 2nd and 3rd components is also a version of
the noisy sum. Enforcing consistency [32, 40] would convertM𝑎 into
M𝑏 , and the noise that is removed by consistency is the same noise
that is added back when reconstructingM𝑎 fromM𝑏 .

One observation we make from Example 3.3 is that proving exact

answerability can be cumbersome because one must produce the

matrices A and C as in Definition 3.1. The following result allows

us to check exact answerability in a more mechanical way.

Theorem 3.5. LetsM𝑎 (x) = B𝑎x + 𝑁 (0,Σ𝑎) andM𝑏 (x) = B𝑏x +
𝑁 (0,Σ𝑏 ) be linear Gaussian mechanisms. M𝑏 is exactly answer-
able fromM𝑎 if and only if B𝑇

𝑏
Σ−1
𝑏
B𝑏 ⪯ B𝑇𝑎Σ−1𝑎 B𝑎 (i.e., B𝑇𝑎Σ−1𝑎 B𝑎 −

B𝑇
𝑏
Σ−1
𝑏
B𝑏 is positive semidefinite, and hence its eigenvalues are non-

negative).

One interesting consequence of Theorem 3.5 is that exact answer-

ability depends on the quantities B𝑇𝑎Σ−1𝑎 B𝑎 and B𝑇
𝑏
Σ−1
𝑏
B𝑏 , which

are the privacy cost matrices of mechanismsM𝑎 andM𝑏 , respec-

tively (see Section 2.2). In particular, if B𝑇𝑎Σ−1𝑎 B𝑎 = B𝑇
𝑏
Σ−1
𝑏
B𝑏 then

M𝑎 andM𝑏 are not only exactly answerable from each other, but

also have the exact same privacy cost under zCDP, approximate
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differential privacy, Gaussian differential privacy, and their per-

sonalized versions (as well as any other postprocessing invariant

privacy definitions). In this sense, they are completely identical in

terms of information content and privacy. This leads to the follow-

ing definition.

Definition 3.6 (Equivalence). Two mechanismsM𝑎 andM𝑏 are
equivalent ifM𝑎 is exactly answerable fromM𝑏 and vice versa. In
particular, ifM𝑎 (x) = B𝑎x+𝑁 (0,Σ𝑎) andM𝑏 (x) = B𝑏x+𝑁 (0,Σ𝑏 )
are linear Gaussian mechanisms, thenM𝑎 andM𝑏 are equivalent
if B𝑇𝑎Σ−1𝑎 B𝑎 = B𝑇

𝑏
Σ−1
𝑏
B𝑏 .

3.2 Shared Information & Common Mechanism
Intuitively, a piece of information is shared byM1 andM2 if that

information can be derived from the output ofM1 and it can also

be derived from the output ofM2. We formalize “information” as

a mechanismM𝑐 that can be answered exactly fromM1 and from

M2. We call it a common mechanism ofM1 andM2.

Definition 3.7 (Common Mechanism). A mechanismM𝑐 is com-
mon toM1 andM2 ifM𝑐 is exactly answerable from each one of
them. When they are all linear Gaussian mechanisms:

M1 (x) = B1x + 𝑁 (0,Σ1)
M2 (x) = B2x + 𝑁 (0,Σ2)
M𝑐 (x) = B𝑐x + 𝑁 (0,Σ𝑐 )

then by Theorem 3.5,M𝑐 is common toM1 andM2 whenever:

B𝑇𝑐 Σ
−1
𝑐 B𝑐⪯B𝑇𝑎Σ−1𝑎 B𝑎 and

B𝑇𝑐 Σ
−1
𝑐 B𝑐⪯B𝑇𝑏 Σ

−1
𝑏
B𝑏

Example 3.8. Consider the following four mechanisms, where

M1,M3,M4 are noisy sum queries with variances 1, 2, and 1.5,

respectively, whileM2 is a combination of a noisy sum query with

variance 2 and a noisy identity query with variance 2:

M1 (x) = [ 1 1 1 ]x + 𝑁 (0, 𝜎2 = 1)

M2 (x) =
[
1 1 1

1 0 0

0 1 0

0 0 1

]
x + 𝑁

( [
0

0

0

0

]
,

[
2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

] )
M3 (x) = [ 1 1 1 ]x + 𝑁 (0, 𝜎2 = 2)
M4 (x) = [ 1 1 1 ]x + 𝑁 (0, 𝜎2 = 1.5)

The mechanismM3 is common to bothM1 andM2 because it

can be answered using only the output of either mechanism (with

no additional access to the underlying data). For example, M3

can be answered by adding noise to the output ofM1 as follows:

M3 (x) =M1 (x) +𝑁 (0, 1). AlsoM3 can be answered fromM2 by

taking the noisy sum thatM2 directly provides (mathematically,

M3 (x) = [ 1 0 0 0 ]M2 (x)). However,M4 is also common toM1

andM2 as we can see from the following equations:

M4 (x) =M1 (x) + 𝑁 (0, 0.5)
M4 (x) = [0.75, 0.25, 0.25, 0.25]M2 (x)

As we see from Example 3.8, bothM3 andM4 are common

mechanisms forM1 andM2, and so they both capture information

that is shared byM1 andM2. However,M4 clearly captures more

of this shared information thanM3. This leads to a concept of a

maximally common mechanism.

Definition 3.9 (Maximally common mechanism). A mechanism
M∗ is maximally common toM1 andM2 if (1)M∗ is common to
M1 andM2, (2) if there is another mechanismM† that is common
toM1 andM2 and ifM∗ is exactly answerable fromM†, thenM∗
andM† are equivalent.

It turns out thatM4 is a maximally common mechanism toM1

andM2. We show how to compute maximally common mecha-

nisms in Section 5.

3.3 Decomposition into Common and Residual
Mechanisms

Now that a maximal common mechanism M∗ for M1 and M2

has been defined, we next define the residual mechanismsM ′
1
and

M ′
2
. Intuitively, M ′

1
(resp., M ′

2
) represents the least amount of

additional information that, when combined withM∗ allows us
to recreateM1 (resp.,M2). Alternatively,M ′1 (resp.,M

′
2
) is the

result of “subtracting away” the information aboutM∗ fromM1

(resp.,M2). Recalling that the notation (M∗,M ′1) is a mechanism

that runs bothM∗ andM ′1 on the data and releases their outputs,

we can formally define residual mechanisms as follows:

Definition 3.10 (Residual Mechanism). Given mechanisms M1,
M2 and a maximally common mechanismM∗, we say thatM ′1 and
M ′

2
are residual mechanisms if:

• (M∗,M ′1) is equivalent (see Definition 3.6) toM1 and
• (M∗,M ′2) is equivalent toM2.

Note that, by virtue of equivalence, (M∗,M ′1) has the same

privacy cost asM1 under any postprocessing-invariant privacy

definition (including all the ones studied in this paper), and similarly

with (M∗,M ′2) and M2. The checking of equivalence between

(M∗,M ′1) andM1 can be done using the following result:

Lemma 3.11. Suppose thatM1 (x) = B1x + 𝑁 (0,Σ1) andM2 (x) =
B2x + 𝑁 (0,Σ2) are linear Gaussian mechanisms and thatM∗ (x) =
B∗x+𝑁 (0,Σ∗) is their maximally commonmechanism. ThenM ′

1
(x) =

B′
1
x + 𝑁 (0,Σ′

1
) andM ′

2
(x) = B′

2
x + 𝑁 (0,Σ′

2
) are residual mecha-

nisms if and only if:

B∗𝑇Σ∗−1B∗ + (B′1)
𝑇 (Σ′

1
)−1B′

1
= B𝑇

1
Σ−1
1
B1

B∗𝑇Σ∗−1B∗ + (B′2)
𝑇 (Σ′

2
)−1B′

2
= B𝑇

2
Σ−1
2
B2

In which case (M∗,M ′1) is equivalent toM1 and (M∗,M ′2) is equiv-
alent toM2.

Example 3.12. Consider a table with 2 attributes 𝐴𝑡𝑡1 and 𝐴𝑡𝑡2,

each attribute taking 3 possible values 𝑎, 𝑏, 𝑐 . The data vector x then
has 9 components. A marginal on 𝐴𝑡𝑡1 then consists of 3 numbers:

the number of people for which 𝐴𝑡𝑡1 = 𝑎, the number of people for

which 𝐴𝑡𝑡1 = 𝑏, and the number of people for which 𝐴𝑡𝑡1 = 𝑐 . The

marginal on𝐴𝑡𝑡2 is defined analogously. Consider a mechanismM1

that adds independent 𝑁 (0, 1) noise to the marginal on 𝐴𝑡𝑡1 and a

mechanismM2 that adds independent𝑁 (0, 1) noise to themarginal

1887



on 𝐴𝑡𝑡2. In matrix notation, they are represented as follows:

M1 (x) =
[
1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

]
x + 𝑁

( [
0

0

0

]
,

[
1 0 0

0 1 0

0 0 1

] )
M2 (x) =

[
1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

]
x + 𝑁

( [
0

0

0

]
,

[
1 0 0

0 1 0

0 0 1

] )
From the output ofM1 we can add up the noisy counts of people

having values 𝑎, 𝑏, and 𝑐 for attribute 𝐴𝑡𝑡1 to get an estimate of the

total number of people. This estimate has variance 3. We can do the

same withM2 to get a noisy total with variance 3. Running either

mechanism thus provides a noisy total with variance 3, and the

noisy total mechanism is in fact their maximal commonmechanism,

and is represented as:

M∗ (x) = [ 1 1 1 1 1 1 1 1 1 ] x + 𝑁 (0, 3) .

The corresponding residual mechanisms are:

M ′
1
(x) =

[
0 0 0 1 1 1 −1 −1 −1
−1 −1 −1 1 1 1 0 0 0

]
x + 𝑁 (

[
0

0

]
,
[
2 1

1 2

]
)

M ′
2
(x) =

[
0 1 −1 0 1 −1 0 1 −1
−1 1 0 −1 1 0 −1 1 0

]
x + 𝑁 (

[
0

0

]
,
[
2 1

1 2

]
)

The residual mechanism M ′
1
is answering two queries: (1) # of

records with 𝐴𝑡𝑡1 = 𝑏 minus the # with 𝐴𝑡𝑡1 = 𝑐 , and (2) # of

records with 𝐴𝑡𝑡1 = 𝑏 minus the # with 𝐴𝑡𝑡1 = 𝑎. Both queries

get variance 2 and are correlated with covariance 1. The residual

mechanismM ′
2
works analogously for attribute 𝐴𝑡𝑡2.

The original mechanismM1 can be recovered from the outputs

ofM ′
1
andM∗ as follows:

M1 (x) =
[
1/3 −2/3
1/3 1/3
−2/3 1/3

]
M ′

1
(x) +

[
1/3
1/3
1/3

]
M∗ (x)

and it is easy to check using Lemma 3.11 thatM1 and (M∗,M ′1)
are indeed equivalent (providing the same information and having

the same privacy cost).

We show how to compute the residual mechanisms in Section 5.

3.4 Formalizing Decision Making with the
Common Mechanism

Having formally defined the (maximally) common mechanismM∗
of linear GaussianmechanismsM1 andM2, and having defined the

residual mechanismsM ′
1
andM ′

2
, the formal problem statement

can be defined as the following sequence of steps:

(1) Given two linear Gaussian query mechanismsM1 andM2,

compute their maximal common mechanismM∗ (algorithms

are provided in Section 5).

(2) GivenM1,M2 andM∗, compute the residual mechanismsM ′
1

andM ′
2
(algorithms are provided in Section 5).

(3) RunM∗ on the data to produce an output 𝜔∗.
(4) Based on 𝜔∗, decide whether to run the residual mechanism

M ′
1
orM ′

2
. An analyst is free to choose how to make a decision

based on 𝜔∗, but for more automated approaches, we provide

suggestions in Section 6.

(5) Based on the decision, either runM ′
1
on the data (and combine

the result with 𝜔∗ to obtain an answer toM1) or runM ′2 on
the data (and combine the result with 𝜔∗ to obtain an answer

toM2). Algorithms for recoveringM1 from (M∗,M ′1) and
recoveringM2 from (M∗,M ′2) are given in Section 5.

3.5 The Case of Multiple Mechanisms
There are several ways inwhichmultiple mechanisms can appear

in this framework. For example, one may want to choose between

two sets of mechanisms: either {M𝑎,M𝑏 ,M𝑐 } or {M𝑑 ,M𝑒 ,M 𝑓 }.
One can represent {M𝑎,M𝑏 ,M𝑐 } as a single Gaussian linear query
mechanism M1 by vertically stack their query matrices to get

B1 =
[
B𝑎
B𝑏
B𝑐

]
and setting the covariancematrix to beΣ1 =

[
Σ𝑎 0 0
0 Σ𝑏 0
0 0 Σ𝑐

]
.

M2 then takes a similar representation. Effectively, this becomes a

choice between two mechanisms and so the closed form solutions

in Section 5 can be applied.

A different situation occurs when one wants to choose to among

3 or more mechanisms: either runM1 or runM2 or runM3 (as

with the census case study in Section 7.5). In this case, one would

like to find a mechanismM∗ that is common to all three of them

and make the selection based on the output ofM∗. Our framework

can handle this setting, but we do not have an analystical solution

– findingM∗ requires solving an optimization problem that we

discuss in Section 5.1.

3.6 Limitations
Our algorithms have the following limitations. (1) They repre-

sent the query matrices explicitly, which limits scalability to large

domains. Using kronecker product representations, as in HDMM

[51] is an area of future work for improving scalability. (2) Our

algorithms require the mechanisms to answer linear queries with

Gaussian noise (butM1 andM2 can have different covariance ma-

trices and different means). Extensions to other noise distributions

or arbitrary mechanisms are open problems. A special case is when

the analyst gets 𝑓 (M1) or𝑔(M2), where 𝑓 and𝑔 are postprocessing
functions. If 𝑓 and 𝑔 are both linear, then the resulting mechanisms

are still linear Gaussian mechanisms and our algorithms handle

them. If 𝑓 and 𝑔 are non-linear then computing the common mech-

anism is an open problem, but the analyst could always ask for the

un-postprocessed answers as a simple workaround. (3) Choosing

among 3 or more mechanisms requires solving a semidefinite pro-

gram which is the same limitation shared by matrix mechanisms

that represent query matrices explicitly (e.g., [25, 40, 69, 72–74])

and becomes problematic in high dimensions. Ideas from HDMM

[51] could again help improve scalability.

4 RELATEDWORK
There are roughly two types of tasks that differentially private

algorithms perform: (1) query selection, which involves deciding

which queries need answers, and (2) query measurement in which

noisy answers to the queries are created.

Query selection is an important problem, with many important

applications, such as synthetic data generation [4, 11, 30, 44–46, 52,

53, 75], as well as hyperparameter tuning [15, 43], feature selection

[65], frequent itemset mining [6], exploring a privacy/accuracy

tradeoff [42], data pre-processing [16], PAC learning [7], etc.

Query selection can be performed in a data-independent way,
meaning that the queries are chosen in advance and no privacy

loss budget is spent on the choice. In the case of linear queries,

the techniques that plan the optimal set of queries in advance are
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generally called matrix mechanisms [25, 40, 51, 69, 72–74]. Matrix

mechanisms implicitly take advantage of shared information be-

tween queries by setting up an optimization problem that finds a

query strategy matrix that can answer the prespecified queries as

accurately as possible under a privacy constraint. Our framework is

complementary to the matrix mechanisms. For example, an analyst

can use the matrix mechanism to constructM1. After observing the

noisy answers, the analyst uses the matrix mechanism to planM2

to answer a new batch of linear queries. By using our framework

to decomposeM2 intoM∗ andM ′2, the analyst can run justM ′
2

(instead ofM2) since she already has the informationM∗ would
provide because it is also obtainable from the prior answers toM1.

This saves privacy budget. There is also a relationship to consis-

tency. IfM1 andM2 are run independently, then the query matrix

of M∗ represents the linear queries on which M1 and M2 are

inconsistent (i.e., the queries that they both could answer). In fact,

runningM1 andM2 independently is equivalent to runningM ′
1
,

M ′
2
,M∗ plus a second independent run ofM∗. Enforcing consis-

tency via postprocessing [32] is therefore equivalent to averaging

the two copies ofM∗.
Query selection can also be performed in a data-dependent way

by allocating some of the privacy loss budget to specially designed

selection mechanisms. The sparse vector technique [23, 48], ex-

ponential mechanism [54] and various generalizations [5, 14, 18,

19, 42, 43, 58, 60, 65] are commonly used for this task, along with

bespoke algorithms targeted at specific applications [2, 39, 71, 76].

Head-to-head comparisons between data-dependent and data-

independent methods show that there is no clear winner [31] – in

some situations, data-dependent selection provides the best choice

of queries. In other situations, data-independent methods prevail.

Thus it is important to keep expanding the available toolkit for

query selection.

There is also a much smaller class of zero-waste differentially

private selection algorithms [38, 41, 67, 68] whose purpose is to

adaptively determine how much noise to add to a query, without

wasting privacy loss budget. For example, suppose one is interested

in the count of the number of people over 18. An analyst is prepared

to spend up to 𝜖1 of her privacy loss budget (using pure 𝜖-differential

privacy) to get the answer. But, if the true number is large, shewould

prefer to use a smaller privacy loss budget value 𝜖2 (this results in a

higher absolute error but is tolerable when the true answer is large

because it still results in a small relative error). NoiseDown, which

was introduced by Xiao et al. [67] (but had a bug in the algorithm)

and later corrected by Koufogiannis et al. [38], is one technique to

solve this problem. The analyst adds Laplace noise with privacy

budget 𝜖2 to the true answer. Based on this answer, the analyst

can either keep it or refine the noise so that the total privacy loss

budget is 𝜖1 and so that the accuracy is the same as if she had used

Laplace noise with budget 𝜖1 in the first place. Variations for this

single-query noise refinement were also studied for randomized

response [68] and Gaussian noise [41].

Our approach is also zero-waste, while being much more general.

Instead of choosing between two versions of the same mechanism

(the only difference being its privacy cost/amount of noise), our

method allows the choice between two or more linear mechanisms

that use Gaussian noise (and the mechanisms may also have dif-

ferent privacy costs). This adds another tool to the algorithmic

toolbox for differential privacy. Although not necessarily a replace-

ment for the exponential mechanism, we show empirically that

our approach is useful in situations where it is difficult to specify

the quality function that the exponential mechanism needs. One

direction of future work is to combine the exponential mechanism

with our technique – using the output of the common mechanism

to fine-tune the construction of the exponential mechanism.

5 ALGORITHMS
We show how to compute the common mechanism in Section 5.1,

residual mechanisms in Section 5.2, and recreate the original mech-

anism from the common and residual mechanism in Section 5.3.

5.1 Computing the Common Mechanism
The full procedure for computing the commonmechanism is shown

in Algorithm 1. We now explain how it is derived.

Algorithm 1: CommonMechanism(M1,M2)

Input: Linear Gaussian MechanismsM1,M2

1 B1 ← Standardization(M1) // see Algorithm 2

2 B2 ← Standardization(M2) // see Algorithm 2

3 B∗ ← basis for rowspace(B1) ∩ rowspace(B2)
// Calculate the covariance matrix Σ

4 A1 ← B∗B
†
1

// † is the Moore-Penrose

pseudoinverse

5 A2 ← B∗B
†
2

6 Σ∗ ←
A1A𝑇

1
+A2A𝑇

2

2
+ |A2A𝑇

2
−A1A𝑇

1
|

2
// where | · | replaces

negative eigenvalues in a matrix with positive
eigenvalues

7 Return MechanismM∗ (x) = B∗x + 𝑁 (0,Σ∗)

Algorithm 2: Standardization(M)

Input: Linear Gaussian MechanismM with query matrix

B𝑜𝑟𝑖𝑔 and covariance matrix Σ𝑜𝑟𝑖𝑔 .
1 X← B𝑇

𝑜𝑟𝑖𝑔
Σ−1
𝑜𝑟𝑖𝑔

B𝑜𝑟𝑖𝑔 // Privacy cost matrix

2 Use eigenvalue decomposition to represent

X = 𝜆1v1v𝑇
1
+ · · · + 𝜆𝑘v𝑘v𝑇𝑘 + · · · + 𝜆𝑑v𝑑v

𝑇
𝑑
, where

𝜆1, · · · , 𝜆𝑘 > 0, 𝜆𝑘+1 = · · · = 𝜆𝑑 = 0

3 B← [
√
𝜆1v1, · · · ,

√︁
𝜆𝑘v𝑘 ]𝑇 // B is matrix sqrt of X

4 Return B

First, it is easier to work with mechanismsM1 andM2 when

their corresponding matrices B1 and B2 have linearly independent

rows, and when the covariance matrices are the identity matrix.

Thus we first perform a standardization step (Lines 1, 2) by calling

Algorithm 2, which rewritesM1 (resp.,M2) into an equivalent

mechanism (Definition 3.6) whose query matrix has linearly inde-

pendent rows and the covariance matrix is the identity.

Lemma 5.1. LetM𝑜𝑟𝑖𝑔 be a linear Gaussian mechanism with query
matrixB𝑜𝑟𝑖𝑔 and covariancematrixΣ𝑜𝑟𝑖𝑔 . LetM be a linear Gaussian
mechanism with identity covariance and query matrix B obtained by
running Algorithm 2 onM𝑜𝑟𝑖𝑔 . ThenM𝑜𝑟𝑖𝑔 andM are equivalent.
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5.1.1 An Optimization Problem for the Common Mechanism. Com-

puting a maximal commonmechanismM∗ requires finding a query
matrix B∗ and covariance matrix Σ∗. The following theorem allows

us to select B∗ easily.

Theorem 5.2. LetM1 (x) = B1x + 𝑁 (0,Σ1) andM2 (x) = B2x +
𝑁 (0,Σ2) be linear Gaussian mechanisms.

• If M𝑐 (x) = B𝑐x + 𝑁 (0,Σ𝑐 ) is common to M1 and M2 then
rowspace(B𝑐 ) ⊆ rowspace(B1) ∩ rowspace(B2).

• IfM𝑐 is maximally common then rowspace(B𝑐 ) =
rowspace(B1) ∩ rowspace(B2)

• The choice for basis of rowspace(B1) ∩ rowspace(B2) does not
matter. IfM𝑐 is maximally common and if B∗ ≠ B𝑐 is any matrix
whose rows form a linearly independent basis, then there exists
a common mechanism that is equivalent toM𝑐 and has query
matrix B∗.

Thus we set B∗ to be a matrix whose rows form a basis for

rowspace(B1)∩rowspace(B2) in Line 3 in Algorithm 1. This can be

done in multiple ways, such as using the Zassenhaus algorithm [47]

or eigendecompositions [34]. Then we use the following theorem

to set up an optimization problem for finding a covariance matrix.

Theorem 5.3. LetM1 (x) = B1x+𝑁 (0, I) andM2 (x) = B2x+𝑁 (0, I)
be linear Gaussian mechanisms that are standardized (i.e., produced
by Algorithm 2). Let B∗ be a matrix whose rows are linearly indepen-
dent and spans rowspace(B1) ∩ rowspace(B2). Then one can obtain
a maximally common mechanism by using the Σ∗ that optimizes the
following problem (here † represents the Moore-Penrose Pseudoinverse
operation):

Σ∗ ← min

Σ
𝑡𝑟𝑎𝑐𝑒 (Σ) 𝑠 .𝑡 . Σ ⪰ B∗B

†
1
(B†

1
)𝑇B∗𝑇 (1)

Σ ⪰ B∗B
†
2
(B†

2
)𝑇B∗𝑇

To find the maximally common mechanism of 3 or more mech-

anisms, simply add an additional constraint for each mechanism

in the optimization for Equation 1. However, when dealing with

just two mechanisms, the optimization problem in Equation 1 has

a symbolic solution that is used in Line 6 in Algorithm 1. This kind

of matrix optimization was studied and solved by Stott [61–63]:

Theorem 5.4. [Stott [61–63]] The solution to the optimization problem

in Equation 1 is Σ∗ =
A1A𝑇

1
+A2A𝑇

2

2
+ |A2A𝑇

2
−A1A𝑇

1
|

2
, where A1 = B∗B

†
1
,

A2 = B∗B
†
2
, and | · | is the operator that replaces negative eigen-

values with positive eigenvalues (i.e., if the eigendecomposition of
V = P𝑇𝐷𝑖𝑎𝑔(𝜆)P then |V| = P𝑇𝐷𝑖𝑎𝑔( |𝜆 |)P).

5.2 Computing Residual Mechanisms
Given a mechanism M1 (x) = B1x + 𝑁 (0,Σ) and a maximally

common mechanism M∗ (x) = B∗x + 𝑁 (0,Σ∗), computing the

residual mechanismM ′
1
is greatly simplified by Lemma 3.11. One

simply needs to find a B′
1
and Σ′

1
that satisfies:

(B′
1
)𝑇 (Σ′

1
)−1B′

1
= B𝑇

1
Σ−1
1
B1 − B∗𝑇Σ∗−1B∗ .

This operation is performed by Algorithm 3.

Algorithm 3: ResidualMechanism(M𝑖 ,M∗)
Input: Intended MechanismM𝑖 (x) = B𝑖x + 𝑁 (0,Σ𝑖 ).
Common mechanismM∗ (x) = B∗x + 𝑁 (0,Σ∗)

1 X← B𝑇
𝑖
Σ−1
𝑖
B𝑖 − B∗𝑇Σ∗−1B∗

2 Use eigenvalue decomposition to represent

X = 𝜆1v1v𝑇
1
+ · · · + 𝜆𝑘v𝑘v𝑇𝑘 + · · · + 𝜆𝑑v𝑑v

𝑇
𝑑
, where

𝜆1, · · · , 𝜆𝑘 > 0, 𝜆𝑘+1 = · · · = 𝜆𝑑 = 0

3 B′
𝑖
← [
√
𝜆1v1, · · · ,

√︁
𝜆𝑘v𝑘 ]𝑇 // B′

𝑖
is matrix sqrt of X

4 Σ′
𝑖
← I∗

5 Return Residual mechanismM ′(x) = B′
𝑖
x + 𝑁 (0,Σ′

𝑖
)

5.3 Recreating the target mechanisms
Once one has obtained the output 𝜔∗ of the common mechanism

M∗, one would run the residual mechanism M ′𝑖 of the chosen

mechanismM𝑖 (i.e.,M1 orM2) to obtain the output 𝜔 ′
𝑖
.

The next step is to use 𝜔∗ and 𝜔 ′
𝑖
to provide the same answer

M𝑖 would have produced. It is a postprocessing step and does not

consume any privacy budget. It is a linear function of the vectors

𝜔∗ and 𝜔 ′𝑖 , shown in Algorithm 4 and justified by Theorem 5.5.

Algorithm 4: Recreate(𝜔∗, 𝜔 ′)
Input: 𝜔∗: output of the common mechanism

𝜔 ′
𝑖
: output of a residual mechanism.

B∗,Σ∗: query and cov. matrices of common mech.

B𝑖 ,Σ𝑖 : matrices for target mech. (e.g.,M1 orM2).

B′
𝑖
.Σ′

𝑖
: query and cov. matrices of residual mech.

1 Σ1/2
𝑖
← symmetric matrix sqrt of Σ𝑖

2 W← B𝑇
𝑖
(Σ1/2

𝑖
)−1

3 A∗ ← Σ1/2
𝑖

W†B∗𝑇Σ∗−1

4 A′
𝑖
← Σ1/2

𝑖
W†B′𝑇

𝑖
(Σ′

𝑖
)−1

5 return A∗𝜔∗ + A′𝑖𝜔
′
𝑖

Theorem 5.5. LetM1 (x) = B1x + 𝑁 (0,Σ1) andM2 (x) = B2x +
𝑁 (0,Σ2) be linear Gaussianmechanisms. LetM∗ (x) = B∗x+𝑁 (0,Σ∗)
be their maximally common mechanism and letM ′

1
(x) = B′

1
x +

𝑁 (0,Σ′
1
) be the residual mechanism forM1. Define:

• Σ1/2
1

to be the symmetric matrix square root of Σ1,

• Σ−1/2
1

to be the inverse of Σ1/2
1

,

• A∗ = Σ1/2
1
(B𝑇

1
Σ−1/2
1
)†B∗𝑇Σ∗−1, where † is the Moore-Penrose

pseudo-inverse,
• A′

1
= Σ1/2

1
(B𝑇

1
Σ−1/2
1
)†B′𝑇

1
(Σ′

1
)−1.

Then M1 (x) = A∗M∗ (x) + A′
1
M ′

1
(x) + 𝑁 (0,Σ1 − A∗Σ∗A𝑇

∗ −
A′
1
Σ′
1
A′𝑇
1
) andM1 (x) is equivalent to A∗M∗ (x) + A′

1
M ′

1
(x).

6 MAKING DECISIONS BASED ON THE
COMMON MECHANISM

We next consider how one could use the output 𝜔∗ of the common

mechanism to decide whether to run the residual mechanismM ′
1

in order to do the analysis supported byM1, or whether to runM ′2
instead. In general, this would be user/application dependent, but
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we list some suggestions here. We first consider nested analyses,

such as 1-way vs. 2-way marginals, as this is a common special

case. Then we consider the general case whereM1 andM2 are

arbitrary linear Gaussian mechanisms.

6.1 Nested Analyses
A query set 𝑄1 is nested in a query set 𝑄2 if the answers to 𝑄1

can be obtained from 𝑄2. An example is one-way marginals as

𝑄1 and two-way marginals as 𝑄2. Such situations arise when the

analyst has primary analyses, like studying the race distribution

of a region and separately the age distribution (e.g., these are the

one-way marginals 𝑄1). If possible, however, the analyst would

also like to dig deeper with a secondary analysis such as studying

the interactions between age and race in the population (this is the

2-way marginal 𝑄2). When an analyst is only allowed to obtain

marginals that are noisy, an important decision must be made.

• If the analyst requests noisy one-way marginals via a mechanism

M1 (x) = B1x+𝑁 (0,Σ1) then the analyst gets the most accurate

noisy information needed for their primary analysis, but no

secondary analysis can be performed.

• If the analyst requests noisy two-way marginals via a mecha-

nismM2 (x) = B2x + 𝑁 (0,Σ2). This would allow the secondary

analysis to proceed. Since noisy two-way marginals can be used

to compute noisier one-way marginals (these one-way marginals

will be noisier than in the first option), then the primary analysis

can also be performed if there was enough signal-to-noise ratio.

Herewe define the signal-to-noise ratio (SNR) as the true (unknown)

count 𝑐 of a cell divided by the standard deviation 𝜎 of the privacy

noise in the cell (hence SNR of a cell is
𝑐
𝜎 ). Since Gaussian noise

is within 3𝜎 of its mean 99.7% of the time, the relative error of the

noisy cell count is within
3𝜎
𝑐 for 99.7% of the time, and hence SNR

can be thought of as the reciprocal of relative error. Thus, if noisy

two-waymarginals can be used to compute one-waymarginals with

enough signal-to-noise ratio to perform the primary analysis, then

M2 is preferable sinceM2 also has additional uses. Otherwise,M1

would be preferable. The goal is for the analyst to use the output of

the common mechanism to estimate what the SNR of each marginal

cell would be ifM1 orM2 were used.

We say that the analysis supported by query matrix B1 (e.g.,

one-way marginals) is nested in the analysis supported by B2 (e.g.,
two-way marginals) if there exists a matrix A such that B1 = AB2.
In this case, AM2 (x) (i.e, multiplying the output ofM2 by A) is a
noisier version ofM1. We say that B1 is the primary analysis and

B2 is the secondary analysis.

Now, the common mechanismM∗ ofM1 andM2 can provide

a noisy answer to any query in the intersection of the row spaces

of B1 and B2 (by Theorem 5.2) and so there exists a matrix A∗ such
that 𝐸 [M1 (D)] = 𝐸 [A∗M∗ (D)], which means that A∗M∗ is also
a noisier version ofM1, and the variance of the 𝑖th query is the

𝑖th diagonal element of A∗Σ∗A𝑇∗ , denoted by (A∗Σ∗A𝑇∗ ) [𝑖, 𝑖]. Thus
the output 𝜔∗ ofM∗ can be used to estimate the signal to noise

ratio of using mechanismM2 to do the nested primary analysis as

follows (all of this is a postprocessing of 𝜔∗):

• The quantity 𝐿𝑖 = (A∗𝜔∗) [𝑖] − 3
√︃
(A∗Σ∗A𝑇

∗ ) [𝑖, 𝑖] is a 3 sigma

lower confidence interval for the true value of the 𝑖th query in

B1x. The quantity 𝑈𝑖 = (A∗𝜔∗) [𝑖] + 3
√︃
(A∗Σ∗A𝑇

∗ ) [𝑖, 𝑖] is the
corresponding upper confidence interval.

• The quantity 𝑆𝑁𝑅_𝐿𝑜𝑤𝑒𝑟
(1)
𝑖

=
𝐿𝑖√

Σ1 [𝑖,𝑖 ]
is a lower bound on the

expected signal-to-noise ratio of usingM1 to get a noisy answer

to the 𝑖th query in B1x. Similarly, 𝑆𝑁𝑅_𝑈𝑝𝑝𝑒𝑟
(1)
𝑖

=
𝑈𝑖√
Σ1 [𝑖,𝑖 ]

would be an upper bound on the signal-to-noise ratio.

• The quantity 𝑆𝑁𝑅_𝐿𝑜𝑤𝑒𝑟
(2)
𝑖

=
𝐿𝑖√

(AΣ2A𝑇 ) [𝑖,𝑖 ]
(resp.,

𝑆𝑁𝑅_𝑈𝑝𝑝𝑒𝑟
(2)
𝑖

=
𝑈𝑖√

(AΣ2A𝑇 ) [𝑖,𝑖 ]
) is a lower (resp., upper) bound

on the expected signal-to-noise ratio of usingM2 to get a noisy

answer to the 𝑖th query in B1x (the nested analysis).

These quantities can be used in a variety of ways. For example,

the user may want at least 𝑥% of the queries of B1 to have SNR

above 𝑦. In this case, if 𝑥% of the 𝑆𝑁𝑅_𝐿𝑜𝑤𝑒𝑟
(2)
𝑖

values are ≥ 𝑦,

thenM2 is good enough for the primary analysis and also provides

an opportunity to perform the secondary analysis. Thus, the user

should decide to run the residual mechanismM ′
2
to get the answer

toM2.

Other possibilities also exist. If too many of the 𝑆𝑁𝑅_𝑈𝑝𝑝𝑒𝑟
(1)
𝑖

values are below the desired signal-to-noise ratio 𝑦, then evenM1

is not accurate enough for the primary analysis and the analyst can

stop here, without using any further privacy budget beyond what

M∗ had cost. On the other hand, if the SNR bound 𝑦 is between

𝑆𝑁𝑅_𝐿𝑜𝑤𝑒𝑟
(2)
𝑖

and 𝑆𝑁𝑅_𝑈𝑝𝑝𝑒𝑟
(2)
𝑖

for many 𝑖 , then the analyst

also has the option of using more privacy budget to help make the

decision betweenM1 andM2, or may opt forM1 just to be safe.

6.2 The General Case
In the general case, there may not be a nice structure (e.g., nesting)

to take advantage of. In this case an analyst, who needs to choose

betweenM1 andM2, could run the commonmechanism and, based

on its output, would determine howmuch uncertainty she has about

the queries represented by the query matrix B1 vs. uncertainty

about the queries of B2. If, for example, B1 has the most remaining

uncertainty, this means that the analyst could gain the most new

information by runningM1. We briefly sketch a Bayesian and a

Frequentist idea for measuring this uncertainty.

If an analyst is able to compute or approximate the posterior

distribution 𝑃 (x | M∗ (x) = 𝜔∗), then the analyst can use it to

compute the variance of each query in B1x and in B2x. This is their
measure of uncertainty. They can compare this to the variances

thatM1 andM2 could provide, namely the diagonals of Σ1 and
Σ2. The analyst can then complete the choice ofM1 vs.M2 based

on whichever one represents the largest reduction in variance.

In the Frequentist view, if query B∗ of the common mechanism

is answered with Gaussian noise having covariance matrix Σ∗ to
get an output 𝜔∗, then one can establish a confidence interval that

should contain the true answer B∗x𝑡𝑟𝑢𝑒 to the common queries

(where x𝑡𝑟𝑢𝑒 is the unknown true dataset). For a given significance

level 𝛼 (e.g., 0.95) one can find the cutoff 𝑧 such a chi-squared

random variable with𝑚 degrees of freedom (𝑚 is the number of

rows in B∗) exceeds 𝑧 with probability 1 − 𝛼 . This means that with

probability 𝛼 , we must have (B∗x𝑡𝑟𝑢𝑒 −𝜔∗)𝑇Σ∗−1 (B∗x𝑡𝑟𝑢𝑒 −𝜔∗) ≤
𝑧. One can then use methods such as hit-and-run sampling [3, 59]
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to sample datasets consistent with this information (i.e., sample

datasets x̂ for which (B∗x̂−𝜔∗)𝑇Σ∗−1 (B∗x̂−𝜔∗) ≤ 𝑧); this is just a

postprocessing of 𝜔∗ and so has no effect on privacy. Given𝑚 such

sampled datasets x̂1, . . . , x̂𝑚 , one can again estimate how much

variability there is for each query in B1x̂𝑖 and B2x̂𝑖 and, as before,
compare that to the variances thatM1 andM2 can provide.

7 EXPERIMENTS
We conduct experiments to examine how well the common mecha-

nism can guide the analyst when choosing between nested analyses,

as described in Section 6.1. We use three real datasets and several

applications, one of which (Section 7.5) is a comparison to an al-

gorithm that the Census Bureau will use as part of the Detailed

Demographic and Housing Characteristics (DHC) data release [29].

7.1 Datasets
We use three datasets: HispRace, AgeGender, and Brazil [13].
The HispRace dataset is extracted from the 2010 Summary File 1

(SF1) tabulations P4 and P5 [9]. For each of the 6, 257, 947 occupied

census blocks in the dataset, a record has 7 binary race and ethnicity

attributes for a domain size of 2
7 = 128 for each block. The binary

attributes are Hispanic or Latino, White, Black or African American,
American Indian and Alaska Native, Asian, Native Hawaiian and
Other Pacific Islander, Some Other Race. The AgeGender dataset is
extracted from the SF1 tabulation PCT12. For each of the 73, 426

census tracts in the dataset, a record has a binary gender variable

and 103 possible age values. The 2010 Brazil dataset is obtained
from IPUMS [13] and consists of 20, 635, 472 census records from

Brazil. We extract the following attributes: state (25 possible values),
occupation (437 possible values), age (101 possible values), and

gender (2 possible values).

7.2 Evaluation Measures
We consider the nested analysis setting (Section 6.1) in which the

primary analysis is represented byM1 (x) = B1x + 𝑁 (0,Σ1). The
secondary analysis is represented by M2 (x) = B2x + 𝑁 (0,Σ2).
Thus, the primary analysis can also be done, but less accurately,

with the output ofM2. However,M2 supports additional analyses

thatM1 cannot.

The output 𝜔∗ of the common mechanism is used to estimate

whether the output ofM2 is accurate enough to perform the pri-

mary analysis – if at least 𝑥% of the marginal cells are believed

to have an SNR at least 𝑦 and then the residual mechanismM ′
2

is run to recreate the output ofM2 without wasting privacy loss

budget (otherwise the residual mechanismM ′
1
is used). An alter-

nate approach, that doesn’t use the common mechanism, is to

reserve some privacy budget to estimate the SNR (by getting a

coarse noisy answer to B1x and then using that noisy answer to

estimate SNR as in Section 6.1) and then run eitherM1 orM2. The

alternate approach uses the optimal Gaussian mechanism [69] that

matches the variance of the common mechanism (for an apples-to-

apples comparison) while minimizing privacy cost. We measure

the following quantities:

• 𝜌 : the concentrated differential privacy parameter (zcdp) [8] that

represents the total privacy loss budget.

• %M1, %M2: based on the ground truth (computed from the true

count divided by noise std), the percent of the time thatM1 (resp.,

M2) should have been chosen. A good decision-making strategy

should outperform the maximum of these two. In Section 7.5,

where we must choose between 4 mechanisms, we report %M1,

%M2, %M3, %M4.

• Acc: accuracy of the selection based on the common mechanism.

This is the percentage of time that the correct mechanism has

been chosen without wasting any privacy budget.

• %PLB Saved: this is how much privacy loss budget the optimal

alternate approach needs to allocate to the estimation of SNR

in order to match the estimation quality of the common mecha-

nism. This is how much privacy loss budget is saved by using

the common mechanism methodology instead of the traditional

alternate approach. We express this as a percentage of the total

privacy loss budget. Note that %PLB Saved depends only on the

query matrices ofM1 andM2, so there is just one %PLB Saved

value per table.

7.3 Marginals on HispRace
For the HispRace dataset, we consider two settings. In the first case,

M1 adds independent noise to 1-way marginals whileM2 adds

independent noise to 2-way marginals. For each census block, the

analysts must choose betweenM1 andM2. WhenM2 is accurate

enough to allow an analyst to derive 1-waymarginals that exceed an

SNR bound, thenM2 is preferred. In the second set of experiments,

M1 adds independent noise to 1-way marginals whileM2 adds

independent noise to the identity query (i.e., each cell of the data

vector x). Table 2 shows the results as the privacy loss is varied.

The common mechanism allows the analyst to correctly choose the

right analysis with high accuracy. In the case of 1-way vs. 2-way

marginals, the privacy loss budget saved (compared to methods that

allocate some privacy loss budget for SNR estimation) is significant

(75%), while for 1-way vs. identity, the savings are more moderate

(6.25%). Tables 3 and 4 show the accuracy of selection based on

the common mechanism as the SNR parameters 𝑥 (desired fraction

of cells with high signal) and 𝑦 (desired minimum signal-to-noise

ratio) are varied. Overall, when one wishes to run eitherM1 orM2,

then the common mechanism represents information that comes

for free because both mechanisms provide it. This information is

accurate enough for choosing between the mechanisms and does

not waste privacy budget. By avoiding the traditional approach of

reserving privacy loss budget for making a decision, we replace the

budget allocation tuning parameter with an analyst-provided SNR

utility specification.

7.4 Marginals on the Brazil Dataset
In the Brazil dataset, we consider the setting where, for each combi-

nation of state and occupation, the analyst needs to choose whether
to runM1 to produce noisy 1-way marginals orM2 to produce

noisy 2-way marginals by adding independent noise.

The accuracy of making the choice, for each state/occupation

combination is shown in Table 5. Again, the common mechanism

provides enough information for choosing between the two mech-

anisms (i.e. choosing between which residual mechanism to run).
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Table 2: Experiments on HispRace dataset as zCDP privacy
budget 𝜌 varies. The SNR parameters are (𝑥,𝑦) = (0.5, 5).

1-way vs. 2-way Marginals
𝜌 %M1 %M2 Acc

2 45.54 54.46 98.64

1 54.35 45.65 97.98

1/2 65.47 34.53 98.37

1/8 84.12 15.81 98.84

1/32 94.41 5.59 99.56

%PLB Saved: 75%

1-way vs. Identity
𝜌 %M1 %M2 Acc

2 50.20 49.80 95.00

1 61.46 38.54 95.37

1/2 71.32 28.68 95.40

1/8 88.27 11.73 97.53

1/32 95.98 4.02 99.08

%PLB Saved: 6.25%

Table 3: Experiments on HispRace dataset for zCDP parame-
ter 𝜌 = 1/8 and SNR parameters (0.5, 𝑦) as 𝑦 varies.

1-way vs. 2-way Marginals
𝑦 %M1 %M2 Acc

2 58.08 41.92 95.56

3 70.57 29.43 97.22

4 78.75 21.25 98.20

5 84.19 15.81 98.83

6 87.82 12.18 99.22

8 92.10 7.90 99.61

%PLB Saved: 75%

1-way vs. Identity
𝑦 %M1 %M2 Acc

2 64.52 35.48 88.83

3 76.58 23.42 93.56

4 83.85 16.15 96.08

5 88.27 11.73 97.54

6 91.07 8.93 98.35

8 94.27 5.73 99.17

%PLB Saved: 6.25%

Table 4: Experiments on HispRace dataset for zCDP parame-
ter 𝜌 = 1/8 and SNR parameters (𝑥, 5) as 𝑥 varies.

1-way vs. 2-way Marginals
𝑥 %M1 %M2 Acc

0.2 79.61 20.39 99.07

0.3 81.25 18.75 98.97

0.4 82.96 17.04 98.95

0.5 84.19 15.81 98.83

0.6 97.95 2.05 99.85

%PLB Saved: 75%

1-way vs. Identity
𝑥 %M1 %M2 Acc

0.2 84.42 15.58 97.05

0.3 85.86 14.14 97.44

0.4 87.30 12.70 97.55

0.5 88.27 11.73 97.52

0.6 98.50 1.50 99.65

%PLB Saved: 6.25%

It also provides significant privacy budget savings (50.5%) com-

pared to the approach that first allocates privacy loss budget to

estimating SNR just as accurately, before making a choice, with

the side benefit being that there is no privacy budget allocation

tuning parameter necessary when using the common mechanism.

The accuracy of selection based on the common mechanism, as

we vary the SNR parameters, is shown in Table 6 and again shows

fairly good accuracy.

7.5 Census Age/Gender Application
Our next set of experiments is a case study for a data product

that will be released as part of the 2020 Decennial Census Detailed

Demographics and Housing Characteristics [29].

7.5.1 Problem Description. This data product has age-by-gender
histograms for different sub-populations, such as for an ethnic

group in a given region. Since the sub-population might be sparse,

one of 4 pre-defined age bucketization schemes will be used [29]:

Table 5: Experiments on Brazil dataset as zCDP privacy bud-
get 𝜌 varies. The SNR parameters are (𝑥,𝑦) = (0.3, 3).

1-way vs. 2-way Marginals
𝜌 %M1 %M2 Acc

2 71.47 28.53 96.95

1 71.47 28.53 97.86

1/2 78.65 21.35 98.29

1/8 85.30 14.70 98.94

1/32 90.66 9.34 99.20

%PLB Saved: 50.5%

Table 6: Experiment on Brazil dataset for zCDP parameter
𝜌 = 2. Left: SNR parameters (𝑥, 3) as 𝑥 varies. Right: SNR
parameters (0.3, 𝑦) as 𝑦 varies.

1-way vs. 2-way Marginals
𝑥 %M1 %M2 Acc

0.2 58.56 41.44 96.27

0.3 71.47 38.53 96.95

0.4 81.14 18.86 97.55

0.5 88.78 11.22 98.46

0.6 94.58 5.42 99.18

%PLB Saved: 50.5%

1-way vs. 2-way Marginals
𝑦 %M1 %M2 Acc

3 71.47 28.53 96.95

4 71.47 28.53 98.41

5 75.78 24.22 99.03

6 78.65 21.35 99.00

8 80.94 19.06 99.40

%PLB Saved: 50.5%

• Total. This consists of one age bucket: [0, 103). In this case, the

age-by-gender histogram is simply the number of females and

the number of males.

• Age4. This consists of the following four buckets: [0, 18); [18, 45);
[45, 65); [65, 103].

• Age9. This consists of the following nine buckets: [0, 5); [5, 18);
[18, 25); [25, 35); [35, 45); [45, 55); [55, 65); [65, 75); [75, 103].

• Age23. This consists of the following 23 buckets: [0, 5); [510);
[10, 15); [15, 18); [18, 20); [20, 21); [21, 22); [22, 25); [25, 30); [30, 35);
[35, 40); [40, 45); [45, 50); [50, 55); [55, 60); [60, 62); [62, 65); [65, 67);
[67, 70); [70, 75); [75, 80); [80, 85); [85, 103].

We note that these represent nested analyses, as Age23 is a refine-

ment of Age9, which is a refinement of Age4, which is a refinement

of Total. The idea is that the smaller the sub-population is, the

coarser the age buckets should be in order for the noise not to

overwhelm the actual counts.

7.5.2 The Census algorithm. One of the algorithms we compare

against is the DHC algorithm, which is the one that will actually

be used for the problem [29] by the Census Bureau. This DHC al-

gorithm will use a fraction 𝛾 of the privacy loss budget to estimate

the total size of the sub-population. There are also three threshold

parameters 𝜃1 < 𝜃2 < 𝜃3. If the noisy sub-population count is

< 𝜃1, the remaining privacy budget will be used to produce the

gender by age histogram using the total bucketization. If the noisy
sub-population count is in the range [𝜃1, 𝜃2), then the Age4 bucke-

tization will be used. If it is in the range of [𝜃2, 𝜃3), then Age9 will

be used. Otherwise, Age23 will be used. Thus the algorithm has 4

parameters that must be carefully tuned: 𝛾, 𝜃1, 𝜃2, 𝜃3. The decision
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on parameter values has not been made public (possibly a difficult

decision) but the rest of the algorithm is public.

7.5.3 The Common Mechanism Approach. In the problem setting,

there are four algorithms to consider:M1,M2,M3,M4, which pro-

duce noisy gender by age histograms with the bucketizations total,
Age4, Age9, Age23, respectively, by adding independent Gaussian

noise. We define 3 common mechanisms: 𝐶𝑀1234 is common to

M1,M2,M3,M4 (i.e., it is the maximal mechanism exactly an-

swerable from all of them). It is obtained by numerically solving the

optimization in Equation 1 with a constraint added for each mech-

anism. 𝐶𝑀234 is common toM2,M3,M4, and 𝐶𝑀34 is common

toM3 andM4. Now, 𝐶𝑀1234 is exactly answerable from 𝐶𝑀234,

which is exactly answerable from 𝐶𝑀34. Therefore we can perform

the following procedure that wastes no privacy loss budget:

• Get output 𝜔1234 ofM1234 and decide whether the total buck-
etization should be used based on SNR. If yes, run the residual

mechanism 𝑅𝑀1 such that (𝐶𝑀1234, 𝑅𝑀1) is equivalent toM1.

• If no, run the residualmechanism𝑅𝑀234 such that (M1234, 𝑅𝑀234)
is equivalent to 𝐶𝑀234. Use that to decide whether to use Age4.
If yes, run the residual mechanism 𝑅𝑀2 such that (𝐶𝑀234, 𝑅𝑀2)
is equivalent toM2.

• If no, run the residual mechanism 𝑅𝑀34 such that (M234, 𝑅𝑀34)
is equivalent to 𝐶𝑀34. Use that to decide whether to use Age9.
If yes, run the residual mechanism 𝑅𝑀3 such that (𝐶𝑀34, 𝑅𝑀3)
is equivalent toM3.

• If no, run the residual mechanism 𝑅𝑀4 such that (𝐶𝑀34, 𝑅𝑀4) is
equivalent toM4.

Thus, at the end, one gets something that is equivalent to either

M1,M2,M3 orM4 without wasting any privacy budget.

7.5.4 The Alternative Approach. We also consider a third approach

that mirrors the previous experiments. Instead of making decisions

based on the common mechanism, at each step, some privacy loss

budget is allocated to obtain the best linear Gaussian mechanism to

estimate the SNR of the histogram being considered. This is also an

alternative to making decisions based on noisy population counts.

7.5.5 Results. Since the input data that the DHC algorithmwill use

is not public, we use the AgeGender dataset described in Section

7.1 to produce an Age by Gender histogram at each census tract

using the three algorithms described.

Since the DHC algorithm requires additional parameters, we give

it a strong non-private advantage: the 𝜃1, 𝜃2, 𝜃3 are learned using a

non-private logistic regression model, and the DHC algorithm is

given the exact sub-population count (i.e., a noiseless threshold).

We set the desired SNR parameters to be 𝑥 = 0.5 and 𝑦 = 20. In

a histogram cell, a ratio of 20 between a count 𝑐 and the privacy

noise standard deviation 𝜎 means that 95% of the time, the relative

error of the noisy cell count is at most 2𝜎/𝑐 = 2/20 = 10%.

In Figure 1, we compare the accuracy of the DHC algorithm to

the common mechanism in choosing the right age bucketization to

use. Even with the advantages we gave it (e.g., tuned parameters

and noise-free thresholds), it is still outperformed by the common

mechanism, which avoids all those tuning parameters. This shows

that the noisy information provided by the common mechanism

for free is more informative than the population thresholds, even

when the population thresholds are completely accurate.
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Figure 1: Common mechanism vs. tuned DHC algorithm as
privacy budget 𝜌 varies.

Table 7: Privacy budget savings vs. the alternate approach.

𝜌 %M1 %M2 %M3 %M4 Acc

% PLB
saved

1/8 0.34 0.68 1.64 97.34 99.80 49.67

1/32 0.39 1.31 12.61 85.69 98.74 49.59

1/72 0.45 3.46 31.51 64.58 97.32 48.92

1/128 0.50 8.08 49.95 41.47 96.09 47.74

1/200 0.56 14.50 61.43 23.51 95.88 46.11

1/288 0.63 22.55 64.85 11.97 95.75 46.06

We next compare the common mechanism to the alternate ap-

proach (Section 7.5.4) that, for an apples-to-apples comparison,

allocates privacy budget to the optimal linear Gaussian mechanism

that has equal variance to the common mechanism, but with small-

est possible privacy cost. Table 7 shows the accuracy of choosing

the correct age bucketization and the fraction of PLB saved by using

the common mechanism (nearly 50%). Since the choice among the

four bucketizations is done sequentially, the sooner one is chosen,

the better for the alternate approach since it no longer has to allo-

cate PLB for future choices. For this reason, the percentage of PLB

saved varies with the experimental setting.

8 CONCLUSIONS
In this paper, we formalized the problem and provided algorithms

for the computation of the common mechanismM∗ for two linear

Gaussian mechanismsM1 andM2. The common mechanism rep-

resents information that is provided by both mechanisms, while

the residual mechanismsM ′
1
andM ′

2
reflect the remaining infor-

mation inM1 andM2 after the information fromM∗ has been
removed from them. We presented an application where an analyst

can decide whether to get answers ofM1 orM2 using the help

of the common and residual mechanisms. This represents another

tool that can be used for differentially private algorithm design.
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