
ZKSQL: Verifiable and E�icient Query Evaluation with
Zero-Knowledge Proofs

Xiling Li
Northwestern University

xiling.li@northwestern.edu

Chenkai Weng
Northwestern University

ckweng@u.northwestern.edu

Yongxin Xu
Northwestern University

yongxinxu2022@u.northwestern.edu

Xiao Wang
Northwestern University

wangxiao@northwestern.edu

Jennie Rogers
Northwestern University
jennie@northwestern.edu

ABSTRACT

Individuals and organizations are using databases to store personal

information at an unprecedented rate. This creates a quandary for

data providers. They are responsible for protecting the privacy of

individuals described in their database. On the other hand, data

providers are sometimes required to provide statistics about their

data instead of sharing it wholesale with strong assurances that

these answers are correct and complete such as in regulatory �lings

for the US SEC and other goverment organizations.

We introduce a system, ZKSQL, that provides authenticated an-

swers to ad-hoc SQL queries with zero-knowledge proofs. Its proofs

show that the answers are correct and sound with respect to the

database’s contents and they do not divulge any information about

its input records. This system constructs proofs over the steps in

a query’s evaluation and it accelerates this process with authen-

ticated set operations. We validate the e�ciency of this approach

over a suite of TPC-H queries and our results show that ZKSQL

achieves two orders of magnitude speedup over the baseline.

PVLDB Reference Format:

Xiling Li, Chenkai Weng, Yongxin Xu, Xiao Wang, and Jennie Rogers.

ZKSQL: Veri�able and E�cient Query Evaluation with Zero-Knowledge

Proofs. PVLDB, 16(8): 1804 - 1816, 2023.

doi:10.14778/3594512.3594513

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/vaultdb/zksql.

1 INTRODUCTION
Databases are ubiquitous and we entrust them with private data

in an ever-increasing diversity of applications. Hence, users are

frequently asking questions about a data provider’s records in con-

texts where they are reticent to share their records. On the other

hand, when clients are using query answers in mission-critical set-

tings–such as census data or unemployment statistics–they need

to be convinced of the soundness of their answers, or that they

are correct and complete. This issue is also becoming increasingly

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 8 ISSN 2150-8097.
doi:10.14778/3594512.3594513

important for outsourced DBMSs where data owners are delegating

more and more of their operations to a cloud service provider.

For example, the US Department of Education (DoE) collects

statistics about student outcomes from domestic universities on

its College Scorecard [24] for prospective students, which includes

graduation rate, average annual cost and median earnings. The DoE

wishes to get these statistics with strong assuances of their cor-

rectness and completeness. At the same time, colleges are required

to protect student con�dentiality. A lack of strong assurances can

result in incidents that undermine user trust in these publications.

For example, in 2022 Columbia University’s ranking in US News

dropped by several positions when it came to light that some of the

statistics they submitted were incorrect [26]. Using conventional

a DBMS, it is di�cult for the DoE to verify statistics provided by

universities. However, if DoE can query these databases directly,

there’s a risk of unauthorized leakage of student records. In this

work, we explore one solution from cryptography to this challenge.

Zero-knowledge (ZK) proofs, proposed in [16, 17], are crypto-

graphic protocols within which a prover, P, convinces a veri�er,V ,

that its results from some computation are correct and complete

without revealing any additional information about its inputs except

that which can be deduced from its results. Interactive protocols

accomplish this via a series of challenge-response rounds. For query-

ing a database, P is the data owner andV is the client. P sendsV a

query answer,�, and a proof of its soundness and completeness. Un-

til recently ZK proofs were too ine�cient to be practical for all but

the simplest applications. In the past few years, the cryptography

community has put substantial research e�ort into making these

protocols more concretely e�cient thereby reducing their overhead

by orders of magnitude [1, 5, 7, 12, 14, 15, 19, 20, 22, 25, 29–31].

In the aforementioned example, a university is the prover and the

DoE is the veri�er. Using interactive ZK proofs, the DoE would ver-

ify those aggregated statistics while learning no individual student

records in the university’s private database.

In this work, we propose a system named ZKSQL or “Zero-

Knowledge proofs over SQL” that provides authenticated, ZK proofs

for one or more query answers with respect to a private database.

ZKSQL enablesV (e.g., the DoE) to get authenticated answers (e.g.,

graduation rate) e�ciently from P (e.g., a university) while P may

be untrusted. Its proofs are with respect to a public commitment

of the private data. They reveal only the schema and cardinality of

each table in the private database. Then, ZKSQL executes protocols

over the authenticated values of committed data.

1804

https://www.acm.org/publications/policies/artifact-review-and-badging-current


ZKSQL traces the path of transformations the query evaluator

takes from committed tuples to query answers. It does so by creating

ZK proofs one operator at a time to authenticate its intermediate

and �nal results without leaking information about them. This

approach may make veri�able cloud computing more accessible

for data owners who want assurances that the cloud is faithfully

storing their data and answering their queries. Moreover, this sys-

tem makes it possible for end users (non-programmers) to prove

knowledge of facts about the contents of their database to a third

party without divulging their data. It also con�rms that a batch of

interrelated facts from multiple queries are derived from the same

dataset. This research addresses the twin issues of data integrity

and data privacy for querying relational databases with SQL by

extending e�cient, state-of-the-art interactive proving techniques

to this setting. P computes the queries fromV over the committed

relations in their database. P returns authenticated answers toV

with proofs that the answers are faithfully computed over their data.

It builds atop state-of-the-art ZK protocols based on Vector Oblivi-

ous Linear Evaluation (VOLE) [5, 12, 29, 30]. An authenticated query

provides authenticated tags of its query answers, thereby making

them composable with outside workloads. This system supports

a broad class of database operators including select, project, join,

aggregate (including group-bys), sort, and set operations. Hence it

makes this proving technology accessible to a broader audience.

We o�er two ways to construct its ZK proofs: circuit-based and

set-based. A given operator uses one or both of them in its proofs.

Circuit-based proofs compute the authenticated answer by tracing

the operator logic over encrypted, data-independent circuits with

inputs from the initial commitment of the provers’s tables. Set-

based ones prove properties about a given operator’s results. For

example, for sort we prove that its output has the same set of tuple

values as its input and that its outputs are monotonically increasing.

We do so using polynomials so that we can prove properties about

the entire set of rows in lieu of doing so one gate and one tuple

at a time. This set equality expressed as a polynomial is a linear-

time operation (in the set size), whereas doing the proof in circuits

using an oblivious sort would run in = log2 = time. The AKS sorting

network has complexity $ (= log=), but only when = g 1052. This

set-based optimization will not improve the performance of all

ZKSQL operators, in particular, tuple-at-a-time ones like �lter.

To the best of our knowledge, ZKSQL is the �rst to o�er ZK

veri�able computation of ad-hoc SQL queries for relational DBs.

There is limited existing work on ZK proofs for querying relational

databases. Since ZK protocols can prove any NP statement, proving

SQL queries in ZK has been long known to be feasible. There was

prior work [33] that brings ZK to veri�able SQL computation, but

they do not support all types of queries, let alone ad-hoc ones. This

result is theoretical in nature and has not been made practical for

implementation in a DBMS. In this work, we focus on verifying the

correctness of answers to ad-hoc SQL queries using ZK proofs.

Our main contributions are:
• First work on ZK proofs for ad-hoc SQL queries

• Operator-at-a-time proofs for steps in a given query plan.

• Set-based protocols for proving properties about the intermediate

results of an authenticated query.

• Experimental results verify demonstrate ZKSQL’s speedup of up

to two orders of magnitude over the naïve baseline.

The rest of this paper is organized as follows. Section 2 provides

background on ZK proofs and relates them to conventional RDBMS

query execution. Section 3 introduces notations, security model,

and work�ow of ZKSQL. Section 4 illustrates functionality, au-

thenticated set operations, and protocols of ZKSQL one relational

operator at a time. We reveal our experimental results from our

prototype on top of EMP Toolkit [28] in Section 5 using the TPC-H

benchmark [27]. We survey relevant research on ZK proofs and

veri�able query evaluation in Section 6 and conclude in Section 7.

2 BACKGROUND
In this section, we provide fundamentals upon which ZKSQL builds.

First, we describe zero-knowledge proofs and protocols we use in

this system. Then we review aspects of conventional query execu-

tion that are relevant to the new functionality o�ered by ZKSQL.

2.1 Zero-Knowledge Proofs

A zero-knowledge proof allows that a prover convinces a veri�er

that a statement they made is true without revealing any additional

information. A data owner can use this kind of proof to demonstrate

it possesses some knowledge without revealing it. In other words,

ZK proof enables a prover P with a private witness F to show a

public statement� with respect toF is true to a veri�erV without

revealing anything beyond � (F) = 1. For example, if a system has

a database instance F and the client receives a query answer �

accompanied by an interactive proof � (F) that veri�es the answer.

There are two common use cases for ZK proofs. First, when a

prover wishes to verify a statement � that is a solution to some

computationally di�cult problem. For example, if we factor a large

number = to two primes and wish to prove we know its factors, we

can reveal that we hold twoF witnesses whose product is equal to

= and have no divisors without revealingF . Second, these protocols

can prove multiple facts with respect to some private data (say a

database �). ZKSQL addresses the latter class of problems using

the commit-and-prove paradigm [11, 23].

More speci�cally, ZK protocols prove any NP-time result in poly-

nomial time. The focus of this paper is to extend these techniques to

prove that query answers are correct, sound, and leak no additional

information about the source data. The dominant paradigm for

expressing ZK proofs is circuits thereby making them easily com-

posable [10] for database operators. Hence, our proof framework is

modular enough to support ad-hoc querying.

Our system uses Vector Oblivious Linear Evaluation (VOLE) [5, 12]

ZK protocols, the state-of-the-art interactive ones but it can use any

protocols that instantiate this circuit-based API. In contrast, non-

interactive ones like zk-SNARKs [8] and Bulletproofs [9], are less

able to scale to large commitments and complex query logic with

billions of gates because they do everything in a single pass [18].

ZKSQL’s prover and veri�er interactively compute its proofs with

VOLE-based protocols [29, 30] in EMP-Toolkit [28].

Owing to the expressiveness of the circuit-based paradigm, we

could verify the evaluation of any SQL statement using them by

translating the operator logic directly to circuits. On the other

hand, re-executing the entirety of a query’s instruction traces using

this technique would be prohibitively expensive–taking orders of

magnitude longer than running the same query with no veri�cation

(see Table 2). To address this, we identify ways to prove properties

about our query answers and their intermediate results in lieu of

1805



Table 1: ZKSQL Notation.

Symbol Description Symbol Description

P, V Prover, Veri�er � Set of relations in the database

', ( ,) Relations A8 , A8,9 8Cℎ tuple in ' , 9Cℎ �eld of A8
A8,dummy Dummy tag of tuple A8 W' Degree or arity of '
�4 Circuit to verify expr 4 [' ] Authenticated tags of '
& Query to be veri�ed � Authenticated answer to&

fully tracing the data’s path through its operators from committed

bits to output. For example, if we are proving the correctness of a

sort’s results, we can show that it has the same tuples as its input

and that the output rows are monotonically increasing. We reason

about the correctness of many of our intermediate results using our

set-based proofs in Section 4.1. Here we construct our proofs by

expressing multisets of tuples as polynomials. We use the Schwartz-

Zippel lemma to sample points on the corresponding curve to prove

relationships such as set equality and intersection.

2.2 Oblivious Query Evaluation

In ZKSQL, the prover holds a private database. The veri�er only

knows the database schema and table cardinalities, which enables

the veri�er to compose a query and to work interactively with the

prover to verify the answer. When a conventional DBMS receives a

query, it �rst con�rms that it is syntactically correct by binding its

references to its table de�nitions in the system catalog. In ZKSQL,

both parties have the SQL statement and parse it to the agreed-upon

schema. They parse the query into a directed acyclic graph (DAG)

of database operators, such as �lters, joins, and aggregates.

Since we want to reveal no information about our query answers

except that which can be inferred from their contents, we make

their traces data-independent or oblivious. Hence, the observable

transcript of the program does not branch or have early termination

in loops. This makes it impossible for a malicious veri�er to deduce

any information about the query’s input rows, such as the ones

selected by a �lter or matched in a join.

To facilitate obliviousness, we introduce dummy tuples into our

query evaluation. Hence, when an operator deletes a tuple ZKSQL

nulls out the deleted row’s physical bits, creating a tombstone. All

rows in a ZKSQL query have a bit at the end for this called a dummy

tag to denote if a tuple should contribute to our query evaluation.

When the engine creates the commitments of the prover’s data, it

initializes this tag to false. When we delete a tuple, we also set its

dummy tag to true to communicate this to subsequent operators.

3 OVERVIEW AND QUERY PLANNING

We next provide an overview for the architecture of ZKSQL.We �rst

describe the notations. Then, we describe our security guarantees.

Next, we describe the work�ow with which the system goes from a

SQL statement to providing the client with an authenticated answer.

Table 1 introduces the notation of ZKSQL. First, let us call the

prover (P) or Alice and the veri�er (V) or Bob. � is the private

database to which P alone has access. Our unary operators take

as input a relation ' and output ) . In other words, they take the

form) := >? (') (e.g. >? is Project). Similarly, we denote our binary

operators as) := >? (', () (e.g. >? is Join). A8 is the 8
Cℎ tuple in ', and

A8, 9 refers to the 9
Cℎ �eld in A8 .W' denotes the number of columns

in '. A8,3D<<~ is the dummy tag of A8 introduced in Section 2.2.

We prove that the system correctly executed each expression in a

query using circuits. We show a circuit for verifying an expression

Functionality FZK

Inputs: Upon receiving (Input, G ) from P, the functionality stores G ,

generates tags [G ], and sends [G ] to P and V .

Constants: P and V send (Const, G ) to the functionality. It stores

G , generates tags [G ], and sends them to both parties.

Circuit evaluation: The functionality receives (Compute,�, [G0 ],

..., [G=−1 ]) from both parties, where G8 ∈ {0, 1} and� is a Boolean

circuit, the functionality computes (~0, ..., ~<−1) := � (G0, ..., G=−1) ,

generates tags [~0 ], ..., [~<−1 ] and sends them to both parties.

Prove circuit satis�ability: Upon receiving (Verify,�, [G0 ],

..., [G=−1 ]) from both parties, where G8 ∈ {0, 1} and� is a Boolean

circuit, the functionality computes 1 := � (G0, ..., G=−1) . If 1 = 0 the

functionality aborts; otherwise it sends (satisfied) to V .

Figure 1: Ideal functionality for proofs.

4 as�4 . Recall that we compute over a witness (see Section 2.1), and

it is comprised of authenticated tags. We refer to the authenticated

tags, witness, or commitment of ' using ['] and use these terms

interchangeably. After the commitment protocol, P and V each

have a partition of ['] with which they compute proofs, [']P and

[']V respectively. In addition, V submits a SQL query & to the

engine. After evaluating & interactively, P sends & ’s answer, �, to

V . If our query has input tables ' and ( , we prove � ( ['], [(]) = 1.

3.1 Security Model

Recall that ZKSQL veri�es queries under the commit-and-prove

paradigm. Our proofs o�er the following properties:

(1) Correctness. If both parties participate honestly in the proto-

col,V will be convinced of true statements alone.

(2) Soundness. If P tries to prove a false claim aboutF ,V will

catch them with all but negligible probability.

(3) Zero knowledge. Even amisbehavingV learns only the query

answer and its truthfulness, but nothing else aboutF .

Let’s consider ZK proofs as an ideal functionality FZK in Figure 1.

This is analogous to a trusted third party who convinces V that

a statement is true. It enables P to construct commitments of its

inputs and facilitates provable computation of one or more circuits

with respect to input data G . We use these building blocks in our

operator-level proofs in Section 4.

The Inputmethod enables P to generate authenticated tags with

which we will construct our proofs or generate the witnessF . The

prover sends the oracle a bitstring of its input, G . If we query over

our entire database, we send � to the functionality. It generates

tags for [G] and sends them to both parties. Similarly, the parties

prepare public literals as inputs for proofs with the Const method.

The Computemethod evaluates circuits over the committed tags,

[G]. The circuit is comprised of logical gates, such as AND and OR,

and the oracle traverses the circuit in topological order. The output

of aCompute call is itself an array of authenticated tags. This makes

it possible to compose operators one after another by passing the

output tags of a child as input to its parent. In the ideal world

functionality, the oracle recalls the tags it stored previously, G , and

computes � over G to produce ~. It then generates commitments

for this answer, [~], and sends them to P andV .

The Verify method con�rms that the inputs satisfy the relation-

ship codi�ed in the circuit. We can invoke this method on the query

answer, �, or prove properties about a query’s intermediate results.

For example, after a sort operator, we may use a circuit to iteratively

1806



Veriûer
Commitment

Protocol

Authenticated

DB [D]

Database D

Prover

[D]
!

[D]
"

1

2

3

� 
"

(a) Private database commitment.

Verify

C=([A'],[A]) = 1

Veriûer

Query Q

Query answer 

(A, C=([A'],[A])) 

Evaluate 

A = Q(D)D

  [A] = CQ([D])

[D]
$

Prover

  [A] = CQ([D])

[D]
%SQL-over-ZKP

C=([A'],[A])

1

2

3

4

(b) Authenticated querying over ZK proofs.

Back-End 

Front-End

SQL 

Statement

Operator 

Tree

Canonicalized 

Plan

Veriûable 

Plan

Map plan 

to data and 

commitments 

Interactively 

execute 

plan

(c) ZKSQL work�ow.

Figure 2: ZKSQL work�ow in commit-and-prove paradigm from front end to back end

test if two adjacent output tuples are in ascending order by invoking

Verify(�g, C8 , C8−1). Say we are proving 5 (G) = ~. The functionality

will return 1 to V i� 5 (G) = ~. For our queries, we prove [�]=

(Input, �) or that the output of computing our proof is equal to the

result we reveal toV .

Guarantees. In ZKSQL,P andV instantiateFZK with VOLE-based,

interactive ZK protocols [5, 29, 30] although our results generalize

to other circuit-based ones. Circuits are the dominant representa-

tion for ZK proofs. In terms of security, the universal composability

(UC) [10] is a framework to analyze cryptographic protocols. It

evaluates whether the security properties are preserved when pro-

tocols are composed arbitrarily. It bene�ts the modular design of

our protocols. Owing to UC, we guarantee the soundness, complete-

ness, and zero-knowledge of these protocols against a malicious,

static adversary as follows. For any probabilistic polynomial time

(PPT) adversary, there exists a PPT simulator. For any environment

with an arbitrary auxiliary input, if the output distribution of the

environment in the real-world execution where the parties interact

with the adversary and execute a protocol is computationally indis-

tinguishable from the output distribution of the environment in the

ideal-world execution where the parties interact with the simulator

and FZK, it means the protocol UC-realizes FZK. Our protocols in

Section 4 consists of circuit-based and set-based components. The

circuit-based components are direct instantiations of the function-

ality FZK, thus we refer the reader to [30] for detailed security

analysis. Our set-based protocols construct novel ZK proofs of set

operations over FZK. Their security analysis is in Section 4.1.

In this system, P alone has access to the query inputs, � . From

participating in an interactive proof,V learns the answer to their

query, �, accompanied by a proof con�rming its correctness and

completeness. In order to run a query, both parties need some

background information. In particular, the table de�nitions of �

–including column names, types, and schema constraints–are public.

In addition, the table cardinalities, the query and its DAG, and the

query answer are known to both parties.

Speaking imprecisely, ZKSQL supports two adversaries –a ma-

licious P and a malicious V . Owing to FZK, ZKSQL guarantees

the soundness of all query answers. A malicious P cannot compro-

mise the integrity of query evaluation.V will abort the protocol

if it detects cheating on the part of P. Owing to our commitment

protocol, which implements Input and Const in FZK, it is impos-

sible for the prover to change the contents of � after this setup

step. Our operator-at-a-time proofs provide an oblivious “chain

of custody” from our authenticated tags, ['] and [(] to �. Hence,

ZKSQL guarantees the zero-knowledge property of our aims above.

A maliciousV cannot steal any information about individual tuples

during query processing since our proving logic is oblivious. Sec-

tion 4.2 describes how each proof is data-independent and how we

pad intermediate results to protect their cardinalities. For example,

a ZKSQL �lter operator has an output cardinality equal to that

of its input. Users may optionally truncate this output if desired

using public constants. For primary key-foreign key joins, their

output cardinality is equal to that of the foreign key input since

each one can match at most one primary key row. The dummy tags

introduced in Section 2.2 enable us to obliviously process them.

3.2 Work�ow

Our work�ow has two parts. First, the engine sets up the commit-

ments over which we will evaluate our zero-knowledge proofs, [�],

as shown in Figure 2(a). After that, P andV interactively verify the

answer to one or more SQL queries with respect to [�], visualized

in Figure 2(b). As the example introduced in Section 1, a university

with its private student-record database is P and DoE isV .

Before ZKSQL may process its �rst query, the parties complete

a setup phase with which P commits its private database, � . Fig-

ure 2(a) illustrates how we bootstrap our query veri�cation by gen-

erating these authenticated tags. The tags serve as an immutable,

agreed-upon starting point from which our authenticated queries

begin. This makes it possible forV to con�rm multiple query an-

swers referring to the same dataset. P starts by inputting its private

database � to this cryptographic protocol (Step 1 ). This is equiva-

lent to invoking (Input, �) in FZK. P andV generate the tags one

for each bit in � (Step 2 ). At the end of the protocol, each party

knows only a partition of [�], where P alone holds [�]P , and

V alone holds [�]V and an authentication key, �V respectively

(Step 3 ). The relationship of [�]P and [�]V is:
[�]P = [�]V + � · �V .

We do this process once for any number of queries over � . The

entire set of tags, [�], is known to no one. In the example of student

statistics, after commitment, the university knows [�]P , and DoE

only knows [�]V and �V , but only the university knows plaintext

database � with student records.

Now, this system is ready to accept its �rst query for veri�cation.

Figure 2(b) outlines this process. First,V sends a SQL statement

over the schema of � (Step 1 ). When ZKSQL processes a query,

the prover maintains a dual representation of each table or inter-

mediate result.V works with only their partition of the committed

tags (Step 2 ). Hence, if we are computing over an intermediate

result ', P has ' and [']P and the V starts with [']V . With

1807



each operator in the query evaluation pipeline, P andV work in

lockstep to compute each one. Each operator produces an array

of authenticated tags as its output. Speaking imprecisely, in FZK
evaluating an unary operator >? is implementing the functionality

[) ] :=Compute(�>? , [']). P computes) with conventional means.

When an operator proves properties about the output of their

computation, such as verifying that a sort is in ascending order, the

parties create new committed bits for the operator output ) and

they prove that its contents have the expected relationship with

the operator’s inputs. When we �nish evaluating the root operator

of the query tree, we call its output �. P and V each have their

partitions of [�]. Both parties know � and they commit it using

the protocol [A′] :=Const(�) in FZK (Step 3 ). They then create

a circuit, �= that checks the bitwise equality between two sets of

tags. P andV invoke (Verify,�=,[A], [A
′]). If this returns 1 toV ,

then the proof is successful (Step 4 ).

For example, the DoE wishes to compute the average annual

costs by family income for a student at university * . The uni-

versity runs ZKSQL on top of their DBMS. Before querying, *

and the DoE work together to commit their database, �* using

the steps in Figure 2(a). The DoE submits their query: SELECT

fi.income_bracket, avg(s.cost) FROM student_cost s JOIN

family_income fi ON s.sid = fi.sid AND s.year = fi.year

GROUP BY fi.income_bracket ORDER BY fi.income_bracket

to ZKSQL. The two parties follow the steps in Figure 2(b) to answer

the DoE’s query. ZKSQL parses the SQL statement into a DAG of

ZKSQL operators, described in Section 4 by invoking the function-

ality described in Figure 3. It �rst invokes the Join operator to bring

together its input tables to match the annual student costs with

their corresonding family incomes. ZKSQL interactively proves to

the DoE that the committed matching tuples alone are passed on

to its parent operator. The Aggregate operator then obliviously

calculates the average family contribution for each income bracket

and sorts its results. Last, the DoE receives the query answer, �,

and its tags. The parties invoke the Verify protocol to con�rm the

answer is correct and sound.

SQL to ZK Proof Processing. Now that we’ve covered the crypto-

graphic work�ow that powers our authenticated query evaluation,

let’s zoom into the techniques we use to translate SQL queries into

this circuit-based framework. Figure 2(c) outlines this process.

ZKSQL has a two-part system for its query evaluation. The front

end checks that the query is syntactically correct with respect to

�’s schema, extracts the DAG, and regularizes this execution plan.

It is written in Java. We parse queries using Apache Calcite [6]

rather than creating our own SQL parser. We canonicalize the plan

by applying a series of transformations that make it run more

e�ciently in circuits. Our transformations include projecting out

all unnecessary attributes eagerly, rewriting to eliminate common

table expressions, and combining �lters to minimize data passes.

Each operator type (e.g., Join, Filter) in ZKSQL has at least one

proof template, described in Section 4.2. Proof templates are proto-

cols for constructing ZK proofs for the transformations an operator

performs. We parameterize them with the expressions and �elds

speci�ed by the DAG. This constitutes our veri�able plan. The front

end outputs this plan as a JSON �le for the back end. P andV both

have proceeded from the same JSON �le.

Table 2: Baseline ZK proof overhead. Runtime (in secs) of

plain query evaluation vs naïve ZK baseline on TPC-H.

&1 &3 &5 &8 &9 &18

Plaintext 0.05 0.02 0.03 0.01 0.13 0.05

Circuit-Only 777 24,130 38,106 32,040 43,562 126,168

Slowdown 15,540× 1,206,500× 1,270,200× 3,204,000× 335,092× 2,523,360×

The back end parses this query execution plan and instantiates

the operators it speci�es in a query tree. It then sets up P’s dual

representation of its inputs (e.g., ' and [']) while the veri�er reads

their corresponding tags. Both parties work interactively to evaluate

the query tree bottom up to produce � and [�]. They validate the

answer as described above.

4 ZKSQL
In this work, we propose e�cient ZK proofs for query evaluation

in database, named ZKSQL. More speci�cally, this system does:

Given a query & , a prover P with access to a set of relations � works

interactively to produce and verify an answer � to a veri�erV .

P accepts & and commits the authenticated tables [�] to V . P

andV work interactively to generate authenticated �. This engine

provides a generic method for generating proofs for each operator

in this tree. In this work, we focus on Project, Filter, Join, Sort and

Aggregate operators and describe them in Section 4.2. One key

optimization here is decoupling operator evaluation from proving.

Doing so reduces the footprint of the query that it evaluates with

expensive ZK circuits.

Beyond pure circuit implementation for each operator, some

operators allow P to compute the intermediate result by its lo-

cal computation on plaintext table and V to interactively verify

the correctness of the result with P. For example, in Sort, it has

a table of the tags of sorted tuples, [) ], and veri�es that adjacent

ones satisfy the sort de�nition S. In other words, ∀8 ∈ [|) | − 1] :

(Verify,�<, [C8 ], [C8+1]) with respect to S. We further propose set

operations (see Section 4.1) to assist with the veri�cation. For ex-

ample, we also need to verify [) ] contains exactly same rows as

input of sort, ['], where ∀[C8 ], ∃[A 9 ] : [C8 ] = [A 9 ] and vice versa by

(Equality, [T],[R]) shown in Figure 3.

To motivate this work, Table 2 compares unauthenticated and

insecure query evaluation with naïvely constructing proofs using

circuits alone, called Circuit-Only. This baseline is analogous to

translating the logic of a conventional DBMS operator directly into

circuits and then using EMP Toolkit’s VOLE-ZK protocols to trace

its gates for the proof. It is clear that simply doing this one-to-one

substitution creates a slowdown of 5-6 orders of magnitude. As

we will con�rm in Section 5.4 proving properties about a query’s

intermediate results instead of verifying its execution traces cuts

down substantially on the costs of these proofs.

4.1 Set Operations
One key insight in this work is that although queries often have

numerous compute-intensive operations like sorting and joining

(and this task is expensive to compute a ZK proof by following

the computation as a circuit), we can e�ciently verify the outputs

by expressing them as polynomials. More speci�cally, we show

protocols for e�ciently performing set operations over tuples. To

formally describe our ZK operations on set, Figure 3 describes the

ideal functionality FZKSET for these building blocks.

1808



Functionality FZKSET

Equality: Upon receiving (Equality, [' ], [( ]) from both parties,

the functionality fetches ' and ( using [' ] and [( ], computes

1 := (' = () and sends 1 to V .

Disjoint: Upon receiving (Disjoint, [' ], [( ]) from both parties, the

functionality fetches ' and ( from [' ] and [( ], computes

1 := (' ∩ ( = ∅) and sends 1 to V .

Intersection: Upon receiving (Intersection, [' ], [( ], [) ]) from

both parties, the functionality fetches ', ( and) from [' ], [( ] and

[) ], computes 1 := (' ∩ ( = ) ) and sends 1 to V .

Union: Upon receiving (Union, [' ], [( ], [) ]) from both parties,

the functionality fetches ', ( and) from [' ], [( ] and [) ],

computes 1 := (' ∪ ( = ) ) and sends 1 toV .

Figure 3: Ideal functionality for set operations in ZKSQL.

Figure 4 describes the protocol Π/ (�) following theorem:

THEOREM 4.1. The protocol Π/ (�) securely realizes the func-

tionality FZKSET in the (FZK, FZKSET)-hybrid model.

The protocol regards any input tuples as binary strings and

assumes the tuples in the input tables are of the same length <.

Note that all four set operations have a complexity of $ (<). We

show specialized protocols in our design which outperform the

generic circuit-based approach, which has a complexity of at least

¬(< log<) and practical ones often run in time $ (< log2<).

For the purpose of security and e�ciency, the set operations

manipulate on ^ bit tuples where the security parameter ^ usually

equals to 128. The function Packing takes a table consisting of<-bit

(< > ^) tuples and converts them into ^-bit tuples via universal

hashing. This packing step compresses large tuples into^ bits apiece

before we process them in the set operations.

Equality. The ZK proof of set equality e�ciently proves that

the unordered tables ' = {[A8 ]}8∈[=] and ( = {[B8 ]}8∈[=] are equal.

The straw-man approach executes a generic circuit computation to

�rst sort two tables and then compare the tuples at each entry. It

incurs O(< log<) computation and communication overhead. Our

key idea is to convert the function from the circuit representation

to a polynomial representation. In detail, V samples a uniform

0 ← F2^ and sends it to P. P andV compute and open the value
∏=
8=1 ( [A8 ] −0) −

∏=
8=1 ( [B8 ] −0), which equals to 0 if two tables are

equal. The online communication cost for this method is 2< + 2

elements in F2^ . The idea comes from the work of Franzese et

al. [13]. Namely, the authenticated tables' and ( constitute a degree-

= polynomial 5 (- ) :=
∏=
8=1 (A8 −- ) −

∏=
8=1 (B8 −- ). If ' = ( , 5 (- )

always equals to 0. Otherwise, for any evaluation point 0, 5 (0)

equals to 0 only if 0 happens to be a root of 5 (- ). Because 0 is

sampled randomly, this incident happens with probability ? f =/2^ ,

which is negligible in our instances when ^ = 128.

Disjoint. The ZK proof of set disjoint relies on the set equality

check and the generic comparison circuits. Along with the input

tables (', (), P additionally de�nes and commits to a table) , which

is generated by �rst concatenating the tables ' and ( , and then sort-

ing the combined table. Two parties invoke the set equality protocol

to check if ) equals to ' | |( , then invoke the generic comparison

circuit |) | − 1 times to check if for any two consecutive tuple [C8 ]

and [C8+1] in table) , it satisfy that C8 < C8+1. If two tables are not dis-

joint, a malicious prover may either replace the overlapped tuples

in one table when constructing ) or place the overlapped tuples

ZK Set Protocols Π/ (�)

Parameters: F2< and F2^ denote binary extension �elds of degree

< and ^ . ^ is the security parameter and is instantiated as 128 in

practice. All set elements are< bits in length and< > : .

Packing(),<) :

(1) Denote 3 = +</^ ,, V uniformly samples coe�cients

{28 }8∈[3 ] ← F
3
2^

and sends them to P.

(2) Let = = |T |, and parse T← {[C1 ], · · · , [C= ] }, where for 8 ∈ [=],

[C8 ] ← {[C
1
8 ], · · · , [C

<
8 ] } contains< authenticated bits.

(3) P and V compute: [C ′8 ] ←
∑3
:=1 2: · (

∑^
9=1 [C

: ·^+9
8 ] ·- 9−1) for

8 ∈ [=] and output) ← {[C ′8 ] }8∈[=] .

Equality(', () :

(1) Let = = |' |; if = ≠ |( |, two parties abort.

(2) Compute ' ← Packing(',<) and ( ← Packing((,<) .

(3) V samples 0 uniformly from F2^ and sends it to P.

(4) P proves to V that
∏=
8=1 ( [A8 ] − 0) =

∏=
8=1 ( [B8 ] − 0) .

Disjoint(', () :

(1) Compute ' ← Packing(',<) and ( ← Packing((,<) .

(2) P locally computes and authenticates) ← Sort(' | |() .

(3) Invoke Equality(' | |(,) ) .

(4) P proves to V in zero-knowledge that) is sorted.

Intersection(', (,) ) :

(1) Compute ' ← Packing(',<) , ( ← Packing((,<) and

) ← Packing(),<) .

(2) P inputs the sets % ← '\) and& ← (\) .

(3) Invoke Equality(% | |), ') and Equality(& | |), () .

(4) Invoke Disjoint(%,&) .

Union(', (,) ) :

(1) Compute ' ← Packing(',<) , ( ← Packing((,<) and

) ← Packing(),<) .

(2) P inputs the set % ← ' ∩ ( .

(3) Invoke Intersection(', (, % ) and Equality(' | |(, % | |) ) .

Figure 4: Set veri�cation protocols for Π/ (�) .

apart after sorting. The former would be caught by the equality

check and the latter would be caught by comparison checks.

Intersection. The ZK proof of set intersection is done by invok-

ing the proof of equality. Along with the input tables ( ['], [(], [) ]),

P additional de�ne and commits to two tables % := '\) and

& := (\) . It �rst proves that the tables % and & are honestly

constructed by two invocations of the set equality protocols. A

malicious prover will also be caught at this step if it does not satisfy

that ) ¦ ' and ) ¦ ( . Then it proves that ) and ( are disjoint. A

malicious prover will be caught at this step if ) does not contain

all tuples that ' and ( have in common.

Union. Though it is not used in our ZKSQL protocol, we propose

a set union protocol to complete our ZKSET tool-kits. P locally

computes the intersection of ' and ( and denotes it as % . P and

V invoke the set intersection protocol to check the honesty of P.

Then they invoke a set equality protocol to check if (' | |() = (% | |) ).

If) contains tuples that do not belong to ' | |( , the malicious prover

needs to cheat in the equality check. If ) does not contain a tuple

that belongs to ' | |( , this tuple must be replaced by another tuple

to make the total size of (' | |() and (% | |) ) equal. Again, this action

will be caught in the equality check.

The above protocol allows proving in ZK relationship between

sets with cost linear to the set size but it comes with some caveats.

In particular, we keep obliviousness by treating dummy tuples

1809



as tombstones (see Section 2.2), equivalent to pad intermediate

results up to its maximum bound. Section 5.3 shows that no padding

approach is feasible while it leaks information of cardinalities.

4.1.1 Security Analysis. The simulation-based proof is provided for

analyzing the zero-knowledge property of the set-based protocols.

We construct a simulator S who interacts with a malicious veri�er

A in the ideal world and simulate a view for A, such that there

is only a negligible probability for A to distinguish between the

simulated views in the ideal world and the views when interacting

with a real-world P.

S emulates the functionality FZK, which samples the global key

� for A . FZK also handles the authentication of inputs and the

computation of circuits. On simulating the function Equality, S

acts as an honest P until it receives the challenge 0 from A . S

computes X :=
∏=
8=1 ( [A8 ] − 0) −

∏=
8=1 ( [B8 ] − 0). If X = 0, it follows

the protocol instructions. Otherwise it fetches the MAC<X of X

recorded in FZK and sends<′
X
:=<X + X · � to A . On simulating

the function Disjoint, S constructs a sorted set ) which contains

distinct values. S simulates the equality check between ' | |( and

) , and proves in ZK that ) is sorted. On simulating the functions

Intersection and Union, S acts as an honest P. Whenever invoking

the functions Equality and Disjoint, it simulates the view of A as

described above. This concludes the simulation for anyV that is

corrupted by a malicious adversary.

The view of a malicious prover can also be simulated by a sim-

ulator S who emulates FZK, extracts the input of A , and sends it

to FZKSET. The soundness error, in this case, is the probability that

A who holds invalid inputs convinces V to accept the proof in

the real world. As analyzed earlier in this section, the soundness

error for the Equality function is bounded by =/2^ for table size =.

We instantiate the circuit computation of FZK by the protocol of

Yang et al. [30]. The soundness error of the circuit computation is

(C + 3)/2^ for a circuit consisting of C non-linear gates (e.g. multi-

plication gates or logic-AND gates). The function Disjoint invokes

a Equality check and O(=) comparison circuits. So its soundness

error is bounded by O(=/2^ ). Since the functions Intersection and

Union are solely constructed by invoking Equality and Disjoint

checks for constant number of times, their soundness errors are

also bounded by O(=/2^ ).

4.2 Operators

In this section, we describe ZK proofs of the query& in the operator

level since & can be decomposed into a tree of operators including

Project, Filter, Join, Sort, and Aggregate. For each operator, we

design ZK protocols to prove the correctness and soundness of its

intermediate result. After executing the last operator in the parse

tree,P with access to the database� only provides an authenticated

answer � toV without leaking any information about those inter-

mediate results during query evaluation. Figure 5 shows the ideal

functionality, FZKSQL for operators. Figures 6 shows the protocol

Π��'�* �) using pure ZK circuits and Figure 7 shows the protocol

Π(�) _$% integrating set operations introduced in Section 4.1.

We have the following theorem:

THEOREM 4.2. The protocols Π��'�* �) and Π(�) _$% securely

realizes the functionality FZKSQL in the (FZK, FZKSQL)-hybrid model.

We now detail these operator-level protocols.

Functionality FZKSQL

Query: On input (�ery,&, [� ]) from both parties, the

functionality fetches the set of relations � using [� ], computes �

← & (�) and sends � to the veri�er V .

Project: On input (Project, [' ], E) from both parties, where the

expressions E specify its projections, the functionality fetches the

relation ' using [' ], computes) ← cE (') , generates the tags [) ]

and sends them to both parties.

Sort: On input (Sort, [' ], S) from both parties, where S speci�es the

attributes and directionality of the sort, the functionality fetches the

relation ' using [' ], computes) ← gS (') , generates the tags [) ]

and sends them to both parties.

Filter: On input (Filter, [' ], %,<) from both parties, where ? is the

�lter predicate and< is the desired output cardinality, the

functionality fetches the relation ' using [' ] and computes

) ← f? (') . It generates the tags [) ] and sends them to both

parties. If |) | ><, it truncates) to length< by sorting it on the

dummy tag and deleting the last |) | −< tuples.

Join: On input (Join, [' ], [( ], %,<) from both parties, where ? is

the join predicate and< is desired output cardinality, the

functionality fetches the relations ', ( using [' ], [( ] and computes

) ← ' ²³? ( . It generates the tags [) ] and sends to both parties.

Aggregate: On input (Aggregate, [' ], G,A) from both parties,

where G speci�es the group-by expressions and A is the aggregators,

the functionality fetches the relation ' using [' ], computes

) ← AG (') , generates the tags [) ], and sends them to both parties.

Figure 5: Ideal functionality for querying in ZKSQL.

4.2.1 Circuit-Based Protocols. We will �rst examine the protocols

with which we prove the correctness and completeness of their

outputs purely in circuits shown in Figure 6. We do this one tuple

at a time. The logic of these proofs very closely follows that of

unauthenticated implementations of these operators.

Projection. This protocol begins when FZKSQL receives the com-

mand (Project, ['], E) from both parties. ['] serves as the input to

this operator. Like all the rest operators, it may either be a table

in the database or the output of another operator. An expression,

48 ∈ E, either refers to a column in the source table or it applies a

transformation, either arithmetic or boolean, to its input columns

once per tuple. Locally, P computes ) ← cE (').

We perform a ZK proof for this process to compute [) ] ←

Project(', E) in Figure 6. Both parties parse the authenticated rela-

tion ['] into authenticated tuples ([A1], . . . , [A=]) on the �rst line of

the protocol. Next, for each tuple [A8 ] ∈ ['], both parties evaluate

E to produce [C8 ] on Line 2. If the projection evaluates any expres-

sion, it does so using a circuit. If 4 9 ∈ E is an arithmetic or boolean

expression, we invoke (Compute,�4 9 , [A8 ]) in FZK, and receive an

authenticated �eld [C8, 9 ]. Otherwise, we copy the authenticated

bits for [C8, 9 ] from the source �eld in [A8 ]. The protocol outputs all

tuples from the circuit as the authenticated output relation [) ] to

both parties.

For example, consider (Project, ['], {$2, $1 + $3}). Its output is

) , and T’s �rst column contains the second column of '. For this,

ZKSQL simply copies the committed bits for this tuple from ' to

) thereby incurring minor overhead. These copies are trivially

provably correct by checking the equality of their bits. The second

column of ) is the sum of the values in the �rst and third �elds of

each tuple in '. We apply a circuit,�42 to verify this transformation

1810



Circuit-Based Operator Protocols Π��'�* �)

Project(', E) :

(1) Both parties parse R→ {[A1 ], · · · , [A= ] }

(2) ∀8 ∈ [=], P and V send (Compute,�E , [A8 ]) to FZK and

receive [C8 ], where�E is a circuit for the projections E. Both

parties verify the result of any non-trivial expression 4 9 ∈ E by

calling 1 := (verify,�4 9 , { [A8 ], [C8 ]) returning 1 to V . The

veri�er aborts of b = 0.

(3) Output T← {[C8∈[=] ] }.

Filter(', ?,<) :

(1) Both parties parse R→ {[A1 ], · · · , [A= ] }

(2) Predicate check: ∀8 ∈ [=] both parties send

(Compute,�? , [A8 ]) to FZK and receive [C8 ]. Both parties

verify the selection result by invoking

1 := (Verify,�? , { [A8 ], [C8,3D<<~ ] }) returning 1 to V .�?
con�rms that [C8,3D<<~ ] = 0 (not dummy) i� [A8 ] satisfies ?

and ¬[A8,3D<<~ ]. The veri�er aborts of b = 0.

(3) If< < |) |, both parties compute) ′ ← Sort(), S3D<<~ ) ,

where S3D<<~ sorts) in ascending order on) ’s dummy tags.

Otherwise, output T← {[C8∈[=] ] }.

(4) Output T← {[C8∈[<] ] }.

Aggregate(', G, �) :

(1) Both parties compute 'G ← Sort(', SG) where SG sorts ' with

respect to the group-by attributes G. It returns ['G ] to both

parties.

(2) Parse ['G ] → {[A1 ], · · · , [A= ] }

(3) ∀8 ∈ [=], create an output tuple [C8 ] and initialize its �rst |G |

�elds with [A8 ]’s group-by column values. ∀9 ∈ [ |A | ], both

parties send (Compute,�A9 , [A8 ]) and receive [C8+|G|, 9 ], where

�A9 is a circuit for the 9
Cℎ aggregator.

(4) Output T← {[C8∈[=] ] }.

Figure 6: ZKSQL boolean circuit protocols.

for each row of ) . Hence, after computing [C8,2], both parties call

(Verify,�42 , [A8 ], [C8,2]) in FZK to con�rm the soundness of this �eld.

Vaborts if it receives 1 = 0. Naturally, the output of this operator

has the same tuple count as its input table, |) | = |' |.

Filter.When FZKSQL receives the input (Filter, ['], %,<) from both

parties, it begins the �lter protocol wherein it constructs an output

relation [) ] that eliminates tuples in ['] that don’t satisfy the

selection criteria speci�ed in predicate ? , a boolean expression

condition related to one or more columns in ' .

Recall from Section 2.2 that in order to remain oblivious, �lter

must not reveal its selectivity nor the speci�c tuples it selects. Hence,

in the absence of a low cardinality bound (<), the output table

has the same cardinality as its input, i.e., |) | = |' |. If the parties

input< = −1, the operator does not truncate its output. Without

truncation, the two tables are identical in the values in their non-

dummy rows.

If the �lter truncates its output,< < |' |, it minimizes the num-

ber of non-dummy tuples eliminated by this step. It �rst sorts ) ’s

outputs by their dummy tags in ascending order. If C8,3D<<~ = 0 a

tuple is real, not a tombstone. Thus this puts all of the dummies at

the end. The protocol then deletes the last |) | −< tuples.

In the �lter protocol, as shown in Figure 6, both parties �rst parse

the authenticated relation ['] into authenticated tuples ([A1], . . . ,

[A=]). For each tuple [A8 ], both parties evaluate the predicate cir-

cuit, �? , to produce [C8 ] by invoking Compute in FZK as shown

on Line 2. Since ['] itself may be the intermediate result of some

other operator, if A8,3D<<~ = 1 (A8 is already a dummy) it remains

a dummy regardless of the result of �? . Therefore, when we in-

voke (Verify,�? , [A8 ], [C8 ]) in FZK, it con�rms that [C8,3D<<~] = 0,

or [C8 ] is not a dummy, i� both its input tuple was non-dummy

(¬A8,3D<<~) and A8 satis�es ? (�? ( [A8 ]) = 1). If |) | < < or< = −1

the protocol terminates returning [) ] on Line 4. Otherwise, we

sort on [) ] on its dummy tag, write the ordered output to [) ] ′ and

truncate it to< tuples on Line 3. It does so by invoking the Sort

protocol in Figure 7 and more in Section 4.2.2.

Aggregation. The protocol starts when FZKSQL receives the input

(Aggregate, ['],G,A) from both parties, the protocol begins to

evaluate aggregators A (e.g., SUM, AVG, COUNT) based on group-

by attributes G. If it receives an empty set of group-by columns,

ZKSQL implements this as a scalar aggregation with one output

row. This protocol computes [) ] ← Aggregate( ['],G,A).

The engine sorts the input table, ['], �rst with respect to the

group-by attributes G using the sort protocol in Figure 7, and P

makes a linear pass over all sorted table, ['G], aggregating them

one group-by bin at a time, as shown in the �rst line of Figure 6. We

do this so that rows that will be aggregated in the same group-by

bin will be adjacent to one another for the aggregation pass.

Next,P andV parse ['G] into a set of tuples {[A1], . . . , [A=]}. The

output of aggregate has the same cardinality as its input (|' | = |) |)

to avoid leaking the size of the domain of [']’s group-by columns.

For each tuple, [A8 ], we start by constructing its corresponding

output tuple, [C8 ]. For [C8 ], we iterate over each aggregator A9 ∈ A

and add its contribution to the current group-by bin on Line 3. If [A8 ]

is a dummy ([A8,3D<<~] = 1), the aggregator’s state is obliviously

left unchanged. Otherwise, we update the state according to the

aggregator’s logic. For example, if we are computing SUM($2), and

[A8 ] is not a dummy, then we add the second �eld in [A8 ] to the

sum’s running total. We then output a non-dummy tuple with the

current partial aggregates. When we visit the next tuple, [A8+1], if it

belongs to the same group-by bin as [A8 ], we mark [C8 ] as a dummy.

Hence, each group-by bin has exactly one non-dummy row in [) ].

4.2.2 Set-Based Protocols. Pure circuit-based protocol for opera-

tors like Sort and Join is not e�cient, and it can be optimized by

set operations (see Section 4.1) while correctness, soundness and

ZK properties hold. Figure 7 introduces set-based protocols for Sort

and Join operators. Here rather than tracing the execution of an

operator as we did in Π��'�* �) , P computes the operator locally

and then uses the public commitment protocol to generate tags for

the output ([) ]). It then constructs ZK proofs over these tags to

verify properties about [) ]. We use FZKSET realized by Π/ (�) for

this table-at-a-time veri�cation.

Sort. FZKSQL takes an authenticated relation ['] and a sort de�ni-

tion S from both parties, and produces an authenticated relation

[) ], which can be expressed as ) ← gS ('). The sort de�nition,

S consists of pairs of expressions (usually column ordinals) and

their desired directionality (ascending or descending). For exam-

ple, g{$2↑,$1³} (') has sort criteria by the second column of ' in

ascending order followed by its �rst column in descending order.

The protocol begins with P parsing its private copy of ' into

tuples and sorting them using conventional techniques shown in

Figure 7. P stores the sorted output as 'S. P andV then execute

1811



Set-Based Operator Protocols Π(�) _$%

Sort(', S) :

(1) P parses ' → {A1, . . . , A= } and locally sorts it with respect to

sort de�nition S as 'S
(2) P sends FZK (Input, 'S) and both parties receive [) ].

(3) Both parties parse [) ] → ( [C1 ], . . . , [C= ])

(4) Equality check: P and V send (Equality, [' ], [) ]) to FZKSET
and V receives 1 from FZK. If 1 = 0, V aborts.

(5) Order check: ∀8 ∈ [= − 1], both parties send

(Verify,�S, [C8 ], [C8+1 ]) to FZK and V receives 1, where�S is a

circuit to verify [C8 ] < [C8+1 ]’s with respect to S. If 1 = 0, then

V aborts.

(6) Output [) ].

Join(', (, ?,<) :

(1) P parses the relations ' and ( into a set of tuples, (A1, . . . , A=)

and (B1, . . . , B=) , respectively.

(2) P locally computes) ← ' ²³? ( , where ? is the join predicate.

(3) P sends FZK (Input,) ) and both parties receive [) ].

(4) Both parties parse [) ] → ( [C1 ], . . . , [C< ])

(5) Predicate check: ∀8 ∈ [<] both parties send (Verify,�? , [C8 ])

to FZK and receive 1, where [C8 ] is (not dummy) i�

1 = 1 ' ¬A8,3D<<~ ' ¬B8,3D<<~ .

(6) Both parties evaluate [* ] ← (Project, [) ], {$1, . . . , $W' })

and [+ ] ← (Project, [) ], {$(W' + 1), . . . , $(W' + W( ) }) . P

locally computes* and+ similarly from) .

(7) P locally computes the set di�erences and generates tags with

V by calling: [�' ] ← (Input, ' −* ) and

[�( ] ← (Input, ( −+ ) .

(8) Set di�erence check: Both parties send

(Equality, ( [�' ] | | [* ]), [' ]) and

(Equality, ( [�( ] | | [+ ]), [( ]) to FZKSET and V receives 1A
and 1B . V aborts if 1A = 0 or 1B = 0.

(9) Both parties evaluate [ ' ] ← (Project, [�' ], ?' ) and

[ ( ] ← (Project, [�( ], ?( ) , where ?' and ?( are '’s and ( ’s

inputs to ? , resp.

(10) Disjoint check: Both parties send (Disjoint, [ ' ], [ ( ]) to

FZKSET and V receives 1. V aborts if 1 = 0.

(11) Output [) ].

Figure 7: ZKSQL protocols based on set operations.

the Input functionality to generate [) ] on Line 2 and both parties

parse [) ] into rows {[C1], . . . , [C=]} on Line 3.

We are now ready to verify the sorted table [) ]. We need to prove

two properties of this table. First, we check set equality to con�rm

[) ] has the same records as the input tags, [']. This ensures that P

does not delete any record, add a spurious one, or modify any one

from its local computation. As shown on Line 4, we complete this

step by performing the Equality protocol in Figure 4. IfV receives

the veri�cation bit 1 = 0, it aborts. Otherwise, we progress on to

check the order of the sorted tuples. For each tuple 8 ∈ 1 . . . = − 1,

we verify [C8 ] f [C8+1] with respect to the sort de�nition S. Hence,

in the next step, we invoke (Verify,�S, {C8 , C8+1}) in FZK, where �S
returns true if the tuples are in increasing order when sorted by S.

If V receives the veri�cation bit 1 = 0, it aborts. This concludes

our proof of the correctness and soundness of this operator.

This optimized sort operator is very important in ZKSQL because

this protocol supports the proofs of other types, namely Filter, Join,

and Aggregate. In addition, we use this authenticated Sort for the

Disjoint proofs in Π/ (�) .

Join. FZKSQL takes two authenticated relations ['] and [(], a

join predicate ? and an output cardinality <. Then, it produces

an authenticated relation [) ]. The protocol logic is equivalent to

) ← ' ²³? ( and supports equi-joins alone, although more com-

plex predicates would be possible if we decompose this into a cross

product (using memcpy to create the cartesian product and �lter, i.e.,

) ← f? ('×(). As in conventional joins, the output schema of) is a

concatenation of the columns in ' and ( such thatW) =W' +W(

The join protocol in Figure 7 begins with Alice locally parsing

R into its tuples {A1, . . . , A=}. It then locally computes ) ← ' ²³? (

on Line 2. In ZKSQL we do this with a hash join. ) starts out with

the true output cardinality that is only visible to P.

We pad ) with dummies to protect the selectivity of the join.

Recall that for primary key-foreign key joins, the engine automat-

ically truncates them to the length of the foreign key table since

primary keys admit no duplicates and therefore each foreign key

can match at most one row in the other relation. The protocol uses

this public schema information to set ) ’s cardinality accordingly,

called keyed join. Other joins follow our basic join protocol and

for them, ) ’s output cardinality is the size of the cartesian product,

|' | ∗ |( |. The prover locally pads ) with dummies until its size

matches this cardinality bound. Next, P andV perform the Input

protocol on ) and both receive [) ]. In the �nal step, both parties

parse it into {[C1], . . . , [C<]}.

There are three properties we need to prove to authenticate the

join. First, the predicate check con�rms that each non-dummy tuple

in [) ] satis�es the join criteria ? on Line 5. This is similar to how

we veri�ed the �lter in the previous section. The set di�erence check

proves to Bob that all of our tuples are derived from real rows from

the input relations. The disjoint check con�rms that P omitted no

rows from the join output that should have produced matches. We

describe the mechanics of each below.

Before we can prove [) ] = ( ['] ²³? [(]), we need to set up

a few more supporting tables. First, we isolate the input tuples

that contributed to the join’s output using projection. By simply

copying the �rstW' columns from each tuple in [) ] the join gets

[* ] ← c{$1,$W' } ( [) ]). Likewise, we get the selected tuples from

[(] with [+ ] ← c{$(W'+1),$(W'+W( ) } ( [) ]). P locally computes

* and + with respect to ) on Line 6.

Next, we need the list of tuples not selected by the join. P locally

computes �' ← ' − * and uses the Input functionality so that

both parties have [�'], which is shown on Line 7. It follows the

same procedure to generate tags for [�( ] where �( ← ( −+ . We

con�rm the correctness of �' and �( in the next step.

The set di�erence check con�rms two properties of the dataset

on Line 8. First, it shows* ¦ '. If P inserted tuples into [) ] where

their columns from ['] were not in this input the protocol aborts.

Second, it veri�es that �' = ' −* . We do so by concatenating �'

and* as tags and then Alice and Bob perform the Equality protocol

in FZKSET to prove ( [�'] | | [* ]) = [']. We compute the same proof

[(], [+ ] and [�( ] to verify that no new values were added.

The disjoint check demonstrates the prover does not omit any

output tuples. First, we project the join key columns from the table

of tuples that did not contribute to the join’s output to generate

[ '] and [ ( ]. For example, consider a join predicate ? is $1 =

$6 �#� $2 = $7. Moreover,W' = 4 or ' has four columns. The

source for our join keys for �' , or ?' , will be {$1, $2}. Similarly, ?B

1812



Table 3: Performance of commitment over TPC-H workload.

P PS L O S R N C

Runtime (s) 0.59 2.01 11.40 2.51 0.36 0.33 0.33 0.58

Memory (MB) 764 960 1,916 997 723 719 720 764

Comm. Cost (MB) 3.75 4.31 8.06 4.31 3.75 3.75 3.75 3.75

is {$2, $3}, subtracting the ordinals for '’s four columns. To isolate

the unselected join keys, the parties compute [ '] ← c?A (�')

and [ ( ] ← c?B (�( ), shown on Line 9. P and V then complete

the Disjoint protocol over [ '] and [ ( ] to prove  ' ∩  ( = ∅,

shown on Line 10. In other words, for each join key in ' that does

not contribute to an output row in) , it has no matches in similarly

eliminated rows from ( .

5 EXPERIMENTAL RESULTS

In this section, we �rst describe the implementation of ZKSQL and

the setup for experimental evaluation. We then verify the perfor-

mance characteristics of our ZK proofs over SQL, examining the

impact of our set-based proof protocols and operator-at-a-time costs.

We examine the performance in a limited-bandwidth environment,

scalability with larger data sizes, and the monetary cost.

5.1 Experimental Setup

We implement ZKSQL on top of EMP Toolkit [28]. Our prototype

uses PostgreSQL as its private database back-end. We evaluate this

work on a subset of TPC-H [27] queries, namely Q1, Q3, Q5, Q8,

Q9 and Q18. These queries demonstrate our performance under

varying degrees of complexity wrt their operator count and the

amount of data they access. Authenticated query answers run sev-

eral orders of magnitude slower than their unveri�ed equivalents

(see Table 2). Therefore, our experiments use small instances of the

TPC-H database. We measure our scale of the database by the size

of the fact table, lineitem, with its dimension tables scaled propor-

tionally as described in the benchmark speci�cation. Our results

feature 3 database sizes: 60k Rows, 120k Rows, and 240k Rows, and

they have 60k, 120k, and 240k rows in lineitem respectively. We

use the larger instances to probe the scalability and pragmatism of

this new approach to veri�able databases.

Although ZKSQL supports �oats, we converted all �oating point

operations to 64-bit integer ones in our experiments. Otherwise

the �oating point operations in projections and aggregates were

the dominant cost in our workload. Improving the performance of

�oats in ZK proofs is orthogonal to this research, so this enabled

us to get a clearer picture of the strengths and weaknesses of the

entire query lifecycle. Also, we omitted the string pattern matching

predicate in Q9 because these complex selection criteria are beyond

the scope of this work. In the query execution plan, this eliminates

the �lter. Since query evaluation is oblivious, the �lter’s selectivity

would not impact the performance of its parent operators.

Each experiment had one host for P and another forV . We store

the input database locally on P and an empty database instance

with the schema alone on the V host. We deployed on two AWS

EC2 r6i.4xlarge instances with Ubuntu Server 22.04 LTS, 128

GiB memory, 16 vCPUs and up to 12.5 Gbps connectivity between

the parties. Unless otherwise speci�ed, our experiments run on 60k

Rows.

ZKSQL ran in Docker containers to simplify its setup. For query

duration experiments, we report the runtime of the veri�er sinceV

&1 &3 &5 &8 &9 &18

102

103

R
u
n
ti
m
e(
s) ZKSQL No Padding

Figure 8: Cost of dummy padding for oblivious querying.

�nishes last and both parties start at the same time. We also report

memory usage and communication cost between parties.

5.2 Setup Costs

We �rst probe the overhead associated with ZKSQL’s authenticated

query answers. Recall that the engine commits once for all of its

proofs to con�rm their answers are all derived from the same data.

We measured the performance of committing the TPC-H tables

PART (P), PARTSUPP (PS), LINEITEM (L), ORDERS (O), SUPPLIER

(S), REGION (R), NATION (N) and CUSTOMER (C). The runtime

associated wtih our commitments is shown in Table 3.

In the context of our end-to-end workload runtime, this setup

cost is 0.6% of our duration and 1.1% of our bandwidth. This one-

time setup step is a minor part of our end-to-end cost. We measure

our communication costs as the data sent from P to V since V

will always send fewer data. With the parties communicating over

a gigabit link, this isn’t a limiting factor in our performance.

During the commitment protocol, we use at most 2 GB of RAM

for lineitem table. Our queries in 60k Rows used at most 18 GB of

RAM in our experiments. Therefore, the memory footprint is not a

bottleneck in this system. Taken together, this one-time setup cost

of committing the input data works e�ciently in ZKSQL.

5.3 Oblivious Proving Overhead

In order to not leak information about data-dependent changes in

the control �ow of ZKSQL’s operators, when an operator deletes

a tuple, we replace it with a tombstone that does not contribute

to the results of subsequent operators. We maintain a dummy tag

for each tuple to keep track of this. In our next experiment, we

quantify the overhead associated with this padding.

In this experiment, we compare ZKSQL’s oblivious query pro-

cessing with one that reveals our intermediate result sizes, labeled

“No Padding" in Figure 8. To not leak information about which tu-

ples are dummies, it sorts the intermediate results of each operator

to put all dummies at the end and then truncates the set as in [3].

Naturally, if our true intermediate result cardinalities are small,

our runtime with no padding is faster signi�cantly and we amortize

the cost of obliviously deleting the dummies. Our queries with the

biggest slowdowns owing to dummy padding are Q8 (12×) and

Q18 (10.5×). This makes sense because these queries have many

joins and fewer �xed costs like expressions that always require

veri�cation with circuits. On the other hand, Q1’s performance is

on par with its non-oblivious counterpart. Somewhat surprisingly

&9 has similar performance in both settings despite it having several

joins. This is because the Q9 has a cascade of primary key-foreign

key joins without �lters on their source tables. Hence, the true

intermediate cardinalities are quite close to their oblivious versions.

5.4 Set-Based Operators

We now turn our attention to the set-based operators described

in Section 4. Recall that they construct their proofs based on the

1813



&1 &3 &5 &8 &9 &18

102

103

104

105

R
u
n
ti
m
e(
s)

ZKSQL Circuit-Only

Figure 9: Runtime of ZKSQL vs Circuit-Only baseline.

properties of an operator’s results in lieu of following its execution

�ow in circuits. In particular, our sorts and joins bene�ted from this

technique. Figure 9 shows the runtime of ZKSQL in comparison to

the Circuit-Only baseline we introduced in Section 4.

All of our queries, except Q1, realized at least two orders of mag-

nitude over the baseline. Q1, like any query with few set operations,

has a performance comparable to the Circuit-Only approach. Its

two sort operations give us a speedup of 2×.

Queries with several joins and few expressions realized the

biggest gains in performance. The queries with many sorts and

aggregates–they sort for grouping–bene�t disproportionately from

Π(�) _$% . Our biggest speedup came from Q18 at 410×. It joins four

tables and has two aggregates owing to a nested subquery. Also, it

has no expressions from �lters or projections. Shown in Section 5.5,

circuit-based operators can get costly for these operators.

This con�rms our hypothesis that proving properties about the

results of our operators is more e�cient than tracing their execution

in ZK. Sorting in particular produces substantial end-to-end gains

because group-by aggregation uses it. Our set-based join operators

also signi�cantly speed up this authenticated query processing.

That said, our performance is still several orders of magnitude

slower than the plaintext ones in Table 2. For high-stakes scenarios,

such as guaranteeing the privacy of records (by not releasing them)

while upholding proof of regulatory compliance, this technology is

practical since our queries complete in minutes. Nevertheless, its

overhead is likely too substantial for very large datasets.

5.5 Operator Performance

We now examine the operator-at-a-time performance of Q3 in

Figure 10. We choose this one because it is of medium complexity

and includes a mix of circuit-based and set-based operators.

Projection without parameters denotes it only deletes or reorders

columns from its input. If a projection proves an expression, we note

it in the label such as Project(revenue). This operator computes the

�eld revenue from l.l_extendedprice * (1 - l.l_discount).

Since the former projections are simply performing memcpy oper-

ations, their runtimes are naturally minor compared to ones that

require proofs. It is quite costly to prove arithmetic expressions

in ZK. Hence, the Project(revenue) operator made up slightly less

than a third of our query runtime. More work is needed to optimize

how we select the protocols for these expressions.

In contrast, boolean expressions are cheaper in ZK, and thus Fil-

ter makes up 3% of our runtime. Despite all of the optimizations we

made to joins in ZKSQL, they were still the most time-consuming

operators in this query. The two joins make up 57% of our time.

This is partially because our prover veri�es the join predicate on

every output tuple. These boolean expressions are cheaper than

math ones, but they still take time. Our sorts and aggregate have

10−2 10−1 100 101 102 103 104 105

%A> 942C
�8;C4A (2_<:CB46<4=C )

%A> 942C
%A> 942C

�8;C4A (>_>A34A30C4 )
� >8= (2DBC:4~)

%A> 942C
�8;C4A (;_Bℎ8?30C4 )
%A> 942C (A4E4=D4 )
� >8= (>A34A:4~)

%A> 942C

(>AC
(*" (A4E4=D4 )

(>AC
%A> 942C

Runtime(ms)

Figure 10: Operator-level performance on TPC-H Q3.

&1 &3 &5 &8 &9 &18

0

1,000

2,000

R
u
n
ti
m
e(
s) 12.5Gbps 20Mbps 5Mbps

Figure 11: Runtime with decreasing network speeds.

comparatively minor runtimes at 4% and 3% respectively. The ag-

gregate is a simple sum and this addition is comparatively cheaper

than the division we saw in the revenue expression.

5.6 Network Throughput

ZKSQL’s proofs are interactive, meaning P and V go through

challenge-response rounds. In this experiment, we quantify the

cost of this communication. We use the 12.5Gbps network of our

r6i.4xlarge instances as our baseline. See how our performance

is impacted with constrained bandwidth, such as if our instances

were geographically distributed or sharing resources with others,

we throttle our network to 20"1?B and then 5"1?B and measure

the runtimes of our query workload.

Figure 11 shows that our protocols largely don’t hit a network

bottleneck until they reach 5"1?B . Moreover, reducing our band-

width to 5"1?B is only about 2× slower than the gigabit baseline.

These results indicate that our performance is largely not dependent

on variations in network availability.

5.7 Scalability

Although we conduct most of our experiments on the 60k Rows

instance, it does not mean that ZKSQL is only e�cient for databases

in this size range. To con�rm this hypothesis, we also ran this work-

load with TPC-H’s lineitem table at 120k and 240k rows. Figure 12

illustrates our performance in terms of runtime, CPU time, memory,

and communication cost. We do so to get a comprehensive view of

factors in our performance. We measure CPU time using the Linux

clock() facility and peak memory utilization with rusage.

All of our queries except Q9 have their runtimes double in pro-

portion to their input sizes. Q9 has a 3× slowdown because it has

wider rows and this means that we spend more time paging data

into the CPU cache. Our optimization in the parser of projecting

out unused �elds eagerly between each operator prevents other

queries from exhibiting similar behavior.

If we consider our CPU utilization as a percentage of our runtime,

this measurement is inversely correlated to our memory footprint.

Queries with a small memory footprint, such as Q1, consistently run

with 90% CPU utilization or greater. Its largest memory footprint

is 15 GB. In contrast, Q9 has a much larger memory footprint,

1814



&1 &3 &5 &8 &9 &18

103

104

R
u
n
ti
m
e
(s
)

60k Rows

120k Rows

240k Rows

&1 &3 &5 &8 &9 &18

0

500

1,000

1,500

C
P
U
ti
m
e
(s
)

&1 &3 &5 &8 &9 &18

0

20

40

60

M
em

o
ry

(G
B
)

&1 &3 &5 &8 &9 &18

0

200

400

600

800

1,000

C
o
m
m

(M
B
)

Figure 12: Query performance over data of increasing sizes.

ranging from 18 to 69 GB, and its CPU utilization is 28% in 60k

Rows and gradually reduces to 11% when we reach 240k Rows. Our

communication costs scale linearly with our input sizes. As we saw

in Figure 11, our network bandwidth is not substantial enough to

be a limiting factor in the current cloud-based infrastructure.

5.8 Financial Cost

So far we’ve examined ZKSQL’s performance through the lens of

system performance. Finally, we quantify the �nancial cost of these

authenticated queries in the cloud. Table 4 shows the monetary cost

per query of the Circuit-Only approach and ZKSQL over increasing

database sizes. Our instances cost $1.01/ℎA per instance.

For 60k Rows, we can see that the Circuit-Only approach takes

1.2× to 392× more monetary cost than ZKSQL, so optimization

using set operations is a big step to make the system in practice.

For ZKSQL, the cost of proving these queries grows linearly in

the size of lineitem table doubles (and the additional tables grow

accordingly to uphold key constraints). The one exception to this is

Q9, as in Section 5.7. Our reasons for this additional slowdown and

cost are the same. More speci�cally, in Q9 the join with l_orderkey

== o_orderkey for 60k Rows has a slowdown of 3× when we scale

up to 120k Rows. Scaling to 240k Rows follows the same trajectory.

In total, 120k Rows costs 2.5× more than 60k Rows, and 240k Rows

incurs 2.8× higher charges than 120k Rows for all queries. This

�nancial cost is reasonable for high-stakes settings.

6 RELATED WORK

There is robust research on veri�able SQL querying using a variety

of techniques. CorrectDB [2] and VeriDB [35] o�er authenticated

SQL querying over trusted hardware. They are e�cient because

they delegate some of their operations to specialized hardware,

but they are not oblivious so they leak some information in their

program traces. In contrast, ZKSQL works on generic hardware and

builds trust from cryptographic protocols, and prevents information

leakage during the proving process.

IntegriDB [34] and vSQL [32] use cryptographic veri�able com-

putation protocols to prove the correctness of a broad class of SQL

queries. However, they work in the outsourcing setting, thus only

providing integrity but not privacy (i.e., ZK property).

vSQL has an extension for ZK proofs [33], but it does not support

ad-hoc queries. This work formalizes that vSQL could be made zero-

knowledge but does not address how to translate SQL statements

into the cryptographic protocols needed to prove arbitrary, ad-

hoc queries, nor the practical e�ciency of such an approach. The

focus of this work is on making this authenticated, zero-knowledge

querying e�cient and accessible to a broad audience by generalizing

the architecture of relational DBMSs for ZK proofs.

Recently, there has been substantial cryptography research in

making ZK proofs more e�cient [1, 4, 5, 12, 20, 25, 29, 30]. Our

Table 4: In cloud monetary cost of Circuit-Only vs ZKSQL

over data of increasing size.

Query &1 &3 &5 &8 &9 &18 Total

60k Rows (Circuit-Only) $0.22 $6.77 $10.69 $8.99 $12.22 $35.39 $74.28

60k Rows (ZKSQL) $0.10 $0.04 $0.10 $0.14 $0.42 $0.09 $0.89

120k Rows (ZKSQL) $0.20 $0.09 $0.21 $0.29 $1.27 $0.17 $2.23

240k Rows (ZKSQL) $0.39 $0.18 $0.43 $0.57 $4.39 $0.34 $6.30

work builds from these results by using EMP Toolkit [28] as ZK-

SQL’s cryptographic back-end. Rather than creating cryptographic

primitives for functionality, we introduce protocols for e�cient,

pragmatic proofs for SQL queries.

7 CONCLUSIONS AND FUTUREWORK
In this work, we propose ZKSQL, the �rst system of its kind for

automatically proving the completeness and soundness of answers

to ad-hoc SQL queries in ZK. ZKSQL evaluates each query inter-

actively between a prover and a veri�er at the operator level. It

supports Project, Filter, Sort, Join and Aggregate operators

and these operators seamlessly compose for open-ended querying.

We formalized the functionality for these operators in ZK with

FZKSQL and detailed protocols for each of them. Beyond directly

applying circuit-based protocols once per operator, we introduce

set operations over polynomials to optimize our proving of some

operators by reasoning over entire sets of tuples rather than doing

so one at a time. We then prototyped ZKSQL using a state-of-the-art

cryptographic back-end, EMP Toolkit, and evaluate it with TPC-H.

The operator optimizations in ZKSQL yielded approximately

two orders of magnitude performance improvement on average.

Our emphasis was on building blocks within database operators.

Future work may include applying these optimizations on top of

other ZK paradigms, e.g., based on MPC-in-the-head [21]. It is also

an interesting direction to explore if it is possible to prove SQL

query results without proving all operators individually or for what

query veri�cation can be performed much cheaper than with this

�ne-grained proving. On the other hand, since ZKSQL evaluates

each query in an operator-at-a-time fashion sequentially, execution

order optimization of operators should be the crucial step along

with other query optimization techniques to improve the system

further. In addition, Join operator of ZKSQL supports two-way

equi-join alone, so supporting a larger class of joins would be an

interesting future direction for this work.

ACKNOWLEDGMENTS

This work is supported in part by DARPA under Contract No.

HR001120C0087, NSF awards #2016240, #1846447, #2236819, and re-

search awards from Meta and Google. The views, opinions, and/or

�ndings expressed are those of the author(s) and should not be

interpreted as representing the o�cial views or policies of the De-

partment of Defense or the U.S. Government.

1815



REFERENCES
[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted
Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 2087–2104.

[2] Sumeet Bajaj and Radu Sion. 2013. CorrectDB: SQL engine with practical query
authentication. Proceedings of the VLDB Endowment 6, 7 (2013), 529–540.

[3] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.
2018. Shrinkwrap: e�cient sql query processing in di�erentially private data
federations. Proceedings of the VLDB Endowment 12, 3 (2018).

[4] Carsten Baum, Alex J. Malozemo�, Marc Rosen, and Peter Scholl. 2020.
Mac’n’Cheese: Zero-Knowledge Proofs for Arithmetic Circuits with Nested
Disjunctions. Cryptology ePrint Archive, Report 2020/1410. https://eprint.iacr.
org/2020/1410.

[5] Carsten Baum, Alex J. Malozemo�, Marc B. Rosen, and Peter Scholl. 2021.
Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits
with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS), Tal Malkin and Chris
Peikert (Eds.), Vol. 12828. Springer, Heidelberg, Germany, Virtual Event, 92–122.

[6] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 221–230. https:
//doi.org/10.1145/3183713.3190662

[7] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. In CRYPTO 2013, Part II (LNCS), Ran Canetti and Juan A. Garay (Eds.),
Vol. 8043. Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 90–108.

[8] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Suc-
cinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In
23rd USENIX Security Symposium (USENIX Security 14). USENIX Association,
San Diego, CA, 781–796. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/ben-sasson

[9] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short Proofs for Con�dential Transactions
and More. In 2018 IEEE Symposium on Security and Privacy (SP). 315–334. https:
//doi.org/10.1109/SP.2018.00020

[10] R. Canetti. 2001. Universally composable security: a new paradigm for cryp-
tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. 136–145. https://doi.org/10.1109/SFCS.2001.959888

[11] Ronald Cramer and Ivan Damgård. 1997. Linear Zero-Knowledge—a Note on
E�cient Zero-Knowledge Proofs and Arguments. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing (El Paso, Texas, USA)
(STOC ’97). Association for Computing Machinery, New York, NY, USA, 436–445.
https://doi.org/10.1145/258533.258635

[12] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2021. Line-Point Zero Knowl-
edge and Its Applications. In 2nd Conference on Information-Theoretic Cryptogra-
phy (ITC 2021) (Leibniz International Proceedings in Informatics (LIPIcs)). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany.

[13] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and
Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM Programs.
In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual
Event, Republic of Korea, 178–191.

[14] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-
dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT 2013
(LNCS), Thomas Johansson and Phong Q. Nguyen (Eds.), Vol. 7881. Springer,
Heidelberg, Germany, Athens, Greece, 626–645.

[15] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster
Zero-Knowledge for Boolean Circuits. In USENIX Security 2016, Thorsten Holz
and Stefan Savage (Eds.). USENIX Association, Austin, TX, USA, 1069–1083.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs That Yield
Nothing But Their Validity Or All Languages in NP Have Zero-Knowledge Proof

Systems. Journal of the ACM 38, 3 (1991), 691–729.
[17] Sha� Goldwasser, Silvio Micali, and Charles Racko�. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In 17th ACM
STOC. ACM Press, Providence, RI, USA, 291–304.

[18] Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk,
Benjamin Perez, and Gijs Van Laer. 2022. E�cient Proofs of Software Exploitabil-
ity for Real-world Processors. Cryptology ePrint Archive, Paper 2022/1223.
https://eprint.iacr.org/2022/1223 https://eprint.iacr.org/2022/1223.

[19] Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Ar-
guments. In ASIACRYPT 2010 (LNCS), Masayuki Abe (Ed.), Vol. 6477. Springer,
Heidelberg, Germany, Singapore, 321–340.

[20] David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive
Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS), Anne Canteaut and
Yuval Ishai (Eds.), Vol. 12107. Springer, Heidelberg, Germany, Zagreb, Croatia,
569–598.

[21] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-
knowledge from secure multiparty computation. In 39th ACM STOC, David S.
Johnson and Uriel Feige (Eds.). ACM Press, San Diego, CA, USA, 21–30.

[22] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge
using garbled circuits: how to prove non-algebraic statements e�ciently. In ACM
CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM
Press, Berlin, Germany, 955–966.

[23] Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. 2018. Round
Optimal Black-Box “Commit-and-Prove”. Cryptology ePrint Archive, Paper
2018/921. https://eprint.iacr.org/2018/921 https://eprint.iacr.org/2018/921.

[24] United States Department of Education. 2022. College Scorecard. https:
//collegescorecard.ed.gov

[25] Srinath Setty. 2020. Spartan: E�cient and General-Purpose zkSNARKs Without
Trusted Setup. In CRYPTO 2020, Part III (LNCS), Daniele Micciancio and Thomas
Ristenpart (Eds.), Vol. 12172. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA, 704–737.

[26] The New York Times. 2022. U.S. News Dropped Columbia’s Ranking, but Its
Own Methods Are Now Questioned. https://www.nytimes.com/2022/09/12/us/
columbia-university-us-news-ranking.html

[27] Transaction Processing Council. 2023. TPC-H Benchmark. http://www.tpc.org/
tpch/

[28] Xiao Wang, Alex J. Malozemo�, and Jonathan Katz. 2016. EMP-toolkit: E�cient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[29] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:
Fast, Scalable, and Communication-E�cient Zero-Knowledge Proofs for Boolean
and Arithmetic Circuits. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1074–1091.

[30] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:
E�cient and A�ordable Zero-Knowledge Proofs for Circuits and Polynomials
over Any Field. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM
Press, Virtual Event, Republic of Korea, 2986–3001.

[31] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transpar-
ent Polynomial Delegation and Its Applications to Zero Knowledge Proof. In
2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San
Francisco, CA, USA, 859–876.

[32] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over
Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, San Jose, CA, USA, 863–880.

[33] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. 2017. A Zero-Knowledge Version of vSQL. Cryptology
ePrint Archive, Report 2017/1146. https://eprint.iacr.org/2017/1146.

[34] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. IntegriDB:
Veri�able SQL for Outsourced Databases. In ACM CCS 2015, Indrajit Ray, Ninghui
Li, and Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 1480–1491.

[35] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and Feifei Li. 2021.
Veridb: An sgx-based veri�able database. In Proceedings of the 2021 International
Conference on Management of Data. 2182–2194.

1816


	Abstract
	1 Introduction
	2 Background
	2.1 Zero-Knowledge Proofs
	2.2 Oblivious Query Evaluation

	3 Overview and Query Planning
	3.1 Security Model
	3.2 Workflow

	4 ZKSQL
	4.1 Set Operations
	4.2 Operators

	5 Experimental Results
	5.1 Experimental Setup
	5.2  Setup Costs
	5.3 Oblivious Proving Overhead
	5.4 Set-Based Operators
	5.5 Operator Performance
	5.6 Network Throughput
	5.7 Scalability
	5.8 Financial Cost

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

