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ABSTRACT
The process of instantiating, or “grounding”, a first-order model is
a fundamental component of reasoning in logic. It has been widely
studied in the context of theorem proving, database theory, and
artificial intelligence. Within the relational learning community, the
concept of grounding has been expanded to apply to models that
use more general templates in the place of first-order logical for-
mulae. In order to perform inference, grounding of these templates
is required for instantiating a distribution over possible worlds.
However, because of the complex data dependencies stemming
from instantiating generalized templates with interconnected data,
grounding is often the key computational bottleneck to relational
learning. While we motivate our work in the context of relational
learning, similar issues arise in probabilistic databases, particularly
those that do not make strong tuple independence assumptions. In
this paper, we investigate how key techniques from relational data-
base theory can be utilized to improve the computational efficiency
of the grounding process. We introduce the notion of collective
grounding which treats logical programs not as a collection of inde-
pendent rules, but instead as a joint set of interdependent workloads
that can be shared. We introduce the theoretical concept of collec-
tive grounding, the components necessary in a collective grounding
system, implementations of these components, and show how to
use database theory to speed up these components. We demonstrate
collective groundings effectiveness on seven popular datasets, and
show up to a 70% reduction in runtime using collective grounding.
Our results are fully reproducible and all code, data, and experi-
mental scripts are included.
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1 INTRODUCTION
Combining logic and uncertainty has been a long-standing effort
throughout computer science. In the database community this ef-
fort is typified by probabilistic databases, which extend traditional
database management systems with uncertain data. While in the
machine learning community, this effort is embodied by statistical
relational learning (SRL). While the types of queries commonly
made over probabilistic databases and SRL differ, they are similar
in that they involve the same core task of inference over a probabil-
ity space of possible worlds [12]. Additionally, tuple-independent
probabilistic databases have been shown to be a special case of SRL
models [16]. Therefore, SRL models can be seen as probabilistic
databases without tuple-independence assumptions and more com-
plex hard and soft constraints. (See Appendix A.2 for an example of
an SRL model using these complex constraints.) SRL has repeatedly
shown that removing common tuple-level independence assump-
tions and incorporating structure into machine learning models
yields higher quality predictions.

However, abandoning these independence assumptions makes
SRLmodels significantly more computationally intensive thanmore
common machine learning models that assume conditional inde-
pendence between instances. Specifically, grounding is a common
bottleneck SRL methods share [10, 36, 42]. Grounding is the pro-
cess of combining logical (or other) formulae, also called templates,
with data to produce all relevant factors in a graphical model, re-
ferred to as a ground program (discussed in further detail in Section
2.2). Similar to the chase in data integration/exchange [2] or the
immediate consequence operator in Datalog, grounding starts with
the provided data and iteratively instantiates more data using the
provided logical formulae. However, unlike the chase and the imme-
diate consequence operator, the result that grounding produces are
complex dependencies between random variables. These complex
dependencies makes the grounding done in SRL uniquely challeng-
ing, however, these complex dependencies also provide structure
that can be exploited to improve groundings efficiency. In this work,
we show how the structure provided by the problem can be used
to improve upon state-of-the-art SRL grounding. Table 1 shows the
SRL community’s progress in tackling the computational complex-
ity of grounding. Prior to this work (the final entry in the table), SRL
systems spent between 33% and 99% of their time in the grounding
process. This work focuses on using database techniques to reduce
the grounding overhead in a way that is accessible to a wide range
of systems.

Most effective SRL grounding techniques rely on an underlying
relational database. A query is constructed for each logical rule
and each result tuple is a ground rule that corresponds to a factor
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Table 1: A timeline of the grounding milestones in the SRL
community. The size column refers to the number of ground
rules in the model. All systems except FoxPSL were run on
the samemachine. The final three rows are all on the IMDB-
ER dataset (discussed in this work), and the final row repre-
sents the results from this work.

Year System Size Runtime % Time
(Millions) (Minutes) Grounding

2007 [21] Alchemy (MLN) 1 398 96%
2011 [28] Tuffy (MLN) 2.5 120 50%
2015 [27] FoxPSL 14 30 33%
2018 [3] PSL 2.1 129 25 99%
2021 [8] PSL 2.2 129 10 40%
This Work PSL 2.2 + CG 129 2 8%

in the graphical model. This approach is referred to as bottom-
up grounding [28] because it starts instantiating the model at the
data level, such as in Datalog, as opposed to top-down grounding
where logical formulae are iterated over using nested loops, such
as in Alchemy and ProLog. Bottom-up grounding greatly improves
upon top-down grounding, but still presents several challenges:
logical formulae may be complex and map to similarly complex and
slow database queries, queries may generate redundant or logically
trivial results, and processing the logical formulae independently
creates duplicate work for rules that share similar logical structures.

Several approaches have been proposed to deal with grounding
complexity. Lifting [43] and forward reasoning [42] techniques
attempt to mitigate the effect of grounding by preforming calcula-
tions before grounding to eliminate less relevant factors and reduce
the size of the ground program. These techniques are effective on
models with a high degree of symmetry, but are less effective in
more heterogeneous settings and may require multiple passes over
the data. Another approach to reducing the grounding bottleneck
is to distribute the burden of grounding over multiple machines
[27]. This approach shows promise, but shares the same challenges
as any horizontal scaling effort, namely data availability, machine
availability, setup time, and complexity for the average user. Addi-
tionally, the joint nature of these models makes them difficult to
distribute.

In this paper, we introduce a novel approach to tacking the
bottleneck of grounding by treating grounding not as multiple inde-
pendent workloads, but as a single workload to be jointly optimized.
We refer to our approach as collective grounding (CG). Collective
grounding leverages the structure provided by logical rules in ad-
dition to borrowing from established database research in query
rewriting, query containment, and multi-query optimization to ad-
dress three key challenges in collective grounding: 1) generating
candidate grounding queries, 2) verifying logical rule satisfaction,
and 3) computing a minimal grounding workload. Our key contri-
butions are as follows:

(1) We formalize the concept of grounding through the intro-
duction of grounding plans.

(2) We introduce the concept of collective grounding for tem-
plated graphical models.

(3) We develop a method for generating and searching through
alternate execution paths for grounding templates.

(4) We develop an efficient method for computing a minimal
shared grounding workload.

(5) We perform an extensive empirical evaluation of collective
grounding over multiple datasets and show that collective
grounding can provide a 5x speedup over traditional ground-
ing approaches.

2 BACKGROUND
In this section, we introduce the basic concepts necessary to under-
stand grounding in the context of statistical relational learning.

2.1 Statistical Relational Learning and
Template Graphical Models

Statistical Relational Learning (SRL) combines the power of statis-
tical inference with relational data to produce rich models with
intricate constraints and dependencies [14]. Modeling the proba-
bilistic dependencies in relational data is inherently complicated
by the large number of interconnected and overlapping structural
dependencies. To make modeling relational data easier, many SRL
frameworks use familiar weighted first-order logic as a compact
representation of the model [1, 5, 21, 27–31, 34]. The weighted
logical rules act as templates that can be instantiated with data to
form the weighted factors of a graphical model, which represent
the model’s probability distribution.

Models that use templates to specify the complex structure of
a graphical model are called templated graphical models (TGMs)
[23]. Instead of individually specifying each dependency in the
graphical model, template factors are used to model the patterns of
the structure seen in the model. TGMs are then instantiated with
data to produce a full graphical model. TGMs allow users to specify
and reason about graphical models that would otherwise be too
large to specify. The key unit of a TGM is the template (represented
with a 𝑡 ). Templates can take many forms, but the most common
form in SRL is a weighted first-order logical rule. Additionally, each
SRL framework enforces its own limitations on the form of the
logical rules (e.g., universal and existential quantification, horn
clauses, etc.). For example, Problog (an extension of ProLog) is
based around horn clauses [26]; Markov Logic Networks (MLNs)
[33] allow both universal and existential quantification and are not
restricted to horn clauses; and Probabilistic Soft Logic (PSL) [5] only
uses universal quantification and requires logical rules to reduce to a
1-DNF [24], but also allows for non-logical templates in the form of
inequalities of linear combinations. In this workwe use Probabilistic
Soft Logic (PSL) [5], however, the theory discussed is applicable
across all these settings. Each instantiated logical predicate (referred
to as an atom) becomes a random variable in the graphical model,
while the template establishes a dependency between the random
variables it references. For example, the two templates given in
Figure 1 encode the structure that fruits that taste or look similar
should be recommended to a user. The remainder of this paper
assumes that all templates are logical rules, but the introduced
theory applies to any form of template or constraint that can be
evaluated for truth (e.g., logical rules, arithmetic inequalities, etc).
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Figure 1: An overview of the grounding process for logical rules. Weighted logical rules ((𝑡1,𝑤1) and (𝑡2,𝑤2)) are provided
by the user and combined with the provided ground data to produce all possible mappings of the variables used in each
template to constants from the provided data. The mappings are used to instantiate the templates to produce the ground
rules: {𝜙1, 𝜙2, 𝜙3, 𝜙4}. The ground rules are then used to construct a graphical model (represented in this example as a factor
graph). Collective grounding, introduced in this work, entails the entire processes of combining templates with data to create
a fully-instantiated graphical model.

Thus, any reference to a “rule” will refer to a logical rule template,
while references to “template” will refer to general templates.

A rule that is grounded (contains only constants and no vari-
ables) is referred to as a ground template or ground rule, and a logical
predicate with only constant arguments is referred to as a ground
atom. As seen Figure 1, the collection of ground templates from
all rules jointly create a graphical model. The graphical model is
then commonly used for either inference, making predicting for all
the unobserved random variables, or parameter learning, typically
learning the weights associated with each template. Note that at the
graphical model level random variables are represented by ground
atoms, and not by the variables used in the logical expressions
(e.g., User, Item1, and Item2). Shaded nodes in Figure 1 represent
observed random variables, collectively referred to as 𝑋 , while un-
shaded nodes represent unobserved random variables, collectively
referred to as𝑌 . We use the following notation to denote a template,
𝑡 , being instantiated with observed, 𝑋 , and unobserved, 𝑌 , random
variables to create a set of ℎ ground templates, 𝜙 :

𝑡 (𝑋,𝑌 ) = {𝜙1, ...𝜙ℎ} (1)

We intentionally keep the notation for instantiating templates
vague, as the exact definition differs between different SRL im-
plementations. For example, some languages like MLNs [33] and
FoxPSL [27] use typed variables and infer domains for each type.
These types are then used to instantiate ground atoms which are
then used to instantiate ground templates. Other languages like PSL
[5] explicitly define all unobserved ground atoms and can directly
instantiate ground templates.

Once all ground templates are created, they produce a graphical
model of the form:

Definition 1. Let 𝑋 = (𝑥1, ..., 𝑥𝑚) be a vector of known vari-
ables, 𝑌 = (𝑦1, ..., 𝑦𝑛) be a vector of unknown random variables,
𝑇 = (𝑡1, ..., 𝑡𝑙 ) be a vector of rules, 𝑊 = (𝑤1, ...,𝑤𝑙 ) be a vector
of real-valued weights that correspond to each template in 𝑇 , and
𝑡 (𝑋,𝑌 ) = {𝜙1, ..., 𝜙ℎ} be a set of ground templates created by instan-
tiated the template 𝑡 with 𝑋 and 𝑌 . Additionally, let 𝜙 emit a score
representing the ground template’s satisfaction. Then, a templated
graphical model is a probability distribution of the form:
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𝑃 (𝑌 |𝑋 ) = 1
𝑍
exp

(︁
−

𝑙∑︂
𝑖=1

∑︂
𝜙 ∈𝑡𝑖 (𝑋,𝑌 )

𝑤𝑖 · 𝜙
)︁

where

𝑍 =
∑︂
𝑋

exp
(︁
−

𝑙∑︂
𝑖=1

∑︂
𝜙 ∈𝑡𝑖 (𝑋,𝑌 )

𝑤𝑖 · 𝜙
)︁

2.2 Grounding in SRL
The task of grounding in the context of SRL is to use the provided
data to produce the complete set of instantiated templates, i.e., for
each template grounding finds all possible substitutions of variables
in the template to constants in the data. More specifically, grounding
in SRL aims to create all ground rules in the set:

{𝜙 |𝑉 (𝜙) = TRUE ∧ 𝜙 ∈
⋃︂
𝑡 ∈𝑇

𝑡𝑖 (𝑋,𝑌 )} (2)

where𝑉 is a validation function used to filter out ground rules that
do not belong in the final graphical model. This validation function
serves two critical roles in SRL grounding: 𝑉 ensures that each
ground rule conforms to the structure defined by the ground rule’s
parent template, and 𝑉 enforces the semantics of the specific SRL
framework being used.

In preparation for grounding, data in SRL systems are generally
organized into tables that each represent a single logical predicate.
The desired structure is shown in Figure 1. SRL frameworks differ
on how they handle variable types, type domains, data loading, data
parsing, and initial data representations, but to ground efficiently
similar per-predicate tables structures are used. Once that data is
loaded into the relevant tables, the logical predicates are categorized
into two different sets: 1) closed predicates, which only contain
observed data, 𝑋 , and 2) open predicates, which contain unobserved
data, 𝑌 , and may also contain observed data, 𝑋 . Closed predicates
are particularly important because the closed world assumption will
be applied to them, i.e., any ground atom from a closed predicate
that is not explicitly specified in the data will be assumed to have a
value of FALSE (or the equivalent of FALSE in the respective SRL
framework).

SRL frameworks utilize a ground rule validation function, 𝑉 ,
to enforce common semantics that utilize the closed world as-
sumption to remove useless ground rules [6, 7, 13, 15, 21]. Ground
rules may be determined to be useless, or trivial, if they are logi-
cally satisfied or unsatisfied in all possible worlds. Together, the
closed-world semantics and trivial ground rules provide a substan-
tial opportunity in the grounding of SRL programs that may not
be present when grounding general logical programs. By applying
these two concepts, SRL frameworks can remove large portions
of ground programs that are not relevant to the distribution in
Definition 1. For example, consider the ground rule 𝜙1 from Figure
1. SimilarTaste(orange, grapefruit) has a fixed value of 𝐹𝐴𝐿𝑆𝐸,
thereby causing the implication to always take on the value of𝑇𝑅𝑈𝐸

regardless of the value inferred forRecommend(alice, grapefruit).
This ground rule would be considered trivial and rejected by most
SRL framework’s ground rule validation function.

The procedure for creating ground rules from rules generally falls
into two categories: top-down and bottom-up. Top-down grounding
starts with the rules and seeks to find all the replacements for each
variable with constants from the data source. Top-down grounding
is simple to implement, as it reduces to nested loops, but generally
regarded as inefficient, since it iterates through the cross product of
variables in each rule. Bottom-up grounding starts at the data level
and finds tuples that satisfy each rule. This is generally achieved
with a database query. Because bottom-up grounding leverages an
existing database system, it is generally significantly faster than
top-down grounding [28]. Additionally, linking SRL grounding with
database systems allows more opportunities for improving ground-
ing through established database optimization techniques. For the
remainder of this paper, all discussion of grounding techniques
assume bottom-up grounding is used.

Grounding is SRL is done in two steps: creating a grounding plan
and executing the grounding plan. A grounding plan 𝐺 is a set
of triples, where each tuple contains a query 𝑄𝑖 , referred to as a
grounding query, a vector of 𝑘 rules, 𝒕𝒊 that 𝑄𝑖 can ground, and a
corresponding vector of 𝑘 mappings, 𝒎𝒊 , from the columns in 𝑄𝑖

to the variables in each rule of 𝒕𝒊 .

𝐺 = {(𝑄𝑖 , 𝒕𝒊,𝒎𝒊), ...} (3)

Once a grounding plan,𝐺 , is created, it can be executed in various
ways. The most common method is to run each query sequentially
on a local machine, but work has been done on executing grounding
plans in a distributed [27] or out-of-core [40] fashion. This work
focuses on creating the most efficient grounding plan and leaves
the execution of the grounding plan as a design choice for the
respective SRL framework.

For example, the grounding program used in Figure 1, may be:

𝐺 = (𝑄1, (𝑡1), (𝑚𝐼 )), (𝑄2, (𝑡2), (𝑚𝐼 ))

where𝑚𝐼 is an identity function and

𝑄1 = 𝜌𝐵 (𝑈𝑠𝑒𝑟,𝐼𝑡𝑒𝑚1) (𝐵𝑜𝑢𝑔ℎ𝑡) ⊲⊳ 𝜌𝑆 (𝐼𝑡𝑒𝑚1,𝐼𝑡𝑒𝑚2) (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑎𝑠𝑡𝑒)
⊲⊳ 𝜌𝑅 (𝑈𝑠𝑒𝑟,𝐼𝑡𝑒𝑚2) (𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑)

𝑄2 = 𝜌𝐵 (𝑈𝑠𝑒𝑟,𝐼𝑡𝑒𝑚1) (𝐵𝑜𝑢𝑔ℎ𝑡) ⊲⊳ 𝜌𝑆 (𝐼𝑡𝑒𝑚1,𝐼𝑡𝑒𝑚2) (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐿𝑜𝑜𝑘)
⊲⊳ 𝜌𝑅 (𝑈𝑠𝑒𝑟,𝐼𝑡𝑒𝑚2) (𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑)

2.3 Independent Grounding
The most commonly used strategy in the SRL community for gen-
erating a grounding plan is independent grounding. Independent
grounding creates one grounding query for each rule by taking a
natural join of each predicate instance used in the rule. This simple
scheme makes independent grounding easy to implement and the
variable mapping function trivial to create.

For example, independent grounding may produce the following
grounding program for Figure 1:

IndependentGronding(𝑇,𝑋,𝑌 ) = 𝐺𝑖𝑛𝑑

= (𝑄1, (𝑡1), (𝑚𝐼 )), (𝑄2, (𝑡2), (𝑚𝐼 ))
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where𝑚𝐼 is an identity function and 𝑄1 (fully defined below) and
𝑄21 are the queries used to create the variable constant mappings
for 𝑡1 and 𝑡2 respectively.
𝑄1 =

SELECT
B . Arg1 AS User , B . Arg2 AS I tem1 , S . Arg2 AS I t em2

FROM
Bought B
JOIN S im i l a r T a s t e S ON B . Arg2 = S . Arg1
JOIN Recommended R ON

B . Arg1 = R . Arg1 AND S . Arg2 = R . Arg2

3 COLLECTIVE GROUNDING
Collective Grounding aims to speed up grounding by creating ground-
ing plans that share database queries between multiple templates.
More specifically, the goal of collective grounding is to compute
an optimal grounding plan that minimizes the total time spent
grounding a collection of rule templates 𝑇 with data 𝐷 = (𝑋,𝑌 ):

𝐺∗ = argmin
𝐺

∑︂
𝑄 ∈𝐺∗

Runtime(𝑄 (𝐷)) (4)

Unlike independent grounding, collective grounding looks at
grounding not as a series of independent steps, but as a unified pro-
cess. The procedure of collective grounding is composed of three
main steps: candidate generation, containment map construction, and
coverage selection. Candidate generation creates alternate ground-
ing queries, referred to as candidates, that can be used in lieu of
the original grounding queries executed in independent ground-
ing. Containment map construction identifies the rules each of the
newly generated candidates can ground and constructs variable
mappings for each viable rule/candidate pair. Finally, coverage se-
lection chooses the set of candidates that will cover the grounding
needs for all templates in the final grounding plan. The remainder
of this section discusses the details for each of these three main
steps. Pseudocode for collective grounding in included in Appendix
A.1.

3.1 Candidate Generation
The first step in collective grounding is to generate multiple pos-
sible queries that can be used to ground each rule. We refer to
these possible replacement queries as candidate queries, or simply
candidates, and the grounding queries from independent grounding
as base queries. The goal of candidate generation is to generate
multiple candidate queries that can produce the same ground rules
as the base query while executing more efficiently when run col-
lectively. Each candidate provides a different possible workload
that can satisfy the same rule. For example, consider the candidate
presented in Figure 2. The base query for 𝑡1 produces two results,
which both pass validation. A possible candidate for 𝑡1, 𝐶1, is a
query that contains one less join and produces one additional result.
The additional result tuple, however, is trivial and does not pass
validation. Therefore, both the base query and candidate produce
the same ground rules using different workloads.

Strong similarities can be drawn between candidate generation
and the very well studied problem of database query optimization.
More specifically, generating candidate queries given a rule can be

1𝑄2 uses the same query as𝑄1 , but replaces SimilarTaste with SimilarLook.

seen as a form of query rewriting. Like query rewriting, candidate
generation starts with a base query (the independent grounding
base query), and constructs a new query that can be executed more
efficiently. In a classic RDBMS setting, the query optimizer can
take advantage of indexes, table statistics, and knowledge of the
system the query is being performed on (CPU, RAM, disk speed,
etc). However, there is a very important difference between RDBMS
query rewriting and collective grounding candidate generation:
RDBMS query rewriting is limited by the constraint that a rewritten
query must be equivalent to the base query. Collective grounding
candidate generation, however, can take advantage of the structure
inherent in the problem, specifically the validation function 𝑉 , to
simplify the process of candidate generation.

Figure 2: A base query, 𝑄2, and candidate query, 𝐶, both be-
ing used to ground the same rule template, 𝑡2. The candidate
query is simpler, but produces more results. The extraneous
results (in red) from the candidate query can be filtered out
by invoking the SRL framework’s validation function, 𝑉 .

Because “invalid” query results can be discarded using the frame-
work specific validation function, 𝑉 , candidate generation is less
constrained than classical query rewriting (shown in Figure 2).
Instead of needing to return the same results as a base query, can-
didate queries return results that are a superset of the base query’s
results and the difference in these two result sets are considered
invalid and discarded by 𝑉 . This flexibility allows for the quick
creation of candidates from a base query. Candidates can be gener-
ated by iterating through the power set of all relations present in
the base query, while ensuring that each variable is still present in
at least one relation. Figure 3 shows an example candidate search
tree generated from rule 𝑡1 from the running example. In this way,
all possible candidates (that can be validated without examining
the data in each relation) are generated using just the base query.
Candidates with fewer relations may produce more query results,
but will be simpler to execute and more general, and therefore
more likely to be shareable with other rules. This procedure can be
efficiently done using a bit set as long as the number of relations
fits into an unsigned integer type, as seen in Algorithm 1. Note
that this algorithm ensures that the base query (a bit set of all 1s)
is always added as a candidate, thereby guaranteeing that at least
one valid candidate is always generated.

However, in a rule with 𝑘 atoms, there are 2𝑘 − 1 possible candi-
dates. The number of candidates can quickly become intractable, so
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Figure 3: A fully materialized candidate search tree for rule
𝑡1 from Figure 1. Duplicate nodes are excluded and nodes
that do not contain the required variables (and are therefore
invalid) are shaded.

Function 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠:
Input: 𝑅𝑢𝑙𝑒
Result: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = {}
𝐵𝑎𝑠𝑒𝐴𝑡𝑜𝑚𝑠 ← {𝑎𝑡𝑜𝑚 | 𝑎𝑡𝑜𝑚 ∈ 𝑅𝑢𝑙𝑒}
𝐴𝑡𝑜𝑚𝑀𝑎𝑠𝑘𝑠 ← (𝑓 𝑛(𝑎𝑡𝑜𝑚) → 𝑏𝑖𝑡𝑚𝑎𝑠𝑘)
𝐵𝑎𝑠𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ← {}
foreach 𝑎𝑡𝑜𝑚 in 𝐵𝑎𝑠𝑒𝐴𝑡𝑜𝑚𝑠 do

𝐵𝑎𝑠𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ←
𝐵𝑎𝑠𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ∪ {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 | 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∈ 𝑎𝑡𝑜𝑚}

end
for 𝑖 ← 1 to 2 |𝐵𝑎𝑠𝑒𝐴𝑡𝑜𝑚𝑠 | do

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← {𝑎𝑡𝑜𝑚 | 𝑎𝑡𝑜𝑚 ∈
𝐵𝑎𝑠𝑒𝐴𝑡𝑜𝑚𝑠 ∧𝐴𝑡𝑜𝑚𝑀𝑎𝑠𝑘𝑠 (𝑎𝑡𝑜𝑚) |𝑖 ≠ 0}
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ← {}
foreach 𝑎𝑡𝑜𝑚 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 do

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ← 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ∪ {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 | 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∈
𝑎𝑡𝑜𝑚}

end
if 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≡ 𝐵𝑎𝑠𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 then
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ {𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒}

end
Algorithm 1: Generation of valid candidates from a rule. Note
that the result set will always contain at least 1 item, the base
query.

it is necessary to limit the number of overall candidates. Obtaining
a query estimate for each candidate would allow for a dependable
ranking of candidate performance where the top few may be se-
lected. However, the cost of obtaining a query plan is non-trivial.
Therefore, we create an approximate ranking of candidates while
balancing the accuracy of the rankings with the cost of computing
query estimates.

3.1.1 Candidate Cost Estimation. A straightforward method of
ranking each candidate is to assign them each a score based on the
query execution time and number of query results the candidate
will produce. A natural method of scoring each candidate is to
obtain a query plan from the RDBMS, which may include expected
runtime and expected number of results. In addition to runtime
and number of results, the time to ground a rule also depends on
the complexity of the rule itself. To incorporate all these factors,
we can assign a single score for each candidate according to the

following scoring function:

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 (𝐶1) = 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡 (𝐶1)∗
(𝛼 {𝑜,𝑝 } ∗ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (𝐶1) + 𝛽 {𝑜,𝑝 } ∗ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡 (𝐶1))

(5)
where 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡 (𝐶1) is the number of predicate in-
stances present in candidate 𝑐1 and acts as a proxy for the complex-
ity of a candidate, 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (𝐶1) is the estimated cost by the
RDBMS to execute the candidate 𝐶1, and 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐶𝑜𝑢𝑛𝑡 (𝐶1)) is
the RDBMS’ estimated number of records returned by the execution
of the candidate 𝐶1. 𝛼 {𝑜,𝑝 } and 𝛽 {𝑜,𝑝 } represent constants that re-
late the overhead of instantiating ground rules overall (𝛼 {𝑜,𝑝 }) and
per-instance (𝛽 {𝑜,𝑝 }). Each constant has two variants: optimistic
(𝑜) and pessimistic (𝑝). These constants were computed using the
results of running independent grounding on the validation splits
of the datasets discussed in Section 4. The optimistic variants are
one standard deviation less than the mean, while the pessimistic
variants are one standard deviation greater than the mean. Section
3.1.2 will discuss how these constants are used to bound the search
space for candidates.

3.1.2 Candidate Search. To score each candidate while filtering
out candidates that are likely to have a poor cost, we implement an
approximate search. Because candidates can be generated starting
from the base query and removing one relation at a time, the search
space can be viewed as a tree rooted at the base query. Each level
corresponds to candidates with the same number of relations. The
maximum size of the search space is 2𝑛 − 1, where 𝑛 is the number
of relations in the base query. The base rule is the root and each
child represents a candidate that can be formed by dropping one
relation from each parent (duplicates nodes are omitted). Each node
is colored with its pessimistic cost on top and optimistic cost on
the bottom.

Because the search space grows exponentially with the num-
ber of relations in the rule, models with long rules may find exact
search methods to be prohibitively costly. To counteract this, we
implemented budgeted versions of several classical search algo-
rithms: breadth-first search (BFS), depth-first search (DFS), and
uniform cost search (UCS). Additionally, we implemented approxi-
mate bounded versions of these searches using the optimistic and
pessimistic costs to prune the search space. When these bounded
methods encounter a node with an optimistic cost greater than its
parent’s pessimistic cost, the node is pruned. Using these search
methods, a list of candidates can generated and scored by approxi-
mate runtime. Section 4.5 discusses experimental results exploring
the effectiveness of each search method.

3.2 Candidate-Template Mapping Construction
Given the list of scored candidate queries from the candidate gen-
eration step, a mapping of candidates to rules each candidate can
ground must be generated. For a candidate query to be used to
ground a rule, the candidate’s query results must be a superset
of the results produced by the rule’s base query. Checking if one
query’s results contains another query’s results is the query con-
tainment problem [11], a well-studied problem in the database
community. Formally, a query 𝑄 contains another query 𝑄 ′ if for
any database 𝐷 , 𝑄 (𝐷) ⊆ 𝑄 (𝐷 ′).
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For conjunctive queries under set semantics, query containment
is NP-complete [11]. However, the query containment problem can
be even harder under bag semantics [20], and even undecidable with
inequalities [18]. There are also attributes of conjunctive queries
that can make containment computation easier [22]. For example,
query containment can be computed in linear time if each relation
is guaranteed to appear no more than twice in a query [35]. In this
work, we assume that all rules can be represented with general con-
junctive queries under set semantics with no additional restrictions.
This requirement is straightforward to meet for many existing SRL
frameworks. PSL ensures that all templates can be represented with
conjunctive queries, and MLNs produce disjunctive queries that
can be easily converted into conjunctive queries [3]. Therefore, this
work assumes that query containment is NP-complete, even though
specific SRL frameworks may be able to reduce the complexity.

For each candidate selected in the candidate generation process,
query containment must be computed for each rule. However, as
with candidate generation, the structure inherent in SRL models
can be utilized to simplify the problem. Recall that candidates are
generated in a structuredmanner by removing one relation at a time
starting from the base query. Because of this, once it is verified that
a candidate contains a template, it is known that all descendants
of that candidate in the query generation tree also contain the
template.

The general process is to keep the candidates in the tree form
that we used when searching them, skipping over any candidates
that were not chosen by the search. Each rule will produce one
tree. We perform a breadth-first traversal of the candidate tree and
check each candidate for containment against each rule that the
candidates were not derived from. If a containment is found, then
all descendants of that node are also marked for containment and
they are not checked for that rule. The process continues until all
candidates have been checked for containment of each rule.

3.3 Grounding Plan Creation
Given a scored list of candidates and a mapping of candidates to the
rules each candidate can ground, the next task is to choose the set
of candidates for a grounding plan that minimizes the total runtime
of the entire grounding workload. Similar to multi-query optimiza-
tion (MQO) in database literature [37], the goal when choosing a
grounding plan is to minimize a total workload over several queries
with the knowledge that these queries may share common com-
ponents or sub-workloads. However, unlike classic MQO, having
multiple candidate queries for each rule allows for more flexibility
when selecting a set of workloads to run. The problem of select-
ing candidates for the query plan is similar to the multiple-choice
knapsack problem [19], where our objective is to minimize the
runtime of the collection of candidate queries while ensuring that
each rule is represented. However, the differences with the clas-
sic multiple-choice knapsack problem are that each item for the
knapsack (candidate query) can have multiple class labels (rules
that the candidate satisfies), and a class label (rule) is allowed to
be represented multiple times (as the rule will only be instantiated
once). The classic multiple-choice knapsack problem is NP-hard
problem, but the above two differences simplify our variant.

More formally, our goal is to select a subset of candidates, C∗,
from all candidates generated from candidate generation C accord-
ing to the following minimization:

C∗ = argmin
𝐶′∈PowerSet(C)

∑︂
𝑐∈𝐶′

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 (𝑐)

s.t.
∑︂
𝑐∈𝐶′

𝑆 (𝑐, 𝑡) ≥ 1, for 𝑡 ∈ 𝑇
(6)

where 𝑆 (𝐶, 𝑡) is an indicator function that outputs 1 if candidate 𝐶
can ground for rule 𝑡 , and zero otherwise.

Since an exact solution is costly to compute, we use a greedy
approach to find an approximate solution. We start by creating a
sorted list of candidates for each template, including only candi-
dates that can ground for the template and sorting ascending by
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 so that more favorable scores appear first. The first
candidate in each of these lists represents the absolute best candi-
date that each rule can use individually. At this point, using the first
candidate from each list can be no worse than independent ground-
ing (assuming the query estimations are accurate). Now, each candi-
date receives a new score that is its original𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 minus
the sum of 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 for the best candidate associated with
each remaining rule this candidate can satisfy. Intuitively, this re-
wards each candidate for each rule it satisfies using the best (lowest)
score for each rule. After all candidates are re-scored, the best (low-
est scoring) candidate is selected to be in the final grounding plan,
and the rules that the candidate can ground for are marked as com-
plete and no longer considered in future score computations. This
process repeats until all template are marked as complete.

4 EVALUATION
To evaluate the impact of collective grounding, we performed an
experimental evaluation of independent and collective grounding
over a series of ten diverse problems/datasets2. As the state-of-
the-art, PSL’s implementation of independent grounding is used
for all experiments [3, 4, 40], and to produce the most informative
comparison, our implementation of collective grounding was built
using the same PSL infrastructure.

4.1 Datasets
All datasets and models are from previously published papers and
available at https://github.com/linqs/psl-examples. Each dataset
includes between five and ten splits of the data. No changes were
made to the rules or data for these experiments. The predictive
tasks covered include collective classification (CC), link prediction
(LP), and recommendation (REC). The details of each dataset are
summarized in Table 2. Additionally, the “Minimum Queries” col-
umn shows the minimum possible queries that the model can be
grounded with (determined by manual inspection). The gap be-
tween a dataset’s number of template rules and their number of
minimum queries represents possible common workloads in the
rules that collective grounding may be able to exploit.

2Full code for replication of experiments is available at: https://github.com/eriq-
augustine/collective-grounding-experiments/tree/vldb23
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Table 2: Details of datasets and models used for evaluation.
The generic task performed on each dataset include collec-
tive classification (CC), link prediction (LP), and recommen-
dation (REC). “MinimumQueries” shows theminimum pos-
sible queries that the model can be grounded with (deter-
mined by manual inspection).

Dataset Template Ground Task Minimum SourceRules Rules Queries

Citeseer 10 36K CC 3 [5]
Cora 10 41K CC 3 [5]
DDI 9 1M LP 3 [38]

Epinions 21 14K LP 2 [17]
ER 9 3M CC 7 [9]

IMDB-ER 6 129M LP 4 [8]
Jester 8 1M REC 2 [5]
LastFM 21 1.4M REC 3 [25]
Stance 11 2K CC 3 [39]
Yelp 21 500K REC 3 [25]

4.2 Hyperparameter Selection
The hyperparameters for collective grounding all pertain to the
candidate generation step and include the maximum number of
candidates chosen per rule, the maximum number of nodes ex-
plored during the candidate search (i.e., the search’s budget), and
the type of search used. To choose the best hyperparameters, the
last (by lexicographical order) split for each dataset is held out for a
hyperparameter search. Each configuration of hyperparameters is
run in the same fashion as the rest of the experiments described in
Section 4.3. Two sets of hyperparameters are saved to be used in the
rest of the experiments: the best set of hyperparameters for each
dataset, referred to as the per-dataset hyperparameters, and the
best set of hyperparameters averaged over all datasets, referred to as
the overall hyperparameters. The per-dataset hyperparameters
represent situations where the user has enough data and time to
tune collective grounding, whereas the overall hyperparameters
represent a set of hyperparameters that should generally perform
well over a wide range of tasks and datasets.

Table 3: The best performing hyperparameters on the vali-
dation split for each dataset. The row labeled overall con-
tains the hyperparameters that on average performed the
best over all datasets.

Dataset Candidate Count Search Budget Search Type

Citeseer 10 5 UCS
Cora 5 3 DFS
DDI 5 3 BoundedDFS

Epinions 10 5 BoundedUCS
ER 3 3 DFS

IMDB-ER 3 5 BoundedUCS
Jester 5 5 UCS
LastFM 3 10 BFS
Stance 5 5 BoundedDFS
Yelp 10 3 BoundedDFS

overall 10 10 BFS

4.3 Experiment Procedure
In all experiments, both independent and collective grounding are
run ten times for each split not held out for hyperparameter search
in each dataset. For each dataset, collective grounding was run
using both the per-dataset and overall sets of hyperparameters.
Between each run system and disk caches were cleared and the
database daemon was restarted. All experiments were performed
on the same machine using 128GB of RAM, 20 threads clocked at
3.1 GHz, Ubuntu 20.10, and PostgreSQL 12.7.

4.4 Overall Results
Table 4 provides a detailed look of the runtime (time to run ground-
ing), standard deviation, and statistically significantly best methods
over all ten datasets. Significance is determined using a Student’s
T-test with a 𝑝 = 0.01. The runtime provided is the time taken
for the entire grounding process starting from templates and data
and ending with the full set of ground rules. Figure 4 provides a
graphical interpretation of the results. On all datasets collective
grounding outperforms independent grounding.

Even in datasets where the rules do not exhibit structures that
can be exploited, collective grounding still outperformed indepen-
dent grounding by providing simpler queries (see Section 4.6). On
datasets where there is potential to share workloads between the
rules, collective grounding reduces the runtime by as much as
two thirds. On the smallest dataset, Stance, we can see that the
overhead of collective grounding does not slow down the overall
grounding process.

With one exception, using the general hyperparameters for col-
lective grounding achieved the same result as using the hyperparam-
eters tuned for each dataset. Overall the general hyperparameters
we provide are sufficient for many different types and sizes of mod-
els, but tuning on specific datasets may provide a small advantage.

Table 4: The runtime (in milliseconds) and standard devia-
tion for independent grounding (IG) and collective ground-
ing (CG) using both the per-dataset and overall hyper-
parameters averaged over 10 splits. The best results (deter-
mined using a Student’s T-test with a 𝑝 = 0.01) are in bold.

Dataset IG CG (per-dataset) CG (overall)

Citeseer 2387 ± 73 2283 ± 40 2251 ± 103
Cora 2434 ± 101 2246 ± 66 2229 ± 43
DDI 59852 ± 1584 16764 ± 450 17645 ± 712

Epinions 6418 ± 138 2693 ± 78 2747 ± 62
ER 59738 ± 286 49585 ± 557 49916 ± 233

IMDB-ER 606848 ± 15271 129319 ± 1132 130907 ± 1376
Jester 9469 ± 196 4722 ± 82 4733 ± 81
LastFM 112661 ± 2028 45421 ± 481 45419 ± 391
Stance 2062 ± 65 1933 ± 33 1957 ± 47
Yelp 104885 ± 609 66478 ± 571 66980 ± 524
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(a) Absolute Runtime (in log milliseconds) (b) Runtime Relative to IG

Figure 4: Runtime results for independent grounding (IG) and collective grounding (CG) using both the per-dataset and
overall hyperparameters. All results are aggregated over ten iterations, run on the samemachine, and had database and disk
caches cleared between runs.

4.5 Candidate Search
Next we take a closer look at how the different parameters for
the search phase in candidate generation effects the overall per-
formance of collective grounding. Table 3 shows the highest per-
forming hyperparameters for the validation split of each dataset.
No single set of search parameters dominated.

A possible explanation for these results is that models with
longer rules (more relations), such as ER, LastFM, and Yelp, tend
to favor DFS search variants where candidates with fewer joins
can be prioritized in the search, whereas models with shorter rules
(fewer relations) tend to favor BFS and UCS search variants where
simpler candidates are easier to access in the search space. This
also explains why the best overall search setting is a combination
of both extremes: BFS with a large search budget.

To better understand the search budget’s effect on the overall
results, we ran a set of experiments using a minimum budget of 1,
the largest budget used in our hyperparameter search (the same
budget as the overall hyperparameters, 10), and an infinite budget.
All other hyperparameters were set to the overall values. We
recorded the time it took to perform the candidate search and the
overall runtime. The results are shown is Table 5. For most datasets,
increasing the search budget from the overall hyperparameter
value made little difference. In most cases, a larger budget resulted
in a slightly lower runtime. However, there are cases (e.g., ER and
Epinions) where an unlimited budget caused CG to spend so much
time searching for candidates that the overall runtime suffered.

4.6 Query Count Reduction
As shown by Table 6, collective grounding is able to reduce the
number of queries performed in all datasets. Furthermore, Figure 4
shows that in all cases, collective grounding is able to overcome the
additional overhead of computing more effective grounding plans.

The LastFM dataset provides a clear illustration of how collec-
tive grounding can produce new query workloads that not only
satisfy the given model, but also make sense when looked at in the
context of the problem domain. The LastFM dataset is a recom-
mender system dataset where songs are recommended to users. The

Table 5: The effect of search budget on the search time and
overall runtime. All times are shown in milliseconds, aggre-
gated over ten runs, and include their standard deviation.

Dataset Search Budget Search Time Runtime

1 0 2387 ± 73
Citeseer 10 20 ± 1 2251 ± 103

∞ 19 ± 1 2229 ± 38

1 0 2434 ± 101
Cora 10 20 ± 1 2229 ± 43

∞ 20 ± 1 2221 ± 30

1 0 59852 ± 1584
DDI 10 63 ± 2 17645 ± 712

∞ 105 ± 3 17134 ± 264

1 0 6418 ± 138
Epinions 10 127 ± 5 2747 ± 62

∞ 519 ± 5 3886 ± 133

1 0 59738 ± 286
ER 10 225 ± 6 49916 ± 233

∞ 3294 ± 34 52616 ± 295

1 0 606848 ± 15271
IMDB-ER 10 78 ± 5 130907 ± 1376

∞ 158 ± 7 130515 ± 1267

1 0 9469 ± 196
Jester 10 24 ± 2 4733 ± 81

∞ 22 ± 2 4733 ± 63

1 0 112661 ± 2028
LastFM 10 152 ± 11 45419 ± 391

∞ 359 ± 12 45074 ± 493

1 0 2062 ± 65
Stance 10 74 ± 4 1957 ± 47

∞ 128 ± 9 2044 ± 34

1 0 104885 ± 609
Yelp 10 154 ± 14 66980 ± 524

∞ 362 ± 15 66838 ± 431

full LastFM model contains 21 rules and can be seen in Appendix
A.2. Kouki et al. (2015) divides these rules into eight different cate-
gories based on their use and data source 3. Collective grounding
3The author’s categorization of the rules does not affect the performance of the model,
and only stands as a juxtaposition to collective grounding’s grouping of the rules.
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Table 6: The number of queries run in collective grounding
(using the overallhyperparameters) compared to the num-
ber of rules in each dataset.

Dataset # rules # CG Queries

Citeseer 10 3
Cora 10 3
DDI 9 8

Epinions 21 2
ER 9 9

IMDB-ER 6 4
Jester 8 2
LastFM 21 3
Stance 11 3
Yelp 21 3

is able to identify and build queries for three key workloads in this
model/dataset: two users and an item, two items and a user, and a
user-item pair.

𝑄1 =Rating(U1, I), Rated(U2, I), Rated(U1, I)
𝑄2 =Rated(U, I2), Rating(U, I1), Rated(U, I1)
𝑄3 =Rating(U, I)

From a recommender systems perspective these three patterns are
instantly recognizable and seen in many different approaches, with
the first two patterns being the foundations of user and item-based
collaborative filtering [32].

4.7 Increased Query Efficiency
As shown in Section 4.6, collective grounding can substantially
speedup the grounding process by sharing queries betweenmultiple
rules. However, we see some datasets, such as DDI, that show
a considerable reduction in runtime while still using almost the
same number of queries as independent grounding. This raises two
questions: 1) How does collective grounding manage to reduce
DDI’s runtime while using almost the same number of queries?
2) Why does collective grounding refuse the opportunity to use a
single query for 7 rules?

To answer the first question, we start by looking at the full DDI
model listed in Appendix A.3. We see the key modeling pattern of
this model is the collective integration of several different similarity
measures. Collective grounding chose the following queries:
𝑄1 =ATCSimilarity(D1, D2), interacts(D1, D3), validInteraction(D1, D3)
𝑄2 =SideEffectSimilarity(D1, D2), interacts(D1, D3), validInteraction(D1, D3)
𝑄3 =GOSimilarity(D1, D2), interacts(D1, D3), validInteraction(D1, D3)
𝑄4 =ligandSimilarity(D1, D2), interacts(D1, D3), validInteraction(D1, D3)
𝑄5 =chemicalSimilarity(D1, D2), interacts(D1, D3), validInteraction(D1, D3)
𝑄6 =seqSimilarity(D1, D2), interacts(D1, D3), validInteraction(D1, D3)
𝑄7 =distSimilarity(D1, D2), interacts(D1, D3), validInteraction(D1, D3)
𝑄8 =interacts(D1, D2)

(7)
We see that the final two rules share the same query, but more im-
portantly the number of joins for each of the similarity-based rules
has reduced. Table 7 shows the runtime and number of results for
the base query and query chosen by collective grounding for each

similarity measure. Even though the collective grounding queries
typically return more results, the queries can be executed much
more quickly. Here we see collective grounding finding success not
though reducing the number of queries, but by using more efficient
queries discovered during candidate generation.

Table 7: The performance of base queries compared against
simpler queries chosen by collective grounding for the DDI
dataset. Note that the simpler queries used by CG results in
significantly faster runtimes while only returning a few ad-
ditional query results (which are subsequently filtered out
by the SRL framework). The overall hyperparameters are
used for CG.

Similarity Base Query Base Query CG Query CG Query
Measure Runtime # Results Runtime # Results

ATC 7295 ± 152 1257947 1647 ± 57 1360876
Chemical 8105 ± 220 1380330 1933 ± 40 1483650

Dist 7786 ± 266 1358420 1732 ± 31 1461670
GO 7987 ± 232 1358420 1776 ± 47 1461670

Ligand 7298 ± 232 1242297 1628 ± 47 1345176
Seq 7991 ± 239 1358420 1797 ± 53 1461670

Side Effect 7864 ± 245 1380330 1812 ± 90 1483650

Given the results observed in Table 7, where a simplification of
the query (reduction in the number of joins) results in a faster query,
collective grounding’s refusal to ground all of DDI’s similarity
rules with the same general query seems even more surprising. For
example, the below queries can be used to ground all of DDI:
𝑄1 =validInteraction(D1, D3), validInteraction(D2, D3)
𝑄2 =interacts(D1, D2)

(8)

However as shown in Table 8, the grounding plan selected by
collective grounding containing 8 queries easily outperforms our
“Forced Sharing” grounding plan from Equation 8. Part of the re-
duced performance of the forced sharing grounding plan may come
from the many extraneous results returned by the very general
query. It seems that the tables containing the similarity measures
are selective enough to warrant seven different queries instead of
one more general query.

Table 8: The performance of independent grounding and col-
lective grounding against forcing a grounding plan that uses
only two queries (see Equation 8). CG runs used overallhy-
perparameters.

Method # Queries Runtime Query Results

IG 9 59852 9435074
CG 8 17645 9583439

Forced Sharing 2 44031 31156650

5 CONCLUSION
In this work we introduce collective grounding to confront the
task of efficiently grounding templated graphical models, a task
common in statistical relational learning, probabilistic databases,
probabilistic programming, and any domain that uses templates

1852



(especially logical templates) to model complex dependencies. We
described how collective grounding can combine templated models
and database research to more efficiently jointly ground templated
programs.We contributed an implementation based on Probabilistic
Soft Logic that applies the general concepts of collective grounding
to the specific domain of statistical relational learning. Additionally,
we have experimentally shown how collective grounding improves
upon traditional grounding techniques on a wide range of datasets.

A future avenue of research of collective grounding is to inte-
grate it with orthogonal methods for improving the efficiency of
grounding in templated graphical models. Specifically, tandem in-
ference [40] and lifted inference [41]. Both of these techniques aid
in grounding extremely large models (with the billions of ground
rules). Additionally, both these techniques work orthogonally to
collective grounding, i.e., they both work with ground rules after
grounding and do not affect the grounding plan. Integrating these
techniques would create a synergy where collective grounding
can produce highly efficient grounding plans that tandem or lifted
inference can efficiently store and infer over.
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A APPENDIX
A.1 Grounding Pseudocode

Function 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔:
Input: 𝑟𝑢𝑙𝑒𝑠 = 𝑇,𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 = (𝑋,𝑌 )
Result: 𝑔𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 = {}

foreach 𝑟𝑢𝑙𝑒 in 𝑟𝑢𝑙𝑒𝑠 do
(𝑞𝑢𝑒𝑟𝑦, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑀𝑎𝑝) ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑎𝑠𝑒𝑄𝑢𝑒𝑟𝑦 (𝑟𝑢𝑙𝑒)
𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑄𝑢𝑒𝑟𝑦 (𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, 𝑞𝑢𝑒𝑟𝑦)
𝑔𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 ← 𝑔𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 ∪
𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝐺𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑠, {𝑟𝑢𝑙𝑒}, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑀𝑎𝑝)

end
Algorithm 2: The independent grounding process. This pro-
cess takes as input a collection of template, 𝑇 and a database
containing both observed data 𝑋 and unobserved data 𝑌 , and
outputs a set of ground rules generated by instantiating the
rules using the database. Each rule is processed individually
using the base grounding query for each rule.

Where𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑎𝑠𝑒𝑄𝑢𝑒𝑟𝑦 is a function that takes in a single rule,
and creates the rule’s base query (as discussed in Section 3.1) as well
as a mapping between the variables used in the rule and columns
of the query; and 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑄𝑢𝑒𝑟𝑦 is a function that executes a query
on a database and returns the results; and 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝐺𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠
takes in results from a database query, a set of rules, and a mapping
that maps variables used in the rules to columns of the database
query; and returns ground rules created by instantiating each rule
using the query results.

Where 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is fully defined in Algorithm 1;
𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is a function that explores that candidate search

Function 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔:
Hyperparameters: 𝑠𝑒𝑎𝑟𝑐ℎ𝐵𝑢𝑑𝑔𝑒𝑡, 𝑠𝑒𝑎𝑟𝑐ℎ𝑇𝑦𝑝𝑒
Input: 𝑟𝑢𝑙𝑒𝑠 = 𝑇,𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 = (𝑋,𝑌 )
Result: 𝑔𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 = {}

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {}

foreach 𝑟𝑢𝑙𝑒 in 𝑟𝑢𝑙𝑒𝑠 do
𝑟𝑢𝑙𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑟𝑢𝑙𝑒)
𝑏𝑒𝑠𝑡𝑅𝑢𝑙𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ←
𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑟𝑢𝑙𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑠𝑒𝑎𝑟𝑐ℎ𝐵𝑢𝑑𝑔𝑒𝑡, 𝑠𝑒𝑎𝑟𝑐ℎ𝑇𝑦𝑝𝑒)

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ 𝑏𝑒𝑠𝑡𝑅𝑢𝑙𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

end

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑀𝑎𝑝𝑝𝑖𝑛𝑔←
𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑟𝑢𝑙𝑒𝑠)
𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ←
𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑃𝑟𝑜𝑔𝑟𝑎𝑚(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑀𝑎𝑝𝑝𝑖𝑛𝑔)

foreach (𝑞𝑢𝑒𝑟𝑦, 𝑟𝑢𝑙𝑒𝑠, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑀𝑎𝑝) in
𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑃𝑟𝑜𝑔𝑟𝑎𝑚 do

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑄𝑢𝑒𝑟𝑦 (𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, 𝑞𝑢𝑒𝑟𝑦)
𝑔𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 ← 𝑔𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 ∪
𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝐺𝑟𝑜𝑢𝑛𝑑𝑅𝑢𝑙𝑒𝑠 (𝑟𝑒𝑠𝑢𝑙𝑡𝑠, 𝑟𝑢𝑙𝑒𝑠, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑀𝑎𝑝)

end
Algorithm 3: The collective grounding process. This process
takes as input a collection of template,𝑇 and a database contain-
ing both observed data 𝑋 and unobserved data 𝑌 , and outputs
a set of ground rules generated by instantiating the rules using
the database. Candidates are generated from each rule. Then,
these candidates are examined together to fine the best ground-
ing program that collectively minimizes the joint workload of
grounding.

space as described in Section 3.1.2; 𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑀𝑎𝑝𝑝𝑖𝑛𝑔

is a function that maps candidates to the rules they satisfy as
described in Section 3.2; and 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑃𝑟𝑜𝑔𝑟𝑎𝑚 is a
function that computes grounding plans (as defined by Equation
3) using the procedure described in Section 3.3. Note that the
𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 function has the same parameter and return
signature as the 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 function.

The pseudocode in this section for 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 pro-
vides a synchronous implementation that favors clarity over per-
formance. The implementation used in the experiments in Section
4 (and included in the code accompanying this paper) is an asyn-
chronous version that interweaves candidate generation with the
budgeted search to avoid expanding large search spaces.

A.2 Full LastFM Model
Figure 5 shows the full LastFM model used in [25]. The weight
was omitted for all rules as weights are learned on a per-split basis.
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A.3 Full DDI Model
Figure 6 shows the full DDI model used in [38]. The weight was
omitted for all rules as weights are learned on a per-split basis.
Rules ending with a period are unweighted (hard constraints).

# Similarities like Pearson, Cosine, and Adjusted Cosine Similarity between items.
Rated(U, I1) ∧ Rated(U, I2) ∧ Rating(U, I1) ∧ SimPearsonItems(I1, I2) → Rating(U, I2)
Rated(U, I1) ∧ Rated(U, I2) ∧ Rating(U, I1) ∧ SimCosineItems(I1, I2) → Rating(U, I2)
Rated(U, I1) ∧ Rated(U, I2) ∧ Rating(U, I1) ∧ SimAdjcosItems(I1, I2) → Rating(U, I2)
# Similarities like Pearson and Cosine Similarity between users.
Rated(U1, I) ∧ Rated(U2, I) ∧ Rating(U1, I) ∧ SimPearsonUsers(U1, U2) → Rating(U2, I)
Rated(U1, I) ∧ Rated(U2, I) ∧ Rating(U1, I) ∧ SimCosineUsers(U1, U2) → Rating(U2, I)
# Other low dimension space similarities like Matrix Factorization Cosine and Euclidean Similarity between users.
User(U1) ∧ User(U2) ∧ Item(I) ∧ Rating(U1, I) ∧ Rated(U1, I) ∧ Rated(U2, I) ∧ SimMFCosineUsers(U1, U2) → Rating(U2, I)
User(U1) ∧ User(U2) ∧ Item(I) ∧ Rating(U1, I) ∧ Rated(U1, I) ∧ Rated(U2, I) ∧ SimMFEuclideanUsers(U1, U2) → Rating(U2, I)
# Other low dimension space similarities like Matrix Factorization Cosine and Euclidean Similarity between items.
User(U) ∧ Item(I1) ∧ Item(I2) ∧ Rating(U, I1) ∧ Rated(U, I1) ∧ Rated(U, I2) ∧ SimMFCosineItems(I1, I2) → Rating(U, I2)
User(U) ∧ Item(I1) ∧ Item(I2) ∧ Rating(U, I1) ∧ Rated(U, I1) ∧ Rated(U, I2) ∧ SimMFEuclideanItems(I1, I2) → Rating(U, I2)
# Predictions by different other methods like SGD, Item based Pearson methods, and BPMF methods.
SGDRating(U, I) → Rating(U, I)
Rating(U, I) → SGDRating(U, I)
ItemPearsonRating(U, I) → Rating(U, I)
Rating(U, I) → ItemPearsonRating(U, I)
BPMFRating(U, I) → Rating(U, I)
Rating(U, I) → BPMFRating(U, I)
# Average prior of User Rating and Item ratings.
User(U) ∧ Item(I) ∧ Rated(U, I) ∧ AvgUserRating(U) → Rating(U, I)
User(U) ∧ Item(I) ∧ Rated(U, I) ∧ Rating(U, I) → AvgUserRating(U)
User(U) ∧ Item(I) ∧ Rated(U, I) ∧ AvgItemRating(I) → Rating(U, I)
User(U) ∧ Item(I) ∧ Rated(U, I) ∧ Rating(U, I) → AvgItemRating(I)
# Social rule of friendship influencing ratings.
Rated(U1, I) ∧ Rated(U2, I) ∧ Friends(U1, U2) ∧ Rating(U1, I) → Rating(U2, I)
# Content rule by Jaccard similarity.
Rated(U, I1) ∧ Rated(U, I2) ∧ Rating(U, I1) ∧ SimContentItemsJaccard(I1, I2) → Rating(U, I2)

Figure 5: The full LastFM model used in [25].

# Similarity based rules.
ATCSimilarity(D1, D2) ∧ interacts(D1, D3) ∧ validInteraction(D1, D3) ∧ validInteraction(D2, D3) → interacts(D2, D3)^2
SideEffectSimilarity(D1, D2) ∧ interacts(D1, D3) ∧ validInteraction(D1, D3) ∧ validInteraction(D2, D3) → interacts(D2, D3)^2
GOSimilarity(D1, D2) ∧ interacts(D1, D3) ∧ validInteraction(D1, D3) ∧ validInteraction(D2, D3) → interacts(D2, D3)^2
ligandSimilarity(D1, D2) ∧ interacts(D1, D3) ∧ validInteraction(D1, D3) ∧ validInteraction(D2, D3) → interacts(D2, D3)^2
chemicalSimilarity(D1, D2) ∧ interacts(D1, D3) ∧ validInteraction(D1, D3) ∧ validInteraction(D2, D3) → interacts(D2, D3)^2
seqSimilarity(D1, D2) ∧ interacts(D1, D3) ∧ validInteraction(D1, D3) ∧ validInteraction(D2, D3) → interacts(D2, D3)^2
distSimilarity(D1, D2) ∧ interacts(D1, D3) ∧ validInteraction(D1, D3) ∧ validInteraction(D2, D3) → interacts(D2, D3)^2
# Symmetry.
interacts(D1, D2) = interacts(D2, D1) .
# Negative prior.
validInteraction(D1, D2) → ¬interacts(D1, D2)^2

Figure 6: The full DDImodel used in [38].
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