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ABSTRACT

Graph edit distance (GED) computation is a fundamental NP-hard

problem in graph theory. Given a graph pair (𝐺1,𝐺2), GED is

defined as the minimum number of primitive operations converting

𝐺1 to 𝐺2. Early studies focus on search-based inexact algorithms

such as A*-beam search, and greedy algorithms using bipartite

matching due to its NP-hardness. They can obtain a sub-optimal

solution by constructing an edit path (the sequence of operations

that converts 𝐺1 to 𝐺2). Recent studies convert the GED between

a given graph pair (𝐺1,𝐺2) into a similarity score in the range

(0, 1) by a well designed function. Then machine learning models

(mostly based on graph neural networks) are applied to predict

the similarity score. They achieve a much higher numerical preci-

sion than the sub-optimal solutions found by classical algorithms.

However, a major limitation is that these machine learning models

cannot generate an edit path. They treat the GED computation as a

pure regression task to bypass its intrinsic complexity, but ignore

the essential task of converting 𝐺1 to 𝐺2. This severely limits the

interpretability and usability of the solution.

In this paper, we propose a novel deep learning framework that

solves the GED problem in a two-step manner: 1) The proposed

graph neural network GEDGNN is in charge of predicting the GED

value and a matching matrix; and 2) A post-processing algorithm

based on 𝑘-best matching is used to derive 𝑘 possible node match-

ings from the matching matrix generated by GEDGNN. The best

matching will finally lead to a high-quality edit path. Extensive

experiments are conducted on three real graph data sets and syn-

thetic power-law graphs to demonstrate the effectiveness of our

framework. Compared to the best result of existing GNN-based

models, the mean absolute error (MAE) on GED value prediction

decreases by 4.9% ∼ 74.3%. Compared to the state-of-the-art search-

ing algorithm Noah, the MAE on GED value based on edit path

reduces by 53.6% ∼ 88.1%.
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1 INTRODUCTION

Graph edit distance (GED) computation is a fundamental NP-hard

problem in graph theory [5] and has attracted many researchers to

design classical algorithms to solve it in history. Similar to the edit

distance on strings, the graph edit distance on a pair of graphs is

defined as the minimum number of atomic operations that can con-

vert one graph to the other, and the sequence of atomic operations

is called a graph edit path. Figure 1(a) depicts two graphs 𝐺1 and

𝐺2, and Figure 1(b) lists one of the shortest graph edit paths that

converts 𝐺1 to 𝐺2 with 3 operations. Since GED can capture both

structural and attribute similarity between a pair of graphs, and the

distance is interpretable given the edit path, GED is a perfect choice

to measure graph similarity [11, 19] and is widely used in graph

search queries [12, 19, 29, 36ś38]. However, given the difficulty of

GED computation, existing studies on exact algorithms such as

A* search [4] mostly suffer from the severe problem of scalability.

They are usually intractable when the graph size is larger than 16

nodes [4]. Considering both the increasing size of graphs and the

increasing volume of graph databases nowadays, recent studies

have paid more attention to inexact GED computation. In this case,

the solution quality of an algorithm is usually measured by the gap

between its output and the ground-truth value.
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Figure 1: A Graph Edit Path for (𝐺1,𝐺2) and the Maximum

Bipartite Matching used in GED Computation.

Existing approaches can be divided into three categories. 1) A*-

beam search [22] uses an extra parameter 𝑏𝑒𝑎𝑚𝑠𝑖𝑧𝑒 to control the

maximum number of nodes in the queue compared to the standard

A* search algorithm and hence finds a near-optimal solution more

efficiently. The effectiveness of A*-beam search highly depends on

𝑏𝑒𝑎𝑚𝑠𝑖𝑧𝑒 and its time complexity is still exponential in theory. 2)

Another line of work [10, 15, 17, 24, 25] replaces the edit distance

metric by a similar greedy function, which can be easily optimized
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by finding a minimum weight matching in 𝑂 (𝑛3) time (𝑛 is the

number of nodes). They first invoke the greedy function to estimate

the cost of matching one node in the source graph to a node in the

target graph, and then simplify the calculation of GED by merely

adding up the estimated cost of all matched node pairs. Compared

to the exponential search space of A* algorithm, such greedy al-

gorithms are less expensive. Unfortunately, their effectiveness is

quite low due to the limitation of hand-crafted greedy heuristics.

3) Recently, several end-to-end machine learning models [1, 2, 32]

based on graph neural networks (GNN) have been proposed to

predict GED. They first use a GNN to generate embeddings of the

given graph pair, then combine them to capture the graph-to-graph

information, e.g., generating an inter-graph embedding which is

fed into a multi-layer perceptron (MLP) to obtain a real value as the

predicted GED. After model training, these GNN based models can

predict the GED value of a graph pair in 𝑂 (𝑛 +𝑚) time (𝑚 is the

number of edges) with extremely low errors. This approach treats

GED computation as a regression problem, and a major limitation

is that it cannot generate an edit path, which substantially reduces

the interpretability and usability of the solution. In addition, the

predicted GED can even be less than the true GED. In this case, the

solution is called an invisible solution [32] and a feasible edit path

for such predicted GED does not exist at all.

Different from existing approaches, we study the following prob-

lem: Can a machine learning model predict the GED and the corres-

ponding edit path and how? This is much more challenging since it

requires the model to deeply understand the essence of GED com-

putation, i.e., the node matching relation between the given graph

pair. Although both GED computation and graph alignment [20, 33]

need to compute a node matching, these two problems are different

in terms of ground truth definition, objective and matching scope.

Please refer to Section 6 for a detailed discussion on the differences

between GED computation and graph alignment.

In this paper, we propose a novel deep learning framework that

solves the GED problem in a two-step manner. First, our proposed

model, GEDGNN, not only predicts a GED value as existingmachine

learning models do, but also predicts a matching matrix by the cross

matrix module. Specifically, each value in the matching matrix is a

real number between 0 and 1, and reveals the extent to which a node

pair should be matched. Second, a post-processing algorithm is used

to derive multiple node matchings from the real matching matrix

generated by GEDGNN, fromwhich we generate a high-quality edit

path. We creatively use the 𝑘-best matching algorithm [8] in a novel

way to generate the edit path, thus make up the gap between what

graph neural networks can produce (i.e., the matching matrix) and

an actual solution to the GED problem. The merits of our GEDGNN

model lie in the following three aspects: 1) The generated edit path

clearly enhances the interpretability and usability of the solution

by the machine learning approach. 2) The GED value prediction

and node matching learning are seamlessly integrated into one end-

to-end model. The extra information learned from node matching

can in turn boost the accuracy of GED value prediction. 3) After

generating an edit path by the post-processing algorithm, the path

can be used to tighten the predicted GED value as the length of

any edit path is an upper bound of the GED value. In summary, our

main contributions are as follows.

1. We propose a novel deep neural learning framework that formu-

lates the traditional GED computation problem as a prediction task.

We introduce the mathematical constraint between bipartite node

matching and the GED problemwith two matrices. This mechanism

enables us to obtain the predicted GED value and the corresponding

node matching weights simultaneously.

2. To the best of our knowledge, we are the first to integrate the

𝑘-best matching algorithm into GED computation. We design an

effective post-processing algorithm based on 𝑘-best matching to

derive edit paths from the matching matrix generated by our model

GEDGNN. The edit paths greatly improve the interpretability and

usability of the predicted GED.

3. Extensive experiments are conducted on three real graph data sets

and synthetic power-law graphs to verify the effectiveness of our

algorithms. Our proposed algorithm has a far superior performance

under all standards to existing methods. Compared to the best result

of existing GNN-based models, the mean absolute error (MAE) on

GED value prediction decreases by 4.9% ∼ 74.3%. Compared to the

state-of-the-art searching algorithm Noah [32], the MAE on GED

value based on edit path reduces by 53.6% ∼ 88.1%.

2 PROBLEM FORMULATION

2.1 Preliminary Concepts

In this paper, we compute graph edit distance between a pair of

graphs (𝐺1,𝐺2). Following the setting used in [2, 32], we use 𝐺 =

(𝑉 , 𝐸, 𝐿) to denote an attributed undirected graph, where 𝑉 , 𝐸 and

𝐿 denote the vertex set, edge set and node label set respectively.

Definition 1. Graph Edit Distance. Given a pair of graphs

(𝐺1,𝐺2), the minimum number of primitive operations converting𝐺1

to 𝐺2 is called the graph edit distance and denoted by𝐺𝐸𝐷 (𝐺1,𝐺2).

Specifically, there are three types of primitive operations: (1) adding

or removing an edge; (2) adding or removing an isolated node; and (3)

changing the label of a node.

Definition 2. GraphEdit Path.Given a pair of graphs (𝐺1,𝐺2),

a sequence of primitive operations (𝑜1, 𝑜2, · · · , 𝑜𝑘 ) that transforms

𝐺1 to𝐺2 is called an edit path. Obviously, 𝑘 ≥ 𝐺𝐸𝐷 (𝐺1,𝐺2) and the

minimum length of an edit path is exactly the graph edit distance.

2.2 Generating Edit Path from Node Matching

Given an edit path that converts 𝐺1 to 𝐺2, there is essentially a

correspondence between nodes in𝐺1 and𝐺2, which can be modeled

by bipartite matching. We introduce the concepts of bipartite graph

and bipartite matching, and describe how to generate an edit path

from a bipartite matching as in some previous studies [4, 22, 32].

Definition 3. Bipartite Graph. Given an undirected graph𝐺 =

(𝑉 , 𝐸) and a vertex partition 𝑉 = 𝑉1 ∪ 𝑉2 that 𝑉1 ∩ 𝑉2 = ∅, 𝐺 =

(𝑉1,𝑉2, 𝐸) is called a bipartite graph if 𝐸 ⊆ 𝑉1 × 𝑉2. When 𝐸 =

𝑉1 ×𝑉2, 𝐺 is a complete bipartite graph which has |𝑉1 | × |𝑉2 | edges.

𝐺 = (𝑉1,𝑉2, 𝐸,𝑤) is a weighted bipartite graph where𝑤 : 𝐸 → R is

a weight function and𝑤 (𝑢, 𝑣) denotes the real value weight.

Definition 4. Bipartite Matching andMaximum Bipartite

Matching. Given a graph 𝐺 = (𝑉 , 𝐸), an edge subset 𝑀 ⊆ 𝐸 is

called a matching of 𝐺 if no two edges in 𝑀 share the same vertex.

A matching of a bipartite graph is called a bipartite matching.
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Given a bipartite graph 𝐺 = (𝑉1,𝑉2, 𝐸), a matching 𝑀 is called a

maximum bipartite matching of 𝐺 if |𝑀 | = min( |𝑉1 |, |𝑉2 |).

Given two graphs 𝐺1 = (𝑉1, 𝐸1, 𝐿1) and 𝐺2 = (𝑉2, 𝐸2, 𝐿2) for

GED computation, we can construct a complete bipartite graph

𝐺 = (𝑉1,𝑉2,𝑉1 ×𝑉2). Then a maximum bipartite matching𝑀 on 𝐺

establishes the node correspondence between 𝐺1 and 𝐺2 and can

be used to generate an edit path as follows.

1. For any matched node pair (𝑢, 𝑣) ∈ 𝑀 , if 𝐿(𝑢) ≠ 𝐿(𝑣), change

𝑢’s label to 𝐿(𝑣). If |𝑉1 | < |𝑉2 |, there are |𝑉2 | − |𝑉1 | nodes in 𝐺2

unmatched andwe need to add these extra nodes to𝐺1; if |𝑉1 | > |𝑉2 |,

there are |𝑉1 |− |𝑉2 | nodes in𝐺1 unmatched which are then removed.

After this step, each node in 𝐺1 matches a node in 𝐺2.

2.Assume nodes𝑢1, 𝑢2 ∈ 𝑉1 match 𝑣1, 𝑣2 ∈ 𝑉2 respectively.We need

to add an edge between 𝑢1 and 𝑢2 if (𝑢1, 𝑢2) ∉ 𝐸1 and (𝑣1, 𝑣2) ∈ 𝐸2,

or remove the edge (𝑢1, 𝑢2) if (𝑢1, 𝑢2) ∈ 𝐸1 and (𝑣1, 𝑣2) ∉ 𝐸2.

Figure 1(c) and 1(d) show the complete bipartite graph and a

maximum bipartite matching respectively. The bipartite matching

establishes the node correspondence between𝐺1 and𝐺2, e.g., node 0

in𝐺1 corresponds to node 0 in𝐺2. On top of this bipartite matching

we apply the above procedure, then we can obtain the graph edit

path shown in Figure 1(b).

The above procedure takes linear time, i.e., 𝑂 (𝑛 + 𝑚) where

𝑛 = max( |𝑉1 |, |𝑉2 |) and𝑚 = max( |𝐸1 |, |𝐸2 |). In the following, we

use 𝐺𝐸𝐷 (𝐺1,𝐺2, 𝑀) to denote the number of edit operations to

convert 𝐺1 to 𝐺2 based on the node matching𝑀 . Note that there

are many possible matchings of𝐺 which lead to different edit paths.

With these definitions, our target problem is to design a graph

neural network which predicts the graph edit distance given a pair

of graphs and learns a good matching leading to a short edit path.

3 GRAPH NEURAL NETWORKS FOR GRAPH
EDIT DISTANCE COMPUTATION

In this section, we design a graph neural network model, called

GEDGNN for GED computation. As shown in Figure 2, for a given

graph pair (𝐺1,𝐺2), our model GEDGNN first generates their node

embeddings 𝐻1 and 𝐻2 using a graph neural network. Then we use

two separate cross matrix modules to capture the node-to-node

correspondence between 𝐻1 and 𝐻2. The cross matrix modules use

trainable parameter matrices which connect 𝐻1 and 𝐻2 to predict

the graph matching and the matching cost. One of the cross matrix

modules outputs a matching matrix𝐴𝑚𝑎𝑡𝑐ℎ of size |𝑉1 | × |𝑉2 | which

is a prediction of the ground-truth matching matrix and reflects the

extent of matching of different node pairs. The other outputs a cost

matrix 𝐴𝑐𝑜𝑠𝑡 of size |𝑉1 | × |𝑉2 | in which an element 𝐴𝑐𝑜𝑠𝑡 [𝑢] [𝑣]

denotes the cost of edit operations for matching 𝑢 ∈ 𝑉1 with 𝑣 ∈

𝑉2. Finally, GEDGNN predicts the similarity score of 𝐺1,𝐺2 by

calculating the weighted sum of costs in 𝐴𝑐𝑜𝑠𝑡 with a bias value,

i.e., 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑚𝑎𝑡𝑐ℎ) · 𝐴𝑐𝑜𝑠𝑡 + 𝑏𝑖𝑎𝑠 .

3.1 GNN Backend

Graph neural network (GNN) [16] is widely used as a backend to

generate node embeddings in existing graph similarity computa-

tion studies [1, 18]. For a graph 𝐺 = (𝑉 , 𝐸, 𝐿) fed into our model,

the GNN generates the node embedding 𝐻 |𝑉 |×𝑑 through graph

convolution operations, which iteratively conduct node feature

propagation and aggregation along graph edges. After a graph at-

tention layer [2] or other simpler mechanisms, a weighted sum of

all nodes’ embedding becomes the graph embedding of 𝐺 .

In GEDGNN, we use a three-layer GIN [30] as the backend with

the same setting of Noah’s graph embedding module [32], which

is proved as powerful as the Weisfeiler-Lehman isomorphism test.

For each node 𝑢 ∈ 𝑉 , the initial node embedding 𝐻 (𝑢) is generated

according to its feature. If 𝐺 is a labeled graph, 𝐻 (𝑢) is defined as

the one-hot vector of its node label. If node 𝑢 has 𝑘 labels in an

attributed graph, we can simply set these 𝑘 dimensions as 1 in𝐻 (𝑢).

In graphs without node label, we can set each 𝐻 (𝑢) as a constant

number, i.e., a 1-dimensional vector. Then in each layer of GIN, each

node 𝑢 updates its embedding by combining it with 𝑢’s neighbors’

embedding using an injective function.

3.2 GED Prediction

3.2.1 Cross Matrix Module. The cross matrix module is designed

to capture the node-to-node interaction between the graph pair

(𝐺1,𝐺2). After the GNN backend, their node embeddings 𝐻1 and

𝐻2 are inputted into the cross matrix module, the final output of

which is a matrix 𝐴 ∈ R𝑛1×𝑛2 . Each element 𝐴[𝑢] [𝑣] is determined

by 𝐻1 [𝑢], 𝐻2 [𝑣] and module parameters, and hence denotes the

interaction between node 𝑢 ∈ 𝑉1 and node 𝑣 ∈ 𝑉2.

Multiplying the node embeddings by a trainable parameter mat-

rix𝑊 is a direct idea to obtain the node-to-node level information:

𝐴 = 𝐻1𝑊 𝐻⊤2 .

Recall that the sizes of𝐻1 and𝐻2 are |𝑉1 |×𝑑 and |𝑉2 |×𝑑 respectively,

where 𝑑 is the output feature dimension of the GNN backend. The

size of𝑊 must be 𝑑 ×𝑑 and that of the result matrix𝐴 is |𝑉1 | × |𝑉2 |,

which only depends on the sizes of input graphs.

The above architecture has been proven to be effective in solving

graph alignment [20]. With regard to the hardness of GED com-

putation, 𝑐 parameter matrices𝑊1,𝑊2, · · · ,𝑊𝑐 are concurrently

deployed to further enhance the expressive ability of GEDGNN:

𝐴 = [𝐻1𝑊1𝐻
⊤
2 , 𝐻1𝑊2𝐻

⊤
2 , · · · , 𝐻1𝑊𝑐𝐻

⊤
2 ],

where 𝑐 is a hyper-parameter in this module.

Since 𝐴 becomes a 3-dimensional vector of size |𝑉1 | × |𝑉2 | ×

𝑐 , a multi-layer perceptron (MLP) is adopted to decrease the last

dimension of 𝐴 from 𝑐 to 1. Specifically, the MLP consists of three

fully connected layers of size (𝑐, 2𝑐), (2𝑐, 𝑐) and (𝑐, 1) respectively.

3.2.2 GED Value Prediction. In GEDGNN, a cost matrix 𝐴𝑐𝑜𝑠𝑡 ∈

R |𝑉1 |× |𝑉2 | is generated by the cross matrix module for the given

graph pair (𝐺1,𝐺2).𝐴𝑐𝑜𝑠𝑡 [𝑢] [𝑣] denotes the cost of edit operations

caused by the node pair (𝑢, 𝑣) for𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2. Moreover, a match-

ing matrix 𝐴𝑚𝑎𝑡𝑐ℎ is generated by another cross matrix module,

which is supervised by the ground-truth matching matrix𝑀∗. It is

a real matrix where each value is in (0, 1). During the training pro-

cess, a binary cross entropy loss is used to minimize the difference

between 𝐴𝑚𝑎𝑡𝑐ℎ and 𝑀∗, hence 𝐴𝑚𝑎𝑡𝑐ℎ can be close to 𝑀∗ when

GEDGNN is well trained. Since GED computation involves all node

pairs, we smooth the values in 𝐴𝑚𝑎𝑡𝑐ℎ by a row softmax function

so as to capture the importance of each node pair:

∀𝑟𝑜𝑤 𝑢, 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑚𝑎𝑡𝑐ℎ) [𝑢] [𝑣] =
exp (𝐴𝑚𝑎𝑡𝑐ℎ [𝑢] [𝑣])

∑︁

𝑣′ exp (𝐴𝑚𝑎𝑡𝑐ℎ [𝑢] [𝑣
′])

.
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Figure 2: GEDGNN Architecture. Three colored areas denote the GNN backend, GED prediction and model training.

Combining these two matrices, we design the cost matrix model to

predict the GED value as follows:

𝐺𝐸𝐷 (𝐺1,𝐺2) = 𝑓 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑚𝑎𝑡𝑐ℎ) · 𝐴𝑐𝑜𝑠𝑡 + 𝑏𝑖𝑎𝑠) , (1)

where 𝑓 is a parameter-free function that adjusts the result’s scale.

Intuitively, 𝐴𝑐𝑜𝑠𝑡 [𝑢] [𝑣] denotes the cost of edit operations caused

by the node pair (𝑢, 𝑣), and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑚𝑎𝑡𝑐ℎ) [𝑢] [𝑣] reveals the

importance of this node pair. The cost model sums up all partial

cost by weight and uses it to predict 𝐺𝐸𝐷 (𝐺1,𝐺2).

The cost model is a generalization of existing methods which

calculate GED by the partial cost of node pairs. Compared to our

smooth matrix 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑚𝑎𝑡𝑐ℎ), classical greedy algorithms [10,

24, 25] use a hard 0-1 matrix where the number of 1s is exactly

min( |𝑉1 |, |𝑉2 |) and each row and column contains at most one 1 in-

stead, which corresponds to a maximum matching of𝐺1,𝐺2. There-

fore, the final result of greedy algorithms merely depends on several

values in the cost matrix. At the cost of poor solution quality, this

setting greatly simplifies the GED calculation and reduces the time

complexity of greedy algorithms. Using the sigmoid function 𝜎 to

get a similarity score in (0, 1), the formula of cost matrix model (Eq.

1) can be rewritten as follows:

𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒 (𝐺1,𝐺2) = 𝜎 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑚𝑎𝑡𝑐ℎ) · 𝐴𝑐𝑜𝑠𝑡 + 𝑏𝑖𝑎𝑠) .

Since both the matching and cost matrices come from the cross

matrix module, which mainly captures the node-to-node informa-

tion between𝐺1 and𝐺2, a neural tensor network (NTN) is applied

to calculate the bias value. The NTN module receives the graph

embeddings of 𝐺1 and 𝐺2 as input, and outputs a scalar. It is used

in previous studies [2, 32] to capture the graph-level information.

3.3 Model Training

Since we aim to predict the GED value and find a node matching

(for generating graph edit path) at the same time, the loss function

of GEDGNN should contain two parts, L𝑚𝑎𝑡𝑐ℎ and L𝑣𝑎𝑙𝑢𝑒 , which

denote the loss of matching and value prediction respectively. 𝜆 is

a trade-off hyper-parameter:

L = L𝑚𝑎𝑡𝑐ℎ + 𝜆 · L𝑣𝑎𝑙𝑢𝑒 . (2)

A. Matching Loss. In GEDGNN, the ground-truth matching is

used to supervise matching matrix training. Given (𝐺1,𝐺2) with a

ground-truth matching𝑀∗ (i.e.,𝐺𝐸𝐷 (𝐺1,𝐺2, 𝑀
∗) = 𝐺𝐸𝐷 (𝐺1,𝐺2)),

we first convert𝑀∗ to a 0-1 matching matrix of size |𝑉1 | × |𝑉2 |:

𝑀∗01 [𝑢] [𝑣] =

{︃

1 (𝑢, 𝑣) ∈ 𝑀∗

0 (𝑢, 𝑣) ∉ 𝑀∗

Recall that after the final sigmoid layer of the MLP in the cross

matrix module, each value in the matching matrix is in the range

(0, 1). Hence, we adopt the binary cross entropy loss between the

matching matrix 𝐴𝑚𝑎𝑡𝑐ℎ and the ground-truth matrix 𝑀∗01 as the

matching loss:

L𝑚𝑎𝑡𝑐ℎ = BCELoss(𝐴𝑚𝑎𝑡𝑐ℎ, 𝑀
∗
01)

=
1

|𝑉1 | · |𝑉2 |

∑︂

𝑢,𝑣

( 𝑀∗01 [𝑢] [𝑣] · log𝐴𝑚𝑎𝑡𝑐ℎ [𝑢] [𝑣]

+ (1 −𝑀∗01 [𝑢] [𝑣]) · log(1 −𝐴𝑚𝑎𝑡𝑐ℎ [𝑢] [𝑣]) ).

(3)

B. Value Loss. Since the machine learning model is inclined to

predict the value in a small range, it is a good idea to convert

the ground-truth GED value into a similarity score before train-

ing. There are several conversion functions in previous studies. In

GEDGNN, we adopt the following linear function [32]:

𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒 (𝐺1,𝐺2) =
𝐺𝐸𝐷 (𝐺1,𝐺2)

max ( |𝑉1 |, |𝑉2 |) +max ( |𝐸1 |, |𝐸2 |)
.

Since the denominator is an upper bound of GED, the similarity

score must fall in [0, 1]. After this conversion, we can simply use

the minimum squared error (MSE) to denote the value loss:

L𝑣𝑎𝑙𝑢𝑒 =
(︁

𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒 (𝐺1,𝐺2) − 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒∗ (𝐺1,𝐺2)
)︁2
, (4)

where 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒∗ (𝐺1,𝐺2) denotes the ground-truth similarity score.

4 POST-PROCESSING TO GENERATE GRAPH
EDIT PATH

In this section, we introduce how to extract a high-quality node

matching from the output matching matrix 𝐴𝑚𝑎𝑡𝑐ℎ via a post-

processing algorithm in order to generate a graph edit path.
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4.1 Extracting Ground-truth Matching

Since 𝐴𝑚𝑎𝑡𝑐ℎ is very close to the ground-truth matching matrix

𝑀∗ when GEDGNN is well trained, their dot product,𝑀∗ · 𝐴𝑚𝑎𝑡𝑐ℎ ,

should be the largest compared to other possible node matchings

between 𝐺1 and 𝐺2 in the ideal case. Based on this observation,

we can convert the problem of extracting 𝑀∗ from 𝐴𝑚𝑎𝑡𝑐ℎ to a

weighted bipartite matching problem. Specifically, we construct a

weighted bipartite graph:

𝐺 = (𝑉1,𝑉2,𝑉1 ×𝑉2,𝑤),

where 𝑤 = 𝐴𝑚𝑎𝑡𝑐ℎ denotes the weight of edges in 𝐺 , and define

the weight of a matching𝑀 as the sum weight of edges it contains:

𝑤 (𝑀) =
∑︂

(𝑢,𝑣) ∈𝑀

𝑤 (𝑢, 𝑣) . (5)

For simplicity, we regard a matching 𝑀 as a 0-1 matrix in the

following formulae, hence Eq. 5 can be rewritten as:

𝑤 (𝑀) = 𝑀 · 𝐴𝑚𝑎𝑡𝑐ℎ . (6)

In the ideal case (i.e.,𝐴𝑚𝑎𝑡𝑐ℎ is very close to𝑀∗), we can extract

𝑀∗ from 𝐴𝑚𝑎𝑡𝑐ℎ by finding the maximum weight matching on 𝐺 :

𝑀∗ = arg max
𝑀 ∈M

𝑤 (𝑀), (7)

whereM denotes the set of all maximum bipartite matchings. Since

eachmaximummatching contains the same number of edges (Defin-

ition 4), the one closest to 𝐴𝑚𝑎𝑡𝑐ℎ results in the maximum dot

product. But in the real case, the output matching matrix 𝐴𝑚𝑎𝑡𝑐ℎ

may have some difference from𝑀∗ as the training loss is not 0. Thus

there is a chance that𝑀∗ is not the maximum weight matching on

𝐺 . We have the following theorem to measure the gap between the

maximum weight and𝑤 (𝑀∗):

Theorem 1. Assume that 𝐴𝑚𝑎𝑡𝑐ℎ = 𝑀∗ +𝐴𝑒𝑟𝑟𝑜𝑟 , we have:

max
𝑀 ∈M

𝑤 (𝑀) −𝑤 (𝑀∗) ≤ max
𝑀 ∈M

(𝑀 −𝑀∗) · 𝐴𝑒𝑟𝑟𝑜𝑟 . (8)

Proof. Replacing 𝐴𝑚𝑎𝑡𝑐ℎ by𝑀∗ +𝐴𝑒𝑟𝑟𝑜𝑟 , it is easy to derive:

max
𝑀 ∈M

𝑀 · 𝐴𝑚𝑎𝑡𝑐ℎ ≤ max
𝑀 ∈M

𝑀 ·𝑀∗ + max
𝑀 ∈M

𝑀 · 𝐴𝑒𝑟𝑟𝑜𝑟 (9)

𝑀∗ · 𝐴𝑚𝑎𝑡𝑐ℎ = 𝑀∗ ·𝑀∗ +𝑀∗ · 𝐴𝑒𝑟𝑟𝑜𝑟 (10)

Since max
𝑀 ∈M

𝑀 ·𝑀∗ = 𝑀∗ ·𝑀∗, (9) − (10) leads to (8) immediately.

□

𝐴𝑒𝑟𝑟𝑜𝑟 is the difference between 𝐴𝑚𝑎𝑡𝑐ℎ and the ground-truth

matching 𝑀∗, which is related to the training loss L𝑚𝑎𝑡𝑐ℎ . If the

scale of 𝐴𝑒𝑟𝑟𝑜𝑟 is small, then the gap between𝑤 (𝑀∗) and the max-

imum matching weight is small. Motivated by Theorem 1, we can

increase the chance of finding𝑀∗ by enumerating several (instead

of one) matchings on 𝐺 with large weights. Thus we propose the

𝑘-best matching framework in Section 4.2 which computes top-𝑘

maximum weight matchings on 𝐺 .

4.2 k-best Matching Framework

4.2.1 Nutshell Framework. Algorithm 1 shows a basic version of

the 𝑘-best matching framework. The main idea is to calculate the

top-𝑘 maximumweight matchings on𝐺 (𝑘-best matchings in short),

then convert them into graph edit paths by 𝐺𝑒𝑛𝑃𝑎𝑡ℎ(𝐺1,𝐺2, 𝑀𝑖 )

(i.e., the method described in Section 2.2) and finally return the

shortest one among the 𝑘 edit paths.

Algorithm 1: 𝑘-best Matching Framework

Input :a pair of graphs (𝐺1,𝐺2), a matching matrix

𝐴𝑚𝑎𝑡𝑐ℎ and an integer 𝑘

Output :an edit path from 𝐺1 to 𝐺2

1 Construct 𝐺 = (𝑉1,𝑉2,𝑉1 ×𝑉2, 𝐴𝑚𝑎𝑡𝑐ℎ);

2 𝑀1 ← the maximum weight matching on 𝐺 ;

3 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ ← GenPath(𝐺1,𝐺2, 𝑀1);

4 for 𝑖 ∈ [2, 𝑘] do

5 𝑀𝑖 ← the 𝑖-th maximum weight matching on 𝐺 ;

6 𝑝𝑎𝑡ℎ ← GenPath(𝐺1,𝐺2, 𝑀𝑖);

7 if len(𝑝𝑎𝑡ℎ) < len(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ) then

8 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ ← 𝑝𝑎𝑡ℎ;

9 return 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ;

4.2.2 Improvement. Algorithm 1 simply regards the 𝑘-best match-

ing algorithm as an encapsulated function, which can be further op-

timized if the two separate procedures, computing 𝑘-best matchings

and generating edit paths, can be tightly coupled. In Algorithm 2, we

propose a more powerful version of the 𝑘-best matching framework,

in which GED computation is integrated into the 𝑘-best matching

procedure. As a result, we can prune some bad matchings (whose

weight is large but its corresponding edit path is long) by checking

GED lower bound. Still using 𝑘 iterations (i.e., the same time cost

as Algorithm 1), we can explore more than 𝑘-best matchings by

solution space pruning and find a shorter edit path.

The 𝑘-best matching algorithm works by iteratively splitting

the solution space, and we conduct an extra GED lower bound

checking during the splitting procedure. In the following, we first

give an introduction to the idea of solution space splitting [8] and

the concept of GED lower bound [7, 11], and then present how to

combine them together in Algorithm 2 as the improved framework.

Solution Space Splitting. Let Ω =M𝑚𝑎𝑥 ( |𝑉1 | × |𝑉2 |) denote the

whole solution space, i.e., the set of all maximum node matchings

between𝑉1 and𝑉2. Ω𝐼 ,𝑂 ⊆ Ω [8] denotes the subspace specified by

two disjoint edge subsets 𝐼 and 𝑂 , in which each matching𝑀 must

contain all edges of 𝐼 but none of 𝑂 , i.e.,

Ω𝐼 ,𝑂 = {𝑀 | 𝑀 ∈ Ω, 𝐼 ⊆ 𝑀 and 𝑂 ∩𝑀 = ∅}.

Let𝑀1 and𝑀2 denote the best and second best matching in Ω𝐼 ,𝑂

respectively. By choosing an arbitrary edge 𝑒 in𝑀1 but not in𝑀2,

Ω𝐼 ,𝑂 can be further split into two subspaces Ω𝐼∪{𝑒 },𝑂 and Ω𝐼 ,𝑂∪{𝑒 }

with the following properties:

• Ω𝐼∪{𝑒 },𝑂 ∪ Ω𝐼 ,𝑂∪{𝑒 } = Ω𝐼 ,𝑂

• Ω𝐼∪{𝑒 },𝑂 ∩ Ω𝐼 ,𝑂∪{𝑒 } = ∅

• 𝑀1 remains to be the best matching inM𝐼∪{𝑒 },𝑂 .

• 𝑀2 becomes the best matching inM𝐼 ,𝑂∪{𝑒 } .
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Based on [8], we have the following lemma to compute the next

best matching by solution space splitting.

Lemma 1. Let𝑀1, 𝑀2, · · · , 𝑀𝑘 denote the 𝑘-best matchings. Given

a partition of the whole solution space, Ω = Ω𝐼1,𝑂1
∪ Ω𝐼2,𝑂2

∪ · · · ∪

Ω𝐼𝑘 ,𝑂𝑘
, which satisfies that 𝑀𝑖 is exactly a best matching in the

subspace Ω𝐼𝑖 ,𝑂𝑖
for each 𝑖 ∈ {1, 2, · · · , 𝑘}, one of the second best

matchings of these 𝑘 subspaces is the (𝑘 + 1)-th best matching.

Following Lemma 1, assume that the second best matching of

Ω𝐼𝑖 ,𝑂𝑖
is the (𝑘 + 1)-th best matching, 𝑀𝑘+1, and 𝑒 is an edge in

𝑀𝑖 but not in𝑀𝑘+1. We can further split Ω𝐼𝑖 ,𝑂𝑖
into Ω𝐼𝑖∪{𝑒 },𝑂𝑖

and

Ω𝐼𝑖 ,𝑂𝑖∪{𝑒 } . Use the former to replace Ω𝐼𝑖 ,𝑂𝑖
and regard the latter as

the (𝑘 + 1)-th solution subspace Ω𝐼𝑘+1,𝑂𝑘+1
, then the best matching

of the 𝑖-th solution subspace remains unchanged and that of the

new subspace is𝑀𝑘+1. The condition of Lemma 1 still holds with

𝑘+1. In this way, the problem of finding 𝑘-best matchings is reduced

to iteratively finding the second best matching of a subspace.

GED Lower Bound. A series of methods [7, 11] have been pro-

posed to calculate a lower bound of 𝐺𝐸𝐷 (𝐺1,𝐺2). We adopt the

label set based method which can be calculated in linear time:

𝐺𝐸𝐷𝐿𝐵(𝐺1,𝐺2) = |𝐿(𝑉1) ⊕ 𝐿(𝑉2) | + | |𝐸1 | − |𝐸2 | | , (11)

where 𝐿(𝑉1) and 𝐿(𝑉2) denote the multi-set of node labels of 𝐺1

and𝐺2 respectively, and ⊕ denotes a multi-set function that𝐴⊕𝐵 =

𝐴∪𝐵 −𝐴∩𝐵. Since we do not consider edge label in this paper, the

lower bound on edge is simply set as the difference between |𝐸1 |

and |𝐸2 |. Eq. 11 can be easily extended to the cases with edge label

or without node label. Furthermore,𝐺𝐸𝐷𝐿𝐵(𝐺1,𝐺2, 𝐼 ) denotes the

lower bound of edit distance in a solution subspace specified by 𝐼 :

𝐺𝐸𝐷𝐿𝐵(𝐺1,𝐺2, 𝐼 ) ≤ min
𝑀 ∈Ω𝐼 ,∅

𝐺𝐸𝐷 (𝐺1,𝐺2, 𝑀),

which can be calculated by adding up the number of edit operations

caused by 𝐼 and the standard GED lower bound on remaining parts

of 𝐺1 and 𝐺2. Here we do not consider the forbidden edge set 𝑂 of

a solution subspace since it is hard to integrate𝑂 into lower bound

computation efficiently.

Lemma 2. In the 𝑘-best matching framework, once the GED lower

bound of a subspace 𝑠𝑝 is greater or equal to the length of the current

best path, there is no need to further split 𝑠𝑝 .

Lemma 2 implies that we can prune some solution subspaces

on-the-fly according to their GED lower bounds and the current

best solution. By skipping these useless subspaces, the procedure

of enumerating 𝑘-best matchings is accelerated and we actually

explore more than 𝑘 matchings within 𝑘 iterations.

Combining solution space splitting with GED lower bound, the

improved 𝑘-best matching framework is presented in Algorithm 2.

Lines 3-9 initialize the first solution subspace 𝑠𝑝1, where 𝑠𝑝1 .𝑀1

and 𝑠𝑝1 .𝑀2 denote the best and second-best matchings in 𝑠𝑝1 re-

spectively, which can be found in 𝑂 (𝑛3) time by many classical

algorithms. An introduction to implementing GetBestMatching()

and GetSecondBestMatching() is given in [8]. Denote by 𝑠𝑝1 .𝑙𝑏,

the GED lower bound of 𝑠𝑝1 is calculated by the function GEDLB()

according to Eq. 11. Moreover, Update(BestPath, path) means re-

placing the current best solution 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ by 𝑝𝑎𝑡ℎ if 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ is

None or 𝑝𝑎𝑡ℎ is shorter. Lines 10-20 conduct 𝑘 iterations of solu-

tion space splitting. In each iteration, it first enumerates existing

Algorithm 2: Improved 𝑘-best Matching Framework

Input :a pair of graphs (𝐺1,𝐺2), a matching matrix

𝐴𝑚𝑎𝑡𝑐ℎ and an integer 𝑘

Output :an edit path from 𝐺1 to 𝐺2

1 Construct 𝐺 = (𝑉1,𝑉2,𝑉1 ×𝑉2, 𝐴𝑚𝑎𝑡𝑐ℎ);

2 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ ← None;

3 Initially, 𝑠𝑝1 is the whole solution space:

4 (𝑠𝑝1 .𝐼 , 𝑠𝑝1 .𝑂) ← (∅, ∅);

5 𝑠𝑝1 .𝑀1 ← GetBestMatching(𝐺);

6 𝑠𝑝1 .𝑀2 ← GetSecondBestMatching(𝐺 , 𝑠𝑝1);

7 𝑠𝑝1 .𝑙𝑏 ← GEDLB(𝐺1,𝐺2, 𝑠𝑝1 .𝐼);

8 Update(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ, GenPath(𝐺1,𝐺2, 𝑠𝑝1 .𝑀1));

9 Update(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ, GenPath(𝐺1,𝐺2, 𝑠𝑝2 .𝑀2));

10 for 𝑡 ∈ [2, 𝑘] do

11 (𝑖𝑑, 𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡) ← (𝑁𝑜𝑛𝑒, −∞);

12 for 𝑠𝑝𝑖 ∈ [𝑠𝑝1, 𝑠𝑝2, · · · , 𝑠𝑝𝑡−1] do

13 if 𝑠𝑝𝑖 .𝑙𝑏 < len(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ) then

14 𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑠𝑝𝑖 .𝑀2 · 𝐴𝑚𝑎𝑡𝑐ℎ ;

15 if 𝑤𝑒𝑖𝑔ℎ𝑡 > 𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 then

16 (𝑖𝑑, 𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡) ← (𝑖, 𝑤𝑒𝑖𝑔ℎ𝑡);

17 (𝑠𝑝𝑖𝑑 , 𝑠𝑝𝑡 ) ← SpaceSplit(𝐺, 𝑠𝑝𝑖𝑑);

18 𝑠𝑝𝑖𝑑 .𝑙𝑏 ← GEDLB(𝐺1,𝐺2, 𝑠𝑝𝑖𝑑 .𝐼);

19 Update(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ, GenPath(𝐺1,𝐺2, 𝑠𝑝𝑖𝑑 .𝑀2));

20 Update(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ, GenPath(𝐺1,𝐺2, 𝑠𝑝𝑡 .𝑀2));

21 return 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ;

22 Function SpaceSplit(𝐺, 𝑠𝑝)

23 Choose an arbitrary edge 𝑒 ∈ 𝑠𝑝.𝑀1 but 𝑒 ∉ 𝑠𝑝.𝑀2;

24 Split 𝑠𝑝 into two subspaces by using 𝑒 or not;

25 Set 𝑠𝑝𝑒 as the one using 𝑒 :

26 (𝑠𝑝𝑒 .𝐼 , 𝑠𝑝𝑒 .𝑂) ← (𝑠𝑝.𝐼 ∪ {𝑒}, 𝑠𝑝.𝑂);

27 𝑠𝑝𝑒 .𝑀1 ← 𝑠𝑝.𝑀1;

28 𝑠𝑝𝑒 .𝑀2 ← GetSecondBestMatching(𝐺 , 𝑠𝑝𝑒);

29 Set 𝑠𝑝¬𝑒 as the one not using 𝑒 :

30 (𝑠𝑝¬𝑒 .𝐼 , 𝑠𝑝¬𝑒 .𝑂) ← (𝑠𝑝.𝐼 , 𝑠𝑝.𝑂 ∪ {𝑒});

31 𝑠𝑝¬𝑒 .𝑀1 ← 𝑠𝑝.𝑀2;

32 𝑠𝑝¬𝑒 .𝑀2 ← GetSecondBestMatching(𝐺 , 𝑠𝑝¬𝑒);

33 𝑠𝑝¬𝑒 .𝑙𝑏 ← 𝑠𝑝.𝑙𝑏;

34 return (𝑠𝑝𝑒 , 𝑠𝑝¬𝑒 );

subspaces to find whose second-best matching has the maximum

weight, and then splits this subspace according to Lemma 1. Note

that, by checking the GED lower bound with 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ in line 13,

some useless subspaces are pruned. Lines 22-34 are the detailed

implementation of solution space splitting as introduced above.

To summarize, there are two main improvements compared to

the basic version (Algorithm 1). 1. By Lemma 2 we can prune some

useless solution spaces using GED lower bound. Using the same 𝑘

iterations, we can explore more than 𝑘-best matchings by solution

space pruning. 2. The second-best matchings of all subspaces are

also used to update the best graph edit path by lines 9, 19-20 in

Algorithm 2. Recall that the time complexity of generating an edit

path (GenPath()) is merely 𝑂 (𝑛 +𝑚) whereas that of finding a
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second-best matching is 𝑂 (𝑛3). Since the second-best matching of

each subspace are a by-product of Algorithm 2 with large weights,

we generate the corresponding edit paths for them at linear cost to

see if they improve the solution. Thus we essentially generate 2𝑘

edit paths in 𝑘 iterations and report the shortest one.

4.3 Improve GED Prediction using Edit Path

After extracting a high-quality solution𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ from thematching

matrix by the 𝑘-best matching framework, a natural idea is using it

to further improve the GED prediction.

Lemma 3. Given a graph pair (𝐺1,𝐺2) that 𝐺𝐸𝐷 (𝐺1,𝐺2) = 𝑑∗,

the 𝑘-best matching framework finds a range bound of 𝑑∗:

𝐺𝐸𝐷𝐿𝐵(𝐺1,𝐺2) ≤ 𝑑∗ ≤ 𝑙𝑒𝑛(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ)

Based on Lemma 3, the 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ can tighten the predicted GED

value by GEDGNN if it is not in the range. We observe that the

GED lower bound is usually too loose to use in real cases. If the

predicted GED value is less than 𝑑∗, it may not be improved by the

lower bound. If the predicted GED is larger than 𝑑∗, it is likely to

be tightened by 𝑙𝑒𝑛(𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ). Towards this end, we can further

fine-tune the model by adding an extra loss to Eq. 2:

L = L𝑚𝑎𝑡𝑐ℎ + 𝜆 · L𝑣𝑎𝑙𝑢𝑒 − 𝑆𝑖𝑚𝑆𝑐𝑜𝑟𝑒 (𝐺1,𝐺2), (12)

where a larger predicted similarity score leads to a lower loss, so

that the fine-tuned model is inclined to predict large GED values.

4.4 Time Complexity Analysis

To find an edit path for a graph pair (𝐺1,𝐺2), the whole pipeline

of GEDGNN consists of three parts: model training, model testing

(predicting GED and the matching matrix) and the post-processing

algorithm. The cost of one forward passing on GEDGNN mainly

consists of GNN backend and the cross matrix module. Here we use

𝑛 = max( |𝑉1 |, |𝑉2 |) and𝑚 = max( |𝐸1 |, |𝐸2 |) to represent the input

size. Denote the number of GNN layers by 𝐿 and the maximum di-

mension of one layer by 𝑑 , it takes𝑂 (𝐿𝑛𝑑2 +𝐿𝑚𝑑) time for GNN to

generate node embedding by message passing. The number of hid-

den layers of the cross matrix module is 𝑐 according to Section 3.2.1,

thus it takes 𝑂 (𝑐 (𝑛𝑑2 + 𝑛2𝑑)) time to compute 𝐻1𝑊𝑖𝐻
⊤
2 for 𝑖 =

1, . . . , 𝑐 and 𝑂 (𝑐2𝑛2) time to go through the MLP. In total, the time

cost of one forward passing is𝑂 (𝐿𝑛𝑑2 + 𝐿𝑚𝑑 + 𝑐𝑛𝑑2 + 𝑐𝑛2𝑑 + 𝑐2𝑛2).

Since the hyper-parameters 𝐿, 𝑑 and 𝑐 are fixed to constant val-

ues in our model, the time complexity of one forward passing can

be simplified as 𝑂 (𝑛2) in terms of the input size. Then the time

cost of training (testing) can be regarded as the product of training

(testing) data size and the cost of one forward passing. As for the

Table 1: Statistics of Graph Data Sets

#graphs |𝑉 | |𝐸 | |𝑉 |𝑚𝑎𝑥 |𝐸 |𝑚𝑎𝑥

AIDS 700 8.9 8.8 10 14
Linux 1000 7.6 6.9 10 13
IMDB 1500 13 65.9 89 1467

IMDB-small 148 8.1 25.2 10 45
IMDB-large 152 19.1 117.1 54 858

post-processing algorithm, since it takes 𝑂 (𝑛 +𝑚) time to gener-

ate a path from a node matching and 𝑂 (𝑘𝑛3) time to find 𝑘-best

matchings [8], the total post-processing cost is 𝑂 (𝑘𝑛3).

5 EXPERIMENT

5.1 Experimental Settings

5.1.1 Data Sets. The proposed algorithms are evaluated on three

real graph data sets: AIDS, Linux and IMDB. The statistics of these

graph data sets are listed in Table 1, where #𝑔𝑟𝑎𝑝ℎ𝑠 , |𝑉 |, |𝐸 |, |𝑉 |𝑚𝑎𝑥

and |𝐸 |𝑚𝑎𝑥 denote the number of graphs, the average andmaximum

number of vertices and edges respectively. Each graph in AIDS

represents a chemical compound where nodes and edges denote

atoms and covalent bonds respectively. Each node has a single label

such as C, N, O, Cu, etc. Linux [1, 2] contains program dependence

graphs generated from Linux kernel. Each graph is unlabelled and

corresponds to a Linux kernel function, where nodes and edges

denote statements and the dependency among them respectively.

IMDB [1, 2, 32] is a larger data set which contains graphs with more

than 10 nodes. Each graph in IMDB is an unlabeled ego-network

where each node denotes a film actor/actress and each edge denotes

a co-star relation. In addition, we generate some synthetic power-

law graphs in larger scale for performance evaluation. We vary the

number of nodes in the power-law graphs from 25 to 400.

Ground-truth Data Generation. Since all graphs in AIDS and

Linux have no more than 10 nodes, we simply use exhaustive search

to generate the ground-truth data on these graphs. But due to the

NP-hardness of GED computation, the ground-truth data of IMDB

is usually generated in a sub-optimal manner instead. An efficient

training technique is proposed in TaGSim [1] that uses synthetic

graph pairs instead of all graph pairs in a given data set. Specifically,

for each graph 𝐺 , we can randomly apply Δ graph edit operations

on it and get a synthetic graph 𝐺 ′. It is clear that 𝐺𝐸𝐷 (𝐺,𝐺 ′) ≤ Δ.

If the size of 𝐺 is large enough w.r.t. Δ and these operations edit

distinct nodes/edges, the probability that 𝐺𝐸𝐷 (𝐺,𝐺 ′) < Δ is quite

low. In this case, Δ can be approximately regarded as the ground-

truth GED of this synthetic graph pair (𝐺,𝐺 ′).

We generate ground-truth data in IMDB by combining the effi-

cient training technique and the classical exact search method. All

graphs in IMDB are partitioned into two sets, small graphs (with

10 or fewer nodes) and large graphs (with more than 10 nodes). For

small graphs, we generate all pairwise ground-truth data by exact

search. For each large graph, 100 synthetic graphs are generated

using the above technique. The number of edit operations Δ is

randomly distributed in (0, 10]. If the graph contains no more than

20 nodes, the range is further limited in (0, 5]. The ground-truth

data for the power-law graphs is generated in a similar way.

Data Partitioning. Graphs in each data set are partitioned into

training set, validation set and testing set in ratio of 6 : 2 : 2. In

AIDS and Linux, all graph pairs in the training set are used for

model training. For IMDB, assume that there are 𝑆 small graphs and

𝐿 large graphs in the training set, then 𝑆 × 𝑆 + 𝐿 × 100 graph pairs

are used for training in total. The training set can be regarded as a

graph database and graphs in the validation/testing set are regarded

as queries. For each query graph, we can search the most similar

graph in the database by the predicted GED value. Following this

classical setting [2, 32], for each graph 𝐺 in the validation/testing
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Table 2: Overall Performance on Real Graph Data Sets

GED Ranking Graph Edit Path Feasible Time
AIDS

MAE Accuracy 𝜌 𝜏 p@10 p@20 Precision Recall F1 Rate (s/100p)
SimGNN 0.914 33.8% 0.832 0.693 62.4% 72.0% - - - 67.6% 0.283
TaGSim 0.841 36.6% 0.850 0.715 64.6% 74.6% - - - 66.2% 0.123
GPN 0.902 35.3% 0.822 0.684 58.6% 70.4% - - - 66.8% 0.326

GEDGNN-value 0.773 39.7% 0.876 0.751 71.6% 77.9% - - - 62.2% 0.408
Greedy 9.227 1.3% 0.464 0.362 50.2% 57.2% 32.5% 59.6% 41.2% 100.0% 110.000
Noah 3.078 6.3% 0.730 0.610 70.9% 75.1% 49.9% 62.0% 54.7% 100.0% 168.390

GEDGNN-matching 1.427 44.3% 0.806 0.704 85.5% 85.0% 68.5% 74.3% 71.0% 100.0% 122.900

GED Ranking Graph Edit Path Feasible Time
Linux

MAE Accuracy 𝜌 𝜏 p@10 p@20 Precision Recall F1 Rate (s/100p)
SimGNN 0.456 59.6% 0.933 0.844 89.1% 92.0% - - - 80.0% 0.244
TaGSim 0.391 66.8% 0.924 0.837 81.6% 87.8% - - - 82.8% 0.117
GPN 0.135 88.4% 0.962 0.898 95.6% 96.9% - - - 92.4% 0.321

GEDGNN-value 0.094 91.7% 0.963 0.903 96.2% 97.6% - - - 96.7% 0.380
Greedy 5.252 7.6% 0.708 0.618 74.5% 79.5% 42.7% 77.9% 53.6% 100.0% 1.000
Noah 1.747 8.1% 0.874 0.802 90.9% 93.6% 79.8% 87.5% 82.8% 100.0% 77.237

GEDGNN-matching 0.208 91.8% 0.954 0.933 97.2% 97.0% 87.7% 89.6% 88.4% 100.0% 42.300

GED Ranking Graph Edit Path Feasible Time
IMDB-small

MAE Accuracy 𝜌 𝜏 p@10 p@20 Precision Recall F1 Rate (s/100p)
SimGNN 0.979 62.4% 0.938 0.892 93.2% 96.1% - - - 74.7% 0.243
TaGSim 2.387 8.5% 0.893 0.837 90.7% 92.5% - - - 41.2% 0.104
GPN 0.968 26.4% 0.976 0.953 95.7% 98.7% - - - 29.1% 0.308

GEDGNN-value 0.249 84.0% 0.972 0.952 97.5% 98.6% - - - 90.3% 0.379
Greedy 1.534 84.1% 0.844 0.818 93.9% 92.6% 84.4% 89.8% 86.3% 100.0% 1.400
Noah 1.748 27.1% 0.893 0.856 91.2% 93.6% 87.7% 88.5% 88.0% 100.0% 270.536

GEDGNN-matching 0.226 96.3% 0.977 0.966 97.0% 97.8% 80.9% 82.0% 81.3% 100.0% 25.200

GED Ranking Graph Edit Path Feasible Time
IMDB-large

MAE Accuracy 𝜌 𝜏 p@10 p@20 Precision Recall F1 Rate (s/100p)
SimGNN 1.470 23.2% 0.480 0.364 57.8% 63.0% - - - 54.1% 0.258
TaGSim 3.752 7.4% 0.115 0.090 43.3% 50.3% - - - 20.3% 0.113
GPN 1.591 27.7% 0.551 0.456 54.6% 59.0% - - - 57.5% 0.331

GEDGNN-value 1.398 26.9% 0.629 0.500 69.6% 71.5% - - - 68.5% 0.414
Greedy 24.961 40.4% 0.671 0.602 73.8% 72.4% 42.3% 75.8% 45.3% 100.0% 4.000
Noah 18.596 49.5% 0.547 0.525 60.3% 65.8% 45.5% 80.4% 48.9% 100.0% 10132.777

GEDGNN-matching 6.078 67.9% 0.795 0.751 86.6% 84.8% 74.6% 91.4% 77.3% 99.9% 264.800

set, 100 graphs are randomly chosen from the training set to form

100 graph pairs for validation/testing.

5.1.2 Competitors. Depending on whether an algorithm can pro-

duce an edit path or not, all competitors are divided into two groups:

1. End-to-end GED learning model. Such models are mostly

based on graph neural networks and only predict the GED value of

a given graph pair, including (1) SimGNN [2], the first work that

uses graph neural networks to predict GED value. (2) TaGSim [1],

the state-of-the-art GED learning model. (3) GPN, the graph path

network (GPN) proposed in Noah [32]. Although it is originally

designed to supervise the A*-beam search, its performance in GED

value prediction is similar to that of TaGSim.

2. Node matching algorithms. This type of algorithm calculates

𝐺𝐸𝐷 (𝐺1,𝐺2) by finding a node matching between𝐺1 and𝐺2, from

which an edit path can be generated, including (1) Greedy. We

adopt the best setting of Hungarian [17] and VJ [15] as Greedy,

which is the baseline graph edit path construction algorithm. (2)

Noah [32]. It uses GPN to supervise the A*-beam search, which is

the state-of-the-art algorithm for finding graph edit paths.

We create two variants of our method for comparison with the

above two groups of competitors respectively ś GEDGNN-value

which uses the end-to-end learning model GEDGNN to predict

the GED value, and GEDGNN-matching which uses GEDGNN to

predict a matching matrix, and then applies the post-processing

algorithm to generate an edit path.

5.1.3 Detailed Setup.

Testbed. All experiments are conducted on a Windows PC using

the i7-8750H CPU. All algorithms are implemented in Python and

the machine learning models are implemented using PyTorch and

PyTorch Geometric.

Metrics. To evaluate the performance of our model against other

baselines, we consider the following metrics:

1. Precision of GED Prediction: we use Mean Absolute Error

(MAE) and Accuracy as metrics. Given a predicted GED value 𝑑

and the ground-truth 𝑑∗ on each testing graph pair, MAE is defined

as |𝑑 − 𝑑∗ | over all testing graph pairs, and Accuracy is defined as

the ratio of the testing pairs with 𝑟𝑜𝑢𝑛𝑑 (𝑑) = 𝑑∗. 𝑟𝑜𝑢𝑛𝑑 (𝑑) rounds

𝑑 to the nearest integer and is used here since the predicted GED

by machine learning models is a real value.

2. Ranking Metrics: for each testing graph 𝐺 , 100 graphs are

chosen to form graph pairs with 𝐺 . These graphs can be ranked

according to the graph edit distance between𝐺 and them. Therefore,

we use Spearman’s Rank Correlation Coefficient 𝜌 , Kendall’s Rank

Correlation Coefficient 𝜏 , and precision at top 10 and top 20 (𝑝@10,

𝑝@20) as the evaluation metrics.

3. Path Accuracy: we report the precision, recall and F1-score of

the generated graph edit path compared with the ground-truth path.

For a generated edit path 𝑃 and a ground-truth path 𝑃∗, each of

which can be regarded as a set of operations, we define 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑃∩𝑃∗ |
|𝑃 |

, 𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑃∩𝑃∗ |
|𝑃∗ |

and 𝐹1 =
2·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

.
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Figure 3: Evaluation of the 𝑘-best Matching Framework.

4. Feasible Rate: it denotes the ratio of the testing pairs with

𝑟𝑜𝑢𝑛𝑑 (𝑑) ≥ 𝑑∗. It measures the percentage of predicted GED values

that can lead to a feasible edit path.

5. Time Efficiency: we report the running time in seconds when

computing GED for 100 graph pairs and denote it as Time (s/100p).

Hyper-parameter Settings. A 3-layer GIN is used as the GNN

backend of GEDGNN, and the output feature size of each layer is

128, 64 and 32 respectively. We adopt 16 parameter matrices whose

size is 32 × 32 in each cross matrix module. In the 𝑘-best matching

framework, the number of iterations 𝑘 is set as 100. In the loss

function, the weight 𝜆 of value loss is set as 10 in AIDS and Linux,

and set as 1 in other data sets. During training, the dropout rate,

learning rate and weight decay are set as 0.5, 0.001 and 5 × 10−4

respectively. All machine learning models are fully trained for 10

to 20 epochs, until the decrease of training loss is less than 0.001.

5.2 Comparison with State-of-the-art Methods

Table 2 presents the performance of all methods on the real graphs.

The best results in each group are highlighted in bold.

5.2.1 GED Precision and Ranking Metrics.

GED Learning Models.Most learning models can achieve a quite

low MAE in GED value prediction, e.g., MAE < 1.0 for small graphs

and MAE < 1.6 for large graphs. We observe that the state-of-

the-art model TaGSim only has a reasonably good performance

on AIDS where graph nodes have labels, but performs poorly on

other data sets. This is because the type-aware GED proposed in

TaGSim degenerates to the standard GED when graphs have no

labels. GPN outperforms TaGSim in unlabeled graphs since it

uses graph isomorphism network (GIN) as backend, which is more

powerful than the graph aggregation layer (GAL) of TaGSim. Our

proposed model GEDGNN-value achieves the minimum MAE in

all data sets. Compared to the best result of SimGNN, TaGSim

andGPN, the GEDMAE of our methodGEDGNN-value decreases

by 8.1%, 30.4%, 74.3% and 4.9% on AIDS, Linux, IMDB-small and

IMDB-large respectively. It also achieves the highest accuracy and

best performance in ranking metrics in most cases.

NodeMatchingAlgorithms.Our proposed algorithmGEDGNN-

matching greatly outperforms the other two node matching meth-

ods in all data sets. Compared to the best result of Greedy and

Noah, the GED MAE decreases by 53.6%, 88.1%, 85.3% and 67.3%

on AIDS, Linux, IMDB-small and IMDB-large respectively. It also

achieves the highest accuracy and best performance in ranking

metrics in all data sets.

We observe the MAE of node matching algorithms is generally

larger than that of learning models, since finding an actual edit path

is much harder than predicting GED value only, which is especially

obvious for larger graphs in IMDB-large. However, the performance

of our methodGEDGNN-matching is competitive even compared

with GED learning models. In IMDB-small, GEDGNN-matching

achieves the smallest MAE among all methods.

We also observe in IMDB-large the accuracy of node matching

algorithms is higher than that of learning models although the MAE

of the former group is also larger. This is because the absolute error

of GED for a few testing graph pairs is very large, e.g., |𝑑 − 𝑑∗ | =

130 for a large graph with 40 nodes, which makes the MAE large.

However, formost testing graph pairs, the predicted GED is accurate

w.r.t. 𝑑∗, which explains the good performance in accuracy.

5.2.2 Path Accuracy. GEDGNN-matching achieves the highest

precision, recall and F1-score of the generated graph edit path on

AIDS, Linux and IMDB-large. Please note that multiple graph edit

paths of the minimum length may exist, and each of such paths can

be regarded as a ground-truth path according to Definition 2. Thus

we generate 10 graph edit paths of the minimum length (if there

exist) for each testing graph pair as the ground truth, and report

the best measures after we compare our graph edit path with each

ground-truth edit path. For the models which only predict the GED

value but cannot generate edit paths, the path accuracy metrics do

not apply to them and we use ł-ž to denote this.

5.2.3 Feasible Rate. As expected, the feasible rates of all GED learn-

ing models are less than 100% as they may predict a GED value

𝑑 ≤ 𝑑∗. In principle, the feasible rates of all node matching al-

gorithms should be exactly 100% since they output an upper bound

of GED as discussed before. However, we can see that the feasible

rate of GEDGNN-matching on IMDB-large is 99.9%. Recall that

the ground-truth GED value of IMDB-large is obtained by generat-

ing synthetic graph pairs by applying △ graph edit operations. Such

pseudo ground-truth may be larger than the true GED value with

a very low probability. For such cases, GEDGNN-matching can

find a better solution than the pseudo ground-truth, thus having a

feasible rate of 99.9%. This shows a merit of GEDGNN-matching,

i.e., it can find a high-quality solution which helps improve the

pseudo ground-truth.
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Figure 4: Accuracy and Efficiency on Large Power-law Graphs.

5.2.4 Time Efficiency. We report the testing and post-processing

time in seconds per 100 testing graph pairs in Table 2. All GED

learning models are very efficient, as their time complexity is𝑂 (𝑛 +

𝑚) when the hyper-parameters are regarded as constant. As our

model GEDGNN-value needs to compute the matching and cost

matrices, its time complexity is𝑂 (𝑛2). Therefore,GEDGNN-value

runs a little bit slower than the other learning models.

Node matching algorithms are much slower than learning mod-

els as they compute GED by finding an edit path. Among the three,

Greedy is the fastest and Noah is the slowest. This is because

Greedy and GEDGNN-matching have polynomial time complex-

ity 𝑂 (𝑛3) and 𝑂 (𝑘𝑛3) respectively, but Noah is a special A*-beam

search algorithm with exponential time complexity. For some test-

ing graphs pairs, Noah cannot finish in 6 hours.

5.3 Evaluation of k-best Matching Framework

In this experiment, we evaluate the effectiveness of our 𝑘-best

matching framework given the matching matrix 𝐴𝑚𝑎𝑡𝑐ℎ produced

by GEDGNN when we vary 𝑘 ∈ [1, 100]. Besides our method

GEDGNN-matching, two matching matrix generators are used

as baseline for comparison: 1) GEDGNN-untrained generates

the matching matrix using an untrained GEDGNN model. In this

case, random initial parameters result in a random matching mat-

rix. 2) Greedy generates the matching matrix using a heuristic

greedy function as Hungarian [17] and VJ [15], which is then fed to

our 𝑘-best matching framework for generating solutions. Figure 3

presents the performance of different methods on AIDS and Linux.

Evaluation of Time Efficiency. Figure 3(a) and (b) report the

average running time in seconds for a testing graph pair. The run-

ning time increases linearly with 𝑘 for all three methods. On Linux,

GEDGNN-matching is the fastest among the three.

Evaluation of Solution Quality.We report the GED MAE in

Figure 3(c) and (d), and the accuracy in Figure 3(e) and (f). Our

method GEDGNN-matching achieves the best performance on

both MAE and accuracy for all 𝑘 values, and Greedy performs the

second. These results prove that GEDGNN can learn a high-quality

matching matrix, which finally produces a short graph edit path by

our 𝑘-best matching framework.

5.4 Performance on Large Power-law Graphs

In this experiment, we generate synthetic power-law graphs of

various sizes (from 25 to 400 nodes) as extreme data and evaluate the

GED accuracy and efficiency. For each graph size, 500 graph pairs

are used for training and testing respectively. Figure 4(a) depicts

the GED relative error, i.e., 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑒𝑟𝑟𝑜𝑟 (𝑑, 𝑑∗) = (𝑑 − 𝑑∗)/𝑑∗ by

GEDGNN-matching, Greedy and Noah. The relative error of our

method is 0.299 when |𝑉 | = 25 and 1.860 when |𝑉 | = 400. It is

much lower than that of Greedy and Noah. The A* search-based

algorithm Noah has a quite poor performance, e.g., its relative error

is 26.448 when |𝑉 | = 25. We do not report its result when |𝑉 | > 100

since it cannot find an edit path of a graph pair within an hour.

In Figure 4(b)-(d) we report the time efficiency when we vary the

graph size, training and testing set size on the power-law graphs,

respectively. First we vary the graph size from 25 to 400 nodes, and

set the training and testing set sizes as 500 graph pairs.We report the

average training time per epoch, testing time and post-processing

time in seconds in Figure 4(b). We can see the post-processing is

the most time consuming as it has 𝑂 (𝑘𝑛3) time complexity. The

testing time grows the slowest since it only has forward passing in

𝑂 (𝑛2) time, whereas the training process conducts both forward

and backward propagation. As the model training can be done

offline, this training time cost is acceptable. Then we fix the graph

size to 100 nodes and vary the training set size from 100 to 500

graph pairs. In Figure 4(c) we can see the training time grows

linearly with the training set size. In Figure 4(d), we fix the graph

size to 100 nodes and vary the test set size from 100 to 500 graph

pairs. The testing and post-processing time grows linearly with the

test set size. These results are consistent with our theoretical time

complexity analysis in Section 4.4.

5.5 Ablation Studies

In this subsection, we conduct several ablation studies to verify the

effectiveness of the key components in our model.

5.5.1 Cross Matrix Module and GED Lower Bound Pruning. In this

experiment, we evaluate the effectiveness of two techniques: the

cross matrix module and GED lower bound pruning. In the cross

matrix module, a weight matrix𝑊 is learned in the training phase.

In this ablation study, we simplify the cross matrix module by

omitting the weight matrix𝑊 .

In Section 4.2, we improve the 𝑘-best matching algorithm by

pruning some useless solution subspaces using the GED lower

bound. In this ablation study, we evaluate the nutshell framework

(Algorithm 1) which does not apply the pruning technique.
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Figure 5: GED MAE in Ablation Studies.

Figure 5(a) depicts the GED MAE on AIDS and Linux by our

original GEDGNN-matching, the one without the cross matrix

module and the one without GED lower bound pruning. If we

disable either technique, the GED MAE becomes larger. The per-

formance decrease is especially notable without the cross matrix

module. It confirms the importance of the cross matrix module.

5.5.2 Varying The Training Set Size. In our previous experiment,

we use all pairs of training graphs for model training for AIDS and

Linux, and the training set consists of both similar and dissimilar

graph pairs, i.e., having diversified GED inputs. In this ablation

study, we vary the training set size by randomly sampling 10%−70%

graph pairs and evaluate its influence on GED computation. Figure

5(b) depicts the GED MAE as we vary the training set size on AIDS

and Linux. We can observe that the MAE decreases as we sample

more graph pairs for training. Sufficient training data that contains

diversified graph pairs does improve the performance.

5.5.3 Fine-tuning Technique. In Section 4.3 we describe how to

further improve GED prediction using an edit path and introduce

an extra loss for fine-tuning in Eq. 12. In this ablation study, we

evaluate the effectiveness of this technique. We use GEDGNN-

improve to denote the GED prediction improved by an edit path,

and GEDGNN-improve-finetune to denote the improved GED

prediction with fine-tuning. For comparison, we also report the

best result from the competitors, denoted as Best of Competitors.

Figure 5(c) reports the GED MAE by different GED prediction

methods on AIDS and Linux. We can observe that GEDGNN-

improve can reduce the MAE fromGEDGNN-value, and the fine-

tuning technique can further improve the solution quality.

5.6 Case Study

We conduct a case study of calculating GED between a six-node

graph𝐺1 and a seven-node graph𝐺2 fromAIDS in Figure 6 and find-

ing an edit path that transforms𝐺1 to𝐺2 by our methodGEDGNN-

matching. The color of a node represents its label.

On the top part of Figure 6, we depict the matching matrix

𝐴𝑚𝑎𝑡𝑐ℎ produced by GEDGNN in a heat map. Each value 𝑥 in

𝐴𝑚𝑎𝑡𝑐ℎ is a real number between 0 and 1. For the ease of presenta-

tion, we plot 𝑖𝑛𝑡 (1000𝑥), e.g., 897 means 0.897 in 𝐴𝑚𝑎𝑡𝑐ℎ .

On the right, we depict the top-4 best node matchings generated

by our 𝑘-best matching framework. In each matching, a cell (𝑖, 𝑗)

with value 1 means node 𝑖 in 𝐺1 matches node 𝑗 in 𝐺2. Under each

matching, we also list the weight𝑤 of this matching and the GED.

We can observe that the 𝑘-best matching framework generates

the top-4 matchings with a decreasing matching weight. Matching

𝑀2 can compute the true GED value of 2. In the bottom part of

Figure 6, we visualize the edit path generated from𝑀2. The node

correspondence is shown by the dashed red lines in Figure 6.

6 RELATED WORK

Classical GED Computation. Classical solutions to GED compu-

tation try to design some algorithms [4, 7] to find exact GED values

given a graph pair. However, due to the NP-hardness [5] of GED

computation, the exact methods suffer from huge computation costs

when the graph size increases. To this end, some heuristics have

been proposed in recent years to provide an accurate estimation to

the real GED. The core idea of early algorithms is simplifying some

procedures of an exact algorithm. For example, in A*-beam search

algorithm [22], the size of the queue is bounded by a 𝑏𝑒𝑎𝑚𝑠𝑖𝑧𝑒 , so

that the new coming nodes are ignored when the queue is full.

GNN-based GED Computation. GNN is a powerful tool to gen-

erate graph embedding, and is widely used in node classification

[13, 16, 27] and graph classification [26, 31], link prediction and solv-

ing classical graph problems such as subgraph counting [28, 34, 35]

and GED computation [1, 2, 32]. SimGNN [2] is an early work that

uses GNN to predict GED. It proposes a neural tensor network

(NTN) module which simply uses the graph level embedding of

a given graph pair as input and outputs a similarity score as the

predicted GED. Please note that in our model GEDGNN, the cross

matrix module receives the node level embedding as input and hence

can explicitly construct a node matching matrix. This essential dif-

ference determines that SimGNN cannot predict the node matching

relation or generate an edit path. The recent work TaGSim [1] cre-

atively splits GED prediction into predicting the number of each

type of graph edit operations, the sum of which is the predicted

GED. However, it proposes a more concise network architecture

using graph aggregation layer (GAL), which cannot generate an

edit path due to the same reason as SimGNN. In essence, Noah [32]

is an A*-beam search algorithm [22] equipped with a GNN model

called graph path network (GPN). Although GPN has a sophistic-

ated loss function that uses both ground-truth GED and edit path

for training, it can merely predict a GED value like SimGNN and

TaGSim. Noah improves A*-beam search by using a pre-trained

GPN as an advanced estimation function and can generate an edit

path, but it still costs exponential time to search for the best node

matching as A*-beam search.
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Figure 6: A Case Study.

Paassen et al. [23] consider a time series of graphs𝐺1,𝐺2, · · · ,𝐺𝑡

and propose a graph edit network which can predict the graph

snapshot at the next time 𝐺𝑡+1 from 𝐺𝑡 . It uses adjacent historical

graph snapshots (𝐺𝑖 ,𝐺𝑖+1) and the corresponding graph edit path

between them to train the model in order to capture the temporal

edit pattern between a graph snapshot and its successor. Then given

𝐺𝑡 , the trained model can predict an edit path and generate𝐺𝑡+1 by

applying the edit path on𝐺𝑡 . It has a different goal from our model:

it predicts𝐺𝑡+1 from𝐺𝑡 based on the learned temporal edit pattern,

whereas our model computes the edit path as short as possible

given a graph pair (𝐺1,𝐺2) with no temporal relation.

Graph/NodeMatching.Many graph problems involve computing

a node matching between two graphs. But node matching is gener-

ated and used for different purposes in different problems such as

graph alignment [20, 33], GED computation [7, 10, 22, 25, 32], sub-

graph matching/counting [24], and image feature matching [9, 14].

Graph alignment is widely used for solving entity resolution, social

network alignment, protein-protein interaction network alignment,

and so on. It is related to GED computation, but these two problems

still have differences in terms of ground truth definition, objective

and matching scope. The ground truth of graph alignment is usu-

ally unique and application specific. In contrast, GED computation

seeks the shortest graph edit path. There may exist multiple graph

edit paths of the same minimum length, each of which can be re-

garded as the ground truth. Accordingly, the objective of graph

alignment is to maximize the node alignment accuracy with respect

to the ground truth, whereas the objective of GED computation is

to minimize the length of the graph edit path. In addition, in terms

of the matching scope, graph alignment may only align a subset

of the nodes between two graphs, while the remaining nodes may

not align with each other. For example, among the users in two

social networks, only a subset of them appear in both networks and

can be aligned. The remaining users only appear in one of the two

social networks and thus cannot be aligned. Such users that only

appear in one social network are not included in the ground truth,

nor considered in performance evaluation. In contrast, GED compu-

tation requires transforming one graph until it is isomorphic to the

other. Thus the GED computation problem cannot be solved well

by existing graph alignment models or graph matching methods

designed for other purposes.

Graph Similarity Computation. Graph similarity computation

is a more general topic, which aims to compute or learn a metric

to measure the similarity between two graphs. GED [5], maximal

common subgraph [6] and other learning-based similarity measures

[3, 18] are all reasonable metrics and can be used for downstream

tasks such as graph similarity search and clustering. A recent survey

[21] gives a comprehensive review of graph similarity learning.

7 CONCLUSION

In this paper, we study how to compute graph edit distance (GED)

with edit path via machine learning models. Unlike existing models

which treat GED computation as a regression task and can only

predict the GED value, we focus on the essential target of GED, i.e.,

how to convert one graph to the other. Specifically, we propose a

novel deep learning framework that solves the GED problem in

a two-step manner: 1) The graph neural network GEDGNN is in

charge of predicting the GED value and a matching matrix; and 2) A

post-processing algorithm based on 𝑘-best matching is used to ex-

tract multiple node matchings from the matching matrix generated

by GEDGNN. The best of themwill finally lead to a high-quality edit

path. The post-processing algorithm is a key innovation that makes

up the gap between what graph neural networks can produce (i.e.,

the matching matrix) and an actual solution to the GED problem.

Extensive experiments confirm the effectiveness of our framework.

With regard to the accuracy of GED value prediction and the qual-

ity of graph edit path, our proposed framework outperforms the

state-of-the-art algorithms significantly.
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