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ABSTRACT
NVMe SSD hugely boosts the I/O speed, with up to GB/s throughput 
and microsecond-level latency. Unfortunately, DBMS users can 
often find their high-performanced storage devices tend to deliver 
less-than-expected or even worse performance when compared 
to their traditional peers. While many works focus on proposing 
new DBMS designs to fully exploit NVMe SSDs, few systematically 
study the symptoms, root causes and possible detection methods 
of such performance mismatches on existing databases.

In this paper, we start with an empirical study where we sys-
tematically expose and analyze the performance mismatches on six 
popular databases via controlled configuration tuning. From the 
study, we find that all six databases can suffer from performance 
mismatches. Moreover, we conclude that the root causes can be 
categorized as databases’ unawareness of new storage devices char-
acteristics in I/O size, I/O parallelism and I/O sequentiality. We 
report 17 mismatches to developers and 15 are confirmed.

Additionally, we realize testing all configuration knobs yields 
low efficiency. Therefore, we propose a fast performance mismatch 
detection framework and evaluation shows that our framework 
brings two orders of magnitude speedup than baseline without 
sacrificing effectiveness.
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1 INTRODUCTION
Database Management System (DBMS) practitioners are eternally
in pursuit of better performance. One straightforward approach is
to leverage the direct benefits of hardware advancement. A notable
example is the NVMe SSD, which can deliver up to 6GB/s through-
put and 10𝜇s-level latency [13, 34, 42], far beyond the performance
of the SATA SSDs and HDDs.

However, simply shoehorning NVMe SSDs into existing DBMSs
may not always have the desired effect. Various user reports indicate
that upgrading to NVMe SSDs can yield minimal improvement, or
even have negative impacts on performance [22, 25, 28, 29]. For
example, one user claims that, under the same setup on MySQL,
NVMe SSD only delivers half of the SATA SSD performance [7].

We discover that the reason behind the performance mismatch
in these reports is the inconsistency between the DBMS behavior
and device characteristics. Specifically, for NVMe SSDs, the drastic
changes made both internally (e.g., adopting novel NAND architec-
ture [67, 68]) and externally (i.e., NVMe interface) not only offer
better performance but also fundamentally alter the I/O character-
istics. For example, in NVMe SSD, random I/O speed is close to that
of sequential I/O rather than lagging severely behind [13, 34, 42].
However, decades of DBMS development are mostly built on and op-
timized for the I/O patterns of traditional devices like HDD. Hence,
these optimizations may now lead to performance degradation on
NVMe SSD.

Regarding the previous report [7], we find out that the root
cause is the size of DBMS write requests. Normally, DBMS sets
the page (i.e., write unit) size relatively small (e.g., 4KB or 8KB) to
be consistent with the physical sector size in HDD (512B to 4KB).
Meanwhile, to increase performance, storage devices are equipped
with caches. But the size of a cache line may be large (e.g., 32KB). If
the DBMS write (followed by fsync) is smaller than the cache line,
as shown in Figure 1, data has to be padded and written, which
may cause side-effects (e.g., write amplification). By increasing the
database page size to 32KB in this example, we are able to speed up
MySQL performance on NVMe SSD by 15.3%, but it is still slower
than that on SATA SSD. Therefore, such performancemismatchmay
not be able to simply solved by configuration tuning [88, 95, 97].

In this paper, we focus on studying and exposing the performance
mismatches between DBMSs and new devices. And our target is to
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Figure 1: The I/O pattern of DBMS mismatches underlying
NVMe SSD’s internal I/O property.

help developers adapt DBMSs to the characteristics of NVMe SSDs.
Specifically, we begin with a comprehensive empirical study on
performance mismatches covering three tiers of devices (i.e., HDD,
SATA SSD, NVMe SSD) by comparing the performance between
different configurations. The reasons are two-fold: first, databases
have become increasingly configurable [94]. For example, MySQL
InnoDB storage engine has 529 tuning knobs, covering nearly all
aspects of functionalities. Second, the configurations provide an
ideal controlled environment for verifying the impacts on different
storage devices. Additionally, we filter out I/O-related knobs via
static analysis to improve efficiency.

As a result, the study reveals that all the six DBMSs in our study
have suffered from performance mismatches. Furthermore, by quan-
titatively analyzing the I/O stack, we discover that the mismatches
of I/O size, parallelism, and sequentiality between DBMS and de-
vices are the culprits.

Our paper makes the following contributions:
• We perform a comprehensive study on performance mis-

match in six popular databases and concluded their root
cause patterns.

• We designed and implemented a testing framework which
leverages configurations to trigger the root cause patterns
to expose performance mismatches, and uses taint analysis
and light-weight dynamic monitoring to reduce the testing
costs.

• We identify 17 new mismatches for the six DBMSs in total,
and 15 of them have been confirmed by developers.

2 EXPERIMENT DESIGN
While anecdotes on DBMS performance mismatch with NVMe
SSDs are abundant in the field, no thorough study on this issue has
yet been conducted. Here, to quantitatively measure the impact
and identify the root cause, we conduct an extensive study on
performancemismatch in DBMS. At a high level, to expose potential
performance mismatches, we run the same sets of workloads on the
targeted DBMS atop different devices (e.g., NVMe SSD and HDD),
and check if the outcome is expected (i.e., faster on NVMe SSD). We
also tune the DBMS configurations to achieve different setups (e.g.,
with/without specific optimization) of the DBMS environment.

In this section, we begin by introducing the study platform,
including the targeted DBMS, the workloads, and the candidate
devices. We go on to discuss the methodology in detail, including
the configuration selection, performance mismatch checking, and
root cause reasoning.

Table 1: Storage devices used in the study.

Label Model Capacity Interface

NVMe SSDA Western Digital SN850 500GB NVMe
NVMe SSDB Samsung 980 Pro 500GB NVMe
SATA SSDA Western Digital SA510 500GB SATA
SATA SSDB Samsung 860 Evo 500GB SATA

HDDA Dell Exos 15Krpm 600GB SAS
HDDB Seagate BarraCuda 2TB SATA

2.1 Test Platform
Databases. We choose six DBMSs (i.e., MySQL, PostgreSQL, SQL-

ite, MariaDB, MongoDB and Redis) for this study. Our selection
rationale is based on their popularity [32, 35], code accessibility
(for root cause analysis), and community activeness (for submitting
issues and discussing with developers). We use the latest (as of the
beginning of our test) versions of these databases (see Column 2 in
Table 3) to ensure the inclusion of recent updates and optimizations
for storage devices.

Storage Devices. Table 1 lists the devices used in the study. Our
study covers three tiers of devices, including HDD, SATA SSD,
and NVMe SSD. To avoid biased conclusions led by specific drive
models, for each tier, we select two representative device models
from two vendors. All drives are popular off-the-shelf products and
in brand-new condition.

Workloads. We use the twomost popular DBMS benchmarks (i.e.,
YCSB and TPC, including TPC-C, TPC-DS and TPC-E) to generate
our test workloads. For each benchmark, we set the dataset size to
100GB in order to exert enough I/O pressure on devices without
incurring much background noise (e.g., garbage collection and wear
leveling tend to be influential when the SSD utilization rate is high).
The remaining settings of the benchmarks are left at their default
values.

System settings. We set the maximum memory for all databases
under test to 16GB. We run all databases on the Linux vanilla
storage stack with ext4 file systems. Note that we disable the consis-
tency configurations (i.e., noatime and nobarrier) and journal
to reduce the influence from the kernel storage stack.

2.2 Methodology
In this section, we detail the design of our experiments. Figure 2
shows the experiment framework: first, we generate test cases for
configurations; then, we collect runtime information to identify
the performance mismatch; last, we reason about the root causes
manually based on the collected information and other auxiliary
experiments.

Enumerating all combinations of storage devices, configuration
knobs, knobs combinations and knob values is infeasible, consum-
ing a huge amount of time. The major reason is DBMSs usually
have a large number of configuration knobs. Our main target is to
expose I/O related performance mismatches by testing, so we only
need to test I/O related knobs.
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Figure 2: The framework to expose and understand perfor-
mance mismatch.

In this section, we first elaborate on how we select I/O-related
knobs via taint analysis; subsequently, we describe the generation
of values for the I/O-related knobs and the performance tests.

I/O-related Knobs Identification. The key characteristic of
I/O-related knobs is that they can influence I/O-related syscalls.
Therefore, we divide this step into two: first, we identify I/O-related
syscalls; then, we use taint analysis to identify knobs that have
control-flow and/or data-flow influence on I/O-related syscalls.

I/O-related syscalls. Many syscalls are related to I/O (e.g., write,
unlink). We manually investigated every Linux syscall (335 found
in kernel version 5.4.0) by reading the official manual, followed by
cross-checking, and filter out 21 that may affect I/O size, parallelism,
and sequentiality. These syscalls can be further categorized into four
series: 1) read series (e.g., pread), 2) write series (e.g., pwrite), 3)
sync series (e.g., fsync), and 4) the syscalls that control the number
of threads/processes (DBMS may use separate threads/processes,
such as clone, to issue I/O requests). Table 2 shows these syscalls.

Connecting knobs to I/O-related syscalls. The input to this step is
the source code of the target DBMS and its configuration knobs, and
the output is I/O-related knobs. First, we use an existing tool [96]
to locate the program variables corresponding to knobs (i.e., knob
variables). Subsequently, we determine whether the knob variables
have connections with I/O-related syscalls.

Note that existing works [38, 39, 43, 60, 70] have focused on
building the connections between specific functions and knob vari-
ables. Though effective, these approaches have some limitations.
Dynamic methods [39, 43, 60] are dependent on specific inputs,
such as bug-triggering input. For their part, static methods can
be Java-specific [70] or only handle basic data-flows [38]. Notably,
this is insufficient because 1) DBMSs are usually large-scale (e.g.,
MySQL has over three million lines of code), meaning that the
data-flow can be complicated such as those indicated by pointers
and field-sensitive analysis, and 2) besides data-flow, where the
knob goes straight to one of the arguments of the syscall (e.g.,
“pwrite(.., count=knob, ..)”), control-flow connections also
exist: a knob can determine if a syscall can be executed (e.g., “if(
knob) fsync()”), or how many times a syscall can be executed
(e.g., “while(knob) pwrite(..)”). To solve the issues, we propose
a static taint analysis approach that can handle complicated data-
and control-flow in large-scale C/C++ systems.

Data-flow connections.We conduct taint-analysis starting from
knob variables, and detect if any of key syscalls are tainted. We
support inter-procedure, field-sensitive taint analysis and also have
supports for pointer analysis. Moreover, the traditional data-flow is
typically based on the Use-Define Chain [19] (e.g., “a = knob; b =
a”). During our study, we also found cases beyond the Use-Define
Chain patterns, for example, “if(knob) a+=1; else a-=1”, which

Table 2: The 21 syscalls may affect I/O size, parallelism, and
sequentiality.

read series write series
read pread64 readv preadv
preadv2 io_getevents

io_submit madvise open mmap

write pwrite64 writev pwritev
pwritev2 io_getevents

io_submit madvise open mmap

sync series thread series
fsync fdatasync syncfs
sync_file_range fcntl

clone (pthread_create)
fork

indicates that the value of “a” is dependent on “knob” in every
path. Therefore, we extend the traditional data-flow by supporting
this new data-flow pattern. Specifically, the example above will
generate an IR instruction “%a = phi i1 [ %a_plus, %knob.
true ], [ %a_minus, %knob.false ]”, where %knob.true and
%knob.false indicates which branch the program really goes to.
Therefore, if the knob variable can decide, i.e., dominate [9], at least
one (but not all) of the branches, the knob variable can have a data
flow going to the variable %a. And such cases are tainted.

Control-flow connection. The control-flow can be very complex
due to the presence of plentiful code structures, including but not
limited to, if, switch, for, while, break, return, and their inter-
section and/or nesting. We handle all these scenarios by computing
if a certain syscall (or its wrapper) is on the path that is dependent
on the knob variable. Note that the typical control-dependency [50]
only covers immediate dependency. Take the code fragment “if
(knob){ if(x) foo(); else bar();} fun();” as an example,
function foo and bar only get executed if the knob variable is
true. But the immediate dependencies of knob are only if(x) and
fun. Thus, we extend the control-dependency algorithm to handle
multiple layers of dependency by making the control-dependency
transitive [41].

Knob value generation. After the previous step, the number
of knobs that need to be tested can be significantly reduced. It
is however still difficult to test all values for numeric I/O-related
knobs. For example, the value range of the knob max_worker_proc-
esses from PostgreSQL covers five orders of magnitude. So we
manually inspect the numeric I/O-related knobs, and find that all of
them can be categorized into two types: first, knobs that control the
concurrency of I/O (e.g., the maximum background writer threads
DBMS can has); second, knobs that control I/O timing, for example,
how long an I/O should delay after a specific event. These knobs
are typically tested exponentially [56, 89], so we generate one value
at each order of magnitude for these knobs. As for enum knobs, we
generate tests for every value (few enum knobs have more than
four values [56, 92]). Meanwhile, we also use existing methods to
extract configuration constraints [92] in order to avoid generating
mis-configurations.

Pruning search space. Note that the search space of the com-
bination of configuration knobs is known to be enormous [55, 65].
Many configuration sampling techniques [45, 63, 66, 76] have been
proposed to reduce the search space. But none of the techniques
can be applied directly, because they change two or more knobs at
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each sampled configuration, while we need to observe the perfor-
mance change after tuning one specific knob (so that if the change
implies a performance mismatch, we can confirm that the mech-
anism or the optimization behind the knob may be the culprit).
Therefore, we change one knob at each time. Given a DBMS with
3 knobs 𝑐1, 𝑐2, 𝑐3 with value range 𝑅1 = {0, 1}, 𝑅2 = [0, 100], 𝑅3 =

{“a”, “b”}. We will generate 8 combinations: 𝑐1 = 0, 𝑐2 = ·, 𝑐3 = ·;
𝑐1 = 1, 𝑐2 = ·, 𝑐3 = ·; 𝑐1 = ·, 𝑐2 = 0, 𝑐3 = ·; 𝑐1 = ·, 𝑐2 = 1, 𝑐3 = ·;
𝑐1 = ·, 𝑐2 = 10, 𝑐3 = ·; 𝑐1 = ·, 𝑐2 = 100, 𝑐3 = ·; 𝑐1 = ·, 𝑐2 = ·, 𝑐3 = “a”
and 𝑐1 = ·, 𝑐2 = ·, 𝑐3 = “b” where “·” represents for the default value.
For dependent configurations (i.e., the value of one knob affecting
another), we resort to official guides and previous practice: first,
if the official documents explicitly point out that “𝑐3 works only
when 𝑐1 is turned on”, we manually set the constraint for these
knobs (e.g., 𝑐1 = 1, 𝑐2 = ·, 𝑐3 = “a” and 𝑐1 = 1, 𝑐2 = ·, 𝑐3 = “b”);
then, we leverage existing tools [48, 92] to extract the configuration
constraints.

Test Oracle. We compare the performance (i.e., latency and
throughput) before and after we change the value of a particular
configuration knob. If the performance comparison shows one of
the performance mismatch symptoms, we record it as a potential
mismatch and determine the root cause. Specifically, we apply a
heuristic rule to determine mismatch symptoms: after changing
the value of a knob, the performance change in higher-tier devices
(NVMe SSD > SATA SSD > HDD) is counter-intuitive compared
with that in lower-tier ones. For example, after turning on fsync
in MySQL, the TPC-C performance dropped by 1.1x in HDD𝐴 but
drop by 8.7x in NVMe SSD𝐵 . The intuition behind this rule is that:
the counter-intuitive performance change implies that the opti-
mization/mechanism controlled by the knob is not adaptive to the
newer device, which indicates a performance mismatch to a large
extent.

Identifying root cause. After a performance mismatch is ex-
posed, we first diagnose the I/O path fromDBMS to device driver via
blktrace [4], Linux kernel event tracing [11], and eBPF [10]. Next,
we verify the issue by using fio [15] to create a DBMS-independent
test suite and subsequently pin down the root cause using control-
variable analysis [8]. For example, we assume several factors can be
the cause of a specific performance mismatch, then we change ev-
ery factor (i.e., fio arguments or other system settings) to observe
which factor(s) contribute to the performance drop. After we finish
the performance mismatch analysis in one DBMS, we also perform
cross-checks to determine whether the same mismatch exists in
other DBMSs.

3 RESULTS & ANALYSIS
In this section, we first present an overview of the testing results ob-
tained by our study and high-level observations on the performance
mismatches (§ 3.1). Then, we elaborate on the categorization and
in-depth root cause analysis of performance mismatches (§ 3.2-3.4).

Note that in the previous section, we assume only I/O related
knobs can expose mismatches so we design a method to filter these
knobs out. To validate the assumption, we still generate tests for
every knob and draw findings from their test results.

3.1 Results Overview
The left part of Table 3 presents the basic information about the tests
generated for our study following the methodology outlined in §2.
In total, we generate 66,092 tests that consider both write-intensive
(W), and read-intensive (R) workloads. These tests cover a total
of 1,543 knobs in the six DBMSs. Note that some read-intensive
benchmarks (e.g., TPC-H) contain many sub-tests (e.g., 22 different
tests for TPC-H), while the write-intensive workloads do not; thus,
there are more tests for read-intensive workloads.

The right part of Table 3 contains the overall test results of our
study. First, the whole testing procedure costs eight months (510
machine days). As a result, 432 tests violate the heuristic rule (§ 2.2);
these tests expose 123 potential performance mismatches, including
10 mismatches were identified by our cross-checking (“# PPM”).
These 20 cases do not violate the rule but are discovered during
the process of cross-checking between DBMS (i.e., false negatives
of the rule). For the other 103 cases, a potential performance mis-
match is at least exposed by four tests (e.g., knob values on and
off on devices A and B), and also, some tests expose multiple mis-
matches. Through manual inspection, we determine how many of
the 123 potential mismatches have ever been reported by DBMS
users in public areas (e.g., StackOverflow) by searching for specific
keywords (e.g., “NVMe SSD”, “performance”, “slow”). Our results
show that similar reports have been made in public areas for 10/123
cases (“# Public”). Moving to the next column, the 123 mismatches
touch 56 different knobs (“# Knobs touch”). Note that, on average,
one knob exposes 2.2 (123/56) potential mismatches. This is mainly
because different triggering workloads for one touched knob are
counted separately. Moreover, if any of the two knobs (within the
56 touched knobs) have dependencies, they will produce three po-
tential mismatches (i.e., exposed by Knob-A, Knob-B, and Knob-A
& Knob-B). Finally, we measure the extent to which performance
mismatches can affect performance (“Penalty”). We use an example
to show how the penalty is calculated: if, after changing a knob,
the query latency in HDD degrades to 1.3x, while the latency in
NVMe SSD degrades to 2.6x, then the performance penalty of this
mismatch is 100% · 2.6/1.3 = 200%. As the table shows, the perfor-
mance penalty caused by these mismatches varies, ranging from
12% to 215%. We do not expose any performance mismatches by
the read-intensive workload in SQLite, because few SQLite opti-
mizations on read operations can be controlled by configurations.
From the results above, three observations can be made regarding
performance mismatches:

• Previously unknown. Only 10/123 mismatches could be
found in public areas, while the rest of them are new (we
categorize and reported these mismatches to developers,
see Table 4 in §4 for details). Unlike performance bugs [62],
which can be observed at version upgrades (i.e., perfor-
mance regressions), performance mismatches may only be
observed when upgrading the devices, which is a rarer sce-
nario that remains under-considered in current in-house
testing practice.

• Severe impacts. Among the studied DBMSs, MySQL and
PostgreSQL are seriously affected, while SQLite experiences
the smallest impacts. This does not however imply that
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Table 3: Summary of testing results in our study.

Test Information Results
DBMS Version # Knobs Workload # Tests Cost # Violation # PPM # Public # Knobs touch Penalty

MySQL 8.0.22 529 R 21,233 124d 69 13 (2) 2 8 14%-94%
W 2,915 42d 52 19 (0) 4 12 12%-146%

PostgreSQL 12.11 256 R 8,965 55d 55 12 (4) 1 5 78%-215%
W 1,230 19d 41 13 (3) 0 8 16%-122%

SQLite 3.36.0 74 R 2,836 21d - 0 (0) 0 - -
W 389 7d 14 4 (1) 0 3 21%-33%

MariaDB 10.6.3 418 R 16,851 90d 55 11 (2) 1 8 12%-42%
W 2,313 31d 44 13 (0) 1 12 16%-192%

MongoDB 5.0.0 169 R 4,045 51d 31 8 (2) 0 2 -
W 1,906 26d 24 8 (2) 1 2 43%-67%

Redis 6.0 97 R 2,305 29d 29 10 (2) 0 2 -
W 1,104 15d 18 12 (2) 0 3 22%-84%

Total - 1,543 - 66,092 510d 432 123 (20) 10 56† 12%-215%

# Knobs: number of all knobs; Workload: “W” write-intensive (TPC-C and YCSB-A & F), “R” read-intensive (TPC-E/H/DS and YCSB-B∼E); # Tests: number
of tests conducted; Cost: time consumption in machine days; # Violation: number of tests that violate the heuristic rule in § 2.2; # PPM: number of potential
performance mismatches exposed (may duplicate), (·) : PPMs found by cross-check (i.e., false negatives of the rule); # Public: number of PPMs can be found in
public areas; # Knobs touch: number of knobs touched by those PPMs; # Penalty: performance penalty in new devices of those PPMs; †de-duplicated sum.

SQLite has fewer mismatches. By contrast, when we manu-
ally perform the mismatch cross-checking between DBMSs,
we confirm (following consultation with developers) that
SQLite has the same types of mismatches as the other two
DBMSs.

• Write sensitive. Comparing “R” rows with “W” rows in
Table 3, we can observe that the write-intensive workloads
are more likely to trigger performance mismatches. This
is consistent with our further root cause analysis, which
holds that database developers make more performance
mismatches in writes than in reads (i.e., mismatch in write
size § 3.2).

Category of performance mismatches. We manually ana-
lyze the root causes of the 61 potential performance mismatches,
and find that most (100/123) of them fall into three categories, in
which DBMSs mismatch the I/O characteristics of new devices
in three critical [46, 47, 57, 64] aspects that are closely related to
performance:

• Size in write (§ 3.2). DBMSs issue too small force-write
requests, causing SSD’s write cache to work in an inefficient
way.

• Parallelism inwrite and read (§ 3.3). DBMSs issue almost-
serialized I/O requests, causing the internal parallelism of
new devices to be largely wasted.

• Sequentiality in write and read (§ 3.4). DBMSs usually
consume substantial amounts of resources (CPU, memory)
converting random I/O to sequential; while the speed gap
between the two types of I/O is small in NVMe SSDs, mak-
ing the conversion less fruitful or even wasteful.

In §3.2-3.4, we elaborate on the three types of mismatches with
cases studies.

False positives. The testing framework uses a coarse-grind
heuristic rule to identify the mismatches. However, the rule can be
inaccurate because it does not leverage mismatch root causes. As a
result, the rule produces nine false positives. The nigh cases do not
belong to any of the three types of mismatches, even though they
violate the rule. The reason lies in the fact that the corresponding
knobs restrict I/Os by force to prevent the system from being stuck.
For example, MySQL allows for the use of io_capacity to throttle
the I/Os on slow devices (e.g., HDD) to prevent the entire system
from becoming stuck due to intensive I/O, which results in the
under-utilization of the capacity of new devices (e.g., NVMe SSD).

False negatives. Ten false negatives are found by our manual
cross-checking (see Column “# PPM” in Table 3), rather than by
rule violation. The reason is that mismatches do not necessarily
cause a violation of the rule. Taking the case of PostgreSQL (details
in §3.3) as an example, the mismatch always exists no matter how
an I/O related knob (whose use is adapting for new storage devices)
is changed, and the performance also remains the same (i.e., rule
not violated).

We find all performance mismatches are triggered by I/O-related
knobs, meaning that only testing I/O-related knobs will not produce
false negatives.

3.2 Mismatch in I/O Size
Unaligned writes (e.g., triggered by frequent DBMS flush) can
be harmful to SSD, whose write cache has to align the writes
in some inefficient ways.

Symptom. DBMS can adjust the flush frequency to achieve
higher performance (i.e., fewer flushes; when reliability is guar-
anteed by hardware) or higher reliability (i.e., more flushes, typi-
cally the default setting) via configuration knobs. Intuitively, more
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Figure 3: Performance drop of MySQL on NVMe SSD, SATA
SSD and HDD after aggressively issue fsync.

flushes cause fewer writes to be buffered and merged. Thus, a
high flush frequency can incur more small I/Os, leading to per-
formance drops. However, we discover that NVMe SSDs suffer
much more from the frequent-flush penalty than SATA SSDs/HDDs.
For example, in our tests, after increasing the flush frequency
via innodb_flush_method =fsync and innodb_doublewrite=1 in
MySQL, the average latency of an individual TPC-C query experi-
ences severe drops on NVMe SSDs (4.9-8.7x), while we only observe
(1.8-2.9x) drops on SATA SSDs and HDDs (1.1-2.25x), as shown in
Figure 3.

Root cause diagnosis. One of the reasons is that the small
writes are smaller than the size of SSD’s cache line, which is typi-
cally large (e.g., 32KB), causing the SSD to fill the line with dummy
data or wait for a timeout. As shown in Figure 4 (see NVMe SSDA,
SATA SSDA and SATA SSDB), in our raw device experiments, if
fsync is disabled (green lines), the write caches work as expected,
i.e., improve write performance (I/Os per second, IOPS for short).
Otherwise (fsync is enabled, red lines), the write caches work
counter-productively and the IOPS is very sensitive to the size of
write (i.e., the caches work normally only when write size is aligned
to 32KB in NVMe SSDA and at least 32KB in SATA SSDB). Another
reason is that fsync can be extremely harmful to NVMe SSDB,
causing two more orders of magnitude of performance degradation.
In summary, recall that more DBMS flushes incur more small writes
(whose size usually equals to the DBMS page size, e.g., 8KB), which
fit well with the HDDs while causing performance penalties to
SSDs.

One might also speculate as to whether the slowdown is caused
by OS. To answer this, we first confirm that I/O is the bottleneck for
DBMS performance, then the OS imposes less than 10% overhead
on I/O via DBMS internal profiling and blktrace respectively.

Developers’ feedback. In our discussions with developers, they
admit that simply increasing the DBMS page size (i.e., the unit of
writes) can not solve the mismatch problem. The reasons are as
follows: first, changing page sizes requires mandatory rebooting [5,
6] or even re-compiling the DBMS [31]; second, large DBMS page
sizes may cause more unchanged data to be written to the devices
during a page flush; third, DBMSs (e.g., SQLite) only use pages to
organize data, but not metadata and logs. In this case, such an I/O
can incur a mismatch in I/O size. For example, SQLite flushes a
fixed-length (4KB) log header for every page being flushed. Worse

still, Redis does not use the page to organize memory, so the size of
write can be small and arbitrary (e.g., after OS padding, Redis issues
many 4KB and 8KB writes). To optimize the behavior above, the
developers are considering both re-designing the data file format
and adding an option to let users place the log on another device as
a workaround. PostgreSQL and Redis developers are also rethinking
and redesigning their I/O subsystem to be more adaptive to the
new characteristics of NVMe SSDs.

3.3 Mismatch in I/O Parallelism
Although DBMSs can use multiple threads to issue I/O con-
currently, the internal parallelism of NVMe SSD still remains
under-utilized because DBMSs often, if not always, issue I/Os
in a synchronous manner.

Symptom. DBMSs allow users to specify multiple I/O workers
via configurations. An SSD, especially an NVMe SSD, has multi-
ple structural levels of parallelism [26, 46], which can serve I/Os
concurrently. Therefore, intuitively, sending I/O requests to NVMe
SSDs in parallel should yield higher performance. For example, in-
creasing I/O worker threads from 1 to 64 via write_io_threads in
MySQL improve TPC-C performance by three times. However, we
find that is not true for all DBMS. For example, increasing effect-
ive_io_concurrency in PostgreSQL does not benefit performance
and even hurts performance significantly (see Figure 5). We observe
similar cases with PostgreSQL in 4/6 DBMSs (others are MongoDB,
Redis and SQLite). And even thoughMySQL can be benefit from con-
current I/O workers, the storage device’s throughput (i.e., 285MB/s
on average) is still far from the speculation (i.e., 2200MB/s random
write [42]).

Note that the throughput increases together with the number
of workers on HDD in MySQL. It occurs because a single MySQL
worker can reject I/Os to slow devices (e.g., HDD) due to memory
considerations [23]; these rejected I/Os have to be retried repeatedly,
but can be served by more workers.

Root cause diagnosis. The root cause is as follows: I/Os are
issued in a synchronous manner by DBMSs design (while asyn-
chronously issuance does occur, this is only for specific workloads),
under-utilizing the parallelism of NVMe SSD. The ideal parallelism
is realized by sending I/Os to 64K nvme-queues with a maximum
depth of 64K each [26, 46]. However, DBMSs issue I/Os either to
only one queue and/or until the previous one has finished (i.e., the
queue depth is 1 most of the time) most (i.e., more than 95%) of the
time. Worse still, DBMSs fail to provide a better way to issue I/O to
alleviate such under-utilization. For example, PostgreSQL can only
issue paralleled I/Os for specific workloads, e.g., paralleled “index
bitmap scan” via specifying higher effective_io_concurrency
and for other workloads, the OS overhead may affect performance;
MySQL uses libaio, an asynchronous I/O library, but in a synchro-
nous manner (with buffered I/O) [17].

Interestingly, we also find that 5/6 (except for MariaDB) of the
DBMSs have never changed their synchronous I/O engines since
they were first released. This is possibly because DBMSs need to
keep the I/O order with fsync, and ordered asynchronous I/O is
less efficient. Meanwhile, HDDs (who have only one magnetic I/O
head) and SATA SSDs have one or few concurrent I/O queues, so
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Figure 4: IOPS over different settings and I/O sizes in NVMe SSD, SATA SSD and HDD.
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Figure 5: TPC-C throughput on NVMe SSD, SATA SSD and
HDD with different I/O concurrency.

ordered synchronous I/O is a natural fit. But NVMe SSDs supports
up to 64K I/O queues, using the ordered synchronous I/O is a waste
of concurrency [73]. In fact, recent works [73, 74, 90] have proposed
approaches to increase the concurrency level for asynchronous I/O
for NVMe SSDs.

Developers’ feedback. After discussions with the developers,
MySQL, PostgreSQL, Redis and MongoDB admit that the current
database I/O subsystems are far from highly concurrent. Thus,
they are planning to make improvements by switching to new
I/O interfaces like io_uring and redesigning the I/O subsystems
(MariaDB is already doing so). Moreover, PostgreSQL developers are
going to increase the number of scenarios in which many workers
can work in parallel. However, SQLite developers operate on the
principle of making the database as simple as possible (i.e., single-
thread synchronous I/O); as a result, they are unwilling to make
big changes.

3.4 Mismatch in I/O Sequentiality
Transforming random I/Os into sequential I/Os may hurt
performance in NVMe SSDs, because the gap between ran-
dom and sequential I/O speed is very narrow, while the cost
of the transformation is high.

Symptom. Random-to-sequential I/O transformation is a com-
mon DBMS optimization that can be tuned by knobs (typically
turned on by default). In traditional devices like HDDs, I/O is far
slower than CPU and memory, and the gap between random and
sequential I/O is huge; intuitively, therefore, such a transformation
will be fruitful. Notably, we observe that the opposite is true in SSDs.
For example, when switching on “change buffer” optimization via
innodb_change_buffering, MySQL will buffer all updates to in-
dex data (which are usually randomly located in the device), merge
them, and write them down to the device sequentially. As a result,
the throughput of TPC-C in MySQL on HDDA is improved by 63.0%
as shown in the left of Figure 6. However, in NVMe SSDA, there is a
slight performance drop of 3.5%. In addition to write operations, we
observe that random read transformations have a similar symptom.

Root cause diagnosis. The cost of random-to-sequential trans-
formation outweighs its benefits in NVMe SSD. Regarding these
benefits, we find that the theoretical maximum performance gain
of transforming random I/O to sequential I/O in HDDs reaches two
orders of magnitude (measured with fio), while the maximum gain
in NVMe SSDs is slight because the random I/O speed in NVMe
SSD is close to the sequential I/O speed [69]. As for the cost, I/O
speed in NVMe SSD (𝜇s level latency) is much higher, making the
CPU is both increasingly valuable and more likely to impact sys-
tem performance [69, 91]. Thus, the cost of the transformation is
higher in NVMe SSD. For example, in this case of MySQL (see the
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right part of Figure 6), the absolute CPU cost increases by 23.6% in
NVMe SSDs, while the increase in HDD is only 1.8%. MariaDB had
already change the default value of innodb_change_buffering
since 2022-Feb. due to the reason above.

One may doubt that the high random speed is achieve when
the queue depth is high, otherwise (§3.3), there may still be a gap
between sequential and random I/O. Our fio experiments on raw
device show low parallelism does not cause the speed gap. As
shown in figure 7, we use fio parameter numjobs=4, bs=16KB and
fsync=1 to simulate MySQL’s behavior (by default, MySQL has
four writer threads and four reader threads; and the InnoDB page
size is 16KB). The results show that there is a gap (19.6%) between
random and sequential read when the level of parallelism is low,
while the there is nearly no gap for write. As for other settings, we
leave other DBMS configurations to default values (16KB DBMS
page size, 8KB SSD page size, 4KB HDD page size) and run 16
concurrent TPC-C users to conduct the experiment.

Developers’ feedback. During our discussions, even though
turning off the random-to-sequential optimization for new devices
is the most straightforward solution, developers also admit that
the mismatch can still be a problem, as these optimizations are
usually turned on by default without warning users about the im-
pacts on new devices. They are accordingly considering related
improvements in future versions.

3.5 Summary
We manually combine similar cases and report 17 issue reports in
total to the DBMS developers, 15 of them are confirmed, as shown in
table 4. Overall, performance mismatches in I/O size and parallelism

Table 4: New performance mismatches found in the study.

Category DBMS ID # Dup. Verify CPD.

Size

MySQL #102514 7 ✓ ⃝
PostgreSQL #vYnS† 6 ✓ -

SQLite #vYqK 1 ✓ -
MariaDB #28909a 5 ✓ -
MongoDB #9537 3 ✓ -
Redis #10882 3 ✓ ⃝

Parallelism

MySQL #105982 5 ✓ -
PostgreSQL #vYp3 1 ✓ ⃝

SQLite #vYqg - -
MariaDB #28909b 3 ✓ -
MongoDB #9508 2 ✓ -
Redis #10881 2 ✓ -

Sequentiality
MySQL

#103551 2 ✓ -
#107362 3 ⃝
#103272 1 ✓ ⃝

PostgreSQL #yVIz 1 ✓ ⃝
MariaDB #26790 3 ✓ ⃝

†Converted by tinyurl.mobi; # Dup.: number of duplicated mismatches
exposed by different knobs; Verify: verified by developer; CPD.: CP-
Detector [56]; ⃝: mismatch can be identified the by symptom, without
hints on root cause. -: mismatch missed.

exist in all six DBMSs. Less cases are exposed in sequentiality
mismatch, because some DBMSs does not allow users to control
related behavior (e.g., read-ahead) via configuration knobs. In fact,
many DBMS can conduct random-to-sequential transformation
silently. For example, MongoDB, Redis, SQLite3 and PostgreSQL
uses OS’s page cache, which conducts pre-fetch automatically. But
changing OS’s setting can be harmful to other services (rather than
DBMS) running on the system.

3.6 Revising the Experiment Design
Using the rule in the study as the test oracle hurts both effectiveness
and efficiency: on one hand, the rule requires a comparison of test-
ing results between two tiers of devices (e.g., after changing a knob,
the performance drops in NVMe SSD but increases in HDD); on
the other hand, the rule can produce false positives and negatives
(see §3.1). Therefore, based on our deeper understanding of per-
formance mismatches obtained from our earlier tests, we identify
mismatches by root cause patterns.

Specifically, we first record the key runtime information via eBPF
[10] (including CPU utilization, nvme-queue utilization, and the
sizes and offsets of I/O requests) from the beginning (𝑡beg) of every
performance test to the end (𝑡end) of that test. To eliminate noises,
only information produced by the target database server process
(and processes created by the server) is recorded. The root cause
patterns are as follows:

Mismatch in I/O size. The severity of I/O size mismatch can be
reflected by the number of unaligned writes. Therefore, we check
the number of unaligned writes before and after the knob tuning to
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Figure 8: Performance drop of OracleDB on NVMe SSD, SATA
SSD and HDD after aggressively issue fsync.

determine if a mismatch in I/O size exists. To achieve this, we obtain
both the size of I/Os issued to the device and the SSD’s preferred
write size. Given that the latter one is usually not publicly available,
we conduct experiments (e.g., as in Figure 4) to make an estimation.
On the other hand, directly extracting the I/O sizes from syscalls
issued by databases may not be appropriate, as the OS can change
the sizes of I/Os that are received from databases. Thus, we observe
I/O sizes just before I/Os are sent to the device (i.e., at the blk-mq
layer).

Mismatch in I/O parallelism. The severity of I/O parallelism
under-utilization can be reflected by multi-queue utilization. There-
fore, we check the utilization rates of queues before/after tuning
to determine the existence of underutilized I/O parallelism. The
utilization rate [14] util𝑖 of the 𝑖th queue is defined as: util𝑖 =∫ 𝑡end
𝑡beg

depth𝑖 d𝑡 , where depth𝑖 means the number of I/O requests

in the 𝑖th queue during time period d𝑡 . we focus on two types of
underutilized I/O parallelism, as we concluded in §3.3: 1) the util of
one queue dominates (i.e., is larger than the sum of) all the other
queues’ utils, or 2) the depth of every queue is one (if not zero)
during 95% of the time. Note that the underutilized I/O parallelism
mostly exists in default settings, meaning that knobs play a different
role here: if changing any knob cannot help DBMSs get rid of the
multi-queue under-utilization, producing a mismatch alert.

Mismatch in I/O sequentiality. The severity of over-sequentiali-
zation can be reflected by the rate of seq-to-random before/after the
tuning and the existence of a subsequent performance drop. Unlike
the other two types of mismatches, the root causes of which can
be observed at kernel level, DBMSs can conduct sequentialization
on many levels (query planner level; database buffering level; OS
level). One important common characteristic of the sequentializa-
tion is the increase in both CPU and sequentiality. Therefore, we
take this as an indicator of the sequentialization. Note that the rate
of seq-to-random is calculated on the bottom of the OS layer (i.e.,
blk-mq layer) to cover all levels of sequentialization.

4 SCALABILITY ANALYSIS
In previous sections, we design a testing-based method and find
three types of performance mismatches exist in six open-source
DBMSs. In this section, we analyze the scalability of our method
from three aspects:

log writer
（17.4%）

other
（1.9%）

 background writer
（80.7%）

16KB （5.8%）

8KB （94.2%）

writer threads background writer

Figure 9: The distribution of the amount (left) and sizes (right)
of write requests issued by OracleDB.

• Can we expose performance mismatches in commercial
DBMS?

• Can existing methods expose performance mismatches?
• How accurate does our method in identifying I/O-related

knobs and how is its cost-efficiency?

For implementation, the program analysis is implemented using
the LLVM [18] and is conducted on top of the LLVM Intermediate
Representation (IR) of the source code. The block layer tracing is im-
plemented using the BPF Python library [3]. The queue monitoring
is implemented using Linux kernel tracing events. All experiments
are conducted on a machine with 24-core 3.6GHz CPU, 64GB mem-
ory, and a 5.4.0 Linux kernel.

4.1 Performance Mismatches in Commercial
DBMS

We choose Oracle Database [27] (version 19c) as the target (Ora-
cleDB for short), who is the top-ranked [32, 35] relational DBMS.
We use the same workloads as in the study, which are both rep-
resentative and the most commonly used in existing DBMS re-
search [46, 64, 69, 77, 84]. We use the same storage devices as in
§2.1. As for configuration knobs, we choose the knobs in the core
module of OracleDB; thus, we get 366 knobs in total as the input.
Since OracleDB is close-source, we can not use our taint-analysis
and test all the knobs. In total, we generate 14,198 tests for exposing
mismatches.

As a result, we find that OracleDB has severe performance mis-
matches in both I/O size and parallelism. Figure 8 shows the perfor-
mance change after switching the knob COMMIT_WAIT from NO_WAIT
to WAIT (i.e., frequent fsync) on different storage devices. From
severer to slighter, the impacts are: NVMe SSDs (3.1-11.0x), SATA
SSDs (2.0-2.2x) and HDDs (1.4-1.7x). We monitor the distribution
of write requests issued to the device when testing NVMe SSD𝐴 .
Figure 9 shows the result: the background writer is the major source
of write requests, and most of the requests are 8KB (i.e., OracleDB’s
page size), which can be unaligned with the size of the cache line.

Figure 11 (left) shows that as the number of background writer
processes increases, the TPC-C performance increases in SSDs and
remain unchanged in HDD. This result seems intuitive because
SSDs support paralleled I/O so can benefit from paralleled writ-
ers. To figure out the reason for the performance gain, we moni-
tor the total transactions (accumulated) over time on SSDs (right
two subplots), and we can observe that when there is only one
writer, the transactions have to wait for a period of time period-
ically (see the plains of the dashed lines, indicating these waits
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Figure 10: NVMe queue depth over time when OracleDB is
running TPC-C (left) and in ideal case (right, obtained by
fio).

last for 5-20 seconds). This is because checkpoints are triggered, so
this only writer has to process the checkpoint flush [79], causing
normal transactions’ waiting. Increasing the number of writers
can alleviate the problem in SSD because checkpoint flush and
transactions can be written in parallel, but multiple writers can
not make normal transactions faster. As we can see from figure 10,
even though NVMe SSD has queues with 64K max depth, the actual
depth is only 1 almost all the time. Therefore, even though the
performance on NVMe SSD𝐴 reaches 464 TPS, the throughput of
the device is only 81MB/s, far from its specification [42]. We use
fio (io-depth=32, numjobs=4, bs=8KB) to exploit the potential
of NVMe SSD𝐴 (right of figure 10), and as the queues get filled
properly, the throughput reaches 792MB/s. In OracleDB, the knob
PARALLEL_DEGREE_POLICY has a similar symptom.

We do not observe performance mismatch in sequentiality. In
our experiments, the only knob that affects I/O sequentiality signif-
icantly is DB_FILE_MULTIBLOCK_READ_COUNT. But OracleDB will
automatically determine the default value of the knob according to
the device, so we do not consider the case as a mismatch.

4.2 Comparison with existing methods
We compare our method with existing performance mismatches
detection methods. Since no existing work focuses directly on per-
formance mismatches, and considering that mismatches resemble
performance bugs in terms of their symptoms (e.g., both cause per-
formance drop), we choose to compare with CP-Detector [56], a
testing framework that can expose performance bugs by config-
urations. It leverages the performance intuition of tuning a knob
to detect if the actual performance violates the intuition. For ex-
ample, if the performance drops after turning on an optimization,
CP-Detector will report a potential bug.

As shown in table 4, CP-Detector can detect 7/17 performance
mismatches that are detected by us. For example, in case #10082, us-
ing pre-fetching (random_read_ahead=1), the actual performance
violates the intuition of the knob (i.e., optimization should not harm
performance), so CP-Detector raises the alarm. For the other cases,
however, the actual performance does not violate the intuition
defined by CP-Detector. For example, in Redis#10081, increasing
io_threads neither degrades performance (missed by CP-Detector
because it only reports a bug if using more I/O threads degrades
performance), nor alleviates the inefficient queue utilization. This
result reveals the main difference between CP-Detector and us: we
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Figure 11: The performance change over different writer
processes of OracleDB (left) and the cause analysis of the
performance change (middle and right).

detect mismatches where DBMSs do not fully utilize the benefits pro-
vided by new devices, while CP-Detector detects performance bugs
where DBMSs mistakenly use resources. By comparing discussions
with developers on fixing between CP-Detector and us, we also find
that developers tend to fix mismatches in future versions, while
performance bugs are usually fixed in existing versions. In conclu-
sion, our method can effectively expose performance mismatches, and
outperforms the existing methods.

4.3 Efficiency and Accuracy
Efficiency in Reducing Testing Cost. We identify I/O-related

knobs to reduce the testing time and apply root-cause-based rules
to preclude the need to test multiple devices. Thus, we evaluate 1)
the time saved for testing, 2) the time consumption in identifying
I/O-related knobs, and 3) the overhead of dynamic monitoring,
which collects information for the root cause patterns.

As shown in the right part of figure 12, filtering out the I/O-
related knobs reduces the testing time by at least an order of magni-
tude for all six DBMSs. The cost of the filtering process ranges from
0.6-5.5 hours for the six DBMSs, as shown in the left part of Fig-
ure 12. This time is restricted by the scale of the code, the number
of knobs, and the performance of the LLVM library; furthermore,
the overhead is far less than the testing time saved, indicating our
method’s efficiency. The current bottleneck is that each test must
be repeated many times to eliminate unstable results [75]. Notably,
some approaches have been proposed [58, 87] to alleviate this prob-
lem, which can further help to reduce the cost. The overhead of
dynamic monitoring is low. For all the six DBMSs, the overhead of
dynamic monitoring is no larger than 5% and mostly negligible; In
conclusion, we can largely reduce the testing cost without sacrificing
effectiveness.

Accuracy on Identifying I/O-related Knobs. We use taint
analysis to identify I/O-related knobs to reduce the cost. However,
taint analysis can be inaccurate. Therefore, we first evaluate the
accuracy on the task of identifying I/O-related knobs, then evaluate
the impacts of the inaccuracies on the evaluated DBMSs. To obtain
the ground truth of I/O-related knobs, we label them manually
(I/O-related or not). Each knob is separately labeled by at least
three authors who have more than three years of experience in con-
figuration research. These authors refer to the official documents
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Figure 12: The cost efficiency, demonstrated via the distri-
bution of time spent on identifying I/O-related knobs (left);
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(right). The percentage label stands for the overhead of dynamic
monitoring.

and source code to obtain the labels and discuss divergences until
agreements are reached.

As shown in Table 5, our method identifies 165 out of 1,543
I/O-related knobs. The precision of I/O-related knob identification
reaches 65.3%-76.4%, and the recalls reach 83.4%-100%. Note that we
honors recall more than precision, because false positives only incur
more testing costs, but false negatives may cause knobs that to be
missed that might expose a performance mismatch. The precision
for MongoDB is the lowest among the six DBMS because there are
eight I/O-unrelated knobs that share the same program variable
with an I/O-related knob (i.e., the different bits of the variable
represent different knobs), meaning that they are falsely connected
with I/O-related syscalls. Moreover, the static taint analysis could be
inaccurate, which may cause some I/O-unrelated caller functions to
become connectedwith the knob variable. For example, the database
error log functions typically incur only a few I/Os, so the knobs
controlling the error log are not I/O-related, however, they still
need to call the write syscalls and are thus falsely identified by us.
The reason for the missed I/O-related knobs related to complicated
pointers that cannot be handled by our method.

Regarding the impact of these inaccuracies, nine missed I/O-
related knobs can expose performance mismatches, but expose the
same mismatches shown in Table 4. For example, buffer_alignm-
ent exposes the same mismatch as MongoDB#9537, and mmap_all
exposes the same mismatch as MongoDB#9508. Thus, the impact
caused by false negatives of I/O-related knobs may be masked, be-
cause multiple knobs may trigger the same performance mismatch
(see column “# Dup.” in Table 4). On the other hand, false positives
on the I/O-related knob identification will lead to higher testing
costs. The false positive rate is 23.6%-34.7%, which indicates the
amount of extra testing cost can be incurred. In conclusion, false
positives when identifying the I/O-related knobs cause some extra
testing costs, while the negative impact of false negatives may be
mitigated because multiple knobs can trigger the same mismatch.

Table 5: Precision and recall in identifying I/O-related knobs.

DBMS # Knobs # I/O knobs Precision Recall

MySQL 529 43 0.656 0.871
PostgreSQL 256 30 0.749 0.834

SQLite 74 3 0.658 1.0
MariaDB 418 42 0.764 0.862
MongoDB 169 28 0.653 0.901
Redis 97 19 0.717 0.919

Total 1,543 165 0.700 0.898

# Knobs: number of knobs in the core module of the DBMS.

5 POSSIBLE SOLUTIONS
For researchers. Unaligned writes to NVMe SSDs cause un-

necessary waiting (§3.2), and under-paralleled I/O requests cause
the I/Os to be served in a synchronous manner inside SSDs (§3.3).
Thus, researchers can consider adding an additional device-sensitive
layer [61], which works like a network switch that makes I/O re-
quests more adaptive before sending the requests to underlying de-
vices. The incoming and outgoing ports of this switch layer are the
per-core request queues (in block layer) and nvme-queues respec-
tively. In this way, the switch layer can dispatch the I/O requests to
the idle queues to avoid under-paralleled I/O, as well as re-organize
(e.g., merge) write requests when possible to avoid small writes to
the NVMe SSDs.

For developers. First, DBMSs should drop their legacy I/O in-
terfaces. Most DBMSs use synchronized I/O syscalls (MySQL uses
libaio, but in an inefficient way [17, 24]), and rely heavily on OS
page cache, the scalability of which is very limited on paralleled
I/O [2]. Alternatively, since version 5.1, Linux kernel has proposed
io_uring [12, 16], a new I/O interface that is particularly designed
for fast devices. Some DBMSs [20, 30] are already developing upon
io_uring, and the others [21, 24, 33] are planning so.

Second, DBMSs should try to make the optimizations configurable.
For example, SQLite developers uphold the design principle that
writing a series of sequential pages of data to a file is faster than
doing it randomly [37, 54], although they do not create any knob to
control such behavior. PostgreSQL performs pre-fetching silently
using fadvise without making it configurable [2]. Adding knobs
to these optimizations can help developers expose more potential
performance mismatches and further improve the DBMSs. More-
over, DBMSs can add knobs to create workarounds for potential
mismatches that are left out to production environment. For exam-
ple, adding knobs to provide users with alternative choices to store
different DBMS files, including data, index, logs, etc., into different
directories (i.e., devices).

6 DISCUSSION
Limitations. Our method has several limitations that we plan

to address in future work. First, the studied devices are consumer-
level SSDs, meaning that our findings may not scale to enterprise-
level SSDs. Notably, enterprise-level SSDs surpass consumer-level
devices in every aspects, suggesting that some mismatches (e.g.,

1722



unparalleled I/O, random-to-sequential-transformation) may bec-
ome more severe. In the future, we will extend our study on perfor-
mance mismatches to a wider range of storage devices, including
enterprise-level SSDs, RAID, and cloud storage. Second, our method
cannot expose mismatches that are not triggered by configurations.
Even in highly configurable DBMSs, many I/O-related optimiza-
tions and mechanisms (e.g., using B-tree or LSM-tree) are not con-
figurable. Our future work will explore alternative techniques to
expose mismatches that cannot be triggered by configurations.

Fixing complexity of mismatches. We submitted 17 reports
to developers, they admitted that fixing those mismatches could be
challenging. For example, convincing developers to use io_uring
as the I/O interface is easier than implementing it. Changing the
I/O interface brings new challenges including but not limited to:
how to ensure reliability (e.g., ACID [1]) with the new interface;
some DBMSs may have their own layer of I/O engine, such that
changing to another interface may break the existing design [40].
On the other hand, some DBMSs may intentionally make the DBMS
simple, meaning that their developers tend to maintain an attitude
of neutrality to performance mismatches [36].

7 RELATED WORK
Configuration tuning. Many works [88, 95, 97] optimize per-

formance through configuration tuning. Note that our work is differ-
ent from these works in three aspects: 1) different audiences. Tuning
helps end-users to find configurations that produce good perfor-
mance in production, while we help developers expose performance
mismatches via configurations in-house; 2) different scenarios. Tun-
ing aims to find the right values for a selective set of important
knobs to adapt to different workloads in a fixed hardware setup,
while we aim to expose performance mismatches when hardware
settings change; 3) different aims. Tuning only focuses on producing
better performance, so it treats knobs as a black-box without ex-
plaining what happens, while we aim at exposing mismatches that
are triggered by knobs and categorizing the potential root causes.

SSD-aware optimization. Many works have studied the I/O
properties and implemented possible optimizations of these prop-
erties. A recent study [57] concludes SSD-specific rules from file
system level to application level. Our method has two differences:
first, while they use a SATA SSD simulator, we study real SATA
SSDs and NVMe SSDs, so mismatches that only manifest in NVMe
SSDs (§3.2) can not be exposed by their work; second, their rules
are drawn from DBMSs that use default configurations, while mis-
matches can also be triggered by non-default configurations (§3.2,
§3.4); moreover, another work [91] studies the positive implications
of NVMe SSD on DBMSs, while we aim at finding the performance
mismatches that cause negative impacts on DBMSs. Some works
propose completely new designs of DBMS components or data
structures (e.g., B-Trees [72, 83], LSM [44, 53, 69, 82, 86], query
optimizer [52]) targeting specific SSD properties (e.g., low latency
[69, 80], parallelism [46, 52, 59], write amplification [49], property
informed by learning internal parameters [64] ). While our work
has a different target: we focus on exposing the mismatches of the
existing widely used DBMSs and help developers to reason about
performance mismatches.

Detecting performance bugs. Many works have been prop-
osed to detect a wide range of performance problems. One group
of works focuses on loop-related or synchronization-related perfor-
mance bugs, they detect specific patterns of inefficient loops [51, 78],
redundant loads [85], or inefficient synchronizations [81, 93]. These
methods focus on application-level performance problems alone,
but do not consider the potential mismatch between application
and underlying devices. The other group of works focuses on de-
tecting configuration-related performance problems. X-ray [43]
diagnoses the most suspicious configuration knob given an existing
performance problem, while LearnConf [71] and Voilet [60] detect
configuration knobs or their combinations that may lead to time-
consuming operations. These approaches can also select I/O-related
knobs as we do, but they are either Java-exclusive [60] or reliant
on heavy symbolic execution [60]. CP-Detector [56] exposes per-
formance bugs using the intuition of tuning configurations. As the
evaluation shows, CP-Detector exposes performance bugs where
changing the bug-triggering knob makes the performance drop,
while we identify mismatches that cause specific inefficient patterns
and may not cause the performance drop.

8 CONCLUSION
In this paper, we find that shoehorning new storage devices into
the existing DBMS may cause performance mismatches which can
have a severe impact on performance. Performance mismatches
are rarely studied and/or detected. To fill this gap, we conduct a
comprehensive study of performance mismatches to understand
their symptoms, root causes, and triggering conditions. In the study,
we propose a method that leverages configurations to detect per-
formance mismatches. We find that performance mismatches can
be divided into three types based on their root cause, and we carry
out an in-depth analysis of the root cause patterns. Compared with
baseline methods, our method is more efficient and can detect more
performance mismatches.
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