
SUFF: Accelerating Subgraph Matching with Historical Data
Xun Jian

Hong Kong University of Science and
Technology

Hong Kong, China
xjian@connect.ust.hk

Zhiyuan Li
Hong Kong University of Science and

Technology
Hong Kong, China
zlicw@cse.ust.hk

Lei Chen
Hong Kong University of Science and

Technology
Hong Kong, China
leichen@cse.ust.hk

ABSTRACT
Subgraph matching is a fundamental problem in graph theory and
has wide applications in areas like sociology, chemistry, and social
networks. Due to its NP-hardness, the basic approach is a brute-
force search over the whole search space. Some pruning strategies
have been proposed to reduce the search space. However, they are
either space-inefficient or based on assumptions that the graph
has specific properties. In this paper, we propose SUFF, a general
and powerful structure filtering framework, which can accelerate
most of the existing approaches with slight modifications. Specifi-
cally, it builds a set of filters using matching results of past queries,
and uses them to prune the search space for future queries. By
fully utilizing the relationship between matches of two queries,
it ensures that such pruning is sound. Furthermore, several opti-
mizations are proposed to reduce the computation and space cost
for building, storing, and using filters. Extensive experiments are
conducted on multiple real-world data sets and representative ex-
isting approaches. The results show that SUFF can achieve up to
15X speedup with small overheads.

PVLDB Reference Format:
Xun Jian, Zhiyuan Li, and Lei Chen. SUFF: Accelerating Subgraph
Matching with Historical Data. PVLDB, 16(7): 1699 - 1711, 2023.
doi:10.14778/3587136.3587144

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/csjianxun/SUFF-Code.

1 INTRODUCTION
In this paper, we study subgraph matching, one of the fundamental
problems in graph theory. Given a data graph 𝑑 and a query graph
𝑞, the goal is to find all subgraphs of 𝑑 which are isomorphic to 𝑞.
Subgraph matching has wide applications in many research areas.
For example, it is used in comparing large graphs in sociology,
chemistry, telecommunication, and bioinformatics [26, 32]. It is also
used to monitor potential terrorists by searching threat patterns in
activity networks[6]. Nevertheless, it can be adapted to track the
evolution of social networks [17] and to identify useful properties
in recommendation networks [24].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 7 ISSN 2150-8097.
doi:10.14778/3587136.3587144

1.1 Motivation
Due to the NP-hardness of the subgraph matching problem [7], the
basic approach to solve it is to explore the whole search space (i.e.,
to enumerate all subgraphs of 𝑑 and then compare each of them to
𝑞) by DFS or BFS. Recent developments on such approach include
[3, 4, 11, 15, 28, 29].

Different optimizations have been proposed in these approaches
to reduce the search space. For example, vertex degree and label
frequency are utilized to prune candidates and also to find a better
matching order. The connectivity index and path index are con-
structed to refine candidate sets. More advanced pruning strategies
like failing set are proposed to prune the search space. These opti-
mizations are designed based on expert experience, artificial rules,
or common patterns observed in real-world graphs, so are suitable
for different situations. In a recent study [34], it is observed that
each optimization method only works well on part of the tested
data graphs and query graphs, and even a combination of these
methods cannot handle all cases well.

Based on this result, we argue that human-designed methods
cannot handle all cases well, while the actual matching results,
which contain processed structural information of the correspond-
ing data graph, are valuable to help prune the search space in a
more general way. The detailed idea is illustrated in Example 1.
Since such pruning uses historical results instead of pre-defined
rules, it is orthogonal to existing methods, and thus can work with
existing algorithms without conflicts (This is further elaborated in
Section 3.3). In general, a system that executes more queries on the
same graph can collect more historical results, so it can benefit more
from our proposed technique. Two of these application scenarios
that shown in Application 1 and Application 2.

Example 1. Suppose we are querying all matches of 𝑞 in 𝑑 , as
Figure 1a shows. A typical search tree of the Ullman’s algorithm is
shown in Figure 1d. Some branches in the search tree have been pruned
by checking the degree of vertices. For example, when the program
goes into the branch 𝑟𝑜𝑜𝑡 − 3− 4, it finds that vertex 4 only has degree
2, while vertex𝑏 has degree 3, so vertex𝑏 cannot be mapped to 4, and it
immediately returns. If we know the matches of some previous queries,
we can actually prune more and earlier branches. Here, the matches
of a triangle are shown in Figure 1b. According to the matches, we can
immediately prune branches 𝑟𝑜𝑜𝑡 − 3 and 𝑟𝑜𝑜𝑡 − 4. This is because
vertex 𝑎, 𝑏, 𝑐 form a triangle in 𝑞, while vertex 3 and 4 cannot form
any triangles with any other vertices in 𝑑 . Similarly, if we know the
matches of a rectangle as shown in Figure 1c, we can prune the branch
𝑟𝑜𝑜𝑡 − 1.

Application 1. Given a graph and an existing subgraphmatching
algorithm, the user can in advance execute a set of pre-defined common
queries, such as triangles and squares. Using our proposed technique,

1699

https://doi.org/10.14778/3587136.3587144
https://github.com/csjianxun/SUFF-Code
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3587136.3587144
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(a) Data graph and query
graph.

(b) 𝜙△ ({𝑎}) of △(𝑎,𝑏, 𝑐) . (c) 𝜙□ ({𝑎}) of □(𝑎,𝑏, 𝑐,𝑑) . (d) A typical search tree.

Figure 1: The idea of Structure Filtering. All vertices have the same label.

the matching results can be utilized to build a filter database, which
can accelerate future queries. The pre-defined queries can be adjusted
based on the characteristics of the graph and potential queries, to
achieve ideal performance.

Application 2. Consider a subgraph matching system that con-
tinually accepts queries from users. Using our proposed technique, it
can build filters with past query results, and then use them to acceler-
ate future queries. With more queries executed, it has a broader choice
of filters and is likely to achieve a better performance.

1.2 Overview and Contributions
Based on the above idea, we propose StrUcture Filtering Framework
(SUFF), a general and efficient framework that prunes the search
space using historical matching results. It can prune the search
space not only on a single vertex but also on a set of vertices, which
potentially provides more pruning power.

Specifically, this framework consists of two building blocks: a
filter database Φ, a subgraph matching algorithm A, and three
major steps:

(1) Filter Selection. When a new query comes, we select sev-
eral filters from the database to prune the search space.

(2) Filtering. Running A for subgraph matching, while using
selected filters for pruning.

(3) Filter Construction: Given the matching result of this
query, we construct a set of filters that can help check the
presence of vertices, with limited space cost. Those filters
are inserted and maintained in the filter database Φ.

In the Filter Selection step, we need to select a few filters to
prune the search space. In order to achieve good effectiveness, we
propose the filter utility model to estimate the pruning power of
each filter. It is then proved that maximizing the overall utility is
NP-hard, and thus we propose a greedy algorithm that efficiently
solves this problem with a lower bound of 1 − 1

e , where e is the
base of the natural logarithm.

In the Filtering step, all selected filters are used to prune the
search space ofA. Since such pruning happens on the intermediate
results of A, it can be done without significantly modifying A.

In the Filter Construction step, given a query 𝑞 and its matches,
we build several filters for different subsets of its vertices. For exam-
ple, in Figure 1b, we can build a filter for vertex set {𝑎} of triangle
△(𝑎, 𝑏, 𝑐), and this filter can be used to check the presence of a

single vertex that can be mapped from 𝑎. To reduce the space cost
of a single filter, we use space-efficient data structures that allow a
small false-positive rate, such as Bloom filter [5] or Cuckoo filter
[9]. Since there might be many filters stored in the database, we
use a filter dropping process to further reduce the storage pressure.
Specifically, we propose the concept of filter domination, referring
to the case that some filters can be replaced with others in any
possible situation with a tolerable effectiveness decrease. Using this
concept, we propose an algorithm to delete unnecessary filters in
polynomial time.

In summary, in this paper, we make the following contributions.

• We propose the novel concept of Structure Filtering, and
study some of the basic problems, including its correctness,
and when it is applicable.

• We propose a general framework, SUFF, to prune the search
space for subgraph matching algorithms which only re-
quires minor modifications to the algorithm.

• We propose the filter utility model to measure the effective-
ness of a filter. We prove that maximizing the overall utility
is NP-hard, and further propose a greedy algorithm that
achieves an approximation ratio of 1 − 1

e .
• We propose the novel concept of filter domination, to help

reduce the total storage of the filter database. While mini-
mizing the number of stored filters is NP-hard, we propose
an efficient greedy algorithm that ensures filter quality
across multiple runs.

• We conduct extensive experiments on real-world graphs
and several state-of-the-art subgraph matching algorithms.
The results show that SUFF achieves up to 15X speedup for
existing approaches.

1.3 Paper Organization
The rest of this paper is organized as follows. In Section 2, we
introduce the basic concepts in this paper. In Section 3, we investi-
gate the basic properties and conditions of Structure Filtering. In
Section 4, we propose the filter utility model that measures filter
quality. We then formalize the maximum utility problem for filter
selection, and propose a greedy solution. To reduce the space cost,
we describe the concept of filter dominating in Section 5, and pro-
pose an algorithm to delete unnecessary filters. In Section 6, we

1700

conduct an extensive experimental study. At last, we survey the
related works in Section 7 and conclude this paper in Section 8.

2 PRELIMINARIES
2.1 Graph and Subgraph
In this work, we focus on the undirected and labeled graph 𝑔. 𝑉 (𝑔)
and 𝐸 (𝑔) denote the vertex set and edge set of 𝑔, respectively. Each
vertex 𝑣 ∈ 𝑉 (𝑔) is associated with a label 𝐿𝑔 (𝑣). An edge connecting
two vertices 𝑣 and 𝑢 is denoted by (𝑣,𝑢), or equivalently (𝑢, 𝑣) as
the graph is undirected.

Given a graph 𝑔1, we say 𝑔2 is a subgraph of 𝑔1 if𝑉 (𝑔2) ⊆ 𝑉 (𝑔1)
and 𝐸 (𝑔2) ⊆ 𝐸 (𝑔1). Specifically, 𝑔2 is the subgraph of 𝑔1 induced by
vertex set 𝑉 ′ if (1) 𝑉 (𝑔2) = 𝑉 ′ ⊆ 𝑉 (𝑔1), and (2) 𝐸 (𝑔2) = 𝐸 (𝑔1) ∩
(𝑉 ′ × 𝑉 ′). In this case we also call 𝑔2 an induced subgraph of 𝑔1,
and denote it by 𝑔1 [𝑉 ′]. Apparently any graph 𝑔 is the subgraph
of itself induced by 𝑉 (𝑔).

2.2 Subgraph Matching
By introducing the concept of graph isomorphism, we can then
formally define the subgraph matching problem.

Definition 1 (Graph Isomorphism [36]). Given two graphs 𝑔1
and 𝑔2, an isomorphism from 𝑔1 to 𝑔2 is a bijection 𝑓 : 𝑉 (𝑔1) ↦→
𝑉 (𝑔2) such that (1) 𝐿𝑔1 (𝑣) = 𝐿𝑔2 (𝑓 (𝑣)), and (2) (𝑢, 𝑣) ∈ 𝐸 (𝑔1) if and
only if (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸 (𝑔2). If there is an isomorphism from 𝑔1 to
𝑔2, then we say 𝑔1 is isomorphic to 𝑔2.

Definition 2 (SubgraphMatching). Given two connected graphs
𝑔1 and 𝑔2, subgraph matching requires to find all subgraphs of 𝑔1,
which are isomorphic to 𝑔2. Here 𝑔1 is also called the data graph, and
𝑔2 is also called the query graph.

For the ease of description, in the rest of this paper, we use 𝑑
to denote the data graph, and 𝑞 to denote the query graph. Each
isomorphism 𝑓 from 𝑞 to a subgraph of 𝑑 is called a match.

2.3 Search Tree and Partial Result
As discussed in Section 1, the basic approach of subgraph matching
is a brute-force search. Thus, almost all existing solutions traverse
the search space following a search tree (or several search trees).
During this process, each internal node in the search tree(s) cor-
responds to a mapping assignment from a subset of 𝑉 (𝑞) to 𝑉 (𝑑).
Such an assignment is called a partial match.

Definition 3 (Partial Match). A partial match of query 𝑞 in
graph 𝑑 is a match 𝑓𝑝 [𝑉] : 𝑉 ′ ↦→ 𝑉 (𝑑), where 𝑉 ′ ⊆ 𝑉 (𝑞).

For example, in Figure 1d, the branch 𝑟𝑜𝑜𝑡 − 1 − 2 corresponds
to the partial match {𝑎 ↦→ 1, 𝑏 ↦→ 2}.

2.4 Filter
A filter 𝜙 is a (space-efficient) representation of a set S. Given any
element 𝑒 ∈ S, 𝜙 accepts (returns positive) 𝑒 for sure. Given any
element 𝑒 ∉ S, 𝜙 accepts 𝑒 with probability 𝑝 , and rejects (returns
negative) 𝑒 with probability 1 − 𝑝 . Here 𝑝 is known as the false-
positive rate. Filters are widely used when the set S is too large to
store, and a certain false-positive rate is acceptable.

In this work, we use Bloom Filter [5] as the underlying implemen-
tation. The reason is that, its overhead is low, and the intersection

of multiple Bloom Filters can be easily obtained to reduce some
computation cost. To control the false-positive rate of each filter
not to be too high, we use a pre-defined threshold 𝑝𝑚𝑎𝑥 , and drop
the filters with 𝑝 > 𝑝𝑚𝑎𝑥 . In the rest of this paper, we do not dis-
tinguish between a filter and a set when 𝑝 is sufficiently small, and
only discuss 𝑝 when necessary.

3 THE FILTERING FRAMEWORK
In this section, we first analyze the relationship between matches of
two query graphs, and then describe how SUFF prunes the search
space. After that, we briefly discuss how to utilize filters to improve
the space and time efficiency for existence check, and further give
the framework overview.

3.1 The Principle of Structure Filtering
The basic idea of structure filtering is to use the matches of a small
structure (query) to prune out search branches of a large structure
(query). Given two query graphs 𝑞 and 𝑞′, as well as their match
sets𝑀 (𝑞, 𝑑) and𝑀 (𝑞′, 𝑑), if 𝑞′ is a subgraph of 𝑞, then we have the
following lemma.

Lemma 1. For any match 𝑓 ∈ 𝑀 (𝑞, 𝑑), there exists a match ℎ ∈
𝑀 (𝑞′, 𝑑), such that ∀𝑣 ∈ 𝑉 (𝑞′) : 𝑓 (𝑣) = ℎ(𝑣).

Proof. Since 𝑞′ is a subgraph of 𝑞, we know that𝑉 (𝑞′) ⊆ 𝑉 (𝑞),
and 𝐸 (𝑞′) ⊆ 𝐸 (𝑞). Let ℎ = 𝑣 ↦→ 𝑓 (𝑣),∀𝑣 ∈ 𝑉 (𝑞′), it is trivial that
∀(𝑣,𝑢) ∈ 𝐸 (𝑞′) : (ℎ(𝑣), 𝑓 ′(𝑢)) ∈ 𝐸 (𝑑), so ℎ ∈ 𝑀 (𝑞′, 𝑑). □

By Lemma 1, if there exists no such ℎ, we can conclude that 𝑓 is
not a valid match immediately. This gives the basis for using the
match set of 𝑞′ to prune the search space for 𝑞. However, when 𝑓 is
completely constructed during the search, most existing algorithms
already verified its validity, so there is no need to perform the
structure filtering. Similarly, when ℎ is completely constructed
as part of 𝑓 during the search, its validity is also verified by the
algorithm itself, so it must be a valid match of 𝑞′. Therefore, in
order to accelerate the algorithm, we need to prune a partial match
before the original program can verify the validity of 𝑓 or ℎ. The
following lemma suggests that we can extend structure filtering to
any partial match of 𝑞, which is more useful.

Lemma 2. Given amatch 𝑓 ∈ 𝑀 (𝑞, 𝑑), let 𝑓𝑝 [𝑉] be a partial match
of 𝑓 , where𝑉 ⊂ 𝑉 (𝑞′)∩𝑉 (𝑞), then there exists a match ℎ ∈ 𝑀 (𝑞′, 𝑑),
such that ∀𝑣 ∈ 𝑉 : 𝑓𝑝 (𝑣) = ℎ(𝑣).

Proof. It is trivial since Lemma 1 ensures the existence ofℎ. □

Note that in Lemma 2,𝑉 is a subset of𝑉 (𝑞′). This means during
the matching process, we can use the existence of partial match ℎ𝑝
to prune partial match 𝑓𝑝 . Whenever a partial match 𝑓𝑝 is generated,
if we cannot find such a corresponding ℎ in𝑀 (𝑞′, 𝑑), we can stop
in this branch and return. Since 𝑉 ⊂ 𝑉 (𝑞′) ∩𝑉 (𝑞), we are pruning
branches before the algorithm can verify the validity of ℎ or 𝑓 . This
is essentially the power of structure filtering.

Remark 1. Even if a partial match 𝑓𝑝 passes our checking, it is
still possible that this branch doesn’t contain any valid match of 𝑞 (a
false-positive case).

1701

In SUFF, when 𝑀 (𝑞, 𝑑) is produced, filters are constructed for
different subsets of 𝑉 (𝑞), which correspond to different partial
matches (We will discuss the details in Section 3.4). They are then
selected and used to accelerate the matching of future queries.

3.2 Utilizing Filters
A simple way to record partial matches for existence check is to
store them in a plain set. However, this introduces high storage
pressure. For example, storing 105 3-vertex partial matches takes
more than 1MB of disk space, and there could be thousands of such
match set to store.

In SUFF, we use filters to achieve both space and time efficiency.
Specifically, given a match set𝑀 (𝑞, 𝑑), we build a filter 𝜙𝑞 (𝑉) for
each 𝑉 ⊂ 𝑉 (𝑞). Each filter 𝜙𝑞 (𝑉) stores all the partial matches in
{ℎ𝑝 [𝑉],∀ℎ ∈ 𝑀 (𝑞, 𝑑)}. When we need to check the existence of an
ℎ given 𝑓𝑝 [𝑉], we can directly check whether 𝑓𝑝 [𝑉] is in 𝜙𝑞 (𝑉).
When the context is clear, we also use 𝜙 to refer to a filter.

By storing those matches in filters, we can save much disk space.
To store a match set containing 105 matches, if we use a Bloom
Filter with a false-positive rate of 0.1, we only need about 60KB of
storage.

Another benefit of using filters is the efficient insertion and
checking operations. Also take Bloom Filter as an example, to en-
sure a false-positive rate of 0.1, each insertion/checking operation
only involves 3 hash functions under a common setting, and can
be treated as 𝑂 (1) operation. This ensures that SUFF does not in-
troduce too much overhead compared to the original algorithm.

To guarantee the space cost and effectiveness of each filter, we
use two user-specified parameters𝑚 and 𝑝𝑚𝑎𝑥 . Then each created
filter occupies 𝑚 bits of storage, and we only use filters with a
false-positive rate less than or equal to 𝑝𝑚𝑎𝑥

It should be noted that, filters do not yield false-negative results.
Therefore, if the filter rejects a partial match, we can safely drop it.
This is consistent with our structure pruning technique.

3.3 Framework Overview

Figure 2: The overview of SUFF.

With the above basic building blocks, we now describe how SUFF
works. In general, SUFF works with a subgraph matching algorithm
A, and maintains a filter database Φ, which is used and updated
when processing a new query 𝑞 through the following steps:

(1) Filter Selection. Pick several filters from Φ.

(2) Filtering. When running A for subgraph matching, we
use these picked filters as early as possible for structure
filtering.

(3) Filter Building. We use the subgraph matching result to
build filter 𝜙𝑞 (𝑉) for each𝑉 ⊂ 𝑉 (𝑞). these filters are added
to the database Φ.

In the first step, we need to make sure that, each picked filter
𝜙𝑞′ (𝑉) is usable for 𝑞, which means

(1) 𝑞′ is a subgraph of 𝑞; and
(2) this filter can be used before a full match of 𝑞 is generated.

Therefore, it is important to associate a match ℎ : 𝑉 (𝑞′) ↦→ 𝑉 (𝑞)
with each filter for verifying these two conditions. If there are
multiple matches of 𝑞′ in 𝑞, we create multiple filters for each of
them. In order to achieve better pruning performance, we also want
to pick the best set of filters, which is discussed in Section 4.

Algorithm 1: A Typical Modified Matching Algorithm
Input :Data graph 𝑑 , query graph 𝑞, filter database Φ.
Output :All matches of 𝑞 in 𝑑 .

1 D ← generate auxiliary data structure;
2 𝐹 ← selected filters from Φ;
3 Enumerate(𝑑 , 𝑞, D, {}, 1);
4 Procedure Enumerate(𝑑 , 𝑞, D, 𝑓 , i):
5 if 𝑖 = |𝑉 (𝑞) | + 1 then
6 Output 𝑓 ;
7 return;
8 if any filter in 𝐹 rejects 𝑓 then return;
9 𝑢 ← the query vertex to be matched in this level;

10 𝐶 ← generate candidates for 𝑢;
11 foreach 𝑣 ∈ 𝐶 do
12 if 𝑣 ∉ 𝑓 then
13 Add {𝑢 ↦→ 𝑣} to 𝑓 ;
14 Enumerate(𝑑 , 𝑞, D, 𝑓 , i+1);
15 Remove {𝑢 ↦→ 𝑣} from 𝑓 ;

While selecting the filter set, we find when each filter can be
used in the matching process. This can be done by looking at the
search plan of A, and finding the smallest depth where a filter
can be applied. We denote this depth as the filter’s filtering level.
Then we run A for subgraph matching, and apply each filter at
its filtering level. As most existing approaches find matches in a
depth-first-search manner, the filtering can be plugged into them
with minor modifications. We show a representative example in
algorithm 1, where the shadowed areas are the modification made
by SUFF. This algorithm uses a recursive subroutine “enumerate”
to find matches of 𝑞. Each recursive call extends the current match
𝑓 by adding a mapping {𝑢 ↦→ 𝑣}. When it reaches the maximum
level (|𝑉 (𝑞) | +1), 𝑓 is a complete valid match of 𝑞. To let SUFF work,
we only need to select a set of filters from the database (line 2), and
check the (partial) match 𝑓 at each level (line 9). If 𝑓 is rejected, the
recursive call immediately returns.

Finally, given the match set𝑀 (𝑞, 𝑑), we build filters for subsets
of 𝑉 (𝑞), and store them into Φ (Section 3.4). Those filters can be
used when there are new coming queries. To save the computation

1702

resource as well as the disk space, we use a filtering dropping step
to eliminate some redundant filters, so that the number of filters in
Φ does not grow too quickly, which is discussed it in Section 5.

3.4 Filter Construction and Storage
A filter 𝜙𝑞 (𝑉) is essentially a bloom filter storing all partial matches
𝑓𝑝 [𝑉] of 𝑞, so one can build a filter for each subset 𝑉 ⊂ 𝑉 (𝑞).
However, this is space inefficient, since the number of filters is
exponential to |𝑉 (𝑞) |. In this work, we make three observations
that help reduce the number of filters.
OB1 The number of nodes in the search tree is usually larger

when the level goes deeper, so filters would have larger
computation overhead;

OB2 The matching orders of 𝑞 and 𝑞′ tend to be similar if 𝑞 and
𝑞′ are similar.

OB3 Filters built with more vertices (|𝑉 |) tend to have better
filtering power, since the stored partial matches are more
specific.

Based on the above observations, we can avoid constructing
filters that are expected to be applied on deep levels, and should
make the best use of all vertices. Specifically, our strategy is as
follows.

• Let a query have𝑚 vertices, and 𝑣1, 𝑣2, · · · , 𝑣𝑚 be the match-
ing order decided by an existing algorithm;

• For any number 𝑎 ∈ [1,𝑚], we can generate two kinds
of filters with the sequence 𝑣1, 𝑣2, · · · , 𝑣𝑎 . (1) We build one
filter for each prefix of the sequence, i.e., {𝑣1},
{𝑣1, 𝑣2}, · · · , {𝑣1, 𝑣2, · · · , 𝑣𝑎}; (2)We build one filter for each
single vertex in 𝑣2, 𝑣3, · · · , 𝑣𝑎 ;

• In total, we build 2 · 𝑎 − 1 filters for a query, and the user
can pick appropriate 𝑎 according to the space limitation.

In this way, we expect that filters can be applied at the earliest
possible levels when the query 𝑞 is similar to the filter pattern, and
the pruning power of multi-vertex filters can be best utilized at
deep levels.

To store all filters, we design a hybrid file storage. The config-
urations of all filters, such as the pattern shapes, vertex sets, and
estimated false-positive ratios, are stored in a single file. This infor-
mation takes only a few bytes for a filter, so the program can read
them all from a file quickly. Meanwhile, we store the underlying
bit array of each filer in a separate file. These files would be read
only when the corresponding filters are selected to use, so we can
avoid unnecessary I/Os.

4 FILTER SELECTION
Given a specific query 𝑞, different filters may have different pruning
power. The computation cost we spent on each filter also varies due
to the size of its vertex set. Apparently, using more filters potentially
gives more pruning power, but the overhead also grows up, and
may in turn slow down the algorithm. Thus, in order to obtain
a better performance, it is important to carefully select filters. In
SUFF, we strike a balance between benefits and overheads by a
comprehensive filter selection process.

Specifically, we build a comprehensive filter utility model to
measure the pruning power of each filter, which considers both the

query shape and the execution plan ofA. Then we try to maximize
the overall utility by picking a limited number of filters.

4.1 The Filter Utility Model
As discussed above, filters can prune the search space before the
original algorithm can validate all edges. Thus, the less validated
edges, the more pruning power (or utility). In SUFF, we build a
simple yet effective utility model based on this idea.

Figure 3: An illustration of filter utility breakdown.

Example 2. In Figure 3, we show a query 𝑞 to be matched in
the order 𝑣1, 𝑣2, 𝑣4, 𝑣3. Filter 𝜙1 is built on vertex set {𝑢1, 𝑢2} from
the matches of 𝑞′ (a triangle), and 𝜙2 is built on {𝑤2} from the
matches of 𝑞′′ (a square). Both filters can be applied at level 2. At
this level, mappings of vertices 𝑣1, 𝑣2 are fixed, so the edge (𝑣1, 𝑣2)
is validated. Other edges’ existence is unknown. If we apply 𝜙1, it
can verify whether a triangle containing 𝑓 (𝑣1), 𝑓 (𝑣2) exists, which
corresponds to a valid mapping of 𝑣3. If no such triangle exists, the
program can directly return without going to level 3. In other words, it
helps validate edges (𝑣2, 𝑣3) and (𝑣1, 𝑣3). Similarly, applying 𝜙2 helps
validate edges (𝑣2, 𝑣3), (𝑣1, 𝑣4), and (𝑣3, 𝑣4). Applying both filters can
help validate all rest edges in 𝑞.

Example 2 briefly shows how we break down filter utility into
edges. Doing so enables us to quantify not only the utility of a
single filter, but also the utility of combined filters. In addition, our
model considers the neighborhood label frequency filtering technique
which is widely used in existing solutions. With this technique, the
algorithm ensures that each candidate vertex satisfies the neighbor
label frequency in the query graph. In Figure 3, when 𝑣1, 𝑣2 are
mapped, the algorithm ensures that 𝑓 (𝑣1) has a neighbor with type
B and a neighbor with type C, and 𝑓 (𝑣2) has a neighbor with type C.
In this case, all edges except for (𝑣3, 𝑣4) can be treated as validated,
so 𝜙1 is considered less helpful.

Our utility model is formally defined as follows. Given a match-
ing order and a filtering level 𝑙 , 𝑉 (𝑞, 𝑙) denote the vertex set that
are mapped by the algorithm (which is {𝑣1, 𝑣2} in the example), and
𝑉 (𝑞, 𝑙) = 𝑉 (𝑞) \𝑉 (𝑞, 𝑙) is the unmapped vertex set. Then for a filter
𝜙 of pattern 𝑞′ and a corresponding match ℎ, its utility on edge
𝑒 = (𝑢, 𝑣) is

𝑆 (𝜙, 𝑙, 𝑒) = 1
ℎ (𝑢) ∈𝑉 (𝑞,𝑙)∧ℎ (𝑣) ∈𝑉 (𝑞,𝑙) . (1)

Then for a set of filters 𝐹𝑙 at this level, the overall utility is

𝑆 (𝐹𝑙) =
∑︂

𝑒∈𝐸 (𝑞)
max
𝜙 ∈𝐹𝑙

𝑆 (𝜙, 𝑙, 𝑒) . (2)

Under this model, 𝜙1 has a utility score 0, because all edges in its
triangle pattern connect to at least one mapped vertex at its filtering

1703

level.𝜙2 has utility score 1, because only one edge (𝑤3,𝑤4) connects
to no mapped vertex.

This function is built for three reasons: (1) it considers the situ-
ation that multiple filters may help on the same edge, and avoids
double counting the utility; (2) it is easy to compute, which is help-
ful when the filter database is large; and (3) this function naturally
eliminates filters with filtering level= |𝑉 (𝑞) | by assigning utility
score 0 to them, which are shown to be useless in Section 3.1.

4.2 The Maximum Utility Problem
As discussed above, our goal is to pick a set of filters such that the
overall performance is maximized. Since filters at different levels
are not directly related, we aim at maximizing the total utility
score 𝑆 (𝐹𝑙) for each level 𝑙 independently, which is so-called the
maximum utility problem.

Definition 4 (Maximum Utility Problem). Given query 𝑞, a
filter database Φ, a matching order, and an integer 𝑘 , the maximum
utility problem is to select a set of filters 𝐹𝑙 from Φ for each level 𝑙 , s.t.

(1) |𝐹𝑙 | ≤ 𝑘 , and
(2) the total utility score 𝑆 (𝐹𝑙) for each 𝐹𝑙 is maximized.

Unfortunately, Theorem 1 shows that the maximum utility prob-
lem is NP-hard by reducing from a well-known NP-hard problem,
set cover [19].

Theorem 1. The maximum utility problem is NP-hard.

Proof. We refer the readers to our technical report [14] for the
proof. □

Since it is unlikely that we can solve the maximum utility prob-
lem in polynomial time, we use a greedy algorithm in SUFF to
balance the running time and result quality. In this algorithm, in-
stead of finding the global optimal, we iteratively pick filters while
maximizing the utility score at each step. Algorithm 2 summarizes
the greedy algorithm. The whole algorithm runs for 𝑘 iterations in
total (line 2). At each iteration, we select one filter in Φ to add into
the current solution, such that the total utility score of the current
solution is maximized (lines 3 to 12).

As stated above, the algorithm runs for at most 𝑘 iterations. In
each iteration we need to try adding every filter in Φ and calculate
the utility score 𝑆 (𝐹 ′

𝑙
). Calculating 𝑆 (𝜙, 𝑙, 𝑒) takes 𝑂 (1) time, so

it takes 𝑂 (𝑘 · |𝐸 (𝑞) |) time to calculate 𝑆 (𝐹𝑙). Therefore, the time
complexity of the greedy algorithm is𝑂 (𝑘2 · |Φ| · |𝐸 (𝑞) | · 𝜏), where
𝜏 is the time for subgraph matching between the query graph 𝑞

and a filter pattern. We note here that, since the query graphs are
supposed to be small (i.e., < 100 nodes) in all existing solutions, 𝜏
is small. Therefore, the running time of algorithm 2 is negligible
compared with the query processing time.

Another advantage of this greedy algorithm is that, it also guar-
antees the quality of the result. In fact, Theorem 2 shows that, its
result is at least 1 − 1

e of the optimal result, where e (distinguished
from an edge 𝑒) is the base of the natural logarithm.

Theorem 2. Algorithm 2 has 1 − 1
e approximation ratio.

Proof. We refer the readers to our technical report [14] for the
proof. □

Algorithm 2: FilterSelectGreedy
Input :Φ, 𝑞, the matching order, 𝑘 , 𝑙 .
Output :𝐹𝑙 .

1 𝐹𝑙 ← ∅ ;
2 while |𝐹𝑙 | < 𝑘 do
3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ← 𝑆 (𝐹𝑙);
4 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑖𝑙𝑡𝑒𝑟 ← 𝑛𝑢𝑙𝑙 ;
5 foreach 𝜙 (𝑖) ∈ Φ do
6 if 𝜙 (𝑖) is not applicable at this level then
7 continue;
8 𝐹 ′

𝑙
← 𝐹𝑙 ∪ {𝜙 (𝑖) };

9 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ≤ 𝑆 (𝐹 ′
𝑙
) then

10 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ← 𝑆 (𝐹 ′
𝑙
);

11 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑖𝑙𝑡𝑒𝑟 ← 𝜙 (𝑖) ;
12 if 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑖𝑙𝑡𝑒𝑟 = 𝑛𝑢𝑙𝑙 then
13 break;
14 𝐹𝑙 ← 𝐹𝑙 ∪ {𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑖𝑙𝑡𝑒𝑟 };
15 return 𝐹𝑙 ;

5 FILTER REMOVAL
As more queries are processed, more filters are built and added
into Φ, so the size of Φ keeps increasing. This not only consumes
much disk space, but also harms the efficiency of filter selection.
However, some filters are redundant and can be replaced by other
filters given any query. Removing these filters in advance would
help keep the whole framework efficient. In this section, we discuss
how SUFF identifies the redundant filters, and how to remove them
from Φ while keeping a high pruning effectiveness.

5.1 Filter Domination
If we want to remove a filter from the database, the risk is that
the filtering power of SUFF for some queries is weakened due to
the lack of this filter. Thus, it is important to ensure that the side
effect of removing filters is minimal. Following this principle, we
investigate the domination between filters.

Definition 5 (Filter Domination). Given two filters 𝜙𝑜 (𝑉1)
and 𝜙𝑟 (𝑉2), we say 𝜙𝑟 (𝑉2) is dominated by 𝜙𝑜 (𝑉1) if and only if
for any query 𝑞, the following conditions always hold:
DC1 whenever 𝜙𝑟 (𝑉2) can be applied for filtering, 𝜙𝑜 (𝑉1) can be

applied at the same filtering level; and
DC2 the false-positive rate of replacing 𝜙𝑟 (𝑉2) with 𝜙𝑜 (𝑉1) re-

mains ≤ 𝑝𝑚𝑎𝑥 .

Figure 4: An example of filter domination.

1704

Example 3. In Figure 4 there are four filters. Filters 𝜙1, 𝜙2, 𝜙3 have
the same pattern graph 𝑜 (the triangle), while 𝜙4 has a pattern 𝑟 that
is a super graph of the triangle. Apparently, if 𝜙4 can be applied for
a query, the other three can also be applied. In addition, 𝜙2 can be
applied on the same level as 𝜙4 does, because 𝑢2 corresponds to𝑤2 in
one of the matches from 𝑜 to 𝑟 . 𝜙1 and 𝜙3 will have a different filtering
level if𝑤1 is after𝑤2 in the matching order, so they cannot replace
𝜙4 in some cases. Therefore, if 𝑢2 and𝑤2 are mapped to roughly the
same vertex set in 𝜙2 and 𝜙4 respectively, 𝜙2 can always replace 𝜙4
with little harm to the filter effectiveness. Another possible situation
is that, when we have both 𝜙1 and 𝜙2 in the database, it is always
applicable to use one to replace 𝜙3 at the same level. If the mapped
sets of 𝑢1 and 𝑢2 happen to be close across these three filters, such
replacement is also almost harmless.

In other words, a filter is dominated if it can always be replaced
by another one without harming the effectiveness. In order to de-
tect the domination relationship between filters, we further investi-
gate the detailed rules that can be used to detect filter domination.
Lemma 3 shows that condition DC1 holds if and only if (1) 𝑜 is a
subgraph of 𝑟 , and (2) 𝑉1 is a subset of 𝑉2.

Lemma 3. DC1 holds for any query 𝑞 if and only if 𝑜 is a subgraph
of 𝑟 and 𝑉1 ⊆ 𝑉2.

Proof. (If) Applying 𝜙𝑟 (𝑉2) on 𝑓𝑝 [𝑉] requires that 𝑟 is a sub-
graph of 𝑞 and 𝑉2 ⊆ 𝑉 , thus 𝑜 is also a subgraph of 𝑞 and 𝑉1 ⊆ 𝑉 ,
which means 𝜙𝑜 (𝑉1) can also be applied on 𝑓𝑝 [𝑉].

(Only if) Let 𝑞 = 𝑟 and 𝑉2 = 𝑉 , if 𝜙𝑜 (𝑉1) can be applied on
𝑓𝑝 [𝑉], then 𝑜 is a subgraph of 𝑟 and 𝑉1 ⊆ 𝑉2. □

Using Lemma 3, we can quickly find all possible filters in Φ that
might replace a specific filter. Then we need to check if condition
DC2 also holds for any of them. That is, we need to discuss about
the false-positive rate of applying 𝜙𝑜 (𝑉1) instead of 𝜙𝑟 (𝑉2). Our
discussion splits DC1 into two cases: 𝑉1 = 𝑉2 and 𝑉1 ⊂ 𝑉2.

(𝑉1 = 𝑉2). As discussed in Section 3.1, any match 𝑓 of 𝑟 corre-
sponds to a match 𝑓 ′ of 𝑜 . Thus, for each partial match 𝑓𝑝 [𝑉2] we
store in 𝜙𝑟 (𝑉2), there is a same partial match 𝑓 ′𝑝 [𝑉1] in 𝜙𝑜 (𝑉1). This
means 𝜙𝑜 (𝑉1) is a super set of 𝜙𝑟 (𝑉2). Let 𝑁 be the total number
of items, 𝑝𝑜 and 𝑝𝑟 be the false-positive rate, 𝑁𝑜 and 𝑁𝑟 be the
numbers of items for 𝜙𝑜 (𝑉1) and 𝜙𝑟 (𝑉2), respectively. Here 𝑝𝑜 , 𝑝𝑟 ,
𝑁𝑜 , 𝑁𝑟 can be recorded when building the filter, or estimated using
the bit table of the filter. If we use 𝜙𝑜 (𝑉1) to replace 𝜙𝑟 (𝑉2), the
false-positive items come from two parts. One part is the items exist
in 𝜙𝑜 (𝑉1) but not in 𝜙𝑟 (𝑉2), which contains 𝑁𝑜 − 𝑁𝑟 items in total.
Another part is the items accepted falsely by𝜙𝑜 (𝑉1), which contains
(𝑁 −𝑁𝑜) ·𝑝𝑜 by expectation. Therefore, the total false-positive rate
is

𝑝 ′ =
(𝑁 − 𝑁𝑜) · 𝑝𝑜 + 𝑁𝑜 − 𝑁𝑟

𝑁 − 𝑁𝑟
= 𝑝𝑜 +

(𝑁𝑜 − 𝑁𝑟) (1 − 𝑝𝑜)
𝑁 − 𝑁𝑟

.

Note that we do not know how large 𝑁 is, but 𝜙𝑟 (𝑉2) must be able
to filter out certain portion of 𝑁 in order to be effective (otherwise
applying 𝜙𝑟 (𝑉2) or 𝜙𝑜 (𝑉1) does not make much difference). Hence
it is reasonable to assume that 𝑁 ≥ 𝛼 · 𝑁𝑟 , where 𝛼 is a desired
pruning ratio that could be adjusted. Then we have an upper bound

of 𝑝 ′:

𝑢𝑝𝑝𝑒𝑟 (𝑝 ′) = 𝑝𝑜 +
(𝑁𝑜 − 𝑁𝑟) (1 − 𝑝𝑜)
(𝛼 − 1) · 𝑁𝑟

. (3)

If this upper bound is smaller than 𝑝𝑚𝑎𝑥 , 𝜙𝑜 (𝑉1) dominates 𝜙𝑟 (𝑉2).
A larger 𝛼 makes the estimated false-positive ratio 𝑝 ′ smaller, so
it is more likely to satisfy DC2 and to remove filters and the size
of Φ is kept smaller. However, this also lower down the expected
pruning power of remaining filters.

(𝑉1 ⊂ 𝑉2). In this case, although we can apply two filters at the
same level, they checks different sets of items (vertex sets). Thus,
the analysis above cannot be directly used since 𝜙𝑜 (𝑉1) is no longer
a super set of 𝜙𝑟 (𝑉2). However, if 𝑜 = 𝑟 , mappings in 𝜙𝑜 (𝑉1) are
partial mappings of those in 𝜙𝑟 (𝑉2). If the size of these two sets
are close, it means using only part of each mapping in 𝜙𝑟 (𝑉2) can
still distinguish the whole set with high accuracy, and replacing
𝜙𝑟 (𝑉2) with 𝜙𝑜 (𝑉1) is doable. In this situation the above analysis
still applies.

In summary, 𝜙𝑜 (𝑉1) dominates 𝜙𝑟 (𝑉2) if and only if
(1) 𝑢𝑝𝑝𝑒𝑟 (𝑝 ′) ≤ 𝑝𝑚𝑎𝑥 , and
(2) 𝑉1 ⊆ 𝑉2, and
(3) either 𝑜 = 𝑟 , or 𝑉1 = 𝑉2.

5.2 The Filter Removal Problem
The process for detecting and removing dominated filters can be
run periodically or whenever new filters are inserted. Either way
will not influence the matching process. Note that, the domination
is not a transitive relation, i.e., if 𝐴 dominates 𝐵 and 𝐵 dominates
𝐶 , 𝐴 may not dominate 𝐶 . If that is the case, we can either remove
𝐵 or 𝐶 , but cannot remove them both. This makes it challenging to
minimize the number of filters in Φ, which is proved to be NP-hard.

Theorem 3. Given a set Φ of filters and their domination rela-
tionships, to find a minimum subset 𝑆 of Φ s.t. every filter in Φ either
belongs to 𝑆 or is dominated by a filter in 𝑆 , is NP-hard.

Proof. We refer the readers to our technical report [14] for the
proof. □

Due to the hardness of this problem, we devise a greedy algo-
rithm (Algorithm 3) to remove redundant filters to improve effi-
ciency. This algorithm also considers the consistency across multi-
ple independent runs. Suppose𝐴 dominates 𝐵, 𝐵 dominates𝐶 , but𝐴
does not dominate𝐶 . If𝐶 is removed in former runs, it is important
to remember not to remove 𝐵 in later runs. To achieve this, we
record for each filter a dominating set, containing information of
filters that we use it to replace. The information is used to calculate
Equation 3. And we extend the definition of domination by one
condition that, a filter must be able to replace all filters in another
filter’s dominating set.

Apparently there could not be cyclic domination relationships
according to our analysis, so the algorithm build a Directed Acyclic
Graph (DAG) to guide the order of removing filters. Filters in lower
level are dominated by other filters, and thus are less general to be
applied in future queries. Thus, the algorithm tries to remove these
filters first, and then those in upper levels. Checking the domination
requires at most 𝑂 (|Φ|) time when the dominating set is large, so
the time complexity of this algorithm is 𝑂 (|Φ|2 · 𝜏), where 𝜏 is the

1705

Algorithm 3: FilterRemoval
Input :The filter database Φ.
Output :The minimized database.

1 𝐷 ← build the dominating graph between filters (A DAG);
2 foreach 𝜙𝑖 ∈ 𝐷 in bottom-up order do
3 if 𝜙𝑖 is dominated by 𝜙 𝑗 then
4 Φ← Φ/{𝜙𝑖 };
5 Add 𝜙𝑖 into 𝜙 𝑗 ’s dominating set;
6 Update the domination relationship related to 𝜙 𝑗 ;
7 return Φ;

Table 1: Statistics of Real-world Data Sets.

Data Set |𝑽 | |𝑬 | 𝒅 |𝑳 |
Yeast (ye) 3,112 12,519 8.0 71

Human (hu) 4,674 86,282 36.9 44
HPRD (hp) 9,460 34,998 7.4 307

WordNet (wn) 76,853 120,339 3.1 5
DBLP (db) 317,080 1,049,866 6.6 15
eu2005 (eu) 862,664 16,138,468 37.4 40
Youtube (yo) 1,134,890 2,987,624 5.3 25
US Patents (us) 3,774,768 16,518,947 8.8 20

DBpedia 62,508,248 300,379,692 9.6 483734

time for matching two filter patterns (as we discussed before, 𝜏 is
small since the query graphs are usually small). As this process can
run in offline, it will not affect the efficiency of query processing.

6 EXPERIMENTS
In this section we conduct extensive experiments to verify the
effectiveness of SUFF across different data sets and state-of-the-art
solutions.

6.1 Experimental Setup
Data Sets. We use eight real-world representative graph data sets
that are commonly used in the literature [34] for testing synthetic
queries, and a knowledge graph DBpedia [2] for testing real-world
queries. The statistics is summarized in Table 1. In the table, |𝑉 |
and |𝐸 | are the number of vertices and edges, respectively. 𝑑 is the
average degree and |𝐿 | is the number of labels. For the first eight data
graphs, we generate query sets by randomly selecting subgraphs
from it, which is consistent with previous studies [3, 11, 20, 34].
Specifically, we generate both sparse queries (average degree < 3)
and dense queries (average degree ≥ 3). The query size |𝑉 (𝑞) | varies
in {8, 16, 24, 32}. In total, there are 800 queries for each data set. For
DBpedia, we extract graph patterns from real-world SPARQL logs
[33]. After removing invalid queries (e.g., unconnected queries),
there are in total 3731 queries in our experiments.

Implementation and Parameter Settings. All algorithms are
implemented in C++ and are compiled with g++ 11. Experiments are
run on a single machine with an Intel Xeon X5650 CPU and 100GB
memory. For filters, to save space, we only create filters with no
more than 3 vertices (𝑎 = 3) using our strategy. To balance the space
cost and the computation cost, we set the number of hash functions

of each bloom filter to be 3, and the expected false-positive ratio to
be 0.01. According to the graph size, we set the bit array size to be
1KB for Yeast, Human, HPRD, 2KB for WordNet, 8KB for DBpedia,
and 4KB for other graphs. For filter removal, we set 𝛼 = 0.3.

Evaluated Methods. We evaluate our proposed filtering frame-
work together with six representative subgraph matching methods
QuickSI (QSI) [30], GraphQL (QGL) [13], VF2++ [16], CECI [3], CFL
[4], DP-iso (DP) [11]. For each algorithm X, we plugin the SUFF
framework, and mark it as X/S-𝑖 , where 𝑖 ∈ [1, 3] is the number of
filters used for each level. For each graph, we build an initial filter
database using 4 basic queries: the triangle-shaped query (three-
vertex cycle) and the 4-vertex query (four-vertex cycle, diamond
graph, and 4-clique). specifically, we extract the top-10 frequent
labels for each graph, and enumerate all shapes with these labels.
Since these queries have a few vertices, building the databases only
take several minutes. In total, there are at most 4675 pattern graphs
for each data set. In addition, DP-iso uses dynamic matching or-
der, so we utilize matching orders provided by other methods, and
calculate the average filter utility in the filter selection step. And
filters are applied adaptively for each branch based on the current
matching order.

Metrics. For synthetic queries, we count the query processing
time (wall-clock time) of each algorithm, and report the average
speedup of the modified algorithm vs. the original algorithm in
100 independent runs. Here speedup is defined as 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 (𝐴′, 𝑞) =
𝐴(𝑞)
𝐴′ (𝑞) , where 𝐴(𝑞) is the processing time of the original algorithm
and 𝐴′(𝑞) is the time of the modified algorithm. That is, if 𝐴′ costs
half of the time as 𝐴 does, the speedup is 2. We choose this metric
instead of the average run time because the processing time of
different queries can differ in orders of magnitude, and the average
run time hides the acceleration effect on short-time queries. As
some queries take a long time to finish, we set a time limit of
1000 seconds to let the experiments finish in a reasonable time. To
make the results more informative, if an original method fails to
finish a query within the time limit, we exclude all results of this
query and this method with/without SUFF. We also measure the
effectiveness of SUFF by counting the number of failing branches
(branches that do not yield any valid match). For real-world queries,
we sequentially execute all queries using an algorithm and report
the cumulative run time to simulate its overall performance in the
long-run.

6.2 Experimental Results
6.2.1 The Space Cost of SUFF. The space cost for storing all filters
is listed in Table 2. For graphs with synthetic queries, we generate
filters with pre-defined pattern graphs, so the number of filters is
the same for these graphs (Except for WordNet, which has only
5 labels and thus has fewer pattern graphs and filters). The space
cost of SUFF for these graphs is then decided by the bit array size.
The database size may exceed the original graph size due to the
number of filters, but the absolute volume is small compared with
modern disk sizes. As for DBpedia, the database is created when
executing real-world queries. Most of these queries have only a few
vertices, so the number of filters is small. Even though each filter of
DBpedia is 8KB, the overall database size is less than 60MB. These
results verify the space efficiency of SUFF.

1706

Table 2: Space cost of SUFF.

Graph Graph Size Filter Database Size
Yeast 0.17MB 22.82MB
Human 0.96MB 22.82MB
HPRD 0.49MB 22.82MB

WordNet 2.5MB 3.91MB
DBLP 21MB 91.3MB
eu2005 277MB 91.3MB
Youtube 63MB 91.3MB

US Patents 360MB 91.3MB
DBpedia 6144MB 58.48MB

6.2.2 Overall Performance on Synthetic Queries. We first investi-
gate the average speedup when using SUFF on all queries, which
is shown in Figure 5. In general, algorithms with SUFF run faster,
which illustrates its strong pruning power and low overhead. In
particular, the acceleration is more obvious on sparse graphs, such
as HPRD (5X speedup for QuickSI), WordNet (7X speedup for CFL),
and US Patents (6X speedup for DP-iso). The major reason is that,
it is less likely to find a match in sparser graphs, leaving more
room for pruning using our technique. On data sets having many
labels, such as Yeast, Human, and eu2005, the accelerating effect
is limited due to a low chance of finding an available pre-defined
filter. Another finding is that, using more filters only brings better
acceleration in a few cases and may even harm the overall perfor-
mance (see DP-iso on US Patents). Thus, setting 𝑘 = 1 would be a
safe start when using our technique, which has low overhead and
competitive pruning power.

(a) QuickSI. (b) VF2++.

(c) GraphQL. (d) CFL.

(e) CECI. (f) DP-iso.

Figure 5: The average speedup on all queries.

6.2.3 Performance on Sparse and Dense SyntheticQueries. We then
investigate the performance on dense and sparse queries, respec-
tively. The results are shown in Figure 6 and Figure 7. It turns out
that every method except for VF2++ enjoys diverse acceleration
effects on dense and sparse queries, and SUFF is found to have
remarkable acceleration effects on both dense queries (over 8X
speedup for CFL on Wordnet) and sparse queries (Over 9X speedup
for CECI on US Patents). This indicates that one method is usually
good at handling a few kinds of query/data graphs, and using SUFF
can effectively makeup for its weakness.

(a) QuickSI. (b) VF2++.

(c) GraphQL. (d) CFL.

(e) CECI. (f) DP-iso.

Figure 6: The average speedup on dense queries.

6.2.4 Performance on Large and Small Synthetic Queries. We then
discuss the results on large and small queries, which are shown in
Figure 8 and Figure 9. We notice that SUFF can accelerate more on
large queries (note that the y-axes of Figure 8 have a wider range
than those in other figures). This is because larger queries enjoy
more filters, and pruning a branch has more benefit for deeper
search trees than for shallower trees. Note that larger queries are
harder to process for all algorithms, which highlights the advantage
of using SUFF over existing pruning techniques. In addition, on
large queries, we first observed a significant improvement in using
more filters (DP-iso onWordNet). However, setting 𝑘 = 1 or 2 is still
the most balanced choice considering all results. On small queries,
the power of SUFF reduces in most cases, but it still brings more
than 7X speedup for CFL on WordNet, showing its effectiveness in
these corner cases.

6.2.5 Failing Branch Ratio. In this part, we illustrate the ratio of
branches that SUFF can prune in addition to the original algo-
rithm. The results are shown in Figure 10. In general, fewer failing
branches indicate a larger speedup in Figure 5. However, the two

1707

(a) QuickSI. (b) VF2++.

(c) GraphQL. (d) CFL.

(e) CECI. (f) DP-iso.

Figure 7: The average speedup on sparse queries.

(a) QuickSI. (b) VF2++.

(c) GraphQL. (d) CFL.

(e) CECI. (f) DP-iso.

Figure 8: The average speedup on large queries.

(a) QuickSI. (b) VF2++.

(c) GraphQL. (d) CFL.

(e) CECI. (f) DP-iso.

Figure 9: The average speedup on small queries.

numbers are not always directly proportional. The reason is that, if
most of the failing branches are at the deep levels, pruning these
branches would not decrease the overall running time much. In-
stead, pruning early branches has better effects of speeding up,
such as CFL on WordNet. This result also validates our motivation
to apply filters as early as possible.

6.2.6 Filter Selection Strategy. In this part, we study the effective-
ness of our proposed filter selection strategy. Specifically, we replace
algorithm 2 with random selection and report the average speedup
in Figure 11. Compared with Figure 5, the average speedup with
random filter selection is, in general less than our selection method,
meaning that algorithm 2 can effectively pick high-quality filters
for use.

6.2.7 Filter Removal. We also investigate the effect and efficiency
of the filter removal mechanism. First, we test the performance
of the filter removal method. the results are shown in Figure 12.
It can be seen that, the running time on every data set is quite
small (less than a minute), which matches our analysis. In addition,
the running time is largely decided by the filter database size. For
example, WordNet has only 5 node labels, so it has fewer filter
patterns than other data sets. Therefore, it has the shortest filter
removal time. The portion of removed filters also varies across all
data sets, due to the different distributions of labels and edges. For
data sets like WordNet, the algorithm can remove more than half
of the filters, which shows the effectiveness of this method.

Second, we test the influence of removing redundant filters by
comparing the running time and failing ratio of CECI before/after

1708

(a) QuickSI. (b) VF2++.

(c) GraphQL. (d) CFL.

(e) CECI. (f) DP-iso.

Figure 10: The average failing branch ratio on all queries.

(a) GraphQL. (b) CFL.

(c) CECI. (d) DP-iso.

Figure 11: The average speedup with random filter selection
on all queries.

(a) Filter removing time. (b) Filter pruning ratio.

Figure 12: The performance of the filter removal algorithm.

running algorithm 3 (marked as CECI/S-2 and CECI/S-2*). The re-
sults are shown in Figure 13. In this figure, we set 𝑘 = 2 according
to previous results. Clearly, removing redundant filters do not in-
fluence the performance of SUFF much. The difference is less than
1% across all data sets.

(a) Running time. (b) Failing ratio.

Figure 13: The effect of removing redundant filters (CECI).

6.2.8 Performance on Real-World Queries. Finally, we conduct an
experiment for real-world queries on DBpedia. Specifically, we
run each algorithm to sequentially execute all real-world queries
and count the overall running time. Then we plug in SUFF to run
the same queries, and it will build filters for each query and use
them in later queries to simulate a long-run matching system. The
results are shown in Figure 14. Apparently, SUFF keeps a notice-
able acceleration ratio across the entire process. The improvement
is consistent with those on HPRD in Figure 9, majorly because
knowledge graphs are sparse and have a large number of labels,
and real-world SPARQL queries only have a few vertices. We also
notice that, though some methods have unstable performance for
some of the queries, the acceleration of SUFF is stable and robust.

(a) CECI, CFL, and DP-iso. (b) GQL, QSI, and VF2++.

Figure 14: The running time on real-world queries.

6.2.9 Summary of Findings. In summary, SUFF can help prune
much search space in most of the cases in our experiments. While it
can accelerate small queries in many cases, SUFF is more powerful
on large queries. The pruning power of SUFF depends on the quality
of filters, and those built on basic structures already give acceptable
performance improvement. We recommend applying SUFF for the
“hard” cases that existing approaches do not handle well, that is,
when the data graph only has a few labels, or when the query is large
in terms of vertices. Filter selection is important for performance
guarantee, and filter removal can effectively remove redundant
filters from the filter database without influencing the performance
much.

1709

7 RELATEDWORK
This work is closely related to subgraph matching and subgraph
enumeration. The major difference is that subgraph enumeration
focuses on unlabeled graphs.

Subgraph Matching. Subgraph matching has been extensively
studied in the literature. Solutions can be divided into two ma-
jor categories: the backtracking based methods and the join based
methods. Representative backtracking based solutions include VF2
[8], QuickSI [30], GraphQL [13], SPath [38], GADDI [37], TurboISO
[12], CECI [3], CFL [4], DP-iso [11], and VEQM [20]. They use back-
tracking and recursing to find the matches. It is a common sense
that the matching order can significantly influence the efficiency
of the backtracking-based algorithm. Thus, various optimizations
are proposed recently to find a good matching order which has
low cost. For example, in QuickSI the order is decided based on an
infrequent-edge-first manner, and CFL uses a path-based ordering
method. In DP-iso, dynamic matching order is used where the next
vertex to match is picked according to the parent vertex. In addi-
tion to the ordering technique, candidate refinement or filtering
techniques are also used to reduce the search space. In GraphQL
and SPath, neighbors’ labels of a vertex are used to filtering invalid
matches at early steps. This technique is then extended to a label
and degree filtering method, which is widely used in recent solu-
tions CECI, CFL and DP-iso. Besides, other methods are proposed
to further refine the candidate vertex sets, such as the compressed
path index in CFL, the compact embedding cluster index in CECI,
and the failing set pruning in DP-iso. These methods are designed
upon different graph properties, making these algorithms suitable
for different graphs. The filtering framework proposed in this work
is orthogonal to existing filtering techniques since it uses historical
matching result instead of artificial rules or assumptions. Thus, it
can work together with other optimizations without conflict. The
join-based subgraph matching algorithms also attract a large atten-
tion recently. Typically, the worst-case optimal join is adapted for
subgraph matching in graph systems like EmptyHeaded [1], and
Graphflow [18]. In these approaches, a query graph is first decom-
posed into small parts (units). Since the structure of these parts is
simple enough, their matches can be listed directly from the graph
or from a pre-processed index. Finally, these partial matches are
joined together following a join plan, to obtain the final matches.
Common optimizations in these approaches include designing a
good unit structure that is both easy to list and easy to join, and
reducing the intermediate result size. Compared with the backtrack-
ing approaches, join-based approaches enjoy the power of parallel
and distributed computations, at the cost of high memory/disk
consumption for materializing intermediate results. Therefore, join-
based approaches are more suitable for answering small queries
(e.g., less than 10 vertices) on large graphs.

Subgraph Enumeration. Compared with subgraph matching,
subgraph enumeration faces a much larger search space and result
size. Hence, existing approaches commonly utilize the power of
parallel or distributed computing to improve efficiency. Kim et al.
[21] proposes an I/O-efficient algorithm Dualsim through a dual ap-
proach, which executes several sub-plans in parallel. Sun et al. [35]
use the Trinity memory cloud to parallelize a join-based algorithm,
which employs STwigs as the join unit. Shao et al. [31] parallelize

the traditional DFS algorithm using Pregel [25]. They use several
pruning rules and the workload-balancing strategy to improve effi-
ciency. Lai et al. [22, 23] investigate the join-based algorithms based
on the Crystal structure with MapReduce. They try to reduce the
overall I/O cost by introducing different join units and join trees.
Gao et al. [10] achieve approximate subgraph enumeration through
message passing. They convert the query graph into a DAG, and use
Apache Giraph to pass messages between vertices. Qiao et al. [27]
propose a framework of vertex-cover-based-compression, which
can further reduce the I/O cost.

8 CONCLUSION
In this paper, we study the problem of subgraph matching. Unlike
traditional methods that utilize artificial rules or special graph prop-
erties, we propose a general filtering framework SUFF which uses
historical matching results to accelerate upcoming queries. Specifi-
cally, we propose to build a set of filters using partial matches of
a historical query 𝑞, and then use these filters to prune the search
space of a future query 𝑞′ if 𝑞 is a subgraph of 𝑞′. To strike a bal-
ance between the computation overhead and pruning power, we
propose a filter utility model, and try to maximize the overall utility
while limiting the number of used filters. Though this problem is
proved to be NP-hard, we propose an efficient greedy algorithm
with approximation bound 1 − 1

e . Considering that the size of the
filter database would grow quickly as more queries are proceed,
we propose the concept of filter domination, which enables us to
remove unnecessary filters in the database to save space while not
harming the pruning effectiveness much. Minimizing the database
size in terms of filter counts is also NP-hard, so we propose an
efficient greedy algorithm that runs in polynomial time. This al-
gorithm also ensures filter quality across multiple runs. We then
conduct extensive experiments on real-world datasets by plugging
SUFF into representative subgraph matching algorithms. Results
show that SUFF can effectively accelerate these algorithms with a
small space and computation overhead.

ACKNOWLEDGMENTS
Lei Chen’s work is partially supported by National Science Founda-
tion of China (NSFC) under Grant No. U22B2060, the Hong Kong
RGC GRF Project 16209519, RIF Project R6020-19, AOE Project
AoE/E-603/18, Theme-based project TRS T41-603/20R, China NSFC
No. 61729201, Guangdong Basic and Applied Basic Research Foun-
dation 2019B151530001, Hong Kong ITC ITF grants MHX/078/21
and PRP/004/22FX, Microsoft Research Asia Collaborative Research
Grant and HKUST-Webank joint research lab grants.

REFERENCES
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.

EmptyHeaded: A Relational Engine for Graph Processing. In SIGMOD.
[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
Semantic Web. 722–735.

[3] Bibek Bhattarai, Hang Liu, and H. Howie Huang. 2019. CECI: Compact Embed-
ding Cluster Index for Scalable Subgraph Matching. In SIGMOD.

[4] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient
Subgraph Matching by Postponing Cartesian Products. In SIGMOD.

[5] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. In Commun. ACM.

[6] Diane J Cook and Lawrence B Holder. 2006. Mining graph data. John Wiley &
Sons.

1710

[7] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In STOC.
[8] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)

graph isomorphism algorithm for matching large graphs. In IEEE transactions on
pattern analysis and machine intelligence.

[9] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
2014. Cuckoo Filter: Practically Better Than Bloom. In CoNEXT.

[10] Jun Gao, Chang Zhou, Jiashuai Zhou, and Jeffrey Xu Yu. 2014. Continuous
pattern detection over billion-edge graph using distributed framework. In ICDE.

[11] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin
Han. 2019. Efficient Subgraph Matching: Harmonizing Dynamic Programming,
Adaptive Matching Order, and Failing Set Together. In SIGMOD.

[12] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turbo iso: towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
SIGMOD.

[13] Huahai He and Ambuj K Singh. 2008. Graphs-at-a-time: query language and
access methods for graph databases. In SIGMOD.

[14] Xun Jian, Zhiyuan Li, and Lei Chen. 2023. SUFF: Accelerating Subgraph Match-
ing with Historical Data [Technical Report]. https://github.com/csjianxun/SUFF-
Code/blob/main/SUFF-Technical-Report.pdf (2023).

[15] Xun Jian, YueWang, Xiayu Lei, Yanyan Shen, and Lei Chen. 2020. DDSL: Efficient
Subgraph Listing on Distributed and Dynamic Graphs. In DASFAA.

[16] Alpár Juttner and Péter Madarasi. 2018. VF2++: An improved subgraph isomor-
phism algorithm. In Discrete Applied Mathematics.

[17] Sanjay Ram Kairam, Dan J. Wang, and Jure Leskovec. 2012. The Life and Death
of Online Groups: Predicting Group Growth and Longevity. In Proceedings of the
Fifth ACM International Conference on Web Search and Data Mining.

[18] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedhbi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In SIGMOD.

[19] RichardMKarp. 1972. Reducibility among combinatorial problems. InComplexity
of computer computations.

[20] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and
Wook-Shin Han. 2021. Versatile Equivalences: Speeding up Subgraph Query
Processing and Subgraph Matching. In SIGMOD.

[21] Hyeonji Kim, Juneyoung Lee, Sourav S Bhowmick, Wook-Shin Han, JeongHoon
Lee, Seongyun Ko, and Moath HA Jarrah. 2016. DUALSIM: Parallel subgraph
enumeration in a massive graph on a single machine. In SIGMOD.

[22] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. 2015. Scalable subgraph
enumeration in mapreduce. In PVLDB.

[23] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu Yang.
2016. Scalable distributed subgraph enumeration. In PVLDB.

[24] Jure Leskovec, Ajit Singh, and Jon Kleinberg. 2006. Patterns of Influence in a
Recommendation Network. In PAKDD.

[25] GrzegorzMalewicz, MatthewHAustern, Aart JC Bik, James CDehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD.

[26] Nataša Pržulj. 2007. Biological network comparison using graphlet degree
distribution. In Bioinformatics.

[27] Miao Qiao, Hao Zhang, and Hong Cheng. 2017. Subgraph Matching: on Com-
pression and Computation. In PVLDB.

[28] Xuguang Ren and JunhuWang. 2015. Exploiting Vertex Relationships in Speeding
up Subgraph Isomorphism over Large Graphs. In PVLDB.

[29] Carlos R. Rivero and Hasan M. Jamil. 2017. Efficient and Scalable Labeled
Subgraph Matching Using SGMatch. In KIS.

[30] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming
verification hardness: an efficient algorithm for testing subgraph isomorphism.
In PVLDB.

[31] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. 2014. Parallel
Subgraph Listing in a Large-scale Graph. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data.

[32] Nino Shervashidze, SVNVishwanathan, Tobias Petri, KurtMehlhorn, and Karsten
Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In
Artificial Intelligence and Statistics.

[33] Claus Stadler, Muhammad Saleem, Qaiser Mehmood, Carlos Buil-Aranda, Michel
Dumontier, Aidan Hogan, and Axel-Cyrille Ngonga Ngomo. 2022. LSQ 2.0: A
linked dataset of SPARQL query logs. Semantic Web Journal (2022).

[34] Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-Depth
Study. In SIGMOD.

[35] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.
Efficient subgraph matching on billion node graphs. In PVLDB.

[36] Douglas Brent West et al. 2001. Introduction to graph theory. Prentice hall Upper
Saddle River.

[37] Shijie Zhang, Shirong Li, and Jiong Yang. 2009. GADDI: distance index based
subgraph matching in biological networks. In EDBT.

[38] Peixiang Zhao and Jiawei Han. 2010. On graph query optimization in large
networks. In PVLDB.

1711

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Overview and Contributions
	1.3 Paper Organization

	2 Preliminaries
	2.1 Graph and Subgraph
	2.2 Subgraph Matching
	2.3 Search Tree and Partial Result
	2.4 Filter

	3 The Filtering Framework
	3.1 The Principle of Structure Filtering
	3.2 Utilizing Filters
	3.3 Framework Overview
	3.4 Filter Construction and Storage

	4 Filter Selection
	4.1 The Filter Utility Model
	4.2 The Maximum Utility Problem

	5 Filter Removal
	5.1 Filter Domination
	5.2 The Filter Removal Problem

	6 Experiments
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

