
Semantics-aware Dataset Discovery from Data Lakes with
Contextualized Column-based Representation Learning

Grace Fan
Northeastern University

United States
fan.gr@northeastern.edu

Jin Wang
Megagon Labs
United States

jin@megagon.ai

Yuliang Li
Megagon Labs
United States

yuliang@megagon.ai

Dan Zhang
Megagon Labs
United States

dan_z@megagon.ai

Renée J. Miller
Northeastern University

United States
miller@northeastern.edu

ABSTRACT
Dataset discovery from data lakes is essential in many real ap-
plication scenarios. In this paper, we propose Starmie, an end-to-
end framework for dataset discovery from data lakes (with table
union search as the main use case). Our proposed framework fea-
tures a contrastive learning method to train column encoders from
pre-trained language models in a fully unsupervised manner. The
column encoder of Starmie captures the rich contextual semantic
information within tables by leveraging a contrastive multi-column
pre-training strategy. We utilize the cosine similarity between col-
umn embedding vectors as the column unionability score and pro-
pose a filter-and-verification framework that allows exploring a
variety of design choices to compute the unionability score between
two tables accordingly. Empirical results on real table benchmarks
show that Starmie outperforms the best-known solutions in the ef-
fectiveness of table union search by 6.8 inMAP and recall. Moreover,
Starmie is the first to employ the HNSW (Hierarchical Navigable
Small World) index to accelerate query processing of table union
search which provides a 3,000X performance gain over the linear
scan baseline and a 400X performance gain over an LSH index (the
state-of-the-art solution for data lake indexing).

PVLDB Reference Format:
Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller.
Semantics-aware Dataset Discovery from Data Lakes with Contextualized
Column-based Representation Learning. PVLDB, 16(7): 1726 - 1739, 2023.
doi:10.14778/3587136.3587146

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/megagonlabs/starmie.

1 INTRODUCTION
The growing number of open datasets from governments, academic
institutions, and companies have brought new opportunities for
innovation, economic growth, and societal benefits. To integrate

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 7 ISSN 2150-8097.
doi:10.14778/3587136.3587146

and analyze such datasets, researchers in both academia and in-
dustry have built a number of dataset search engines to support
the application of dataset discovery [3, 7, 17, 19, 33, 40, 45]. One
popular example is Google’s dataset search [3] which provides key-
word search on the metadata. However, for open datasets, simple
keyword search might suffer from data quality issues of incomplete
and inconsistent metadata across different datasets and publish-
ers [1, 16, 41, 42]. Thus it is essential to support table search over
open datasets, andmore generally data lake tables (including private
enterprise data lakes), to boost dataset discovery applications, such
as finding related tables, domain discovery, and column clustering.

Finding related tables from data lakes [11, 25, 39, 46, 57] has a
wide spectrum of real application scenarios. There are two sub-tasks
of finding related tables, namely table union search and joinable
table search. In this paper, we mainly focus on the problem of table
union search, which has been recognized as a crucial task in dataset
discovery from data lakes [2, 24, 39, 41, 42, 57, 61]. Given a query
table and a collection of data lake tables, table union search aims to
find all tables that are unionable with the query table. To determine
whether two tables are unionable, existing solutions first identify
all pairs of unionable columns from the two tables based on column
representations, such as bag of tokens or bag of word embeddings.
They then devise some mechanism to aggregate the column-level
results to compute the table unionability score.

State-of-the-art: Early work on finding unionable tables used
table clustering followed by simple syntactic measures such as the
difference in column mean string length and cosine similarities to
determine if two tables are unionable [4]. Table union search [42]
improved on this by applying a rich collection of column repre-
sentations including syntactic, semantic (leveraging ontologies),
and natural language (based on word-embeddings) column rep-
resentations. Two important innovations of this work were the
modeling of data lake context to create an ensemble unionability
score which models the surprisingness of a score given the score
distributions within a data lake and the use of LSH indices to make
table union search fast over large data lakes [42]. More recently
𝐷3𝐿 [2] added additional column representations based on regu-
lar expression matching and SANTOS [24] added to the column
representations, representations of binary relationships. In paral-
lel to these search-based approaches, the mighty hammer of deep
learning has been applied to the problem of column matching (de-
termining the semantic type of a column) [22, 56]. Since these

1726

https://doi.org/10.14778/3587136.3587146
https://github.com/megagonlabs/starmie
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3587136.3587146
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1727

1728

1729

1730

1731

We propose a filter-and-verification framework to address this
issue as illustrated inAlgorithm 3. Instead of doing a linear scan over
all data lake tables, it employs filter mechanisms to identify a set of
candidate tables C for further verification (line: 3). As a result, it can
reduce the number of expensive verification operations Verify(𝑆,𝑇).
This is realized by the function findCandidates (Section 4.2). Then
for all the candidate tables, we further come up with a pruning
mechanism to estimate the lower bound LB(𝑆,𝑇) and upper bound
UB(𝑆,𝑇) of𝑈 (𝑆,𝑇). If the lower bound is larger than the current
lowest score, we can directly replace it with the top element without
further verification (line: 10). Similarly, if the upper bound is no
larger than the current lowest score, we can directly discard it
(line: 12). This pruning mechanism is effective since LB and UB
are much more efficient to estimate than the exact verification
Verify(𝑆,𝑇) (Section 4.3).

4.2 Reducing the Number of Candidates
Given a column with its embedding vector, we need to quickly
identify tables from the data lake that contain unionable columns,
which is realized by the findCandidates function in Algorithm 3.
This is a problem of similarity search over high-dimensional vectors.
Locality Sensitivity Hashing (LSH) [20] has been used in previous
studies of table search to find joinable [61], unionable [42], and re-
lated columns [2] in sub-linear time. The basic idea is to use a family
of hash functions to map high-dimensional vectors into a number
of buckets, where the probability that two vectors are hashed into
the same bucket is correlated to the value of a certain similarity
metric between them. Following this work, we build a simHash [8]
LSH index to estimate the cosine similarity between column embed-
ding vectors. Then for each query column vector 𝑠 , we can quickly
find a set of similar column vectors via an index lookup. Then the
candidate set C can be obtained by the union of candidates returned
by utilizing each column vector 𝑠 to query the index. In addition
to LSH, we also explore the more recent HNSW [36]. HNSW is a
proximity graph with multiple layers where two vertices are linked
based on their proximity. It supports fast nearest neighbor search
with high recall. We find that HNSW improves the query time by
orders of magnitude and thus allows Starmie to support querying
over the WDC corpus with 50M tables, which is much larger than
the previously supported datasets for table union search.

Since such index structures return approximate instead of exact
results, there might be some false negatives in the top-k results.
Nevertheless, we find in the experiments that the effectiveness
loss caused by the false negatives is within a reasonable range.
Meanwhile, the query time can be reduced by one to three orders
of magnitude (details in Section 5.3).

4.3 Pruning Mechanism for Verification
Once a candidate table is found, we can reduce the expensive ver-
ification cost by quickly computing lower and upper bounds on
the unionability score. We first look at how to estimate the upper
bound UB(𝑆,𝑇) between two tables 𝑆 and 𝑇 . Recall that in maxi-
mum weighted bipartite matching, each column/node in both 𝑆 and
𝑇 can be covered by at most 1 edge in the edges of the maximum
matching. If we remove this constraint, since nodes can appear in

multiple edges, the new optimal matching is easy to compute. More-
over, as it allows edges with greater weights, the total score forms
an upper bound of the true table unionability score 𝑈 (𝑆,𝑇). For
the upper bound UB(𝑆,𝑇), we first sort the edges by their weights
in descending order. Then we add edges with the largest weights
into the matching in a greedy manner. This process is repeated
until all columns in 𝑆 or 𝑇 are covered or all edges are used. The
time complexity of the above process for calculating UB(𝑆,𝑇) is
O(|𝐸 | log |𝐸 | +𝑛), where |𝐸 | is the number of edges in𝐺 . It is much
cheaper to compute than the real table unionability score.

Next, we introduce how to quickly estimate a meaningful lower
bound LB(𝑆,𝑇). For lower bounds, we would like to find a set of
edges that do not violate the constraint of bipartite matching, i.e.,
each column in the two tables is covered by one edge. We can also
achieve this goal via a greedy algorithm. Similar to computing the
upper bound, we sort the edges by weight in descending order and
pick edges with the largest weights. After that, we remove edges
that are associated with the columns in the selected edges so as to
avoid violations. The termination condition of this process is also
the same as that of calculating the upper bound. Since the resulting
matching does not necessarily cover all nodes in 𝑆 or 𝑇 , the total
weight LB(𝑆,𝑇) is a lower bound of the maximum matching. The
time complexity of calculating LB(𝑆,𝑇) is also O(|𝐸 | log |𝐸 | + 𝑛).

Example 4.2. We use the example in Figure 6 to illustrate the
upper bound computation. Note this example is designed to illus-
trate the algorithm, not to model the actual distribution of weights
in a data lake. We fetch edges in the descending order of weight:
⟨𝑠1, 𝑡2⟩, ⟨𝑠1, 𝑡1⟩, ⟨𝑠2, 𝑡2⟩, and ⟨𝑠4, 𝑡3⟩. At this point, since all nodes
{𝑡1, 𝑡2, 𝑡3} in 𝑇 are covered, we stop here. The upper bound is
0.85 + 0.8 + 0.7 + 0.65 = 3, larger than the exact value 2.15.

To compute the lower bound, we start from edge ⟨𝑠1, 𝑡2⟩ and
then remove all edges associated with 𝑠1 and 𝑡2. The remaining
edge with maximum weight is ⟨𝑠4, 𝑡3⟩. After involving this edge
into the matching, there is no remaining one and the algorithm
stops here. Hence, the lower bound is 0.85 + 0.65 = 1.5, which is
smaller than the exact value 2.15.

5 EXPERIMENTS
We now present an evaluation of Starmie on real-world data lake
corpora. First, we show that Starmie achieves new state-of-the-
art results on table union search by outperforming the previous
best methods by 6.8% in MAP and Recall. Next, our scalability ex-
periments show that Starmie (especially with the HNSW index)
achieves significant performance gain (up to 3,000x) while pre-
serving reasonable effectiveness performance. Lastly, we conduct
case studies to show that Starmie generalizes to two other dataset
discovery applications: column clustering and table discovery for
downstream machine learning tasks. We include additional results
and discussions in the full technical report [15].

5.1 Experiment Setup
5.1.1 Environment. We implement Starmie in Python using Py-
torch and the Hugging Face Transformers library [52]. For con-
trastive learning, we use RoBERTa [35] as the base language model.
We set the hyper-parameters batch size to 64, learning rate to 5e-5,

1732

and max sequence length to 256 across all the experiments. All ex-
periments are run on a server with configurations similar to those
of a p4d.24xlarge AWS EC2 machine with 8 A100 GPUs. The server
has 2 AMD EPYC 7702 64-Core processors and 1TB RAM.

5.1.2 Datasets. We use five benchmark datasets with statistics
detailed in Table 2. Firstly, we evaluate the effectiveness on the
first three benchmark datasets, which are subsets of real Open
Data. Since accuracy requires manually labeled ground truth, such
datasets are not very large. We only use them to conduct the exper-
iments of effectiveness reported in Section 5.2. The SANTOS Small
benchmark [24] consists of 550 real data lake tables drawn from
296 Canada, UK, US, and Australian open datasets, and 50 query
tables. From Table Union Search [42], there are two available bench-
marks: TUS Small and TUS Large. TUS Small benchmark consists
of 1,530 data lake tables that are derived from 10 base tables from
Canada open data. We also use the larger benchmark, TUS Large,
which consists of ∼5,000 data lake tables derived from 32 base tables
from Canada open data. For these two benchmarks, we randomly
select 150 and 100 query tables, respectively, following previous
studies [24, 42]. The SANTOS1 and TUS2 benchmarks, along with
their ground truth of unionable tables, are publicly available.

The last two benchmarks are utilized in efficiency and scalability
experiments. The SANTOS Large benchmark contains ∼11K raw
data lake tables from Canada and UK open data, and 80 query
tables. We also run experiments on theWDCweb tables corpus [28]
which contains 50.8 million relational web tables extracted from
the Common Crawl. We randomly select 30 tables as the query.

Table 2: Effectiveness (top) and scalability (bottom) benchmarks.

Benchmark # Tables # Cols Avg # Rows Size (GB)

SANTOS Small 550 6,322 6,921 0.45
TUS Small 1,530 14,810 4,466 1
TUS Large 5,043 54,923 1,915 1.5

SANTOS Large 11,090 123,477 7,675 11
WDC 50M 250M 14 500

5.1.3 Metrics. For effectiveness, we perform evaluation based on
the ground truth from the first three benchmarks. For the TUS
benchmarks, the tables are synthetically-partitioned from tables
of distinct domains, so the ground truth is created in a generative
manner. As for the SANTOS Small benchmark, the tables have
been manually-annotated to create a ground truth listing expected
unionable tables to each query table. Then we follow previous
studies [2, 24, 37, 42] and use the Mean Average Precision at k
(MAP@k), Precision at k (P@k) and Recall at k (R@k) to evaluate
the effectiveness in returning the top-k results. We compute each
score by averaging 5 repeated runs. For efficiency, we measure the
average time per query.

1https://github.com/northeastern-datalab/santos
2https://github.com/RJMillerLab/table-union-search-benchmark

5.1.4 Baselines. For effectiveness experiments, we compare our
approach, Starmie, with the following existing approaches.
• 𝐷3L [2] extends Table Union Search [42] for the problem of find-
ing related tables by using table features such as column names,
value overlap, and formatting. To compare fairly with Starmie, we
omit the column name feature.
• SANTOS [24] proposes an approach that leverages both columns
and relationships between columns by using external and self-
curated knowledge bases.
• Sherlock [22] is a representation learning method that leverages
several column features such as table statistics and word embed-
dings to learn the embedding vector of a column.
• SATO [56] extends Sherlock by capturing the table context using
LDA, and thus performing a form of multi-column prediction.
• SingleCol is our column encoder proposed in Section 3.2 that only
uses a single column as the input of the encoder in the training
process. This is Starmie without the use of contextual information
from Section 3.3.

For efficiency experiments, we aim at exploring the benefits
brought by different design choices in the Starmie framework. Thus
we compare the performance of 4 methods: basic linear search
(Linear), pruning based on estimated bounds (Pruning), search with
an LSH index (LSH), and search with an HNSW index (HNSW).

5.1.5 Column encoder settings. We empirically choose the most
suitable sampling method (Section 3.4) and augmentation operator
(introduced in Section 3.3 and more details in Appendix A). For
sampling methods, we find that Starmie achieves the best perfor-
mance when pre-trained with the cell-level TF-IDF scoring func-
tion on the SANTOS Small and TUS Large benchmarks, and with a
column-ordered sampling method, alphaHead, that sorts tokens in
alphabetical order performs the best, on TUS Small. For augmenta-
tion operators, we find that the drop_col operator performs the best
on SANTOS Small while drop_cell achieves the best performance
on the two TUS benchmarks.

5.2 Results for Effectiveness
Table 3 reports the results of MAP@k and R@k on the three bench-
marks for all methods. Note that the results for SANTOS are unavail-
able for TUS Large because SANTOS, which requires the labeled
query table intent columns [24], have not been evaluated on this
benchmark due to the absence of annotated intent columns. We run
the experiments up to k=10 on SANTOS Small following [24], and
up to k=60 on the TUS benchmarks, which is consistent with [42].
Note the recall cannot reach 100% when 𝑘 is smaller than the num-
ber of correct unionable tables from the labeled ground truth as
reported in previous studies [24, 42]. Table 3 indicates the maximum
recall as IDEAL for each setting.

We can observe that Starmie outperforms the baselines across
all three benchmarks. On the SANTOS Small benchmark, Starmie
achieves the highest MAP@10 of 99.3% and highest R@10 of 73.7%
(which is close to the IDEAL), outperforming SATO, Sherlock, SAN-
TOS, 𝐷3L baselines by large margins of 13%, 27%, 6.8%, and 90%
respectively. Also, Starmie outperforms its SingleCol variation by
11%, showing that a multi-column approach is necessary. Similarly,
on the TUS Small benchmark, Starmie outperforms the highest-
achieving baseline, Sherlock, by 0.7% and SingleCol variation by

1733

https://github.com/northeastern-datalab/santos
https://github.com/RJMillerLab/table-union-search-benchmark

Table 3: MAP@k and R@k results on all benchmarks with ground
truth, where k=10 for SANTOS Small benchmark and k=60 for the
TUS benchmarks. The IDEAL R@k for SANTOS Small is 0.75, IDEAL
R@k for TUS Small is 0.341, and IDEAL R@k for TUS Large is 0.277.

SANTOS Small TUS Small TUS Large
Method MAP@k R@k MAP@k R@k MAP@k R@k
SingleCol 0.891 0.588 0.954 0.255 0.902 0.208
SATO 0.878 0.594 0.966 0.271 0.930 0.223
Sherlock 0.782 0.493 0.984 0.265 0.744 0.119
SANTOS 0.930 0.690 0.885 0.230 - -
𝐷3𝐿 0.523 0.422 0.794 0.215 0.484 0.124
Starmie 0.993 0.737 0.991 0.277 0.965 0.238

(a) 𝑃@𝑘 on SANTOS Small (b) 𝑅@𝑘 on SANTOS Small

(c) 𝑃@𝑘 on TUS Small (d) 𝑅@𝑘 on TUS Small

(e) 𝑃@𝑘 on TUS Large (f) 𝑅@𝑘 on TUS Large

Figure 7: 𝑃@𝑘 and 𝑅@𝑘 results on different benchmarks.

4% in MAP@k. On the TUS Large benchmark, Starmie outperforms
SATO by 4% and SingleCol by 7% in MAP@k. Thus, the Starmie
approach, by capturing column context and leveraging contrastive
learning in pre-training, is very effective in solving the table union
search problem.

Figure 7 shows the P@k and R@k of Starmie and the baselines as
k increases on all benchmarks. Throughout all values of k, Starmie

outperforms all baselines for both P@k and R@k. In Figures 7(b),
(d), and (f), Starmie is closest to IDEAL, with R@10 only 1.8% below
IDEAL on SANTOS Small, R@60 18.8% below IDEAL on TUS Small,
and R@60 14.1% below IDEAL on TUS Large.

To better understand the influence of datasets on the perfor-
mance of Starmie, we conducted an in-depth analysis to look at its
performance for different settings of arity, cardinality, and percent-
age of numerical columns in query tables. We evenly split the query
tables into five groups for each setting. We compare Starmie with
alternative representation methods SATO, Sherlock, and SingleCol
that also encode columns into high-dimensional vectors. As shown
in Figure 8(a)/(c), Starmie consistently outperforms the baselines
as the number of columns varies and as the percentage of numeric
columns varies. As the number of rows increases (Figure 8(b)), the
results of Starmie remain consistently high while the performances
of SATO, Sherlock, and SingleCol generally decrease. We believe
this is due to our efforts of table preprocessing techniques (Sec-
tion 3.4). Meanwhile, the performance of SingleCol is much worse
than Starmie under all settings, illustrating the importance of con-
textual information in training the column encoders. The methods
have similar trends on TUS Small and TUS Large (Appendix C).

5.3 Scalability

Table 4: Effectiveness of different design choices. The first
four methods are for Starmie.

Method MAP@10 P@10 R@10 Query Time (s)

Linear 0.993 0.984 0.737 96
Pruning 0.993 0.984 0.737 61
LSH Index 0.932 0.780 0.580 12
HNSW Index 0.945 0.810 0.606 4

SATO 0.878 0.806 0.594 252
Sherlock 0.782 0.672 0.493 264
SingleCol 0.891 0.798 0.588 108

Impacts on effectiveness. Since some design choices might re-
sult in effectiveness loss, we report their results of three evaluation
metrics on the SANTOS Small benchmark. As shown in Table 4,
we compare Starmie with a basic linear scan with three other de-
sign choices (above the horizontal line), as well as baselines SATO,
Sherlock, and SingleCol (full experiment results are shown in Ap-
pendix C). The main takeaway is that HSNW preserves the effec-
tiveness as much if not better than the LSH index that is widely used
in previous studies, while having tremendous speed improvement.
This suggests HSNW is a very promising direction for providing
real-time search over massive data lakes.
Preprocessing time. Since Starmie requires model pre-training
and model inference, in addition to possibly indexing, we provide
some insights of such overhead by comparing its preprocessing
time with existing systems 𝐷3L and SANTOS that are not based
on pre-trained LMs. The preprocessing time of Starmie consists of
the following parts: pre-training taking 3.1 hours, model inference
taking 4.4 min, and indexing taking 10-30 sec. Meanwhile, 𝐷3L
takes 7.6 hours to create four indexes for each column feature and

1734

(a)𝑀𝐴𝑃@𝑘 of different # Cols (b)𝑀𝐴𝑃@𝑘 of different # Rows (c)𝑀𝐴𝑃@𝑘 of different % Num. Cols

Figure 8: In-depth analysis of Starmie, SATO, Sherlock, and SingleCol as we vary the number of columns, number of rows, and
percentage of numerical columns on the SANTOS Small benchmark.

SANTOS takes 17 hours to create indexes using a knowledge base
and the data lake. Thus, pre-training a language model in Starmie
does not incur too much overhead compared to existing systems.
Time efficiency. We have observed that the employed design
choices can speed up the online query time while sufficiently pre-
serving the effectiveness scores. Next we evaluate the scalability of
different design choices. In Figure 9(a), we first evaluate the four
variations of Starmie on the SANTOS Large benchmark, as we in-
crease the number of returned unionable tables k from 10 to 60. We
then evaluate their query times as the data lake size grows to its
full size of ∼11K tables / ∼120K columns. We also experiment on
the WDC benchmark, specifically when the data lake grows to 1M
tables / 5M columns (Figure 9(b)) to show the trend of each method
, and when the data lake grows to 50M tables / 250M columns (Fig-
ure 9(c)). For each method, if a data point’s query time does not
finish within 24 hours, then we consider it as timeout and omit the
result from the corresponding figures.

Throughout all these experiments, we see that the design choice
with the HNSW index leads to the best performance. On the SAN-
TOS Large benchmark in Figure 9(a), the k-scalability experiment
shows that Pruning is 2X faster than Linear, while LSH index is
20X faster than Linear. Meanwhile, HNSW index, which leads to
an average query time of around 300 ms, is 220X faster than Linear
and 11X faster than the popular LSH index. As the data lake grows
to its full size, there is a steady increase in query time of Linear
and Pruning; while that of LSH index and HNSW index remain
stable, with the query time of HNSW index remaining around 400
ms. On the WDC benchmark in Figure 9(b), there is a similar trend
as the data lake grows to 1M tables. On the full WDC benchmark
in Figure 9(c), Linear and Pruning time out after 1M tables, while
LSH index times out after having an average query time of 2,520
sec on 10M tables. Meanwhile, the query time for HNSW index
stays consistent at around 60 ms as the data lake grows to its full
size of 50M tables / 250M columns. The reason is that the hierar-
chical graph-based structure of HNSW allows it to locate to the
nearest neighbors much faster than hash-based indexes [36]. Over-
all, the design choices explored in this paper, especially HNSW
index, show a great improvement in the average query time, even
when the data lake grows to an immense size of 50M tables. To the
best of our knowledge, the largest dataset that are evaluated by
existing solutions of table union search is with only 5,000 tables /
1M columns [42], which has 250 times smaller number of columns.

Memory overhead. Lastly, we examine the relative memory over-
head of Starmiewith different design choices. Specifically, the mem-
ory usage of No index (the linear scan and pruning methods from
Table 4), LSH index and HNSW index over the data lake of SAN-
TOS Large (11 GB) is 359MB, 733MB and 749 MB, respectively. The
results show that Starmie is not only scalable but also memory
efficient: its variations take up 3-7% space overhead. The memory
saving is mainly due to the condensed vector column representa-
tions of Starmie which take up only 3% of the data lake size.

5.4 Data discovery for ML tasks
Next, we conduct a case study to show that Starmie can be applied
to another application scenario of dataset discovery, i.e., retrieving
relevant tables to improve the performance of downstreamML tasks.
For this case study, we consider a subset of 78k WDC tables used
in the evaluation of SATO [56], from which we collect all the 4,130
tables of at least 50 rows as the data lake tables. Among these tables,
we find that 25 tables of at least 200 rows contain a numeric column
called “Rating”. These 25 tables contain various types of ratings
including those for sportsmen, TV shows, US congress members,
etc. From these tables, we construct 25 regression tasks with the
goal of training an ML model that predicts “Rating” as the target
column. Since the ratings are from different domains, we normalize
their values to the range [0, 1]. More details about the setting can
be found in Appendix D.

For each task, we train a Gradient-Boosted Tree model [9] with
all non-target columns as features. We featurize the textual columns
using Sentence Transformers [44]. We split each dataset into train-
ing and test sets at a ratio of 4:1. Note that the original dataset may
not contain informative features. Figure 10 shows such a dataset of
US congress members.

To improve the model’s performance on these downstream tasks,
we leverage Starmie to retrieve relevant tables from the data lake
to join with the datasets (i.e., the query tables) to provide additional
features. To showcase the effectiveness of Starmie, we use Starmie’s
contextualized column embeddings to retrieve from the data lake
table that contains a column having the highest cosine similarity
with a non-target column of the query table. Finally, we augment
the query table by performing a left-join with the retrieved table to
ensure that the size of the augmented table stays unchanged. We
also consider two popular similarity methods for this task, Jaccard

1735

1736

Table 6: Column clusters discovered by Starmie. We show the first 3 values from 3 columns of each cluster. The clusters have finer-grained
types (e.g., names of schools, grocery stores, song names) than the original ground truth types (e.g., type, name, artist).

Cluster type 1st Column 2nd Column 3rd Column

type Emerson Elementary School Choctawhatchee Senior High School Sumner Academy Of Arts and Science
→ Banneker Elementary School Fort Walton Beach High School Wyandotte High School

Names of schools Silver City Elementary School Ami Kids Emerald Coast J C Harmon High School

name People’s Grocery Co-op Exchange Amazing Grains Apples Street Market
→ Prairieland Market BisMan Community Food Cooperative Bexley Natural Market

Food/grocery stores The Merc (Community Mercantile) Bowdon Locker & Grocery Kent Natural Foods Co-op

artist I Don’t Give A ... Spoken Intro New Wave
→ I’m The Kinda The Court Up The Cuts

Song names I U She Maze Thrash Unreal

of food/grocery stores, and names of songs. It is difficult to discover
such fine-grained types by existing supervised methods.

6 RELATEDWORK
6.1 Dataset Discovery
Dataset Discovery has been a hot topic in the data management
community. Earlier studies [1, 5, 49] relied on keyword search over
web tables to identify essential information. Octopus [4] and In-
foGather [54] focused on the problem of schema complement, an
important topic in exploring web tables. Aurum [17], S3D [19]
and Tableminer+ [38, 58] utilized knowledge bases to identify re-
lationship between datasets. SemProp [18] followed this route by
leveraging ontologies and word embeddings, and Leva [59] solved
a similar problem with graph neural networks. 𝐷4 [43] addressed
the problem of column clustering in data lake tables. Valentine [26]
provided resources for evaluating column matching tasks. Domain-
Net [29] studied the problem of disambiguation in data lakes.

Finding related tables from data lakes is an essential task in
dataset discovery. There are two sub-tasks in this application, namely
finding joinable tables and table union search [46]. To support find-
ing joinable tables, earlier studies utilized syntactic similarity met-
rics that are widely used in the applications of string similarity
search and join [21, 30, 53]. LSH Ensemble used containment (over-
lap) [61] as the similarity metric and provided a high-dimensional
similarity search based solution. Josie [60] employed overlap over to-
kens and developed an exact data-optimized solution. PEXESO [14]
relied on cosine similarity over word embeddings and proposed in-
dexing techniques to improve performance. The table union search
problem has been well explored recently. Ling et al. [34] and Lehm-
berg et al. [27] illustrated the importance of finding unionable Web
tables. Nargesian et al. [42] proposed the first definition and com-
prehensive solution for the table union search problem in data lakes.
Bogatu et al. [2] proposed the 𝐷3L system by dividing columns into
different categories. The SANTOS [24] system uses a knowledge
base along with binary relationships in the data lake to identify
tables that share unionable columns and relationships, and it is the
state-of-the-art approach in this field. To the best of our knowl-
edge, our work is the first solution to utilize contrastive learning
techniques in table union search.

6.2 Representation Learning for Tables
Recently many efforts use representation learning techniques to ad-
dress problems related to tabular data. Sherlock [22] and Sato [56]
used a supervised feature based approach to learn vector repre-
sentations for tables and columns. TURL [12] proposed to use a
pre-trained language model for web table related tasks and to come
up with benchmark datasets for several tasks. And pre-trained lan-
guage models have been widely applied to different table-related
applications, including entity matching [6, 31, 32], column type de-
tection [47, 50], and question answering [23, 55]. Our work follows
this line of study and proposes the first solution that employs a
pre-trained language model in a fully unsupervised way for the
problem of table union search.

7 CONCLUSION AND FUTUREWORK
In this paper, we mainly focused on the problem of table union
search, an essential application in dataset discovery from data lakes.
We argued that it is crucial to utilize contextual information to de-
termine whether two columns are unionable and proposed Starmie,
an end-to-end framework based on contrastive representation learn-
ing as the solution. We also developed a multi-column encoder that
can capture the contextual information from a table so as to learn
contextualized column embeddings. Experimental results on pop-
ular benchmark datasets demonstrated that Starmie significantly
outperformed existing solutions for table union search.

Our results show the promise of self-supervised contrastive learn-
ing in improving the accuracy of table union search, as well as
joinable table search, and column clustering – the latter areas we
are exploring further. We believe the improved accuracy justifies
the use of learning over previous heuristic approaches and the
self-supervision will be important to data lakes where labeled train-
ing data is expensive to collect and generalize. Our results using
the relatively new HNSW index are exciting and important in the
development of real-time data lake search solutions.

ACKNOWLEDGMENTS
This work was supported in part by NSF under award numbers
IIS-1956096 and IIS-2107248. It was done during Grace’s internship
at Megagon Labs. We would like to thank Yoshihiko Suhara for his
valuable comments on this work.

1737

REFERENCES
[1] Marco D. Adelfio and Hanan Samet. 2013. Schema Extraction for Tabular Data

on the Web. Proc. VLDB Endow. 6, 6 (2013), 421–432.
[2] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-

nou. 2020. Dataset Discovery in Data Lakes. In ICDE. 709–720.
[3] Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset

Search: Building a search engine for datasets in an open Web ecosystem. In
WWW. 1365–1375.

[4] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. 2009. Data
Integration for the Relational Web. Proc. VLDB Endow. 2, 1 (2009), 1090–1101.

[5] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang
Zhang. 2008. WebTables: exploring the power of tables on the web. Proc. VLDB
Endow. 1, 1 (2008), 538–549.

[6] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In SIGMOD, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). 1335–1349.

[7] Sonia Castelo, Rémi Rampin, Aécio S. R. Santos, Aline Bessa, Fernando Chirigati,
and Juliana Freire. 2021. Auctus: A Dataset Search Engine for Data Discovery
and Augmentation. Proc. VLDB Endow. 14, 12 (2021), 2791–2794.

[8] Moses Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In STOC. 380–388.

[9] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In KDD. ACM, 785–794.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
ICML, Vol. 119. 1597–1607.

[11] Tianji Cong, James Gale, Jason Frantz, H. V. Jagadish, and Çagatay Demiralp.
2023. WarpGate: A Semantic Join Discovery System for Cloud Data Warehouses.
In CIDR.

[12] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307–319.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT. 4171–4186.

[14] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-
Based Approach. In ICDE. 456–467.

[15] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2022. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. CoRR abs/2210.01922 (2022). https://doi.org/10.48550/
arXiv.2210.01922

[16] Mina H. Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska Hoffmann, and
Xu Chu. 2016. CLAMS: Bringing Quality to Data Lakes. In SIGMOD. 2089–2092.

[17] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
ICDE. 1001–1012.

[18] Raul Castro Fernandez, Essam Mansour, Abdulhakim Ali Qahtan, Ahmed K.
Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stone-
braker, and Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word
Embeddings for Data Discovery. In ICDE. 989–1000.

[19] Sainyam Galhotra and Udayan Khurana. 2020. Semantic Search over Structured
Data. In CIKM. 3381–3384.

[20] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB. Morgan Kaufmann, 518–529.

[21] Hazar Harmouch, Thorsten Papenbrock, and Felix Naumann. 2021. Relational
Header Discovery using Similarity Search in a Table Corpus. In ICDE. 444–455.

[22] Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen,
Arvind Satyanarayan, Tim Kraska, Çagatay Demiralp, and César A. Hidalgo.
2019. Sherlock: A Deep Learning Approach to Semantic Data Type Detection. In
KDD. 1500–1508.

[23] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In NAACL-HLT. 3446–3456.

[24] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based
Semantic Table Union Search. In SIGMOD.

[25] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller. 2022.
Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (2022), 932–945.

[26] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In ICDE. 468–479.

[27] Oliver Lehmberg and Christian Bizer. 2017. Stitching Web Tables for Improving
Matching Quality. Proc. VLDB Endow. 10, 11 (2017), 1502–1513.

[28] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A
Large Public Corpus of Web Tables containing Time and Context Metadata. In

WWW (Companion Volume). ACM, 75–76.
[29] Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller,

and Mirek Riedewald. 2021. DomainNet: Homograph Detection for Data Lake
Disambiguation. In EDBT. 13–24.

[30] Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient Merging and Filtering
Algorithms for Approximate String Searches. In ICDE. 257–266.

[31] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50–60.

[32] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, Jin Wang, Wataru Hirota, and Wang-
Chiew Tan. 2021. Deep Entity Matching: Challenges and Opportunities. ACM J.
Data Inf. Qual. 13, 1 (2021), 1:1–1:17.

[33] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating
and Searching Web Tables Using Entities, Types and Relationships. Proc. VLDB
Endow. 3, 1 (2010), 1338–1347.

[34] Xiao Ling, Alon Y. Halevy, Fei Wu, and Cong Yu. 2013. Synthesizing Union
Tables from the Web. In IJCAI. 2677–2683.

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[36] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[37] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to information retrieval. Cambridge University Press.

[38] Suvodeep Mazumdar and Ziqi Zhang. 2016. Visualizing Semantic Table Annota-
tions with TableMiner+. In ISWC, Vol. 1690.

[39] Renée J. Miller. 2018. Open Data Integration. Proc. VLDB Endow. 11, 12 (2018),
2130–2139.

[40] Renée J. Miller, Fatemeh Nargesian, Erkang Zhu, Christina Christodoulakis,
Ken Q. Pu, and Periklis Andritsos. 2018. Making Open Data Transparent: Data
Discovery on Open Data. IEEE Data Eng. Bull. 41, 2 (2018), 59–70.

[41] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986–1989.

[42] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825.

[43] Masayo Ota, Heiko Mueller, Juliana Freire, and Divesh Srivastava. 2020. Data-
Driven Domain Discovery for Structured Datasets. Proc. VLDB Endow. 13, 7
(2020), 953–965.

[44] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP. Association for Computational Lin-
guistics, 3980–3990.

[45] Aécio S. R. Santos, Aline Bessa, Christopher Musco, and Juliana Freire. 2022. A
Sketch-based Index for Correlated Dataset Search. In ICDE. 2928–2941.

[46] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding related tables. In SIGMOD. 817–828.

[47] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çagatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-trained Lan-
guage Models. In SIGMOD. 1493–1503.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS. 5998–6008.

[49] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen,
Fei Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables
on the Web. Proc. VLDB Endow. 4, 9 (2011), 528–538.

[50] Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna
Dong, and Meng Jiang. 2021. TCN: Table Convolutional Network for Web Table
Interpretation. InWWW. 4020–4032.

[51] Jin Wang, Chunbin Lin, and Carlo Zaniolo. 2019. MF-Join: Efficient Fuzzy String
Similarity Join with Multi-level Filtering. In ICDE. 386–397.

[52] Thomas Wolf, Lysandre Debut, Victor Sanh, and et al. 2020. Transformers:
State-of-the-Art Natural Language Processing. In EMNLP. 38–45.

[53] JiachengWu, Yong Zhang, JinWang, Chunbin Lin, Yingjia Fu, and Chunxiao Xing.
2019. Scalable Metric Similarity Join Using MapReduce. In ICDE. 1662–1665.

[54] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. InfoGather: entity augmentation and attribute discovery by holistic match-
ing with web tables. In SIGMOD. ACM, 97–108.

[55] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
ACL. 8413–8426.

[56] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp,
and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in Tables.
Proc. VLDB Endow. 13, 11 (2020), 1835–1848.

[57] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In SIGMOD. 1951–1966.

[58] Ziqi Zhang. 2017. Effective and efficient Semantic Table Interpretation using
TableMiner+. Semantic Web 8, 6 (2017), 921–957.

1738

https://doi.org/10.48550/arXiv.2210.01922
https://doi.org/10.48550/arXiv.2210.01922

[59] Zixuan Zhao and Raul Castro Fernandez. 2022. Leva: Boosting Machine Learning
Performance with Relational Embedding Data Augmentation. In SIGMOD. 1504–
1517.

[60] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In

SIGMOD. 847–864.
[61] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH

Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016), 1185–
1196.

1739

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem definition
	2.2 System architecture

	3 Learning contextualized column embeddings
	3.1 Background
	3.2 Contrastive Learning Framework
	3.3 Multi-column Table Encoder
	3.4 Table Preprocessing

	4 Online query processing
	4.1 Table-level Matching Score
	4.2 Reducing the Number of Candidates
	4.3 Pruning Mechanism for Verification

	5 Experiments
	5.1 Experiment Setup
	5.2 Results for Effectiveness
	5.3 Scalability
	5.4 Data discovery for ML tasks
	5.5 Case study: Column clustering

	6 Related Work
	6.1 Dataset Discovery
	6.2 Representation Learning for Tables

	7 Conclusion and Future Work
	References

