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ABSTRACT

Modern graph database query languages such as GQL, SQL/PGQ,
and their academic predecessor G-Core promote paths to first-class
citizens in the sense that their pattern matching facility can return
paths, as opposed to only nodes and edges. This is challenging for
database engines, since graphs can have a large number of paths
between a given node pair, which can cause huge intermediate
results in query evaluation.

We introduce the concept of path multiset representations (PMRs),
which can represent multisets of paths exponentially succinctly and
therefore bring significant advantages for representing intermediate
results. We give a detailed theoretical analysis that shows that
they are especially well-suited for representing results of regular
path queries and extensions thereof involving counting, random
sampling, and unions. Our experiments show that they drastically
improve scalability for regular path query evaluation, with speedups
of several orders of magnitude.
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1 INTRODUCTION

Graph databases are becoming increasingly popular [51]. Indeed,
modern graph query languages such as Neo4j’s Cypher [23], Tiger-
graph’s GSQL [32], and Oracle’s PGQL [50] are rapidly gaining
adoption in industry, and there are ongoing ISO standardization
efforts for GQL (a native query language for property graphs) as
well as SQL/PGQ (which extends SQL with capabilities for graph
pattern matching on property graphs) [24].

At the core of all of these languages lies the problem of evaluating
regular path queries (or RPQs for short), which have been studied
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in database research since the late 1980s, see, e.g., [7, 10, 11, 16, 17,
22, 28, 43–45]. In essence, an RPQ consists of a regular expression
𝑒 . The classical semantics of RPQs in the academic literature and
in, e.g., implementations of SPARQL [63] is the following. When
we evaluate 𝑒 over an edge-labeled graph 𝐺 , we return all node
pairs (𝑥,𝑦) such that there exists a path from 𝑥 to 𝑦 in 𝐺 whose
sequence of edge labels forms a word in the language of 𝑒 . Modern
graph query languages such as GQL, SQL/PGQ, and their academic
predecessors such as G-Core [4], are adopting a fundamentally
different approach by making paths first-class citizens: RPQs no
longer simply return endpoint pairs, but also the matching paths.
We illustrate both semantics by means of the following example.

Example 1.1. We adopt the property graph of Figure 1 as our
running example. The graph has node identifiers (a1, . . . , a6, c1, c2,
p1,. . . ,p4, ip1, ip2) in red and edge identifiers (t1, . . . , t8, li1, . . . ,
li6, hp1, . . . , hp6) in blue. Nodes and edges can carry labels (such
as Account, Transfer, and isLocatedIn) and property-value pairs
(such as (owner,Mike) and (date, 1/1/2020)). We depict labels and
property/value pairs for nodes in solid boxes, whereas for edges,
these are in dashed boxes (or in the legend on the bottom right).

Consider the RPQ consisting of the regular expression 𝑒 =

Transfer+ . When evaluated under the classical semantics on the
graph in Figure 1, this RPQ returns all node pairs (𝑥,𝑦) such that
there is a path of length at least one from 𝑥 to𝑦 in which every edge
carries the label Transfer. Examples of such node pairs are (a1, a3)
(which have a direct Transfer link) but also (a1, a2) (connected by
a path of length 2) and (a1, a4) (connected by a path of length 3).
When evaluated under the new semantics, this RPQ would return
the matching paths in addition to the endpoint pairs, and include

(a1, a3, path(a1,t1,a3)),
(a1, a2, path(a1,t1,a3,t2,a2)),
(a1, a4, path(a1,t1,a3,t2,a2,t3,a4)),

wherewe used path(a1,t1,a3,t2,a2) to denote the path of length
2 from Scott (a1) to Aretha (a2), through Mike (a3). Under this se-
mantics, RPQs hence return triples (𝑥,𝑦, 𝑝) where 𝑥 and𝑦 are nodes
and 𝑝 is a path that connects them. □

Making paths a first-class citizen in modern graph query lan-
guages is not a straightforward task. Fundamentally, a key problem
that systems are facing is how to best represent results of queries
and subqueries that feature paths. The main issue is dealing with
the sheer number of results that path queries can produce.
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Figure 1: A property graph with information on bank accounts, their location, and financial transations, based on [24].

A common approach, proposed by the GQL standard [24], by
SQL/PGQ [24], and already supported by multiple engines [31, 46,
55, 57, 62], is to return the results of a path query as a relational
table. In Example 1.1, for instance, this table contains triples (𝑥,𝑦, 𝑝),
where 𝑥 and𝑦 are nodes and 𝑝 is a Transfer-labeled path connecting
them.We show a portion of this table (replacing node/edge IDs with
their content for readability) in Table 1a. However, the number of
such triples, and hence also the size of the table, can quickly become
prohibitively large, or even infinite. To illustrate this, notice that
the graph in Figure 1 has several Transfer-labeled cycles. This, in
turn, implies that the number of triples (𝑥,𝑦, 𝑝) is infinite. For
instance, there are infinitely many paths between a1 and a3, of
lengths 1, 5, 9, etc. To ensure that queries have finite answers, the
GQL language and today’s query engines restrict the paths that are
allowed. Common types of restrictions considered are: TRAIL (no
repeated edge), SIMPLE (no repeated node), and SHORTEST [24].

While these restricted evaluation modes do fix the infinity issue,
they can still result in prohibitively large outputs. To illustrate,
consider the graph in Figure 2, which has 3𝑛+1 nodes and 4𝑛 edges.
If we were to output all the shortest paths between 𝑥 and 𝑦 in
Figure 2, there are 2𝑛 of these. Notice that these paths are also both
trails and simple paths. Therefore, a relational table representation
of this output, such as the one in Table 1a andwhich current systems
use, would “materialize” all 2𝑛 paths. For this reason, it seems
desirable to adopt a different data structure that can represent
sets of triples (𝑥,𝑦, 𝑝) as succinctly as possible, preferably in less
than 2𝑛 space, while still allowing to generate the relational table
representation from them.

We note that some systems already have something in place that
can be seen as a succinct representation of paths, but wewill explain
why it is not sufficient. Query engines such as Neo4J [23] present
query results to the user by means of so-called graph projections.
Intuitively speaking, the graph projection takes the table represen-
tation and displays the subgraph of the original graph consisting
only of the nodes and edges mentioned in the table. For instance,
the graph projection of the query that asks for all paths from node
𝑥 to node 𝑦 in Figure 2 simply yields the graph of Figure 2 itself. In
general, however, graph projections are not accurate representa-
tions of query results. Consider, for instance a second query that

𝑥
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· · ·
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Figure 2: A graph with 2𝑛 shortest paths from 𝑥 to 𝑦.

returns only two paths in Figure 2: the path from 𝑥 to 𝑦 through
𝑢1, 𝑢2, . . . , 𝑢𝑛 and the path from 𝑥 to 𝑦 through 𝑣1, 𝑣2, . . . , 𝑣𝑛 . The
graph projection for this second query is exactly the same as that
for the first query. So, graph projections are not lossless — they are
just a subgraph of the input, and as such they lose the information
about which paths were to be returned. Furthermore, to the best
of our knowledge, current systems compute the graph projection
from the tabular output. This is inefficient since the latter can be
exponentially larger than both the graph projection and the input.

Our Contribution

In this paper we introduce the concept of path multiset representa-
tions (PMRs) for compactly representing (multi)sets of paths. We
show that processing of (generalized) RPQs based on PMRs can
make query evaluation drastically more efficient. In a nutshell,
PMRs aim to combine the best of the relational table representation
and graph projections while avoiding their disadvantages. That is,
they provide a compact representation of an exponential (or even
infinite) number of paths, similarly to graph projections, while at
the same time being lossless and allowing to identify individual
paths in the output, as the tabular representation does.

Our formal and experimental results show significant potential:
(1) PMRs can represent sets and multisets of paths accurately and

exponentially more succinctly compared to current state-of-the-
art systems and the current GQL standard description.

(2) PMRs can represent the output of regular path queries, the basic
building block of modern graph pattern matching languages,
and can be computed in linear time combined complexity, which
strongly contrasts to the current exponential algorithms.

(3) On PMRs we can perform operations that are common on the
tabular representation: enumeration (i.e., scanning), counting,
random sampling, grouping, and taking unions. By performing
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Table 1: Tabular representation of Transfer-trails in Figure 1.

(a) Tabular representation.

𝑥 𝑦 𝑝

Mike Billie Mike -[Transfer]-> Billie
Billie Scott Billie -[Transfer]-> Scott
Mike Aretha Mike -[Transfer]-> Aretha
[...]
Mike Aretha Mike -[Transfer]-> Billie -[Transfer]->

Scott -[Transfer]-> Mike -[Transfer]-> Aretha
Mike Billie Mike -[Transfer]-> Billie -[Transfer]->

Scott -[Transfer]-> Mike -[Transfer]->
Aretha -[Transfer]-> Jay -[Transfer]->
Dave -[Transfer]-> Billie

[...]

(b) Pairwise grouped tabular representation.

𝑥 𝑦 𝑝

Mike Billie Mike -[Transfer]-> Billie,
Mike -[Transfer]-> Billie -[Transfer]->
Scott -[Transfer]-> Mike -[Transfer]->
Aretha -[Transfer]-> Jay -[Transfer]->
Dave -[Transfer]-> Billie,

[...]
Mike Aretha Mike -[Transfer]-> Aretha,

Mike -[Transfer]-> Billie -[Transfer]->
Scott -[Transfer]-> Mike -[Transfer]-> Aretha
[...]

[...]

a1

a3

a5a1

a3

a5

r1

t1

t7

t8

t1

t7

t8 𝑆 = 𝑇 = {r1}

Figure 3: Path representation over the graph database of Fig-

ure 1, representing all cycles of even length from Mike to

Mike where the transferred amounts are strictly less than

10M. We depicted the value 𝛾 (𝑢) inside every node 𝑢.

these operations on PMRs instead of on tabular representa-
tions, we hence obtain query plans that are exponentially more
efficient in general because we can avoid computing the expo-
nentially larger tabular representation.

(4) As a proof of concept, we experimentally evaluate queries with
RPQs and aggregation on synthetic and real-world data. We find
that today’s systems easily time out for queries that return paths
on large-scale data and we show that PMRs have a significant
potential to improve this situation, yielding speedups of up to four
orders of magnitude.

The presented theoretical results show that exponential speed-ups
in query evaluation methods are possible, while our experiments
confirm speed-ups of several orders of magnitude on small and
large data sets. In the wider context of query language design,
PMRs show that it is possible to represent infinitely many paths in
query evaluation plans using a finite object, which opens up further
possibilities for the design of future graph query languages.

PMRs in a Nutshell. Intuitively, a PMR over a graph 𝐺 is itself a
graph 𝑅, together with

• a homomorphism 𝛾 from 𝑅 to 𝐺 , and
• a set of “start nodes” 𝑆 and a set of “target nodes” 𝑇 .

The idea is that 𝑅 provides a succinct structure to represent paths
between groups of nodes in 𝐺 .

To illustrate, Figure 3 shows a PMR 𝑅 over the graph 𝐺 of Fig-
ure 1. It uses a single start node, r1, which is also the single target
node, and represents all cycles of even length from Mike to Mike
where the transferred amounts are less than 10M. Intuitively, the
homomorphism 𝛾 associates each node in 𝑅 to a node in 𝐺 — for
each node 𝑢 of 𝑅, we depicted the value of 𝛾 (𝑢) inside the node 𝑢
in Figure 3. Notice that 𝛾 can associate multiple nodes in 𝑅 to the
same node in𝐺 . In particular, the leftmost and rightmost node in 𝑅

are both mapped to a3. This symbolizes the fact that one needs to
traverse the cycle a3–a5–a1–a3 twice to obtain even length.

A PMR 𝑅 “represents” a (possibly infinite) number of paths in 𝐺 .
These paths are the images of the paths in 𝑅 from some node in 𝑆

to some node in 𝑇 under the mapping 𝛾 . As such, in Figure 3, the
paths from 𝑆 = {r1} to 𝑇 = {r1} are cycles of length 0, 6, 12, etc.
in 𝑅, which correspond (through 𝛾 ) to cycles of the same lengths in
𝐺 . In this case, the number of paths represented by 𝑅 is infinite.

An example PMR representing exponentially many paths would
be the graph in Fig. 2 with 𝑆 = {𝑥}, 𝑇 = {𝑦}, and 𝛾 the identity.

Paper Organization. We provide mathematical background in
Section 2. In Section 3 we define Path Multiset Representations and
study their basic properties. In Section 4 we introduce (unions of)
Generalized Regular Path Queries (GRPQs) as a formal model of
classical Regular Path Queries that also return paths. In Section 5
we show how to evaluate (U)GRPQs using Path Multiset Represen-
tations. We experimentally evaluate PMRs in Section 6. We discuss
related work in Section 7 and conclude in Section 8. Because of
space limitations, some details and proofs are omitted. An extended
version of this paper, whose appendix contains those items is avail-
able online [42]. This version also discusses the equivalence and
minimization problems for PMRs.

2 PRELIMINARIES

Background. For a natural number 𝑛, we denote the set {1, . . . , 𝑛}
by [𝑛]. A multiset 𝑀 is a function from a set 𝑆 to N \ {0} ∪ {∞}.
We denote multisets using double braces, e.g., in the multiset𝑀 =

{{𝑎, 𝑎, 𝑏}}, we have that 𝑀 (𝑎) = 2 and 𝑀 (𝑏) = 1. We do not distin-
guish between sets and multisets where all elements have multiplic-
ity one: i.e., we equate {{𝑎, 𝑏}} = {𝑎, 𝑏}. For a multiset𝑀 we denote
by set(𝑀) the set obtained from𝑀 by forgetting multiplicities. For
instance, set({{𝑎, 𝑎, 𝑏}}) = {𝑎, 𝑏} = {{𝑎, 𝑏}}.
Graph databases. We assume that we have infinite disjoint sets
NID of node identifiers, EID of edge identifiers, and L of labels.

Because our focus in this paper will be on how paths as first-class
citizens interact with regular path queries on graph databases, we
adopt a formal data model that is a simplified version of property
graphs in which property graph features that are non-essential to
our discussion, such as node labels and property-value records, are
omitted. We stress that this is only for ease of exposition: all of
these features can be added to our approach without influencing
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our results. Formally, our data model is an edge-labeled directed
multigraph, defined as follows.

Definition 2.1. A graph database is a tuple𝐺 = (𝑁, 𝐸, 𝜂, 𝜆), where
(1) 𝑁 ⊆ NID is a finite set of node identifiers and 𝐸 ⊆ EID is a

finite set of edge identifiers;
(2) 𝜂 : 𝐸 → (𝑁 ×𝑁 ) is a total function, called the incidence mapping,

that associates each edge to the nodes it connects;
(3) 𝜆 : 𝐸 → L is a total function, called the labeling function, that

associates a label to each edge.

In what follows, if𝐺 is a graph then we will write 𝑁𝐺 for the set
of𝐺 ’s nodes, and similarly write 𝐸𝐺 , 𝜂𝐺 , 𝜆𝐺 for the set of𝐺 ’s edges,
incidence mapping, and labeling function. We may omit subscripts
if 𝐺 is clear from the context.

An unlabeled graph is a triple (𝑁, 𝐸, 𝜂) defined exactly as a graph
database, except that the labeling function 𝜆 is missing.
Paths. A path in a graph database 𝐺 is a sequence

𝜌 = 𝑣0𝑒1𝑣1𝑒2𝑣2 · · · 𝑒𝑛𝑣𝑛
with 𝑛 ≥ 0, 𝑒𝑖 ∈ 𝐸, and 𝜂 (𝑒𝑖 ) = (𝑣𝑖−1, 𝑣𝑖 ) for every 𝑖 ∈ [𝑛]. We
sometimes write path(𝜌) instead of simply 𝜌 to stress that we
are talking about a path. For example path(a1,t1,a3,t2,a2) is
the path of length two from Scott to Aretha in Figure 1. We use
Paths(𝐺) to denote the set of paths in 𝐺 .

If 𝜌 is a path in 𝐺 and 𝜆 is 𝐺 ’s labeling function, then we write
𝜆(𝜌) for the sequence of edge labels 𝜆(𝜌) = 𝜆(𝑒1) · · · 𝜆(𝑒𝑛) occur-
ring on the edges of 𝜌 . We write src(𝜌) for the node 𝑣0 at which 𝜌

starts, and tgt(𝜌) for the node 𝑣𝑛 at which it ends. Given two sets of
nodes 𝑆 and𝑇 , we say that 𝜌 is a path from 𝑆 to𝑇 if src(𝜌) = 𝑣0 ∈ 𝑆

and tgt(𝜌) = 𝑣𝑛 ∈ 𝑇 .
A path multiset over 𝐺 (or PM over 𝐺 for short) is a multiset of

paths, all in the same graph 𝐺 . We will often simply speak about
path multisets without referring to the graph that they are drawn
from, which will be implicit from the context.

3 PATH MULTISET REPRESENTATIONS

To the best of our knowledge, intermediate or final results of queries
in current graph database query languages such as Cypher [23],
G-Core [4], and SQL-PGQ [24] are always represented as tables
in which each path is listed explicitly, essentially as in Table 1a.
Our focus is on representing the path multisets involved in query
answers in a drastically more succinct manner.

Example 3.1. Consider the set of all paths from 𝑥 to 𝑦 in Figure 2.
Since there are 2𝑛 such paths, representing them as in Table 1 would
take 2𝑛 rows. Instead, we next propose to represent this set of paths
by means of the graph in Figure 2 itself, together with the set {𝑥}
of source nodes and {𝑦} of target nodes. This representation has
size 𝑂 (𝑛) instead of Ω(2𝑛).

More precisely, we propose to use path multiset representations
of 𝐺 , which we define next.

Definition 3.2. A path multiset representation (PMR) over graph
𝐺 is a tuple 𝑅 = (𝑁, 𝐸, 𝜂,𝛾, 𝑆,𝑇 ), where

(1) (𝑁, 𝐸, 𝜂) is an unlabeled graph;
(2) 𝛾 : (𝑁 ∪ 𝐸) → (𝑁𝐺 ∪ 𝐸𝐺 ) is a (total) homomorphism, i.e. a

function that maps nodes in 𝑅 to nodes in 𝐺 and edges in 𝑅

to edges in𝐺 such that, if an edge 𝑒 ∈ 𝐸 connects 𝑣1 to 𝑣2 in
𝑅, then 𝛾 (𝑒) connects 𝛾 (𝑣1) to 𝛾 (𝑣2) in 𝐺 ; and

(3) 𝑆,𝑇 ⊆ 𝑁 are sets of source and target nodes, respectively.
If 𝑅 is a PMR, then we sometimes write 𝑁𝑅 for its set of nodes, and
similarly 𝐸𝑅 , 𝜂𝑅 , 𝛾𝑅 , 𝑆𝑅 , and𝑇𝑅 for the other components. If 𝑅1 and
𝑅2 are PMRs over the same graph 𝐺 whose nodes and edges are
disjoint, then we write 𝑅1 ⊔ 𝑅2 for the PMR over 𝐺 obtained by
taking the disjoint union of 𝑅1 and 𝑅2 (defined in the obvious way
by taking the union of each component).

If 𝑅 is a PMR of 𝐺 , we say that node 𝑣 ∈ 𝑁 represents the node
𝛾 (𝑣) in 𝐺 . Furthermore, each path

𝜌 = 𝑣0𝑒1𝑣1𝑒2𝑣2 · · · 𝑒𝑛𝑣𝑛
from 𝑆 to 𝑇 in 𝑅 represents a path in 𝐺 , namely the path

𝛾 (𝜌) := 𝛾 (𝑣0)𝛾 (𝑒1)𝛾 (𝑣1)𝛾 (𝑒2)𝛾 (𝑣2) · · ·𝛾 (𝑒𝑛)𝛾 (𝑣𝑛) .

We define SPaths(𝑅) andMPaths(𝑅) to be the set, resp. multiset,
of paths represented by 𝑅, that is,

SPaths(𝑅) := {𝛾 (𝜌) | 𝜌 is a path from 𝑆 to 𝑇 in 𝑅},
MPaths(𝑅) := {{𝛾 (𝜌) | 𝜌 is a path from 𝑆 to 𝑇 in 𝑅}}.

A PMR 𝑅 represents a multiset𝑀 of paths if𝑀 = MPaths(𝑅). It rep-
resents a set of paths 𝑃 = {𝜌1, 𝜌2, . . .} if 𝑃 = SPaths(𝑅). Notice that,
if𝑀 = MPaths(𝑅), then we always have that set(𝑀) = SPaths(𝑅).
In other words, if a PMR represents a multiset of paths, it also
represents the corresponding set of paths.

A PMR 𝑅 is trim if every node in 𝑁𝑅 is on some path from some
node in 𝑆 to some node in 𝑇 . As such, trim PMRs do not contain
useless information. Our interest will be in constructing trim PMRs.

3.1 Examples of PMRs

If𝛾 is the identity function, then a PMR is structurally a subgraph of
𝐺 . This is already useful, as we illustrated in Example 3.1. By choos-
ing a different 𝛾 , however, we can incorporate state information,
which is necessary for evaluating regular path queries (Example 3.3),
and multiplicities of paths (Example 3.4).

Example 3.3 (State information). Figure 3 shows a PMR 𝑅 for all
cycles of even length from Mike to Mike, and where all transferred
amounts are strictly less than 10M. (We omitted node and edge IDs
that are irrelevant.) The “even length” condition can be encoded in
𝑅, since 𝛾 can map different nodes in 𝑅 to the same node in 𝐺 .

Example 3.3 illustrates another interesting property of PMRs:
they can represent an infinite number of paths in a finite man-
ner. Indeed, the set of cycles of even length from Mike to Mike in
Example 3.3 is infinite. We have cycles of length 6, 12, 18, etc.

Example 3.4 (Multisets). The PMR 𝑅 in Figure 4 represents the
path of length two fromMike to Scott twice.We have that SPaths(𝑅) =
{path(a3,t7,a5,t8,a1)} and MPaths(𝑅) = {{path(a3, t7, a5, t8,
a1), path(a3,t7,a5,t8,a1)}}.

To represent results of queries (or intermediate results in query
plans), our aim is to work with PMRs 𝑅 such thatMPaths(𝑅) cor-
responds to the multiset semantics of the query. We discuss how
this is done for regular path queries in Section 4.
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𝑆 = {r1},𝑇 = {r2}

Figure 4: Path representation over the graph database of Fig-

ure 1, representing the path of length two fromMike to Scott

twice. We depicted the value 𝛾 (𝑢) inside every node 𝑢.

3.2 Basic Properties of PMRs

Wemake some easy but important observations about the path mul-
tisets that can be represented by PMRs. Let 𝐺 be a graph database.

Any single path. Every single path in 𝐺 can be represented by a
PMR. Specifically, for a path 𝜌 = 𝑣0𝑒1𝑣1𝑒2𝑣2 · · · 𝑒𝑛𝑣𝑛 in𝐺 , define its
canonical PMR 𝑅𝜌 as 𝑅𝜌 = (𝑁, 𝐸, 𝜂,𝛾, 𝑆,𝑇 ) where

𝑁 = {v0, . . . , v𝑛} 𝜂 (e𝑖 ) = (v𝑖−1, v𝑖 ) for all 𝑖 ∈ [𝑛]
𝐸 = {e1, . . . , e𝑛} 𝛾 (e𝑖 ) = e𝑖 for all 𝑖 ∈ [𝑛]
𝑆 = {v0}, 𝑇 = {v𝑛} 𝛾 (v𝑗 ) = 𝑣 𝑗 for all 𝑗 ∈ [0, 𝑛]

Then MPaths(𝑅𝜌 ) = SPaths(𝑅𝜌 ) = {𝜌}. Notice that we construct
all nodes v𝑖 and edges e𝑖 in the PMR to be pairwise distinct, while
this is not necessarily the case for the nodes 𝑣𝑖 and edges 𝑒𝑖 in 𝜌

(e.g., when 𝜌 has loops). This pairwise distinctness is necessary to
ensure that MPaths(𝑅𝜌 ) and SPaths(𝑅𝜌 ) are exactly the singleton
{𝜌}: had we simply taken 𝑅𝜌 to be the subgraph of𝐺 induced by 𝜌

then, if 𝜌 contains loops, both MPaths(𝑅𝜌 ) and SPaths(𝑅𝜌 ) would
be infinite instead of the desired singleton.

Any finite multiset of paths. Let 𝑀 = {{𝜌1, . . . , 𝜌𝑘 }} be a finite
multiset of paths in 𝐺 . For each path 𝜌𝑖 , let 𝑅𝑖 be the canonical
PMR of 𝜌𝑖 and assume w.l.o.g. that the sets of nodes and edges of
these representations are pairwise disjoint. Define the canonical
PMR 𝑅𝑀 of𝑀 to be the disjoint union 𝑅1⊔· · ·⊔𝑅𝑛 of the individual
canonical PMRs. ThenMPaths(𝑅𝑀 ) = 𝑀 . In the special case where
every path in 𝑀 occurs only once, and 𝑀 is hence a set of paths,
then we also have that SPaths(𝑅𝑀 ) = 𝑀 .

Proposition 3.5. Let𝑀 be a finite multiset of paths in𝐺 . Then there
exists a path representation of 𝐺 that represents𝑀 .

While any finite multiset𝑀 of paths can hence always be repre-
sented by means of the canonical 𝑃𝑀𝑅, this representation is not
necessarily the smallest possible PMR for𝑀 . In the extended ver-
sion of this paper [42], we therefore give insight into the complexity
of the equivalence and minimization problems for PMRs.

The reader maywonder about which infinite multisets of paths in
𝐺 can be represented by PMRs. It turns out that these are precisely
the regular multisets, i.e., the multisets 𝑀 such that set(𝑀) is a
regular language, i.e., there exists an NFA 𝐴 such that 𝐿(𝐴) =

set(𝑀) and 𝑀 (𝜌) is the number of accepting runs of 𝐴 on 𝜌 , for
every path 𝜌 . Notice that the alphabet of 𝐴 is 𝑁𝐺 ∪ 𝐸𝐺 .

4 GENERALIZED REGULAR PATH QUERIES

Regular path queries are a crucial feature that sets graph query
languages apart from relational query languages, since they al-
low us to easily ask queries about arbitrarily long paths in graphs.
Furthermore, they are central in Cypher [23], SQL/PGQ, and GQL

[24]. Although regular path queries have been studied in research
for decades (e.g., [10, 16, 22, 44, 45]), their incarnation in Cypher,
SQL/PGQ, and GQL is different: they now have the capability of
returning entire paths instead of just their endpoints. In this section,
we introduce generalized regular path queries (GRPQs) to formalize
this important extra feature.

Regular languages, expressions, and automata.We recap some
basics on regular expressions and regular languages. A set of words
(each word using symbols from our fixed set of labels L) is also
called a language. A regular expression is an expression of the form

exp ::= 𝜀 | 𝑎 | exp1exp2 | exp1 + exp2 | exp∗ .

Here, 𝜀 denotes the empty word and 𝑎 ranges over symbols in L.
The language L(exp) of expression exp is defined as usual [33].
A language 𝐿 is regular if there exists a regular expression exp
such that 𝐿 = L(exp).1 Regular languages can equivalently be
represented by finite state automata. We assume basic familiarity
with deterministic (DFA) and non-deterministic finite automata
(NFAs) [33], and omit their formal definition. We say that an NFA
𝐴 is unambiguous (UFA for short) if it has at most one accepting
run for every word. Every DFA is unambiguous, but the converse
is not necessarily true. In what follows we will range over regular
expressions by the meta-variable exp and over UFAs by the meta-
variable ufa. We write L(exp) and L(ufa) to denote the language
of exp and ufa, respectively.

Generalized regular path queries.While classical RPQs are syn-
tactically defined to be simply a relational-calculus-like atom (𝑥, 𝐿,𝑦)
of endpoint variables (𝑥,𝑦) and regular language 𝐿, we find it con-
venient for our purposes to develop GRPQs as a small algebraic
query language. Specifically, our syntax for GRPQs completely ig-
nores binding endpoints to endpoint variables, as this feature is
unimportant for the immediate results that follow.

Formally, a Generalized Regular Path Query (GRPQ) is an expres-
sion 𝜑 of the form

𝜑 ::= 𝐿 | 𝜎𝑈 ,𝑉 (𝜑) | 𝑚(𝜑)
𝑚 ::= shortest, simple, trail

Here, 𝐿 is regular language (possibly specified by a regular expres-
sion or UFA),𝑈 and 𝑉 are either a finite set of node identifiers or
the infinite set of all node identifiers,2 and𝑚 is a selector mode. We
will refer to sets of node identifiers like 𝑈 and 𝑉 that are either
finite or the set of all nodes as node predicates.

Intuitively,𝐿 selects all paths thatmatch𝐿, whereas𝜎𝑈 ,𝑉 restricts
results to those for which the source and target endpoints belong
to𝑈 and 𝑉 , respectively, and𝑚 restricts results to those paths that
are shortest, simple, or trail. Formally, a GRPQ 𝜑 , when evaluated
on a graph database 𝐺 , evaluates to a path multiset 𝜑 (𝐺) over 𝐺 ,
inductively defined as follows. Let Paths(𝐺) denote the (possibly

1Notice that we have expressions for all regular languages, except the emtpy language,
which is typically not used in the context of RPQs.
2Our main use of 𝜎𝑈 ,𝑉 (𝜑) will be to restrict the endpoints of a result of a subquery
𝜑 to sets of nodes𝑈 and𝑉 that we have already computed elsewhere in the query
plan. From a systems perspective, it helps to think of𝑈 and𝑉 as pointers to sets (or
unary predicates on nodes) rather than the sets themselves.
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infinite) set of all paths of 𝐺 .

𝐿(𝐺) = {{𝜌 ∈ Paths(𝐺) | 𝜆𝐺 (𝜌) ∈ 𝐿}},
𝜎𝑈 ,𝑉 (𝜑) (𝐺) = {{𝜌 ∈ 𝜑 (𝐺) | src(𝜌) ∈ 𝑈 , tgt(𝜌) ∈ 𝑉 }},

𝑚(𝜑) (𝐺) =𝑚(𝜑 (𝐺)).
Let𝑀 be any multiset of paths of 𝐺 . In the last line, the semantics
of selector mode𝑚 is defined by

shortest(𝑀) = {𝜌 ∈ 𝑀 | 𝜌 is a shortest path},
simple(𝑀) = {𝜌 ∈ 𝑀 | 𝜌 is simple}, and

trail(𝑀) = {𝜌 ∈ 𝑀 | 𝜌 is a trail},
where a path 𝜌 is a shortest path, if there exists no shorter path
from src(𝜌) to tgt(𝜌) in 𝑀 , it is simple, if each node appears at
most once in 𝜌 , and it is a trail, if each edge occurs at most once
in 𝜌 . Notice that shortest(𝑀) can contain paths of different length,
since we only remove paths 𝜌 from𝑀 for which there are shorter
paths from src(𝜌) to tgt(𝜌).

The operations supported in GRPQs correspond to path eval-
uation modes in the upcoming GQL standard [24] and the ones
studied in the research literature. Specifically, the unrestricted ver-
sion 𝐿 corresponds to regular path queries [22], and can return an
infinite amount of paths, such as in Example 1.1. The trail mode
is supported by Cypher [47] and GQL [24]. The simple mode is
similar, but reverses the role of nodes and edges, and has been
studied in the literature [7, 44, 45]. Finally, shortest is supported by
many existing systems [47, 55, 62], and the GQL standard [24]. For
a theoretical study of shortest see [61].

Unions of GRPQs. Note in particular that 𝜑 (𝐺), as defined above,
is actually a set of paths (no paths occur multiple times). This
changes once we consider unions of GRPQs. A union of GRPQs
(UGRPQ for short) is an expression given by the syntax

𝜓 ::= 𝜑 | 𝜓 ⊎𝜓,

where 𝜑 ranges over GRPQs, and ⊎ denotes multiset union. For-
mally, the semantics of a GRPQ𝜓 on a graph database 𝐺 is given
by (𝜓1 𝜓2) (𝐺) = 𝜓1 (𝐺) ⊎ 𝜓2 (𝐺). The multiplicity of a path in
(𝜓1 ⊎𝜓2) (𝐺) is hence the sum of its multiplicity in𝜓1 (𝐺) plus its
multiplicity in𝜓2 (𝐺).

Whenever convenient, in what follows, we will apply the opera-
tors of UGRPQs directly on path multisets. For example, for a PM
𝑀 we write 𝜎𝑈 ,𝑉 (𝑀) for {{𝜌 ∈ 𝑀 | src(𝜌) ∈ 𝑈 , tgt(𝜌) ∈ 𝑉 }}.
Grouped output of GRPQs. A (U)GRPQ hence computes a path
(multi)set. Note that the elements of a PM are unsorted, so there
does not need to be any relationship between one path and the next.
Sometimes, however, it is desirable for efficiency reasons to group
the elements of a PM, on their source node, target node, or both.
This is the case, for instance, when we wish to answer aggregate
queries such as “compute, for each source node, the number of paths
originating in that node”, or “compute, for each pair of endpoints
(𝑢, 𝑣) the number of paths between them”. We next formalize the
notion of grouped path multisets.

Definition 4.1. A (source/target/pairwise) grouped path multiset
(GPM) over a graph 𝐺 is a partition 𝐻 of a path multiset 𝑀 into
maximal multisets, such that the following condition is satisfied for
each multiset𝑀 ′ ∈ 𝐻 :

• source grouped: for all 𝜌, 𝜌 ′ ∈ 𝑀 ′: src(𝜌) = src(𝜌 ′).

• target grouped: for all 𝜌, 𝜌 ′ ∈ 𝑀 ′: tgt(𝜌) = tgt(𝜌 ′).
• pairwise grouped: for all 𝜌, 𝜌 ′ ∈ 𝑀 ′: src(𝜌) = src(𝜌 ′) and
tgt(𝜌) = tgt(𝜌 ′).

Notice that, if 𝐻 is source grouped, it is a collection of multisets
such that, for each 𝜌1 ∈ 𝑀1 ∈ 𝐻 and 𝜌2 ∈ 𝑀2 ∈ 𝐻 with 𝑀1 ≠ 𝑀2,
then src(𝜌1) ≠ src(𝜌2). (The other cases are analogous.)

Let𝑀 be a PM over a graph𝐺 . We define the following grouping
operators on 𝑀 , which return a source grouped, target grouped,
and pairwise grouped GPM, respectively.

grpsrc (𝑀) = {𝜎{src(𝜌) },𝑁𝐺
(𝑀) | 𝜌 ∈ 𝑀},

grptgt (𝑀) = {𝜎𝑁𝐺 ,{tgt(𝜌) } (𝑀) | 𝜌 ∈ 𝑀},
grpsrc,tgt (𝑀) = {𝜎{src(𝜌) },{tgt(𝜌) } (𝑀) | 𝜌 ∈ 𝑀}.

We refer to Figure 5 for a visualization of the different groupings.
(The figure illustrates how we can use PMRs for representing the
different groups, but may be helpful here nevertheless.)

We also introduce grouping at the query language level, and de-
fine a grouped UGRPQ to be an expression of the form grp𝑆 (𝜓 ) with
𝜓 a UGRPQ and 𝑆 a non-empty subset of {src, tgt}. The semantics
of grouped GRPQs is the obvious one: grp𝑆 (𝜓 ) (𝐺) = grp𝑆 (𝜓 (𝐺)).
Tabular output of (grouped) UGRPQs. A (U)GRPQ hence com-
putes a path (multi)set, and a grouped UGRPQ computes a grouped
path multiset.

GQL, SQL/PGQ, and Cypher represent path multisets by means
of a relational table such as the one illustrated in Table 1a. To refer
to this representation, for a PM𝑀 , we write tab(𝑀) for the table
containing the tuples (src(𝜌), tgt(𝜌), 𝜌) for each 𝜌 ∈ 𝑀 . As such,

tab(𝜓 (𝐺)) = {{(src(𝜌), tgt(𝜌), 𝜌) | 𝜌 ∈ 𝜓 (𝐺)}} .
We introduce a similar relational table representation on grouped
PMs, and define

tab(grpsrc (𝑀)) = {(src(𝑀 ′), 𝑀 ′) | 𝑀 ′ ∈ grpsrc (𝑀))}
tab(grptgt (𝑀)) = {(tgt(𝑀 ′), 𝑀 ′) | 𝑀 ′ ∈ grptgt (𝑀)}

tab(grpsrc,tgt (𝑀)) = {
(︁
src(𝑀 ′), tgt(𝑀 ′), 𝑀 ′)︁ | 𝑀 ′ ∈ grpsrc,tgt (𝑀)}

Here, we write src(𝑀 ′) (resp. tgt(𝑀 ′)) for the unique source node
(resp. target node) shared by all paths in𝑀 ′.

It is important to stress the difference between tab(𝜓 (𝐺)) and
tab(grpsrc,tgt (𝜓 (𝐺))): the former has one tuple per path in 𝜓 (𝐺),
while the latter has one tuple per group in grpsrc,tgt (𝜓 (𝐺)); the third
component of that latter tuple is itself a path multiset. To illustrate,
Table 1b shows the pairwise-grouped tabular representation for
the Transfer-trails of Figure 1, while Table 1a shows the ungrouped
tabular representation.
PMR output for (grouped) UGRPQs. Our interest in this paper
is in using PMRs for succinctly representing the outputs of UGRPQs.
In this respect, we say that a PMR𝑅 represents the output of UGRPQ
𝜓 on graph 𝐺 if it represents𝜓 (𝐺).

Similarly to how PMRs represent PMs, we introduce grouped
PMRs to represent grouped PMs. Concretely, a grouped PMR is a
finite set 𝑆 = {𝑅1, . . . , 𝑅𝑘 } of PMRs, such that MPaths(𝑅𝑖 ) and
MPaths(𝑅 𝑗 ) are disjoint, for every 𝑖 ≠ 𝑗 . A grouped PMR represents
a grouped PM 𝐻 if 𝐻 = {MPaths(𝑅1), . . . ,MPaths(𝑅𝑘 )}.

Figure 5 contains a PMR of five paths and illustrates different
groupings of the set of paths. We use six different colors to show
the six different nodes in 𝐺 under the image of 𝛾 .
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𝑆 𝑇

(a) A PMR for a set 𝑃 of paths

𝑆1
𝑇1

𝑆2 𝑇2

(b) A source grouped PMR for 𝑃

𝑆1 𝑇1

𝑆2 𝑇2

𝑆3 𝑇3

𝑆4 𝑇4
(c) A pairwise grouped PMR for 𝑃

𝑆1
𝑇1

𝑆2 𝑇2

(d) A target grouped PMR for 𝑃

Figure 5: Grouped PMRs for the same set of paths.

5 ANSWERING UGRPQS

In Section 5.1 we explore how to compute (grouped) PMRs to repre-
sent the result of (grouped) UGRPQs. Subsequently, we discuss how
to obtain the tabular ouput of (grouped) UGRPQs from PMRs in Sec-
tion 5.2, where we also explore related problems such as counting
the number of paths in a PMR, and drawing finite samples.

Model of computation. To analyze the complexity of our algo-
rithms, we assume a RAM model of computation where the space
used by node and edge ids, as well as integers, the time of arithmetic
operations on integers, and the time of memory lookups are all
O(1). We further assume that hash tables have O(1) access and
update times while requiring linear space. While it is well-known
that real hash table access is O(1) expected time and updates are
O(1) amortized time, complexity results that we establish for this
simpler model can be expected to translate to average (amortized)
complexity in real-life implementations [21].

Throughout the rest of the paper, we assume an adjacency-list
representation of graph databases and PMRs. As such, given a node
𝑢, it takes O(1) time to retrieve the list of outgoing edges, while
given an edge, it takesO(1) time to retrieve its endpoints. Retrieving
the label of an edge is also O(1), and the same holds for retrieving
the value of the homomorphism 𝛾 for a node or edge in a PMR.

5.1 Computing Path Multiset Representations

We first show how to compute a PMR for 𝜑 (𝐺) when 𝜑 is a regu-
lar language 𝐿. We will focus on the case where 𝐿 is given as an
unambiguous automaton ufa. In practice, regular languages are
always given as a regular expression and, in theory, an exponential
blow-up may occur when converting a regular expression to a UFA.
However, we inspected the regular expressions in the query logs of
[14, 15], with over 558 million SPARQL queries for Wikidata and
DBpedia, containing 55 million RPQs, and we noticed that for none
of these expressions such a blow-up actually occurs: the conversion
is linear-time, even to a DFA. Our focus on UFAs is hence reason-
able. In what follows, if 𝜑 is a GRPQ, we write 𝜑 = ufa to indicate
that 𝜑 is of the form 𝐿, where the language 𝐿 is given by ufa.

The fundamental notion that underlies our construction for rep-
resenting 𝜑 (𝐺) when 𝜑 = ufa is the product between a graph
database and ufa, which is defined as follows.

Definition 5.1 (Graph product). Assume given an unabmiguous
automaton ufa = (𝑄, Σ,Δ, 𝐼 , 𝐹 ), where 𝑄 is the set of UFA states,
Σ ⊆ L is its set of used labels, Δ ⊆ 𝑄 × Σ ×𝑄 the set of transitions3,
𝐼 ⊆ 𝑄 is the set of initial states, and 𝐹 ⊆ 𝑄 the set of final states.
Let 𝐺 = (𝑁𝐺 , 𝐸𝐺 , 𝜂𝐺 , 𝜆𝐺 ) be a graph database. Then the product
of 𝐺 and ufa, denoted as 𝐺 × ufa, is the PM representation over 𝐺
defined as

• 𝑁 = 𝑁𝐺 ×𝑄

• 𝐸 =
{︁(︁
𝑒, (𝑞1, 𝑎, 𝑞2)

)︁
∈ 𝐸𝐺 × Δ | 𝑎 = 𝜆𝐺 (𝑒)

}︁
• 𝜂 ((𝑒, 𝑑)) =

(︁
(𝑣1, 𝑞1), (𝑣2, 𝑞2)

)︁
such that

– 𝑒 is from 𝑣1 to 𝑣2 in 𝐺 and
– 𝑑 = (𝑞1, 𝑎, 𝑞2), where 𝑎 = 𝜆𝐺 (𝑒),

• 𝛾 ((𝑣, 𝑞)) = 𝑣 , 𝛾 ((𝑒, 𝑑)) = 𝑒 ,
• 𝑆 = 𝑁𝐺 × 𝐼 , and
• 𝑇 = 𝑁𝐺 × 𝐹 .

We will denote by trim(𝐺 × ufa) the subgraph of 𝐺 × ufa that is
obtained by removing all nodes and edges that do not participate
in a path from 𝑆 to 𝑇 in 𝐺 × ufa. As such, trim(𝐺 × ufa) is a trim
path multiset representation.

Trimmed graph products provide a convenient way to obtain
PM representations for GRPQs of the form 𝜑 = ufa. Indeed, we can
show that trim(𝐺×ufa) represents the set 𝜑 (𝐺) = {{𝜌 ∈ Paths(𝐺) |
𝜆𝐺 (𝜌) ∈ L(ufa)}} of all ufa-matched paths in 𝐺 .

Theorem 5.2. Let𝐺 be a graph database and let 𝜑 = ufa be a GRPQ.
Then both𝐺 × ufa and trim(𝐺 × ufa) are PMRs of 𝜑 (𝐺), computable
in linear time combined complexity O(|𝜑 | |𝐺 |).

We illustrate by means of the following example that the un-
ambiguous property of ufa in Theorem 5.2 is important for the
correctness of the construction. Specifically, it is needed to ensure
correct multiplicities of paths.

Example 5.3. Consider the regular expressions exp1 = Transfer ·
Transfer and exp2 = (Transfer · Transfer) + (Transfer · Transfer).
Notice that 𝐿(exp1) = 𝐿(exp2) and that exp2 is written in a “non-
optimal” way. Nondeterministic automata that correspond to exp1
and exp2 are depicted in Figure 7: the left one is unambiguous (even
deterministic) while the right one is not. Figure 6 illustrates a part
of trim(𝐺 × ufa) where 𝐺 is the graph from Figure 1 and ufa is
the left automaton from Figure 7, namely the part that is reachable
from the node (a6, 1). The resulting PMR represents three paths
of length two in 𝐺 , which means that three paths that match exp1
start from a6 in Figure 1. Notice that, if we would apply the same
construction using the right NFA of Figure 7, the result would have
two additional nodes (a5, 2′) and (a3, 2′), leading to 6 paths in 𝐺
(two copies of each path represented in Figure 6), which is incorrect.

Obviously, both constructions are correct if multiplicities are not
important (i.e., we are interested in the SPaths semantics), but only
the construction using the UFA has the correct multiplicities. □

Selection.We now consider GRPQs that involve the selection op-
erator 𝜎𝑈 ,𝑉 . Concretely, for a GRPQ 𝜑 = 𝜎𝑈 ,𝑉 (ufa) and graph
database 𝐺 we can obtain a PMR of 𝜑 (𝐺) by constructing 𝐺 × ufa,
but trimming differently. In general, we observe that a more gen-
eral way of trimming allows us to express 𝜎𝑈 ,𝑉 on arbitrary PMRs.
3Without loss of generality, we do not use 𝜀-transitions.
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a6,1

a3,2 a2,3

a5,2 a1,3

a5,3

𝑆 = {(a6, 1)}
𝑇 = {(a1, 3),

(a5, 3),
(a2, 3)}

Figure 6: Illustration of the product construction..

1 2 3
Transfer Transfer

1

2

2’

3
Tran

sfer
Transfer

Transfer Tran
sfer

Figure 7: Two automata for the language Transfer·Transfer.

Concretely, let 𝑅 = (𝑁, 𝐸, 𝜂,𝛾, 𝑆𝑅,𝑇𝑅) be an arbitrary PMR over a
graph 𝐺 and let𝑈 ,𝑉 be node predicates. Denote by trim(𝑅,𝑈 ,𝑉 )
the subgraph of 𝑅 that is obtained by removing all nodes and edges
in 𝑅 that do not participate in a path from 𝑆 ′ := {𝑢 ∈ 𝑆𝑅 | 𝛾 (𝑢) ∈ 𝑈 }
to 𝑇 ′ := {𝑢 ∈ 𝑇𝑅 | 𝛾 (𝑢) ∈ 𝑉 }. We can show that trim(𝑅,𝑈 ,𝑉 ) rep-
resents 𝜎𝑈 ,𝑉 (MPaths(𝑅)), leading to the following theorem. For a
node predicate 𝑈 , let |𝑈 | denote the cardinality of 𝑈 if 𝑈 is finite,
and let it be 1 if𝑈 is the infinite set of all node identifiers4.

Theorem 5.4. Let 𝑅 be a PMR on graph 𝐺 . Let 𝑈 and 𝑉 be node
predicates. Then trim(𝑅,𝑈 ,𝑉 ) is a PMR of 𝜎𝑈 ,𝑉 (MPaths(𝑅)), com-
putable in linear time O(|𝑅 | + |𝑈 | + |𝑉 |).

Consequently, we can evaluate GRPQs such as 𝜑 = 𝜎𝑈 ,𝑉 (ufa)
simply by computing trim(𝐺 × ufa,𝑈 ,𝑉 ) which, by Theorems 5.2
and 5.4, can be done in linear time combined complexity O(|𝜑 | |𝐺 | +
|𝑈 | + |𝑉 |).
Grouping. Since source grouped, target grouped, and pairwise
grouped representations of a PM 𝑀 can always be obtained by
repeatedly computing𝜎𝑈 ,𝑉 (𝑀) for different sets𝑈 and𝑉 , we obtain
the following corollary from Theorem 5.4.

Corollary 5.5. Let 𝑀 be a PM on a graph 𝐺 , represented by trim
PMR 𝑅. Assume that 𝑋 is the set of all source nodes in 𝑀 , i.e., 𝑋 =

{src(𝜌) | 𝜌 ∈ 𝑀}. Let𝑌 be the set of all target nodes in𝑀 , and let𝑋𝑌
be the set of all (src, tgt) pairs of paths in𝑀 . We can then compute

(1) a grouped representation of grpsrc,tgt (𝑀) in time O(|𝑋𝑌 | |𝑅 |);
(2) a grouped representation of grpsrc (𝑀) in time O(|𝑋 | |𝑅 |);
(3) a grouped representation of grptgt (𝑀) in time O(|𝑌 | |𝑅 |).

We stress that the complexities given by Corollary 5.5 are attrac-
tive and, in a sense, optimal. Indeed, consider, for example, source
grouping grpsrc (𝑀). There are |𝑋 | groups in the resulting grouped
PM, and we hence need to represent every group by a PMR in a
corresponding grouped PMR. Corollary 5.5 tells us that a represen-
tation for each such group can be obtained in linear time in the
size of the original representation 𝑅 of 𝑀 . Since, without special
preprocessing, we cannot even read 𝑅 in less time, the resulting
complexity is optimal.
4If𝑈 is the set of all node identifiers, it corresponds to the predicate ’True’, which is
concisely represented in constant space, hence we set |𝑈 | = 1 in this case.

Shortest paths. We next turn our attention to evaluating GRPQs
that involve selector modes𝑚 ∈ {shortest, simple, trail}. The next
theorem shows that it is possible to apply shortest as operation on
PMRswith favorable complexities.Wewill see later that𝑚 = simple
and𝑚 = trail are more complex.
Theorem 5.6. Let𝑀 be a PM over graph database 𝐺 and let 𝑅 be a
trim PMR representing𝑀 . Let 𝑘 = min( |𝑆 |, |𝑇 |) with 𝑆 and𝑇 the sets
of source and target nodes of 𝑅, respectively. From 𝑅 we can compute
a trim PMR for shortest(𝑀) in time O(𝑘 |𝑅 |).

Simple paths and trails. We next turn to simple paths and trails.
We start by noting that, if P ≠ NP, then there does not even exist a
polynomial time algorithm for deciding if there exists a simple path
or trail that matches a given regular expression between two given
nodes [7, 43, 45]. This already implies the following:
Observation 5.7. (a) Assume 𝜑 = 𝑚(𝐿) with𝑚 ∈ {simple, trail}.

If from 𝜑 and graph 𝐺 we can compute a PMR (or tabular repre-
sentation) for 𝜑 (𝐺) in polynomial time, then P = NP.

(b) Assume a PMR 𝑅 for PM𝑀 and𝑚 ∈ {simple, trail}. If from 𝑅 we
can compute a PMR for𝑚(𝑀) in polynomial time, then P = NP.

Within exponential time, however, we can minimize PMRs.
Proposition 5.8. Given a PMR 𝑅 for a path multiset𝑀 over𝐺 , and
selector mode𝑚 ∈ {simple, trail}, we can compute from 𝑅 a minimal
PMR for𝑚(𝑀) in exponential time.

Although the complexity in this proposition is high, it is indeed
unavoidable by Observation 5.7 and, furthermore, already the worst-
case size of the set of paths represented in 𝑅 is exponential.

Multiset unions. The fundamental problem when using PMRs
for computing the result of a union of GRPQs is to compute a path
representation for the multiset union of two PMRs. In our setup,
this is very easy to do, as it suffices to take the component-wise
union of the two PMRs. Therefore, evaluating UGRPQs is no more
costly than evaluating the base queries.
Proposition 5.9. Let 𝑅1 and 𝑅2 be two PMRs. We can compute a
PMR forMPaths(𝑅1) ⊎MPaths(𝑅2) in linear time O(|𝑅1 | + |𝑅2 |).

Conclusion and discussion. It directly follows from the results in
this section (notably, Theorems 5.2, 5.4 and 5.6) that any UGRPQ𝜓

in which the regular languages are given as unambiguous automata
and which uses only the selector mode shortest can be evaluated
in linear time combined complexity when using PMRs to represent
query outputs. This is in strong contrast to what today’s systems
do, since they compute tab(𝜓 (𝐺)) instead, which, as illustrated in
the Introduction, is exponentially large in |𝐺 | in general, even for
𝑚 = shortest. We note that our linear time combined complexity
holds even when𝜓 (𝐺) is infinite. Furthermore, grouping on such
UGRPQs can also be done efficiently by Corollary 5.5, proportional
to the number of groups to be formed. The simple and trail selector
modes are more complex to evaluate on PMRs, but we stress that
this complexity is caused by the fundamental complexity of finding
simple paths or trails that match a regular language. Also the tabular
representation faces the same complexity.

Of course, simply representing UGRPQ outputs by means of
PMRs may not be sufficient, since often we want to be able to
retrieve (a part of) the tabular representation, or count the number
of paths retrieved. We show next that PMRs fully support this.
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5.2 Computing Output From PMRs

In this section we show that, from a given representation 𝑅 of PM
𝑀 we can efficiently generate the tabular representation tab(𝑀)
when𝑀 is finite, as well as compute the number of paths in𝑀 or
draw a random sample.

Enumeration with output-linear delay. Wewish to be careful with
what we mean by “efficiently generate” tab(𝑀) from 𝑅 when 𝑀

is finite. Indeed, because 𝑅 can be exponentially more succinct
than𝑀 and tab(𝑀), the total time to generate tab(𝑀) from 𝑅 will
obviously be exponential in 𝑅 in the worst case. This exponential
complexity is only due to the exponential number of tuples that we
need to generate: we will show that generating individual tuples
in tab(𝑀) from 𝑅 is efficient, in the sense that it takes only time
proportional to the size of the tuple being generated—independently
of the size of 𝑅, or𝑀 , or tab(𝑀). To formalize this notion, we adopt
the framework of enumeration algorithms. Enumeration algorithms
are an attractive way of gauging the complexity of algorithms
that need to generate large (or infinite) sets, which have recently
received significant attention in the database community, both from
a theoretical [2, 12, 29, 40, 52, 53] and practical point [34, 35, 59].

We require the following definitions. Given an input 𝑥 , an algo-
rithm is said to enumerate a multiset 𝑂 if it outputs the elements
of 𝑂 one by one in some order 𝑜1, 𝑜2, 𝑜3, . . . , such that the num-
ber of times an element 𝑜 occurs in this enumeration equals its
multiplicity in 𝑂 . (Repeated elements need not be subsequent in
the enumeration.) In particular, if 𝑂 is a set, then the enumeration
cannot contain duplicates. It enumerates 𝑂 with output-linear de-
lay if the time required to output the 𝑖-th element 𝑜𝑖 , measured as
the difference in time between outputting 𝑜𝑖−1 (or the start of the
algorithm, when 𝑖 = 1) and finishing outputting 𝑜𝑖 , is proportional
to the size of 𝑜𝑖 , independent of the size of 𝑂 or of the input 𝑥 . If
𝑂 is finite, then it is also required that the algorithm terminates
immediately after outputting the last element. In that case, the total
time that the algorithm takes to enumerate 𝑂 is hence O(|𝑂 |), i.e.,
linear in 𝑂 .

Proposition 5.10. Let𝑀 be a finite path multiset on a graph 𝐺 .
(1) From a trim PMR𝑅 of𝑀 we can enumerate both𝑀 and tab(𝑀)

with output-linear delay.
(2) From a trim grouped PMR 𝑅 of grp𝑆 (𝑀) we can enumerate

both grp𝑆 (𝑀) and tab(grp𝑆 (𝑀)) with output-linear delay, for
any non-empty 𝑆 ⊆ {src, tgt}.

Together with the results of Subsection 5.1, Proposition 5.10
tells us that we can evaluate an UGRPQ 𝜑 , which uses either the
shortest selector, or no selector at all, on a graph database 𝐺 , by
running a polynomial preprocessing phase for computing the PMR
for 𝜑 (𝐺), and then enumerating the results one-by-one in time
that is proportional to the length of the output path. In a sense,
one could argue that such enumeration is optimal, since this is the
time it takes to write own the output. For trail and simple the same
guarantee on enumeration holds, but constructing the appropriate
PMRs now requires an exponential preprocessing phase.

We conclude this subsection by observing how PMRs can be used
to count the number of query results, or sample paths in a GRPQ
output uniformly at random. The former kind of result is relevant
for dealing with queries that involve aggregation and the latter

can be useful to provide uniform sampling guarantees to GQL’s
ANY-mode [24], if desired.

Proposition 5.11. Let 𝑅 be a trim PMR. Then we can

(1) count the number of paths inMPaths(𝑅) in linear time, where
the returned result is +∞ if MPaths(𝑅) is infinite;

(2) ifMPaths(𝑅) is a finite multiset, uniformly at random sample
a path inMPaths(𝑅) in linear time.

(3) given a natural number 𝑛 ∈ N, uniformly at random sam-
ple a path from the submultiset of all paths of length 𝑛 in
MPaths(𝑅), in time O(𝑛 |𝑅 |).

6 EXPERIMENTS

Implementation. To empirically validate the potential of our ap-
proach, we use MillenniumDB [62], a recent open source graph
database which stores the graph data on disk using B+trees. Millen-
niumDB already uses the product construction for evaluating RPQs,
and we extend this capability to implement PMRs. For simplicity,
our implementation focuses on GRPQs with a fixed start node, i.e.,
GRPQs 𝜑 of the form 𝜎{𝑠 },NID (𝐿), with 𝑠 a node id. It supports the
following query modes. Let𝑀 = 𝜑 (𝐺) be the path set returned by
the evaluation of 𝜑 on 𝐺 .
(M1) Endpoints: return {tgt(𝜌) | 𝜌 ∈ 𝑀}, i.e., the set of all nodes

reachable by𝜑 from 𝑠 . This coincideswith the non-generalized,
i.e., standard semantics of RPQs. We will refer to the elements
in this set as the endpoints of 𝜑 .

(M2) Single-Shortest: returning for each endpoint 𝑡 a single pair
(𝑡, 𝜌) with 𝜌 a shortest path from 𝑠 to 𝑡 .

(M3) All-Shortest: returning the set {(tgt(𝜌), 𝜌) | 𝜌 ∈ shortest(𝑀)}
of all shortest paths;

(M4) Count: returning for each endpoint 𝑡 the pair (𝑡, 𝑐) with 𝑐 the
number of shortest paths from 𝑠 to 𝑡 ; and

(M5) Shortest-PMR: constructing the PMR for shortest(𝑀), repre-
senting all shortest paths (without enumerating them).

Evaluation under the endpoint mode is done by constructing the
trim product graph (Section 5.1). The endpoints can be computed
from this graph𝑅 by computing {𝛾𝑅 (𝑛) | 𝑛 ∈ 𝑅𝑇 }. For (M5) we have
a dedicated physical operator that builds the PMR shortest(trim(𝐺×
𝜑)), as described by Theorem 5.6, directly from 𝐺 and 𝜑 , without
first separately computing trim(𝐺 ×𝜑). This operator also allows to
output a single shortest path for each endpoint, as required by (M2),
and we use Proposition 5.10 to enumerate all shortest paths from
shortest(trim(𝐺 × 𝜑)) for (M3). Finally, the counting algorithm is
implemented as described in Proposition 5.11. The counting re-
sults are grouped by target, for the single source specified by the
query. A LIMIT operator may be applied to query modes (M1)–(M3),
in which case our implementation stops construction of the PMR
when sufficiently many endpoints were found.

While all of our algorithms operate in main memory, the input
graph is always loaded from disk via theMilleniumDB system buffer.
Our implementation, together with the experiments and datasets in
this section can be found at https://github.com/MillenniumDB/pmr.

Competitors and system setup. pmr refers to our implementation
using PMRs. We compare to Neo4J version 4.4.12 (Neo for short),
Jena TDB version 4.1.0 [54] (Jena), Blazegraph version 2.1.6 [56]
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Table 2: Runtimes onWD

System Evaluation mode Timeouts Average Median

Neo Endpoints (M1) 92 18.36s 8.11s
Jena Endpoints (M1) 30 6.58s 0.43s
Blaze Endpoints (M1) 40 8.27s 0.69s

Virtuoso Endpoints (M1) 16 3.66s 0.54s
pmr Endpoints (M1) 7 1.97s 0.16s

pmr Single shortest (M2) 7 2.2s 0.16s
pmr All shortest (M3) 5 2.2s 0.17s
pmr Count (M4) 22 4.5s 0.08s
pmr Construct (M5) 22 5.6s 0.07s

Table 3: Runtime of Neo, the SPARQL engines, and pmr on

Q1, and Neo on Q1’ (T/O denotes timeout)

Q1 Neo Virtuoso Blaze Jena pmr

DMND T/O T/O 2,699 ms 415 ms 28 ms
FB T/O T/O 2,586 ms 675 ms 130 ms

Neo / Q1’

17,373 ms
7,243 ms

(Blaze), and Virtuoso version 7.2.6 [26] (Virtuoso). All experi-
ments were run on a commodity server with an Intel®Xeon®Silver
4110 CPU, and 128GB of DDR4/2666MHz RAM, running Linux De-
bian 10 with the kernel version 5.10. The hard disk used to store the
data was a SEAGATE ST14000NM001G with 14TB of storage. Neo
was used with default setting and no limit on RAM usage. Jena and
Blaze were assigned 64GB of RAM, and Virtuoso was set up with
64GB or more as recommended. pmr was allowed 32GB buffer for
handling the queries. Since we run large batches of queries (100+),
these are executed in succession in order to simulate a realistic load
to a database system.

Querying Wikidata. To gauge the potential of PMRs on real-
world applications, we use WDBench [3], a recently proposed Wiki-
data query benchmark. WDBench uses a streamlined version of the
Wikidata knowledge graph [60], and a curated set of real-world user-
posted queries from the Wikidata endpoint public query log [41].
The WDBench Wikidata graph contains a total of 364.6M nodes
and 1.257B edges. WDBench proposes multiple sets of real-world
benchmark queries. One of these is a set of RPQs, containing 660
RPQs in total. From this set we select those that have at least one
endpoint of the path defined, leaving us with 576 GRPQs. We run
each query under the five different query modes (M1)–(M5) de-
scribed earlier. Similarly to WDBench, we ran modes (M1), (M2),
and (M3) with a limit of 100,000 results. For version (M3) this means
that two different paths reaching the same endpoint count as two
results. Modes (M4) and (M5) return all results. All queries were
given a timeout of 1 minute (i.e., same timeout as the Wikidata
SPARQL endpoint, and as specified by WDBench).

Results concerning version (M1) are presented in Table 2, where
we see that pmr outperforms the competition even when queries
are only evaluated under the standard endpoint semantics. This high-
lights the potential of PMRs not only for queries that return paths,
but also for standard endpoint queries.

For the other evaluation modes (M2)–(M5) we note that among
the four competitors, only Neo supports returning paths and short-
est paths. As such, we only compare to Neo for these modes in
what follows. For modes (M2)–(M4), only 315 queries could be ex-
pressed in Neo. Unfortunately, all these queries timed out, except

two. Coincidentally, these two queries did not return any result
because Neo detected that the start node given by the query is not
in the database. The lower part of of Table 2 therefore shows results
only for pmr, which exhibits a fairly stable behavior with very few
timeouts. Both average and median times are reasonable given the
magnitude of the dataset. We note that versions (M1)–(M3) have
lower averages than (M4) and (M5). This is due to the 100k LIMIT
applied to (M1)–(M3) which avoids constructing the full product
graph, and which is not applied in (M4)–(M5).

The performance of Neo on modes (M2)–(M4) compared to pmr
leads us to conclude that (1) today’s engines easily time out for
queries that return paths on large-scale data and (2) PMRs have a
significant potential to improve this situation.

Measuring Scalability. Next, we investigate how pmr scales com-
pared toNeo as a function of path lengths. To that end, we consider a
controlled, synthetic set of queries that involve paths, parametrized
by a start node 𝑠 and number 𝑘 ∈ N.

• Return all nodes 𝑡 that are reachable from 𝑠 . (Q1)

• For each node 𝑡 reachable from 𝑠 by a path 𝜌 of length ≤ 𝑘 ,
– return a single such shortest path 𝜌 ; (Q2a)

– return all such shortest paths 𝜌 ; (Q2b)

– count the number of such shortest paths 𝜌 . (Q2c)

• For each node 𝑡 reachable from 𝑠 by a path 𝜌 of length = 𝑘

– return a single such path 𝜌 ; (Q3a)

– return all such paths 𝜌 ; (Q3b)

– count the number of such paths 𝜌 . (Q3c)

We feel that these queries are fundamental to graph database sys-
tems. For instance, Q2a and Q3a give users an idea of why a node
is reachable. Queries Q2b and Q3b may be typical subqueries in a
larger query plan, where the user still wants to further investigate
the paths, e.g., for graph analytics. (This is, after all, an important
reason why Cypher and GQL allow such queries in the first place.)
Queries Q2c and Q3c are perhaps the most fundamental analytical
test one can do with the paths that connect nodes: counting the
number of paths to 𝑡 of a given length gives us a rough idea of
how well 𝑠 and 𝑡 are connected. Furthermore, notice that we ask
for shortest paths in the Q2 queries, whereas shortest paths don’t
play a role in the Q3 queries.

For queries Q1, Q2a, Q2b, Q3a and Q3b, we set a limit of 100,000
paths and we use the same 1 minute timeout as before. We evaluate
these queries on the following two data sets:

DMND: the graph in Figure 2 with 𝑛 = 1000; and
FB: the ego-Facebook data set from SNAP [38], containing

4,039 nodes and 176,468 edges5.
On DMND, we chose 𝑠 to be the leftmost node in Figure 2 and

on FB we selected the node with id 0 in the dataset. These initial
nodes are maintained for all the queries.

Notice that Q1 only returns nodes, i.e., no paths are returned.
Still, we see in Table 3 that pmr drastically outperforms Neo: it is
faster than 0.2s whereas Neo times out at one minute. The Cypher
query we ran was essentially

MATCH ({id:"N0"}) -[*]->(x) RETURN DISTINCT x LIMIT 100k

If we changed it, however, to Q1’, being
MATCH ({id:"N0"}) -[*]->(x) RETURN x LIMIT 100k

5The original graph is undirected, which we modeled with edges in both directions.
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Figure 8: Run-time of Q2a–Q2c on the synthetic DMND data and of Q3a–Q3c on the real-world FB data (log scale, in ms).

the run-time in Neo improved, but was still 620× slower than pmr
on DMND and 55× on FB. Per Cypher semantics, Q1’ returns each
node 𝑥 as often as there is a trail from 𝑠 to 𝑥 . It runs faster in Neo
than Q1 because the multiplicities cause it to reach the 100,000 limit
faster than Q1. Notice that Table 3 also shows the performance of
the SPARQL engines on Q1. Even though they do not build a data
structure to return paths, they are outperformed by pmr.

Synthetic Data (DMND). Figure 8 (top row) summarizes the run-
times of queries Q2a–Q2c on DMND. (Queries Q3a–Q3c, which
give a similar picture, are omitted for space reasons; we show them
for the next data set.) Concerning Q2a, pmr is about 30× faster than
Neo. For Q2b, Neo already times out when finding all the shortest
paths of length ≤ 30, whereas pmr stabilizes at ∼0.5s due to our
limit of 100,000 paths.

The most drastic differences are observed for counting, i.e., query
Q2c. Whereas pmr’s run time ranges from 6–26 ms, Neo is around
38,000 ms already when 𝑘 = 40 and times out afterwards. To get
some insight in the inherent complexity of the evaluation strategy of
Neo, we implemented a different evaluation strategy in pmr: instead
of counting paths using the PMR (Proposition 5.11), we simply
enumerate paths one-by-one and count them. This is indicated as
enum-cnt in Figure 8. Here, the difference between the exponential-
time algorithm for enum-cnt and the polynomial-time approach
of pmr is clearly visible, and enum-cnt scales similarly to Neo.

Social Netword Data (FB). Figure 8 (bottom row) shows the run-
times of Q3a–Q3c on FB. (Queries Q2a–Q2c show similar behavior
and are omitted for space reasons.) On Q3a, Neo and pmr perform
similarly up to 𝑘 = 7. From then on, Neo’s performance degrades
quickly, while pmr steadily increases from 58ms to 100ms. The
reason for this difference is that the diameter of FB is 8: when we
search for paths of length 7 and longer, we start considering paths
with duplicate nodes. In terms of performance, it seems that pmr
handles such situations better than Neo. For query Q3b, we see a
similar behavior as in DMND. Both systems exhibit a fast increase
in the beginning until the limit of 100,000 paths is reached. From
then on, there is a more gradual increase due to the increasing
complexity of finding paths of length exactly 𝑘 .

Again, we see the most drastic difference in the counting query,
i.e., when we use PMRs to represent the intermediate result of a the
query, over which we then compute an aggregate value. Whereas
Neo reaches 46,000 ms at 𝑘 = 4 and times out afterwards, pmr is
at 36 ms for 𝑘 = 4 (i.e., improving by 3 orders of magnitude) and
remains at 115 ms for 𝑘 = 10.

We therefore feel that PMRs have the potential to drastically
improve the scalability of modern graph pattern matching queries.

7 RELATEDWORK

Queries over graph-structured data have been extensively studied,
e.g. [1, 17, 20, 30, 45]. A popular means of querying are conjunctive
regular path queries (CRPQs) [17, 25, 28, 30], which return tuples
of nodes which are connected in a way predefined by the CRPQ.
This mode of evaluating (conjunctive) regular path queries has
dominated the research landscape for decades [10] and is also the
mode of evaluation for regular path queries in SPARQL [6, 39, 63].

However, as the data gets larger and more complex, it gets more
and more important to include paths in the output of the query [37].
Indeed, G-Core [4], a result of intense collaboration between indus-
try and academia, proposes to treat paths first-class citizens in graph
databases and, hence, allows queries to return them. GQL [24], the
upcoming ISO standard for querying property graphs, builds on
the G-Core proposal, but takes a perspective closer to industry. The
industry/academia collaboration for G-Core and GQL takes place
under the auspices of the LDBC, which also generated work on
keys for property graphs [5] and threshold queries [13].

The three lines of work that are the most closely connected to
ours are the following.

Factorized databases. Olteanu and co-authors have proposed Fac-
torized Database Representations (FDBs) [8, 9, 48, 49] as a means
of succinctly representing query results, possibly exponentially
more succinct than traditional tables, while still allowing enumera-
tion of such tables with constant delay. Factorized databases hence
share important properties with the path multiset representation
proposed here. We stress, however, that FDBs and PMRs are in-
comparable. Indeed, on the one hand PMRs are more expressive
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than FDBs: FDBs were developed to represent results of traditional
conjunctive queries on relational databases (or, more generally,
relational algebra queries), not for representing results of GRPQs
applied to graphs. In particular, conjunctive queries, when evalu-
ated on graphs, can only return paths whose length is bounded by
the number of atoms in the query. By contrast, GRPQs can return
paths of unbounded length. Consequently FDBs can only repre-
sent paths of bounded length, while PMRs can represent paths of
unbounded length.

On the other hand, FDBs are more expressive than PMRs. This
is because FDBs can represent results of any conjunctive query,
and, on graphs, conjunctive queries can express patterns such as
triangles that do not adhere to a path topology. While FDBs can
represent such expressive graph patterns, PMRs are limited to paths.

Finally, FDBs and PMRs are fundamentally distinct mathematical
objects. FDBs represent relational tables as an expression involving
unions and Cartesian products, whereas PMRs are graphs, endowed
with a homomorphism.

Finite state automata and ECRPQs. Some of our constructions
(notably Definition 5.1) are heavily inspired on the product con-
struction for non-deterministic finite automata [33]. Indeed, taking
the “product” of a graph and an NFA is a folklore method for com-
puting the output of regular path queries in the literature. The
literature, however, usually deals with sets of endpoint pairs, which
is easier than multisets of paths. Barceló et al. [11] used a different
but similar construction to investigate query evaluation for ex-
tended conjunctive regular path queries (ECRPQs) which, as us, also
extend CRPQs with the ability to include paths in the output of the
query, but also to define complex semantic relationships between
paths, using regular relations. Like us, they provide an automaton
construction that can represent both nodes and paths in the out-
put. The remainder of their work is quite different from ours, since
they had a different focus. They provided a picture of what can be
implemented in standard query languages in terms of complexity,
including concerning questions such as query containment. To deal
with relations on paths, they define a notion of convolutions of
graph databases and queries, that reduces the evaluation of ECRPQs
to the evaluation of CRPQs. Our focus on compact representations,
and their interaction with modular operations in query plans, is
therefore quite different.

Graph compression. In query-preserving graph compression (e.g.,
[19, 27]) as well as in work on structural indexing for graphs (e.g.
[18, 36] ) the goal is to compress input graph𝐺 into a smaller graph
𝐶 such that for every query 𝑄 in a fixed class of queries Q we have
𝑄 (𝐺) = 𝑄 (𝐶), i.e.,𝑄 gives the same answer on𝐶 as on the original
graph 𝐺 . As such, one can use 𝐶 instead of 𝐺 to answer queries in
Q on 𝐺 , which is more efficient. Graph compression and structural
indexing is orthogonal to our work for two reasons. (1) We aim
to compactly represent the output 𝑄 (𝐺) of a single RPQ 𝑄 on 𝐺 ,
while in [18, 27, 36] the aim is to compress the input graph𝐺 w.r.t a
class of queries Q. (2) We consider queries that return paths while
[18, 27, 36] consider endpoint queries (in the form of reachability
queries) or bisimulation matchings. This difference is important,
since compression then needs to preserve endpoints or matchings,
but not the paths themselves. In particular, the techniques in [18, 27,
36] contract paths under bounded bisimulation during compression.

This does not preserve paths, and as such 𝑄 (𝐺) = 𝑄 (𝐶) does not
necessarily hold when 𝑄 is a GRPQ that returns paths.

8 CONCLUSIONS

We presented the concept of path multiset representations (PMRs),
which allow to represent multisets of paths in asuccinct manner.
We believe that such a concept is necessary for ensuring that re-
turning paths in graph query engines remains tractable. Indeed, our
experiments show that today’s engines are not ready to deal with
queries that return paths, and that PMRs can improve run-times by
orders of magnitude. Theoretically we prove that, while the num-
ber of paths or shortest paths that match regular path queries can
become prohibitively large, PMRs allow to represent these using
linear space in terms of combined complexity.

This paper presents a wide number of results that involve the
incorporation of PMRs in graph engines, using a modular query
evaluation approach typical of how database systems work. By
showing how PMRs hold up when considering grouping opera-
tors, unions, projection, counting, and random sampling, we have
gone significantly beyond the restricted setting that is typically
considered in research, i.e., regular path queries and set semantics.

PMRs may even be useful in terms of query language design.
An important reason why selectors and restrictors to finite sets
of paths are used in in modern graph query languages [23, 24] is
because the community does not know how to deal with infinite
sets of paths. But such restrictions can be detrimental to query
languages. For instance, by restricting ourselves to data structures
that can only represent finite sets of paths, we intuitively make
logical and physical operators less composable, which in turn may
rule out operations further in the query plan. For example, it is
not possible to randomly sample a path of length 𝑛 between two
nodes, if we have discarded the paths of this length in a previous
computation step. PMRs, however, can represent the infinite sets
that are returned by regular path queries in a finite manner, as
Example 3.3 and Theorem 5.2 illustrate. It is therefore an interesting
question whether a composable algebra for graph querying that
allows infinite intermediate results can be built up using PMRs or a
variation thereof.
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