GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Zicong Hong
Hong Kong Polytechnic University
zicong.hong@connect.polyu.hk

Song Guo
Hong Kong Polytechnic University,
PolyU Shenzhen Research Institute

Enyuan Zhou
Hong Kong Polytechnic University
21038299r@connect.polyu.hk

song.guo@polyu.edu.hk

Wuhui Chen
Sun Yat-sen University
chenwuh@mail.sysu.edu.cn

ABSTRACT

Blockchain databases have attracted widespread attention but suffer
from poor scalability due to underlying non-scalable blockchains.
While blockchain sharding is necessary for a scalable blockchain
database, it poses a new challenge named on-chain cross-shard data-
base services. Each cross-shard database service (e.g., cross-shard
queries or inter-shard load balancing) involves massive cross-shard
data exchanges, while the existing cross-shard mechanisms need
to process each cross-shard data exchange via the consensus of
all nodes in the related shards (i.e., on-chain) to resist a Byzantine
environment of blockchain, which eliminates sharding benefits.

To tackle the challenge, this paper presents GRIDB, the first scal-
able blockchain database, by designing a novel off-chain cross-shard
mechanism for efficient cross-shard database services. Borrowing
the idea of off-chain payments, GRIDB delegates massive cross-
shard data exchange to a few nodes, each of which is randomly
picked from a different shard. Considering the Byzantine environ-
ment, the untrusted delegates cooperate to generate succinct proof
for cross-shard data exchanges, while the consensus is only re-
sponsible for the low-cost proof verification. However, different
from payments, the database services’ verification has more require-
ments (e.g., completeness, correctness, freshness, and availability);
thus, we introduce several new authenticated data structures (ADS).
Particularly, we utilize consensus to extend the threat model and
reduce the complexity of traditional accumulator-based ADS for
verifiable cross-shard queries with a rich set of relational operators.
Moreover, we study the necessity of inter-shard load balancing for
a scalable blockchain database and design an off-chain and live
approach for both efficiency and availability during balancing. An
evaluation of our prototype shows the performance of GRIDB in
terms of scalability in workloads with queries and updates.

PVLDB Reference Format:

Zicong Hong, Song Guo, Enyuan Zhou, Wuhui Chen, Huawei Huang,
and Albert Zomaya. GRIDB: Scaling Blockchain Database via Sharding and
Off-Chain Cross-Shard Mechanism. PVLDB, 16(7): 1685 - 1698, 2023.
doi:10.14778/3587136.3587143

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 7 ISSN 2150-8097.
doi:10.14778/3587136.3587143

Huawei Huang
Sun Yat-sen University
huanghw?28@mail.sysu.edu.cn

1685

Albert Zomaya
The University of Sydney
albert.zomaya@sydney.edu.au

1 INTRODUCTION

Characterized by trustworthiness, transparency, and traceability,
blockchain technologies have been integrated into many areas, such
as cryptocurrency [37], supply chain [24], international trade [13],
etc. In database management, blockchain technologies have at-
tracted considerable interest in upgrading traditional databases to
blockchain-empowered distributed databases [48], which forms an
emerging research direction namely blockchain databases.

Compared with traditional distributed databases, blockchain
databases transact and record data via blockchains and construct
an abstract database layer supporting various query functionalities
on top of blockchains, which endow the distributed databases with
immutability and traceability [8, 14, 40, 41, 56, 59, 62]. For example,
BlockchainDB provides shared tables as easy-to-use abstractions as
well as a key/value interface to read/write data stored in the block-
chain [8]. Pei et al. introduces a Merkle Semantic Trie-based index to
support semantic query, range query and fuzzy query on the block-
chain [40]. SEBDB adds relational data semantics into blockchain
storage and thus supports SQL query [62] and FalconDB presents a
blockchain database with SQL query with time window [41].

Due to the underlying non-scale-out blockchains, most existing
blockchain databases suffer from poor scalability. For example,
schemes in [41, 62] adopt Tendermint which achieves throughput
of about 1000 transactions per second (TPS) but its network scale
is less than 100. Schemes in [40, 59] adopt Ethereum aiming to
support thousands of participants but only have tens of TPS. The
poor scalability makes the blockchain databases hardly meet the
quality of service required in large-scale business in practice.

Sharding is one of the most promising technologies for the block-
chain scalability [5, 20, 28, 30, 42, 54, 57]. It divides the nodes into
small groups called shards, which can handle transactions in par-
allel and alleviate the storage overhead for each node. In such an
approach, the transaction throughput scales linearly with the num-
ber of nodes. To develop a scalable blockchain database, this paper
is going to construct an abstract database layer on a sharding block-
chain by distributing database data and the corresponding task of
storing, querying, or updating to different blockchain shards. How-
ever, such a sharding for database storage and workload introduces
a new requirement namely cross-shard database services, i.e., data
aggregation for query and workload balancing for management.

As shown in Figure 1a, the data aggregation is caused by the
sharding for storage. Particularly, the data related to a query may
be stored by the blockchain nodes from multiple shards; thus, the

https://doi.org/10.14778/3587136.3587143
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3587136.3587143

1844

57

1 2
1. Non-sharding
2. Sharding (no cxq.)
1 3. Sharding (5% cxq.)

(b)

10
3

Malicious
node

Figure 1: (a) Illustration for sharding blockchain database,
which requires two new functions, i.e., data aggregation for
query and workload balancing for management. (b) Transac-
tion throughput of non-sharding and sharding blockchain
databases. (cxq. represents cross-shard query.)

query requires the involvement of several shards. For example, if
there are two tables stored in Shard A and B, respectively, then a
SQL JOIN query combining these two tables involves both shards.
Moreover, the workload balancing is caused by the sharding for
workload. Particularly, due to the sharding, each shard is only
responsible for the workload of query and update to its storage.
The demand imbalanced and dynamic nature of applications results
in workload imbalance among shards, which significantly degrades
the performance of sharding blockchain database.

The Byzantine environment of blockchain databases makes the
technologies of traditional distributed databases no longer appli-
cable. Malicious nodes may collude with each other and violate
the protocol in arbitrary manners. For example, in distributed
databases [6], a query can be easily realized by requesting from
one database node in every related shard. However, in a sharding
blockchain database, the correctness, completeness, and freshness
of cross-shard queries can hardly be guaranteed when accidentally
requesting from a malicious node. Moreover, elastic workload bal-
ancing is the first-class feature in modern databases [50] achieved
by load migration. However, unlike one-to-one crash-tolerant mi-
gration in most distributed databases, the sharding blockchain data-
base requires a many-to-many migration across shards in which
malicious nodes can intercept, tamper or forge the migrating table.

To resist the Byzantine faults for cross-shard database services,
an intuitive idea is to process them through the cross-shard mech-
anism of blockchain sharding. In detail, the core of cross-shard
database services is to transfer tables among shards despite Byzan-
tine failures. The cross-shard mechanism guarantees that each data
transfer (e.g., money transfer in the conventional blockchain) is
agreed by the majority of honest nodes in all its related shards.
Transferring a table among shards through the mechanism can
guarantee that the table transfer will not be compromised (detailed
in § 2.1 and § 5.1). However, such an idea is costly. On the one hand,
each query or migration involves a massive set of semantics-related
data (e.g., rows belonging to a table) in a blockchain database. On
the other hand, all existing cross-shard mechanisms are on-chain
(i.e., requiring the consensus of all the related shards). Therefore, all
nodes in the related shards need to participate in the consensus on
numerous data. As proved in Figure 1b, the existing on-chain cross-
shard mechanisms cannot support even 5% cross-shard queries in a
sharding blockchain database with 32 shards (detailed in § 8).

1686

To this end, this paper focuses on relational blockchain data-
base and proposes the first relational sharding blockchain data-
base, named GRIDB. In comparison with the previous blockchain
databases, GRIDB guarantees high scalability while providing sup-
port for relational database services in blockchain sharding. Moti-
vated by the idea of off-chain payments and verifiable computing,
GRIDB enables an off-chain execution of the cross-shard database
services by adopting authentication data structure (ADS) to delegate
cross-shard communication-intensive tasks to a few nodes in a
verifiable manner. We summarize our contributions as follows.

e GRIDB introduces relational data semantics and query func-
tionality into blockchain transactions to abstract a sharding
blockchain as a distributed relational database. The clients
can send requests to any untrusted blockchain nodes for
storing, manipulating and retrieving data.

To provide a query layer of abstraction on sharded data,
we design a cooperative delegation-based approach with a
constant complexity of data transfer among shards without
sacrificing security. It delegates the tasks of data aggrega-
tion to a few nodes in different shards and constructs a
succinct proof used to on-chain verify.

To meet the dynamically skewed workloads and achieve
inter-shard balancing, we propose an off-chain live migra-
tion that migrates the database service among shards with
security, low cost, and minimum interruption.

We develop a prototype for GRIDB and conduct a compre-
hensive evaluation. The result shows that GRIDB achieves
a scalable throughput for SQL linearly increasing with the
shard number compared with the non-sharding works.

2 PRELIMINARIES

2.1 Blockchain Sharding

Blockchain sharding achieves scalability by dividing the blockchain
nodes into multiple shards, each of which is responsible for receiv-
ing, validating, and processing part of transactions. A blockchain
sharding scheme is generally composed of shard formation, intra-
shard consensus and cross-shard mechanism as follows.

1) At the beginning, each node is assigned to a shard. For example,
in Elastico [30], a node generates an identity by solving a Proof-of-
Work (PoW) puzzle to avoid Sybil attack and is assigned to a shard
with an ID equal the last several bits of the identity.

2) In each round, the nodes within a shard run an intra-shard
consensus to agree on the same block consisting of valid transac-
tions. For example, some systems [28, 30, 57] adopt a Byzantine
fault tolerant (BFT) protocol (e.g., PBFT [4] and collective signing
BFT [27]) as intra-shard consensus to resist malicious nodes. An
intra-shard consensus should satisfy safety, i.e., the honest nodes
agree on the same valid block in each round, and liveness, i.e., the
block in each round will eventually be committed or aborted.

3) Due to the sharding, some transactions may involve the state
of more than one shard and thus are called cross-shard transactions.
The core idea of most of the existing cross-shard mechanisms is to
divide each cross-shard transaction into several sub-transactions,
each of which is processed by a shard. Then, the shards handle them
with the guarantee of ACID, i.e., atomicity, consistency, isolation,
and durability, for every cross-shard transaction. In other words, if a

cross-shard transaction is committed by the cross-shard mechanism
successfully, it means that the majority of honest nodes in every
related shard receive the same transaction and agree that it is valid.

2.2 Authenticated data structures

Verifiable set operation (VSO). VSO [3, 39] is an ADS which
enables clients to outsource set computation tasks (e.g., intersection
and union) to an untrusted server. The server returns the result with
an ADS, depending on which, one can verify the result without
downloading the original data and re-calculating by itself. VSO
consists of the following probabilistic polynomial-time algorithms:

o (sk,pk) « genKey(I’l): Let A denote the security param-
eter. Based on a bilinear-map accumulator primitive [38],
it begins by choosing randomly a value s € Z,, and letting
sk = s be the secret key and pk = (g%, - -, ¢°") be the pub-
lic key, where g is the generator of a cycle multiplicative
group G and q is an upper-bound on the cardinality of sets.
acc(X) « setup(X): For a set X C Zp, it computes the

IT (x+s)
accumulation value of X by acc(X) = greX .

(X*,) « prove(Xi,Xj,pk): Given two sets X and X/, it
returns the intersection (or union) result X* and a proof 7.
{accept, reject} « verify(acc(X?’), acc(X/), X*, x, pk): On
input the accumulation values acc(X"), acc(X/), a proof
7, and the public key pk, it return accept if and only if
XU X/ = X* for intersection (or X! N XJ = X* for union).

The unforgeability for VSO has been proved to be held under the
q-SBDH assumption [2] in bilinear groups. For more details about
the proof, refer to [3, 39]. Additionally, the case of the intersection
(or union) for an arbitrary number of sets is similar.

Merkle tree. Merkle tree [32] is an ADS which enables clients
to verify the correctness of committed transactions. Its leaf nodes
are composed of hash values of transactions, and non-leaf nodes are
generated upward through hash operations until the root named
Merkle root is generated. Each block header stores a Merkle root for
its contained transactions; thus, the clients only need to synchronize
the headers to verify all committed transactions. A blockchain node
can provide the clients with any transaction and a Merkle proof
consisting of the siblings path of the transaction in the tree. The
clients can validate the transaction by constructing a Merkle root
based on the proof and comparing it with the locally stored one.

3 SYSTEM MODEL

System Components. In GRIDB, there are two types of entities:

1) The database clients are the service consumers of GRIDB. They
neither participate in the consensus nor store the whole content of
blockchains locally because they are often lightweight devices.

2) The blockchain nodes are the consensus participants for the
blockchain and are divided into a number of shards. Each node
is responsible for verifying, processing and storing transactions
of its located shard. GRIDB is a layer-2 database framework con-
structed on top of existing blockchain sharding systems, and it is
sharding-agnostic, which means the underlying system can adopt
any sharding schemes (including shard formation, intra-shard con-
sensus and cross-shard mechanism) from [22, 28, 54, 57]. However,
the underlying blockchain sharding system’s intra-shard consensus

1687

Sharding blockchain database

© Header
. ;:é Data txn 1
Client g : -] Query txn 2
- e Data txn 3
- 039 o5 o Data txn 4
T o
- & @
o © O
n O X [y oy B oy B g B
o
=

Inter-shard
balancing

Figure 2: System overview for GRIDB.

Workload

should satisfy both safety and liveness, and its cross-shard mech-
anism guarantees the ACID of each cross-shard transaction (see
§ 2.1). We emphasize that the cross-shard mechanism of the underly-
ing blockchain sharding system is one of the important components
of the off-chain cross-shard mechanism of GriDB, which will be
described in the following sections. To avoid confusion, we will call
the former on-chain cross-shard mechanism.

GRIDB considers an outsourced database scenario [35, 58] in
which the clients outsource their data management to the block-
chain. The nodes host the client’s databases and the clients send re-
quests to the nodes to create, store, update and query their databases.

Threat Model. The threat model of GRIDB relies on that of the
underlying blockchain sharding composed of two kinds of block-
chain nodes: honest and malicious. The honest nodes abide by all
protocols in GRIDB while malicious nodes may collude with each
other and violate the protocols in arbitrary manners, such as de-
nial of service, or tampering, forgery and interception of messages.
Although there are malicious nodes in the shards, the sharding
blockchains [28, 54, 57] can guarantee that each shard is trusted
with high probability, i.e., the result published by any shards is
trusted. Different from [8], GRIDB does not require a strong as-
sumption that each client trusts the nodes it connect.

Transaction Model. The requests of clients are processed in
the form of blockchain transactions that are divided into two types:
data and query transaction. The first one is used to update (such
as insert, update, and delete) the database state and the second
one is used to query the database state. Besides, in § 5.3, there are
some control transactions used to support the database management
such as database migration. The type division will not affect the
compatibility for the underlying blockchain because there is a “data”
field in the transactions of most blockchains, and GRIDB places
different data in the field for different types of transactions. The
details of transactions will be described as follows.

4 GRIDB OVERVIEW

4.1 System Overview

As shown in Figure 2, GRIDB considers a distributed relational
database storing a number of tables. For scalability, the workload
of each table is distributed to a shard (A fine-grained sharding for
blockchain database through table partition will be described in

§ 6.4.) If a client decides to query or update a table, it can issue
requests to any nodes in the shard responsible for the table. As
described in the threat model, the nodes receiving the requests
may be malicious, thus they are required to return a proof used for
authentication. To generate a proof, based on the request received, a
node first proposes a transaction which can be one of the following.

1) A data transaction is used to manipulate (such as insert, update,
and delete) the data and includes an INSERT, DELETE or UPDATE
SQL statement. In GrRIDB, the data is in the form of a relational
model. The same type of data has a unified semantic description
as a schema composed of several attributes. An insert statement
inserts new data based on explicitly specified values or from the
existing data via a nested subquery. Since blockchain is append-
only, a delete statement is implemented by marking old data as
invalid, i.e., cannot be queried, and an update one is implemented
by a sequence of delete and insert operations to overwrite. Based
on the data transactions recorded in the blockchain, each node in a
shard maintains a tamper-proof copy of a relational database.

2) A query transaction is used to record query results to clients.
A query statement begins with a keyword SELECT followed by a
subset of column names, and then a keyword FROM followed by
a table (or a JOIN sub-clause used to combine multiple tables in
a later section.) Following these, a WHERE clause is followed by a
sequence of predicates connected by logical operators (e.g., AND, OR,
NOT) that restrict the rows used when computing the output. After
processing the request, the node can put the query statement and
result into the data field of a query transaction. To avoid occupying
too much on-chain storage, the query results can be offloaded to
an off-chain storage and the query transactions only store the hash
of query results, according to which the clients can download the
correct results from the off-chain storage based one the hash.

Next, the node broadcasts the proposed transaction to the net-
work. If a data transaction is committed to the blockchain, the
majority of honest nodes accept and execute the data transaction,
which means the database state has been successfully updated. If a
query transaction is committed, the majority of honest nodes agree
on the query results. Finally, the client can authenticate the result
returned by its connected node by validating if the transaction for
its request is committed. This transaction validation for clients has
been implemented in most blockchains, such as Simplified Payment
Verification (SPV) in Bitcoin and Ethereum.

In addition to a Merkle tree storing transactions like traditional
blockchains, to enable every node or client to know every table’s
location, every node maintains an additional Merkle tree. The tree
stores the location of all tables in the form of table name-shard
id pairs. It is updated in each epoch according to a global cross-
shard control transaction including a new planning strategy for the
following epoch (refer to § 6.2). Thus, depending on the tree, every
node or client can find the correct shard storing the target table.

4.2 Challenges

Dividing the tables across different shards improves the blockchain
database’s scalability. However, it is not enough for a scalable block-
chain database due to two following problems.

Problem 1 (cross-shard query): A client’s query involving
tables only in a single shard can be served by one shard because

1688

each node of the shard can validate and agree on the query result
in an intra-shard consensus. However, a request to query the tables
from different shards cannot be completed by a single shard and
requires the cooperation of multiple shards. For example, in Figure 2,
a query joining on Table 1 and 2 involves the data of Shard A and
B thus cannot be completed by only one of them.

Problem 2 (inter-shard workload imbalance): It is hard to
guarantee that the workload of every table is the same and static,
thus some shards can be overloaded while some others remain idle.
For example, in Figure 2, Shard A is responsible for Table 1 and
Shard B is responsible for Table 2 and 3. At the beginning, the total
workload in Shard A and B is similar. However, if the workload of
Table 1 drops over time, Shard A becomes idle. To fully utilize the
throughput, dynamically migrating the workload among shards
and alleviating the effect of hotspots are crucial.

5 SYSTEM DESIGN

5.1 Strawman

For the two challenges above, we first describe a strawman shard-
ing blockchain database only based on the on-chain cross-shard
mechanism of the existing sharding systems as follows.

Consider a cross-shard query involving two tables, i.e., Table
1 and 2, located in Shard A and B, respectively. For such a cross-
shard query, we present a shard-cooperation approach based on the
on-chain cross-shard mechanism. Shard A first commits many cross-
shard data transactions involving Shard A and B, including the data
of Table 1 via the cross-shard mechanism. As described in § 2.1,
the mechanism guarantees the transactions can be committed in
Shard A and B. Then, Shard B can get Table 1 from the transactions,
compute the query result, and commit a query transaction with the
query result. However, when there are many cross-shard queries,
the table transfer among shards will be frequent, resulting in system
overloaded and network blocked.

For the inter-shard load balancing, the latest version of the ta-
ble should be transferred from the source shard to the destination
shard. If there is data being left out, the completeness of queries on
the table cannot be guaranteed after migration. Thus, we present a
stop-restart migration approach based on the on-chain cross-shard
mechanism as follows. Shard A first stops processing new trans-
actions for the table via an intra-shard consensus, which avoids
the migrating table being modified during migration. Then, Shard
A commits many cross-shard data transactions to reconstruct the
latest version of the table in Shard B. After all transactions are
committed, Shard A commits a cross-shard transaction to mark the
end of the migration, and Shard B can restart the service of the ta-
ble. However, when the migrating table is enormous, the approach
incurs a high penalty due to the prolonged service interruption for
the migrating table and the influence on other tables’ throughput.

To solve these drawbacks, we introduce two key designs for our
off-chain cross-shard mechanism in § 5.2 and § 5.3.

5.2 Cross-Shard Query Authentication

Motivation. Although the above shard-cooperation approach is
safe, it is expensive since the table transfer among shards for each
cross-shard query is between groups of nodes (to guarantee that
there is a majority of honest nodes for each shard participating).

An intuitive idea to avoid this overhead is to pick one delegate from
each shard. Then, for each cross-shard query, a delegate downloads
the related tables from the other delegates and evaluates the query
results. However, any malicious delegate can easily tamper with
the query result by providing a fake or out-of-date table.

We aim to design an ADS to allow the delegates to prove the valid-
ity of cross-shard query results. The existing outsourced databases
have designed some ADS for SQL [35, 58]. For example, for a JOIN
query involving the same column of two tables, a node treats the
columns of these two tables as two sets and constructs a proof for
their intersection through VSO [61]. However, the existing ADS for
SQL cannot be applied in our cross-shard query due to two difficul-
ties. First, different from the outsourced database in which there is
no sharding and a server stores the whole data copy, any delegate
in GRIDB only stores the tables of its located shard and downloads
tables from the other untrusted delegates and thus cannot construct
a valid proof by itself. Second, to support arbitrary verifiable SQL
queries, besides VSO, the other outsourced databases need to adopt
interval trees [61] or zero-knowledge proof [60], which costs tens
of minutes for a query [60] due to high computation complexity.

Thus, we propose a delegation-based approach by integrating
VSO with the intra-shard consensus to implement an efficient and
secure ADS for arbitrary SQL query in GRIDB. Its main idea is
to divide each query into some algebra operators with different
input data. Particularly, it validates the operators involving multiple
shards’ data through VSO and those involving single shard’s data
through the intra-shard consensus. The cross-shard query validity
can finally be proved through a chain of trust, i.e., proving the
validity of every operator from beginning to end. Such a manner
makes the best use of the advantage of both the shard-cooperation
approach (i.e., low computation) and the existing ADS for verifiable
SQL (i.e., low communication) and bypasses their disadvantage.

Design. The overall cross-shard query procedure is given in
Algorithm 1. For each cross-shard query, we identify the related
shard of the table following FROM as main shard and the shards of the
tables following JOIN as sub shards. A client can issue a cross-shard
query request to any nodes in the main shard. Next, one node is
chosen from each related shard (Line 2), which can be round-robin
or randomly by a verifiable random function [15]. The malicious or
low-response delegates can be replaced by a view change similar
to PBFT. The delegated node in the main shard is called the main
node denoted by M and those in the sub shards are called sub nodes
denoted by S. The main node downloads each involved table for
the query from the sub node in the corresponding sub shards (Line
3). After downloading all involved tables, the main node evaluates
the query result and generates a proof (Lines 4, 8-14).

To generate the proof, the main node first translates each SQL
query into a relational algebra tree composed of algebra opera-
tors [45], e.g., the right part of Figure 3. Each node in the tree
denotes a unary (or binary) algebra operator taking one (or two)
inputs, applying a function, and outputting its result to the next
operator. The edges represent data flow from bottom to top.

In the tree, we identify join (or union) operators involving ta-
bles in different shards as cross-shard operators and the others as
intra-shard operators. Each intra-shard operator can be processed by
the nodes of the corresponding shard based on their stored tables.
In comparison, each cross-shard operator involves the data gap

1689

Algorithm 1: Cross-Shard Query Authentication

Input: query request Q involving tables in a set of shards S
Output: query result R, verification object VO

Delegates M and S are selected from S

M downloads the related tables from S

M evaluates query result R and get proof Y via genProof(Q)

-

)

w

'

M proposes a cross-shard query transaction txn involving S
and including R and Y
if validateCx(S, txn) == True then
L VO « the list of SPV proofs in S for txn
Function genProof (Q):
for cross-shard operator op € Q do
Set C! and C/ as the columns involved by op and pk
as the public key
(C*, 1) « prove(Ci, Cj,pk)
Get bm! and bm/ based on C!, ¢/ and C*
Add (acc(Ch), acc(CY), m, bm!, bm/) to Y

return Y

o w

N1

10
11

12
13

14 Function validateCx(S, txn):
for shard s € S do
if Y or R is invalid then

L return False

15
16
17

18 txn is committed in the blockchain of s

19 return True

among shards, thus the main node needs to generate a proof. The
proof is composed of the accumulation values (refer to § 2.2) of the
corresponding columns in the tables to be joined or unioned, a VSO
proof, and a position indicator for the intermediate result (or final
result). The position indicator is a bitmap to indicate which rows
are chosen in a table. For example, considering the SQL statement
in Figure 3, we denote the oid columns of these two tables after
processing the selection operators as C! and C/, respectively. The
generated proof Y is (acc(C’), acc(CY), m, [1,0,1], [1,0,0]). The po-
sition indicators [1,0, 1] and [1, 0, 0] mean that the first and third
rows in Table 1 and the first row in Table 2 are chosen, respectively.
A cross-shard query may include multiple cross-shard operators
thus the main node will produce a list of proofs Y, each of which is
for a cross-shard operator.

After the query result and the corresponding proof are generated,
the main node proposes a cross-shard query transaction, including
the result and the proofs and involving the related shards (Line 5).
Then, to validate the cross-shard query, each related shard runs
an intra-shard consensus on the transaction by evaluating each
algebra operator for their stored tables and verifying the proofs
related to the tables of the shard (Lines 15-20). For example, as
shown in Figure 3-®, during the consensus on the cross-shard
query transaction, each node can validate and execute intra-shard
operators based on the local data and validate and execute cross-
shard operators based on the VSO proof. During the validation, they
can optimistically assume that the accumulation values related to
the other shards’ tables are valid. Finally, if the cross-shard query
transaction passes the validation of every related shard (Line 6), it

Table1 (Shard A) Table2 (Shard B) © Result evaluation
oid | num | cname || oid | company date Proof for(thiis)join o(pe}';tion
< acc(C"),acc(C?),
1 20 And 1 FedE 2021/5/21
s =X m,[1,0,11,[1,0,0], pk >
2 21 Bob 4 FedEx 2021/6/22 f
4 20 Carol 3 S.F. Ex | 2021/6/21
Noid
@ Query request T~
SELECT * FROM Table1 JOIN Table2 Onum=20 Ooid=1
WHERE Table1.num = 20 AND Table2.0id = 1 t I
AND Table1.0id = Table2.oid Table 1 Table 2

© Result validation Intra-shard operators

Shard A: Blockchain—ITable 1 (Latest) > Gpum=z0' * Mpig ~> Query result
. 1

Cross-shard operators

< acc(C?), acc(CV), 17:,‘[1,0,1], [1,0,0], pk >

Shard B: Blockchain= Table 2 (Latest) — 0,;4-1 = Niid - Query result
. 1

Figure 3: Example for ADS proof generation of two tables
distributed in Shard A and B, respectively. (o is an operator
to select rows from a relation and is an operator to join
tables based on a specified column.)

will be committed in the blockchains of all related shards and the
client can accept the query result included in the transaction via
SPV (Line 7). Besides, if a malicious main node sends different copies
of a transaction to shards, the client can detect the inconsistency
by checking the Merkle proofs of the transaction via SPV (Line 7).

Security Analysis. The analysis relies on the intra-shard con-
sensus of blockchain sharding thus we define v as the fault thresh-
old [34] of the adopted blockchain sharding in GRIDB. For example,
Rapidchain [57] tolerates up to v = 1/2 Byzantine faults, while
the asynchronous or Omniledger [28] tolerates only up tov = 1/3
Byzantine faults. Next, we describe the formal definition [60, 61] of
our cross-shard query’s security as follows.

DEFINITION 1. A query is secure if any polynomial-time adver-
sary’s success probability is negligible in the following experiment:

For a query q, the adversary is picked as main node or sub node for
the generation of query transaction including result R. The adversary
succeeds if the query transaction is committed in all related shards
and one of the following results is true: 1) R includes a row which does
not satisfy q (correctness); 2) There exist a row which is not in R but
satisfies q (completeness); 3) R includes a row not from the latest
tables generated by all the committed data transactions (freshness).

THEOREM 1. Our proposed cross-shard query mechanism satisfies
the security property as defined in Definition 1 if the proportion of
malicious nodes in each shard is no more than the fault threshold v.

Proor. We prove THEOREM 1 in three cases, corresponding to
how GRIDB defends against the three different adversaries in DEFI-
NITION 1 for each cross-shard query in correctness, completeness,
and freshness. We first describe the three cases: Case 1: This case
means a tampered or fake row within the result is returned, which
does not satisfy the query q. In this case, the tampered or fake row
can pass the client’s verification under the correctness in DEFINI-
TION 1. Case 2: This case means a row that satisfies g is missing
from R. In this case, the incomplete result can pass the verification
of the client under the completeness in DEFINITION 1. Case 3: This

1690

case means the result R involves an old row that satisfies ¢ but is
not from the latest tables. In this case, the old result can pass the
client’s verification under the freshness in DEFINITION 1.

If any of the above three cases occur, it means the computation of
at least one relational operator (intra-shard or cross-shard operator)
for a committed query is invalid, i.e., the malicious nodes in a related
shard tamper with the executing of intra-shard operators during
intra-shard consensus, or the main node generates a wrong result
in the executing of cross-shard operators. However, this contradicts
two assumptions. The first one is that when the proportion of
malicious nodes in each shard is no more than the fault threshold v,
the safety of the intra-shard consensus holds [53]. Second, according
to the unforgeability of VSO under the q-SDH assumption [3, 39],
the ADS for set operations guarantees that the computation of each
cross-shard operator in delegates is valid, and any invalid results
can be detected by the intra-shard consensus. O

Performance Analysis. We analyze the time for a cross-shard
query involving m cross-shard operators as follows. Three steps
occupy most of the time, i.e., the table transfer (Line 3), the proof
generation (Line 4), and the confirmation latency of the query
transaction (Line 6), which is also proved in § 8. Thus, the analysis
is developed around these three steps. For the table transfer, the time
cost is linear to the size of the related tables. We introduce several
refinements to reduce this time cost and improve query efficiency in
§ 6.1. Next, according to [3, 39], the proof generation time for each
set operation involving N elements is O(N log? N loglog N). Thus,
the proof generation time is O(mN log? N loglog N). Finally, the
confirmation latency denotes the delay between the time that the
query transaction is issued from the main node until the transaction
is committed, which depends on the throughput, demand, and
number of block confirmations of the blockchain.

5.3 Inter-Shard Load Balancing

Motivation. Observe that the drawback of the stop-restart ap-
proach in the strawman system results from the interruption for
transaction processing during migration. Moreover, because the ap-
proach is on-chain, the migration occupies the transaction through-
put of the shards involved, which interrupts the new transactions
of the other tables. Thus, to avoid these drawbacks, we design an
off-chain live migration approach for GRIDB. Its main idea is to
design an off-chain technique to minimize the number of on-chain
transactions and a dual mode with cross-shard synchronization and
concurrency control to minimize the impact of interruption to the
migrating table during migration.

Design. Figure 4 illustrates the timeline of cross-shard migration
and the messages exchanged between two shards. The life cycle of
a table includes the following three modes.

1) Normal Mode: The normal mode for a table (called 77) is the
period in which the data or query transactions of the table are
processed normally by the shard it belongs to. The normal mode
accounts for most of the time for the table.

2) Init Mode: When 7 is going to be migrated from the source
shard (called S) to the destination shard (called D), the init mode
starts. (We will discuss the trigger of table migration in § 6.2 which
aims for load balancing and guarantees that there is a super majority
of honest nodes in S knowing 7~ and D.) The nodes in S first

@ State checkpoint

Migrating Table
1D | Name | Age New data txn:
T+ | ~ Metadata
2 B 23

Source
Shard 2 8 4 o) 6 7
 Migration star’t @ Oft-chain | ; de;:xn af ~@ Migration end

synchronization (& XEKERO New data txn:
ee-s y

v 4

Destlnat|on
Shard . -— 2 -« 3 -« 4 -— 5 -« 6 -« 7

Figure 4: Overview of off-chain live migration. A solid line
with arrowhead represents a cross-shard transaction and a
dotted line with arrowhead represents an off-chain cross-
shard communication.

construct the metadata for 7~ via a hash function such as SHA
(Figure 4-@) and commit a cross-shard control transaction involving
S and D (Figure 4-8). The transaction includes the metadata and a
block number, representing a checkpoint for 7 in this block number.
When the control transaction is committed in both shards by the
on-chain cross-shard mechanism, the init mode ends.

3) Dual Mode: In the dual mode, S begins to transmit 7~ to D. The
transmission among shards is pluggable and can be implemented
by one-to-one communication or gossip mechanisms (Figure 4-©).
The nodes in D only accept the table matching the metadata in the
control transaction. Because the download of the whole table may
cost a lot of time, we adopt a pre-copy scheme in which the nodes
in O can pre-download 7~ from § in the normal or init mode and
validate it after the commitment of the control transaction.

To keep the service for 7~ during the dual mode, S continues
to process the newcoming data and query transactions related to
7. The new data transactions in S may change the content of 7,
thus D should be notified. It can be realized by committing all new
data transactions as cross-shard transactions, however, which slows
the service of 7~ due to the overhead of cross-shard mechanism
and blocks the throughput of S and D when the demand is high.
Thus, we adopt an off-chain cross-shard notification mechanism
based on Merkle tree as follows. First, in GRIDB, similar to the other
sharding systems [22, 54], each node will be a light node for the
other shards and store the block headers of all shards. It does not
hurt the scalability, since the light nodes do not need to participate
in the consensus and each header occupies little storage space and
bandwidth. The notification is in the form of an off-chain message
including a data transaction and its Merkle proof. Any nodes in S
can notify D via gossip mechanism [25]. Based on the notification
received, D gets the latest data transactions for 7°. For example, as
shown in Figure 4, a new data transaction for the migrating table
arrives in S and is committed at the 4-th block. Any honest node
in S can send the new transaction with its Merkle proof in the 4-th
block to D for synchronization of 7~ between S and D.

After a node in D completes downloading, it proposes a cross-
shard control transaction involving 9 and S or participates in the
consensus on the one proposed by another node to show that it
has downloaded the table successfully. Thus, the transaction can be

1691

committed if the majority of honest nodes in D confirm that they
have downloaded the migrating table (Figure 4-@). We assume that
the off-chain notification arrives reliably and without latency here,
which will be discussed later. Finally, the migration is completed
and D has full ownership of the migrating table. It means that
the later transactions (e.g., data/query transactions and migration
requests) for the migrating table are processed by D only.

Asynchronous Issues. In the above, we ignore some problems
resulting from the network latency or malicious nodes. Thus, we
discuss them and provide some designs as follows.

Problem 1: In the init mode, due to the transaction latency exist-
ing in the blockchain, i.e., the delay between the time that a node
sends a transaction to the network until the time that the transac-
tion can be confirmed by all (honest) nodes, the metadata generated
by different nodes may be in different versions. Thus, S may be
unable to reach a consensus on the same control transaction. To
synchronize the metadata among nodes in S, GRIDB sets a rule
as follows. When a node begins to generate the metadata, it stops
processing any new data transactions of 7~ and disagree on blocks
including these transactions during consensus until the init mode
ends. Note that a node still accepts the newly committed blocks and
updates its local database state and the corresponding metadata
even if it disagrees them. Moreover, before a cross-shard control
transaction is committed successfully, the nodes in S keep updat-
ing the metadata they generate based on the new block. If there
is already the same control transaction proposed by other nodes
waiting to be committed, the node can participate in its consensus.

Problem 2: In the dual mode, we adopt an off-chain notification
mechanism to minimize the impact of interruption during migra-
tion. However, the off-chain communication among shards is not
reliable thus the notifications may get lost. For the problem, we
adopt the following designs. First, every new data transaction in the
dual mode will be assigned an increasing sequence number before
being committed in S. Thus, if a node in D finds itself missing
some transactions, it can directly request the corresponding notifi-
cations from the nodes in S. Second, after the control transaction
is committed (Figure 4-@), S needs to commit a control transaction
including the total number of new data transactions in the dual
mode and sends the control transaction with a Merkle proof to D.
Besides, the nodes in D can actively ask the control transaction.
Each node in D begins to process new transactions for 7 until it
gets the total number of notifications and downloads all data trans-
actions. Finally, D continues the service of 7~ when the majority
of honest nodes in O finish downloading.

Security Analysis. We first describe the formal definition of
the security [10] for our off-chain live migration as follows.

DEFINITION 2. A migration is secure if achieving safety and live-
ness despite Byzantine failure. The safety requires serializable isola-
tion, i.e., the migrating table’s transactions run in serial order during
migration, and durability, i.e., the committed transactions will not get
lost after migration. The liveness indicates it eventually terminates.

THEOREM 2. Our proposed off-chain live migration satisfies the se-
curity property as defined in Definition 2 if the proportion of malicious
nodes in each shard is no more than the fault threshold v.

ProoF. During the migration, only one of S and D has full own-
ership and processes transactions for the migrating table. The intra-
shard consensus guarantees that there is a serializable order for
transactions among nodes in each shard, thus achieving serializable
isolation. For durability, in the init mode, because the honest nodes
update their metadata before the control transaction is committed,
D can download all data for 7 that are committed before the dual
mode begins. The durability for transactions that are committed in
the dual mode can be guaranteed by the final control transaction,
including their total number in S. Furthermore, the liveness can be
guaranteed since the end conditions for each mode depend on the
commitment of cross-shard transactions whose liveness has been
shown to hold under the threat model of super-majority honest in
each shard in any sharding works [53]. O

If the malicious nodes in S construct a wrong metadata for 77,
the intra-shard consensus guarantees that the invalid transaction
including the wrong metadata would not be committed. The nodes
in D can detect wrong tables and wrong notifications according to
the on-chain metadata and Merkle root, respectively.

Performance Analysis. The time for each migration is at least
the latency of two cross-shard control transactions, one of which
denotes the beginning of dual mode and the other the end. In
parallel with the first one, 7™ is transferred between shards. Its time
depends on the adopted communication methods, network status,
and network scale. After the second one, to guarantee that all data
transactions are received by D, there is a control transaction in S
and the nodes in D need to download the data transactions that they
miss. The time of the step also depends on the network environment.
In the worst case, if all data transactions during migration are
missed by the majority of honest nodes, the nodes may need some
time to download the transactions they missed. Besides, the service
of 7 may be halted for a time due to the first and third designs for
the asynchronous issues during migration.

6 DESIGN REFINEMENT

6.1 Cross-shard Query Efficiency

Although the delegation-based approach in § 5.2 reduces the com-
plexity for table transfer in a cross-shard query from O(SN?) (de-
rived from the strawman in § 5.1) to O(S) where N is the number
of nodes in a shard and S is the number of related shards for the
query, transferring a huge table from the sub nodes to the main
node still costs a lot. However, many rows are useless in practice.
For example, for query #5 in § 8.2 involving tables with millions of
rows, the size of its final result only have single-digit items. GRIDB
optimizes the transferring of table among delegates as follows.
We first optimize by applying the unary operators and binary
operators involving tables in the same shard early in the tree of each
cross-shard query. Particularly, each sub node processes all selection
operators related to its table and transfers the processed table to
the main node. For example, in Figure 3, the selection operation
Onum = 1 is moved to the bottom of the tree and processed by the
sub node in Shard A, reducing the size of Table 1 to be transferred
to the main node in Shard B. Because the execution order of the tree
is bottom-up, the main node in Shard B downloads the part of tables
including these temporary outputs, based on which it can continue

1692

to process the next operation. Moreover, some projection operators
also can be applied early similar to the selection operators.

Next, we adopt bloom filter (BF) for each cross-shard operator to
filter out unnecessary data before transferring tables. BF [46] is a
space-efficient probabilistic data structure used to test whether an
element belongs to a set or not. In GRIDB, before downloading the
tables for a cross-shard operator, the main node can build a BF for
the target column in its table and send the filter to the sub nodes.
The sub nodes use it to filter their own table before transferring
tables to the main node. Thus, most useless data are filtered out
before being transmitted, reducing communication overhead.

6.2 Load Balancing Scheduler

A critical problem to achieve inter-shard balancing is how to gener-
ate a good planning strategy to distribute the load to shards and how
to apply the strategy in a distributed and safe manner in GRIDB.

For a planning strategy, similar to distributed databases [9, 55],
GrIDB follows a widely-used greedy planning algorithm [50]. It
iterates through the list of tables, starting with the one with the
hottest demand. If the shard currently holding this table has a load
exceeding the average demand, the algorithm migrates the table to
the least load shard. The algorithm is easy to implement and has
been proved to be efficient in many database scenarios [9, 50, 55].

To run the above algorithm in a decentralized manner, GRIDB
extends it by considering its execution in the existing sharding
blockchains. Particularly, resharding phase is an important phase
during the lifecycle of sharding blockchains [28, 30, 57]. A shard-
ing blockchain proceeds in epochs, where each epoch consists of
a resharding phase followed by multiple intra-consensus rounds.
During the resharding phase of an epoch, a shard will be elected
as the reference shard based on a round-robin rule. In GRiDB, the
reference shard can act as the load balancing scheduler in the re-
sharding phase. The leader of every shard computes the demand of
each table and reports it to the reference shard in a cross-shard con-
trol transaction via the cross-shard mechanism. After receiving the
demand of every table, the leader of the reference shard proposes a
cross-shard control transaction, involving all shards and including
anew planning strategy in the following epoch, via the cross-shard
mechanism. The cross-shard mechanism can guarantee that the
new planning strategy is known by a majority of honest nodes
in every shard. Based on this strategy, the tables can be migrated
among shards using the approach in § 5.3.

Security Discussion. The greedy planning algorithm and the
table demand computing can be deterministic, thus any node can
check the validity of their results. This guarantees that only the
cross-shard control transactions, including valid table demand or
valid planning strategy, can be committed in all the related shards
and the invalid ones will be aborted via the cross-shard mechanism.

6.3 Cross-shard Insertion/Deletion/Update.

In GrIDB, a data transaction can include a SQL statement for an in-
sert, delete or update operation with nested subqueries or a multiple-
table delete/update operation [36]. If the nested subquery is cross-
shard in the first case or the related tables belong to multiple shards
in the second case, the data transaction involves multiple shards.

For the first case, a data transaction including the cross-shard sub-
query result (or its hash) can be processed by the delegation-based
approach in § 5.2 and committed as a cross-shard transaction. The
transaction involves both the shard for the inserted/deleted/updated
table and the related shards for the nested subquery. For the sec-
ond case, a multi-table deletion/update can be considered as delet-
ing/updating the specified rows in multiple tables based on a query
to these related tables. Thus, it can also be processed as a cross-
shard data transaction including query results similar to the first
case. Finally, because the cross-shard mechanism guarantees the
atomicity of cross-shard transactions (see § 2.1), the cross-shard
insertion, deletion, and update take effect in all related shards. Any
invalid cross-shard data transactions (e.g., including wrong sub-
query results) will be aborted by the cross-shard mechanism.

6.4 Horizontal/Vertical Table Partition

For each table, besides storing the entire table in one shard as
discussed in § 4.1, GRIDB can be developed into a fine-grained
sharding blockchain database through horizontally or vertically
partitioning the table into partitions. The former allows the table
to be partitioned into disjoint sets of rows and the latter disjoint
sets of columns. Load balancing can benefit from this fine-grained
sharding for blockchain database since the database workload can
be more evenly distributed to the blockchain shards.

The partitions of each table are distributed to different shards,
thus a table is stored in multiple shards. For a horizontally parti-
tioned table, each query needs to commit the same query transac-
tion to all the related shards of the query. For a vertically partitioned
table, each of its partitions can be regarded as an individual table.
If a query involves the columns within a partition or the partitions
related to the same shard, the query involves one shard and can
be processed as a query transaction in the shard. However, if the
query involves multiple columns of several partitions from different
shards, it needs to be committed as a cross-shard query transaction.

7 DISCUSSION
7.1 Permissioned and Permissionless Setting

GRIDB can be applied in both permissioned and permissionless
scenarios, relying on the underlying blockchain sharding system.
For a permissioned scenario, only a set of known, identified, but
untrusted nodes can serve as blockchain nodes similar to the permis-
sioned blockchain databases [8, 41]. For a permissionless scenario,
the blockchain database is public and open, and anyone can become
a blockchain node without a specific identity. To resist Sybil attacks
caused by the permissionless setting, GRIDB can use a PoW-based
identity generation as described in § 2.1, which is widely adopted
by the permissionless blockchain sharding [28, 57]. Moreover, to
compensate for the consensus overhead of blockchain nodes and
avoid the Verifier Dilemma [31], GRIDB will explicitly charge fee for
each transaction and reward the blockchain nodes [47]. We leave
an incentive mechanism design for GRIDB as our future work.

7.2 General Join

The cross-shard query authentication in § 5.2 works for equal-
ity join, because the cryptography primitive adopted in GRIDB

1693

supports set intersection only. For a general join case such as non-
equijoin (i.e., join operation using comparison operator like >, <,
>=, <= with conditions), we can resort to cryptographic technolo-
gies with more general verifiable computing capacity, e.g., Trusted
Execution Environment (TEE) and Succinct Arguments of Knowl-
edge (SNARK), which will be left as our future works.

8 EXPERIMENTAL EVALUATION

Implementation. We implement a prototype of GRIDB in Go [16]
based on Ethereum [12] and Harmony [18]. We adopt a BFT consen-
sus with BLS multi-signature [19] as the intra-shard consensus and
a library named ate-pairing [21] for the VSO. The on-chain cross-
shard mechanism of GRIDB is similar to that of Monoxide [54].
Particularly, to commit a cross-shard transaction, each of its related
shards needs to validate and commit it. Only if the transaction is
committed in the blockchains of all its related shards, it is regarded
as being committed successfully. This can be checked based on a
list of Merkle proofs, each corresponding to a related shard. Besides,
by checking the transaction hash included in every Merkle proof,
it can be guaranteed that every related shard commits the same
transaction. The optimization designs in § 6 are also implemented.
To implement a MySQL interface to GRIDB, we adopt a storage-
agnostic SQL engine with in-memory table implementation [7].
Setup. The testbed is composed of 16 machines, each of which
has an Intel E5-2680V4 CPU and 64 GB of RAM, and a 10 Gbps net-
work link. Similar to [28, 57], to simulate geographically-distributed
nodes, we set the bandwidth of all connections between nodes to
20 Mbps and impose a latency of 100 ms on the links in our testbed.
Baseline. For comparison, we implement a non-sharding block-
chain database. This type of blockchain database does not need to
consider the challenge of cross-shard query and inter-shard bal-
ancing because each node stores and processes the whole database.
For a fair comparison, this blockchain database also adopts the
signature-based BFT consensus adopted by GRIDB as its under-
lying consensus. The basic idea of the non-sharding blockchain
database is similar to that of the existing works such as FalconDB
and SEDBD [41, 62] except that they adopt the other variants of BFT
consensus and support some other functionalities (such as indexes).
Moreover, we implement an on-chain sharding blockchain database
including shard-cooperation cross-shard query and stop-restart
inter-shard migration based on our strawman system in § 5.1.
Workloads. We evaluate the performance of GRIDB using TPC-
H [52] which is widely used by the database community. It consists
of 8 tables for each dataset and 22 types of SQL queries. Our exper-
iments are run on a database with 16 TPC-H datasets which are
uniformly split across shards. Besides, we add data transactions,
each of which insert, delete or update a new row, for the workload
of each dataset. To simulate the cross-shard query, there is a propor-
tion of query transactions involving tables in different shards and
the proportion is called cross-shard ratio. To simulate the workload
imbalance, similar to [9, 55], we set two imbalanced settings. For
low imbalance, we adopt a Zipfian distribution where two-thirds
of the accesses go to one-third of the datasets. For high imbalance,
40% of transactions follow the Zipfian in low imbalance, and the
other transactions target 4 datasets initially on the first shard.

Off-chain On-chain
2500
3% query x 0% cx
2000 5% query e 50% cx E
--=- 7% query Ao 100% cx b
" 15004 ~ 100% query Al
a 5
F 10001 L x
| ‘Non-2 4 8 1632 e
500 sharding | ’355"“:;,
0Ls o T i MR s s
Non-sharding 2 4 8 16 322 4 8 1632

Shard number

Figure 5: Transaction throughput for GRIDB, the on-chain
sharding blockchain database, and the non-sharding block-
chain database (cx means cross-shard ratio.)

8.1 Overall Performance

To evaluate the scalability, we measure the transaction through-
put in TPS for the non-sharding blockchain database and GrRIDB
with varying percentages of query transactions and cross-shard
ratios. We deploy 30 nodes for each shard. Figure 5 shows that
the measured TPS of GRIDB increases linearly with the number of
shards and decreases when there are more cross-shard query trans-
actions in the workload. It is because the data transactions only
involve one shard, and the verification is simple. However, a query
transaction is computationally-intensive (it requires 0.17 ~ 2.38
seconds even in a local database as discussed in § 8.2) and needs
the delegation-based procedure for cross-shard verification, thus,
committing query transactions costs more. Moreover, a query in-
volving more shards causes more table transfers and more complex
proof generation among the delegated nodes, which will be further
studied in § 8.2. In comparison with GRIDB, the on-chain shard-
ing blockchain database has a similar throughput when there are
no cross-shard queries. However, its throughput drops to nearly 0
when 50% or 100% of queries are cross-shard. It is because, for the
on-chain one, the table transfer among shards caused by cross-shard
queries can result in serious network blocked.

To evaluate the performance of GRIDB for cross-shard data trans-
actions, we pack cross-shard queries (used to delete the cross-shard
query results) into cross-shard data transactions. According to Fig-
ure 5, GRIDB’s throughput for cross-shard data transactions is
similar to that for cross-shard query transactions. It is because, as
described in § 4.1, GRIDB implements a delete statement by marking
old data as invalid. Except for reaching consensus on cross-shard
query results like a cross-shard query transaction, a cross-shard data
transaction needs to include the information of marking the results
as invalid, and each node needs to delete the results from its in-
memory tables. However, these additional overheads are negligible.
Thus, the expense of cross-shard data transactions and cross-shard
query transactions are similar.

We also evaluate the storage overhead per node after loading all
tables in the non-sharding blockchain database and GrRIDB with
varying shard numbers. The results are given in Figure 6. Because
each row is committed in the form of a data transaction and the
data transactions are packed into blocks, loading the tables will
introduce the block-related data including transaction-related and
header-related data. From Figure 6, we can observe that, first, as
the number of shards increases, the storage overhead for each node
is reduced. Second, the transaction-related data cost half storage

1694

raw data W header

B transaction HEE public key

_
e

S

°

o 0.10

< 0.05

o 0.00

3 Non- 2 4 8 16
% — sharding

© f 3 =
S T T T T T

& Non-sharding 2 4 8 16

Shard number

Figure 6: Storage overhead per node for GRIDB and the non-
sharding blockchain database.

Table 1: Comparison of server and client times for evaluating
queries using different approaches (The results for vSQL and
SNARKSs are provided in [60].)

\ vSQL \ SNARKs \ GrIDB | MySQL
Query | Server Client | Server Client | Server Client
#19 4892s 162ms | 196000s 6ms 41.14s 221ms 2.38s
#6 3851s 129ms | 19000s 6ms 493s 221lms | 1.44s
#5 5069s 398ms | 615000s 110ms | 490.33s 221ms 1.95s
#2 2346s 508ms | 58000s 40ms | 56.86s 222ms 0.17s

compared with the raw data. Third, compared with the other data,
the storage of headers can be ignored. Forth, because the largest
table in the evaluation consists of 6 million rows, the public key
size of verifiable set operation (VSO) is about 0.76 GB. We regard
the storage overhead caused by the public key as acceptable in the
case of tables with millions of rows since it is considerably less than
the recommended storage space of most blockchain nodes (such as
2 TB in Ethereum [11]) nowadays. Additionally, the storage of the
on-chain sharding database is the same as that of GRIDB.

8.2 Performance of Cross-shard Query

We evaluate the performance of cross-shard queries. For compar-
ison, we adopt two approaches providing the same functionality
as our cross-shard query. These approaches are motivated by two
previous works, i.e., vSQL [60] and libsnark [49], which can sup-
port arbitrary SQL queries based on interactive proof and SNARKs,
respectively. Depending on either of these two works, any nodes
can directly provide the result of a cross-shard query and a proof
to the clients without consensus. We also evaluate the performance
of the local computation for SQL in our nodes, based on MySQL.
The server time is the time required for the server to evaluate the
query and produce a valid proof and the client time is the time
for the client to verify the proof. In GRIDB, the server time is the
duration from Line 2 to Line 6 in Algorithm 1, and the client time
is the duration of Line 7 in Algorithm 1.

As a representative example, we pick the query #19, #6, #5, #2 in
TPC-H and the results are given in Table 1. These queries include
most SQL types, e.g., join, range, min and nested query. According
to Table 1, the server time of GRIDB is orders of magnitude less than
that of vSQL and SNARKSs while the client time is similar. For the
server time, it is because our cross-shard query only constructs the
expensive ADS for a few cross-shard operators while the security
of the other operations depends on the intra-shard consensus. For

Table 2: Time of each step for queries in GRIDB (CL: Confir-
mation latency, PG: Proof generation, TT: Table transfer.)

Query ‘ CL ‘ PG ‘ TT ‘ The others
#19 4.38s | 36.74s 4.04ms 10ms
#6 3.44s 1.44s 0s 5ms
#5 3.95s | 483.01s 3.2s 100ms
#2 2.17s | 54.46s | 139.57ms 80ms

PG —&—TT —6—CL —e—The others PG =6~ TT —6— CL —e— The others

500 500
01 \7 T — T T 01 T T T T T T
ool G—e—// 2.51
w w 7
~0.0 Lo.04
o - - - - o - - - - - -
E s E 5
= A 6 e/0 =
0 04
0.2 1 0.2
,___.———o——o———"”‘
0.0 1 T T T T 0.0 T T T T T T
6x10° 6x10* 6x10° 6x10° 1 2 3 4 5 6
Table size Shard number

(a) Table size (b) Number of the related shards
Figure 7: Performance for query #5 with different table size
and number of related shards in GRIDB.

the client time, it is because the clients of GRIDB only need to check
whether their query transactions are confirmed or not via SPV. Note
that the evaluation is based on the worst case, which means the
tables for each cross-shard query are all located in different shards.

The time cost of each step for the queries in GRIDB is summarized
in Table 2. The results shows that the three steps occupy most of
the time, matching the performance analysis in § 5.2. Furthermore,
from Table 2, we have the following observations. First, according
to the result of MySQL in Table 1, query #19 is the most complex
one and the nodes spend more time on validating it during the
intra-shard consensus, thus its confirmation latency is the most.
Then, the proof generation and table transfer of query #5 is the
most, because the query needs to join six tables, which results in
six cross-shard operators in the worst case. Finally, the time cost
of query #6 is the least, because it is a simple 3-dimensional range
query followed by an aggregation for a single table.

We also evaluate the performance of the cross-shard query of
GRIDB with varying table size and number of related shards. We
scale the number of rows in the largest participating table in query
#5 from 6 X 10° to 6 x 10° and distribute its participating tables to
1 ~ 6 shards. Figure 7a and Figure 7b show that the time cost is
significantly reduced when the participating tables are smaller or
there are fewer related shards. It is because the complexity of proof
generation depends on the participating table size and the number
of cross-shard operators, matching the analysis in § 5.2.

8.3 Performance of Inter-shard Balancing

We evaluate the throughput during migration via the off-chain live
migration in GRIDB and the stop-restart approach in the on-chain
sharding blockchain database with various skewed workloads and
the results are given in Figure 8. The process includes 48 migrations.

1695

—e— Stop-restart GriDB

kel

c (a) Low skewness (b) High skewness

S T 800 T—

1 1

«» 10004 1]

2 ! ! 600 1 W

[750 4] *

g— - : : : 400 B ;i : :

s 1 R

= 10004 1 ped e |

= [600 - o

@ v o

2 750 4 I ol

o 1| T T T 400 L T T T

): 0 200 400 600 800 1000 0 200 400 600 800 1000
Time (s)

(a) Fluctuation of throughput during migration.

Migration time (s), TPS ‘ Low skewness ‘ High skewness

770, 981 10678, 623
96, 1012 96, 700

Stop-restart
GriIDB

(b) Statistics on migration time and throughput.

Figure 8: Transaction throughput during inter-shard migra-
tion with varying skewness.

N
S
S

Stop-restart
== GriDB

Stop-restart
== GriDB
= No Migration

Stop-restart
== GriDB
= No Migration

-
&
3
N
S
3
@
3

-
&
3

o

3

=
S
S
-
S
3

IS
S

o
3

o

3

~
S

Migration time (s)

Confirmation latency (s)
Confirmation latency (s)

o

olmp By S
6x10%6 x 106 x 1056 x 10°
Table size

ol
6x10%6 x 10°6 x 1056 x 10°
Table size

6x10%6x 106 x 10° 6 x 10°
Table size

(b) Latency of txs for the (c) Latency of txs for the
migrating table other tables

(a) Migration time

Figure 9: Inter-shard migration for tables with varying size.

After migration, the throughput increases by 1.40x for the low skew-
ness and 1.37X for the high skewness. It shows the load balancing
among shards is helpful for the performance of sharding blockchain
database. The off-chain live migration can shorten the migration
time by nearly 87% compared with the stop-restart approach for
the low skewness and 99% for the high skewness. Furthermore, the
performance degradation in GRIDB is minimal during migration. It
is because, in GRIDB, the off-chain manner significantly reduces the
number of on-chain transactions, avoiding the massive overhead
for consensus, and the dual mode minimizes service interruption
during migration using the cross-shard off-chain notification.

Figure 9 plots the impact of the table size on the migration time,
the confirmation latency of transactions for the migrating table
and the other tables in the shards involved. Figure 9a shows that
it costs more time to migrate a bigger table for both approaches.
However, the migration time in GRIDB is less than that in the stop-
restart approach because there are only two on-chain transactions
in GRIDB, and a bigger table only requires more transmission time
rather than more consensus rounds like the stop-restart approach.
According to Figure 9b and Figure 9c, in GRIDB, the confirmation
latency for the tables during the migration is similar to that during
normal mode (i.e., “No Migration” in the figures). Furthermore, the
latency of transactions in the migrating table during migration is
more than the latency during normal mode. It is because, in the
dual mode, they are required to notify the destination shard.

9 RELATED WORK
9.1 Blockchain Database

We summarize the recent works that support various queries (e.g.,
SQL, key-value query, semantic query) on the blockchain as follows.
In the conventional blockchain, a query requires nodes to tra-
verse the whole blockchain to guarantee a complete search. To
avoid the expensive traversing, Pei et al. design a Merkle Seman-
tic Trie for efficient semantic query [40]. SEBDB [62] builds three
indices for efficient SQL queries, which can be complementary to
our work. For instance, one can add these indices into each node in
GrIDB to improve the query efficiency. Motivated by outsourced
databases [58], some works provide verifiable queries with block-
chain clients, enabling clients to verify query results from untrusted
nodes. SEBDB [62] designs a Merkle B-tree-based ADS for verifi-
able range query. Zhang et al. support verifiable Boolean range
query [56, 59] while Falcon [41] supports verifiable SQL [61] for
blockchain databases. However, they are constructed on top of the
non-scale-out blockchains suffering from poor scalability.

The work most related to us is BlockchainDB [8], a key-value
database on top of a sharding blockchain. In BlockchainDB, each
transaction includes a key-value pair and the database layer pro-
vides clients with the interfaces of get, put, and verify operations.
However, due to the simplicity of the key-value data model, ev-
ery shard is isolated and every operation can be served by a sin-
gle shard. In comparison, GRIDB considers a relational sharding
blockchain database, thus having richer transactional semantics
than BlockchainDB. It brings the challenge of cross-shard queries
as discussed in § 4.2. Moreover, the data management for shard-
ing, i.e., the inter-shard balancing, has not been considered in
BlockchainDB. Besides, GRIDB’s off-chain live migration can be
applied to BlockchainDB by considering a key-value database as a
particular case of a relational database with two-column tables.

9.2 Sharding

Elastico [30] is the first decentralized sharding blockchain. Every
shard is responsible for validating a set of transactions via PBFT.
A final shard verifies all the transactions received from shards and
pack them into a global block. However, it only realizes verification
sharding and each node needs to store all blocks. Omniledger [28] is
the first blockchain achieving full sharding by a client-driven cross-
shard mechanism. Another client-driven sharding system named
Chainspace [1] is presented to support sharding for smart contracts.
The client-driven cross-shard mechanisms put extra burden on typi-
cally lightweight user nodes and are vulnerable to denial-of-service
attacks. To further improve the performance, researchers propose
shard-driven mechanisms, e.g., RapidChain [57] and Monoxide [54].
Additionally, some works [5, 22, 51] share a similar idea in which
some nodes store the blockchain state of multiple shards and thus
can efficiently validate and execute cross-shard transactions.

Most of the existing sharding blockchains focus on transfer trans-
actions (i.e., user-to-user transfers of digital funds) and smart con-
tracts. Thus, their challenge of cross-shard transactions results from
cross-shard payments (i.e., the transfer between accounts in differ-
ent shards) or cross-shard smart contract calls (i.e., a smart contract
that utilizes smart contracts at different shards). In comparison, in
GRIDB, the challenge result from cross-shard queries (i.e., queries to

1696

tables from different shards), cross-shard data operations (i.e., insert,
delete or update operations on tables from different shards), and
inter-shard load balancing caused by workload imbalance among
shards. As discussed in § 1, these cross-shard database transactions
make the on-chain cross-shard mechanism of the existing block-
chain sharding systems suffer from extremely poor performance.

9.3 Off-chain

Off-chain protocols aim for blockchain scalability and build on top
of the existing blockchains without changing trust assumptions [17].
The main idea is to avoid processing every transaction via the con-
sensus and instead utilize the consensus only to undertake critical
tasks (e.g., settlement and dispute resolution)!. There are two types
of off-chain protocols. The first one is channels in which the in-
volved parties can update their balance unanimously and privately
by exchanging authenticated transitions off-chain [23, 29, 33, 44].
The second one is commit-chains which deploys a centralized but
untrusted party to collect transactions on a child-blockchain and
periodically update them to the parent-blockchain [26, 43].
GRIDB shares the same idea with the existing off-chain protocols
but uses a different approach (i.e., ADS) and targets a different
problem (i.e., the high expense of cross-shard mechanism in the
sharding blockchain database). To the best of our knowledge, GRIDB
is the first work to present an off-chain cross-shard mechanism to
ease massive cross-shard data exchange, which may motivate the
design of other sharding blockchain databases in the future.

10 CONCLUSION

We present GRIDB, a sharding blockchain database that achieves a
few thousand transactions per second on about one thousand nodes
in a Byzantine environment while supporting the functionalities of
data insert/update, relational queries, and database management.
The off-chain cross-shard mechanism, including delegation-based
cross-shard query and off-chain live migration, is the key contri-
bution in GRIDB. They offer a database layer of abstraction on top
of the existing sharding blockchain and hide the complexity of the
data and workload partition in the underlying sharding blockchain
from the clients. GRIDB also includes some database key compo-
nents, including query optimization, and load scheduler. We plan to
study other sharding strategies in future work, such as functional
partitioning for sharding blockchain databases.

ACKNOWLEDGMENTS

This research was supported by fundings from the Key-Area Re-
search and Development Program of Guangdong Province under
grant No. 2021B0101400003, Hong Kong RGC Research Impact
Fund (RIF) with the Project No. R5060-19, General Research Fund
(GRF) with the Project No. 152221/19E, 152203/20E, 152244/21E, and
152169/22E, and the National Natural Science Foundation of China
(NSFC) 61872310, 62172453 and 62272496, Shenzhen Science and
Technology Innovation Commission (JCYJ20200109142008673), the
Major Key Project of PCL (PCL2021A06), and the Pearl River Talent
Recruitment Program (2019QN01X130). We thank all anonymous
reviewers who helped improve the paper.

!Note that the word “off-chain” in BlockchainDB [8] means it enables a node of a
shard to verify the data from the other shards, which is different from our paper.

REFERENCES

(1]

(2]
(3]

[10]

[11]

[16]

[17]

[20]

[21]

[22]

[23]

Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George
Danezis. 2017. Chainspace: A Sharded Smart Contracts Platform. CoRR
abs/1708.03778 (2017). arXiv:1708.03778 http://arxiv.org/abs/1708.03778

Dan Boneh and Xavier Boyen. 2008. Short Signatures Without Random Oracles
and the SDH Assumption in Bilinear Groups. J. Cryptol. 21, 2 (2008), 149-177.
Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopou-
los. 2014. Verifiable Set Operations over Outsourced Databases. In Public-Key
Cryptography — PKC 2014, Hugo Krawczyk (Ed.). Springer Berlin Heidelberg,
113-130.

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation (OSDI 99). USENIX Association.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In
Proceedings of the 2019 International Conference on Management of Data (Amster-
dam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New
York, NY, USA, 123-140. https://doi.org/10.1145/3299869.3319889

Azure SQL Database. 2022. Scaling out with Azure SQL Database. Retrieved
March 20, 2023 from https://docs.microsoft.com/en-us/azure/azure-sql/database/
elastic-scale-introduction

DoltHub. 2023. go-mysgl-server. Retrieved March 20, 2023 from https://github.
com/dolthub/go-mysql-server

Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy. 2019. BlockchainDB: A Shared Database on Blockchains. Proc.
VLDB Endow. 12, 11 (jul 2019), 1597-1609. https://doi.org/10.14778/3342263.
3342636

Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. 2015. Squall: Fine-Grained Live Reconfiguration for Par-
titioned Main Memory Databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Australia)
(SIGMOD °15). 299-313. https://doi.org/10.1145/2723372.2723726

Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud Platforms.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data (Athens, Greece) (SIGMOD ’11). Association for Computing Machinery,
New York, NY, USA, 301-312. https://doi.org/10.1145/1989323.1989356
Ethereum. 2022. Hardware requirements for Go-Ethereum. Retrieved
March 20, 2023 from https://geth.ethereum.org/docs/getting- started/hardware-
requirements

Ethereum. 2023. Go Ethereum. Retrieved March 20, 2023 from https://github.
com/ethereum/go-ethereum

Emmanuelle Ganne. 2018. Can Blockchain revolutionize international trade?
World Trade Organization Geneva.

Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and Tianwen Wang.
2022. Hybrid Blockchain Database Systems: Design and Performance. Proc.
VLDB Endow. 15, 5 (2022), 1092-1104. https:/doi.org/10.14778/3510397.3510406
Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
51-68. https://doi.org/10.1145/3132747.3132757

Google. 2023. The Go Programming Language. Retrieved March 20, 2023 from
https://golang.org/

Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and
Arthur Gervais. 2019. SoK: Layer-Two Blockchain Protocols. Cryptology ePrint
Archive, Paper 2019/360. https://eprint.iacr.org/2019/360 https://eprint.iacr.org/
2019/360.

Harmony. 2023. Harmony. Retrieved March 20, 2023 from https://github.com/
harmony-one/harmony

Harmony. 2023. Harmony consensus protocol design. Retrieved March 20, 2023
from https://github.com/harmony-one/harmony/tree/main/consensus

Jelle Hellings and Mohammad Sadoghi. 2021. ByShard: Sharding in a Byzantine
Environment. Proc. VLDB Endow. 14, 11 (2021), 2230-2243. https://doi.org/10.
14778/3476249.3476275

Herumi. 2020. High-Speed Software Implementation of the Optimal Ate Pairing
over Barreto-Naehrig Curves. Retrieved March 20, 2023 from https://github.
com/herumi/ate-pairing

Zicong Hong, Song Guo, Peng Li, and Wuhui Chen. 2021. Pyramid: A Lay-
ered Sharding Blockchain System. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications. 1-10. https://doi.org/10.1109/INFOCOM42981.2021.
9488747

Zicong Hong, Song Guo, Rui Zhang, Peng Li, Yufen Zhan, and Wuhui Chen. 2022.
Cycle: Sustainable Off-Chain Payment Channel Network with Asynchronous
Rebalancing. In 2022 52nd Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN). 41-53. https://doi.org/10.1109/DSN53405.2022.
00017

1697

[24

[25]

[26

[27

[28

[29

(30]

[32

(33]

(34]

@
2

[36

[37

(38]

[39

[40

[41

[42

[44

[45

[46

IBM. 2020. Blockchain for supply chain solutions. Retrieved March 20, 2023
from https://www.ibm.com/blockchain/industries/supply-chain

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. 2000. Randomized rumor
spreading. In Proceedings 41st Annual Symposium on Foundations of Computer
Science. 565-574.

Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and
Arthur Gervais. 2018. Commit-chains: Secure, scalable off-chain payments.
Retrieved March 20, 2023 from https://eprint.iacr.org/2018/642.pdf

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance with
Strong Consistency via Collective Signing. In Proceedings of the 25th USENIX Con-
ference on Security Symposium (Austin, TX, USA) (SEC’16). USENIX Association,
USA, 279-296.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy (SP). 583—
598. https://doi.org/10.1109/SP.2018.000-5
Lightning. 2021. The Lightning Network.
https://lightning.network/

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. 2016. A Secure Sharding Protocol For Open Blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS °16). Association for Computing Machinery, New
York, NY, USA, 17-30. https://doi.org/10.1145/2976749.2978389

Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. 2015. Demystifying
Incentives in the Consensus Computer. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (Denver, Colorado, USA)
(CCS ’15). Association for Computing Machinery, New York, NY, USA, 706-719.
https://doi.org/10.1145/2810103.2813659

Ralph C Merkle. 1987. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic techniques.
Springer, 369-378.

Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-
Corry. 2019. Sprites and State Channels: Payment Networks that Go Faster Than
Lightning. In Financial Cryptography and Data Security. Springer International
Publishing, 508-526.

Atsuki Momose and Ling Ren. 2021. Multi-Threshold Byzantine Fault Tol-
erance. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, Republic of Korea) (CCS °21). Asso-
ciation for Computing Machinery, New York, NY, USA, 1686-1699. https:
//doi.org/10.1145/3460120.3484554

Einar Mykletun, Maithili Narasimha, and Gene Tsudik. 2006. Authentication
and Integrity in Outsourced Databases. ACM Trans. Storage 2, 2 (2006), 107-138.
https://doi.org/10.1145/1149976.1149977

MySQL. 2023. MySQL 8.0 Reference. Retrieved March 20, 2023 from https:
//dev.mysql.com/doc/refman/8.0/en/sql-data- manipulation- statements.html
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Re-
trieved March 20, 2023 from https://bitcoin.org/bitcoin.pdf

Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In
Proceedings of the 2005 International Conference on Topics in Cryptology (San
Francisco, CA) (CT-RSA’05). Springer-Verlag, Berlin, Heidelberg, 275-292. https:
//doi.org/10.1007/978-3-540-30574-3_19

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. 2011.
Optimal Verification of Operations on Dynamic Sets. In Advances in Cryptology
— CRYPTO 2011, Phillip Rogaway (Ed.). Springer Berlin Heidelberg, 91-110.

Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao. 2020. An Efficient Query
Scheme for Hybrid Storage Blockchains Based on Merkle Semantic Trie. In
2020 International Symposium on Reliable Distributed Systems (SRDS). 51-60.
https://doi.org/10.1109/SRDS51746.2020.00013

Yanging Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song. 2020. Fal-
conDB: Blockchain-Based Collaborative Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD °20). Association for Computing Machinery, New York, NY, USA,
637-652. https://doi.org/10.1145/3318464.3380594

George Pirlea, Amrit Kumar, and Ilya Sergey. 2021. Practical Smart Contract
Sharding with Ownership and Commutativity Analysis. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 1327-1341. https://doi.org/10.1145/3453483.
3454112

Joseph Poon and Vitalik Buterin. 2017. Plasma: Scalable autonomous smart
contracts. Retrieved March 20, 2023 from https://www.plasma.io/plasma.pdf
Raiden. 2021. The Raiden Network. Retrieved March 20, 2023 from https:
//raiden.network/

Raghu Ramakrishnan and Johannes Gehrke. 2000. Database Management Systems
(2nd ed.). McGraw-Hill, Inc.

Sukriti Ramesh, Odysseas Papapetrou, and Wolf Siberski. 2009. Optimizing
Distributed Joins with Bloom Filters. In Distributed Computing and Internet

Retrieved March 20, 2023 from

https://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://doi.org/10.1145/3299869.3319889
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-scale-introduction
https://github.com/dolthub/go-mysql-server
https://github.com/dolthub/go-mysql-server
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.1145/2723372.2723726
https://doi.org/10.1145/1989323.1989356
https://geth.ethereum.org/docs/getting-started/hardware-requirements
https://geth.ethereum.org/docs/getting-started/hardware-requirements
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://doi.org/10.14778/3510397.3510406
https://doi.org/10.1145/3132747.3132757
https://golang.org/
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/360
https://github.com/harmony-one/harmony
https://github.com/harmony-one/harmony
https://github.com/harmony-one/harmony/tree/main/consensus
https://doi.org/10.14778/3476249.3476275
https://doi.org/10.14778/3476249.3476275
https://github.com/herumi/ate-pairing
https://github.com/herumi/ate-pairing
https://doi.org/10.1109/INFOCOM42981.2021.9488747
https://doi.org/10.1109/INFOCOM42981.2021.9488747
https://doi.org/10.1109/DSN53405.2022.00017
https://doi.org/10.1109/DSN53405.2022.00017
https://www.ibm.com/blockchain/industries/supply-chain
https://eprint.iacr.org/2018/642.pdf
https://doi.org/10.1109/SP.2018.000-5
https://lightning.network/
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2810103.2813659
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/1149976.1149977
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1109/SRDS51746.2020.00013
https://doi.org/10.1145/3318464.3380594
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3453483.3454112
https://www.plasma.io/plasma.pdf
https://raiden.network/
https://raiden.network/

[47]

[48]

[49]

[50

[51]

[52]

(53]

[54

[55]

Technology. Springer Berlin Heidelberg, 145-156.

Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin Ooi,
and Meihui Zhang. 2019. Fine-Grained, Secure and Efficient Data Provenance
on Blockchain Systems. Proc. VLDB Endow. 12, 9 (may 2019), 975-988. https:
//doi.org/10.14778/3329772.3329775

Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang
Chen, Qian Lin, and Beng Chin Ooi. 2021. Blockchains vs. Distributed Databases:
Dichotomy and Fusion. In Proceedings of the 2021 International Conference on
Management of Data (Virtual Event, China) (SIGMOD °21). Association for Com-
puting Machinery, New York, NY, USA, 1504-1517. https://doi.org/10.1145/
3448016.3452789

SCIPRLab. 2020. libsnark: a C++ library for zZkSNARK proofs. Retrieved March
20, 2023 from https://github.com/scipr-lab/libsnark

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-Store: Fine-
Grained Elastic Partitioning for Distributed Transaction Processing Systems. Proc.
VLDB Endow. 8, 3 (2014), 245-256. https://doi.org/10.14778/2735508.2735514
Yuechen Tao, Bo Li, Jingjie Jiang, Hok Chu Ng, Cong Wang, and Baochun Li.
2020. On Sharding Open Blockchains with Smart Contracts. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). 1357-1368. https://doi.org/
10.1109/ICDE48307.2020.00121

TPC. 2023. TPC-H Benchmark. Retrieved March 20, 2023 from http://www.tpc.
org/tpch/

Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. 2019. SoK: Sharding
on Blockchain. In Proceedings of the 1st ACM Conference on Advances in Finan-
cial Technologies (Zurich, Switzerland) (AFT ’19). Association for Computing
Machinery, New York, NY, USA, 41-61. https://doi.org/10.1145/3318041.3355457
Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out Blockchains with
Asynchronous Consensus Zones. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA,
95-112. https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen. 2017. Replication-Driven
Live Reconfiguration for Fast Distributed Transaction Processing. In Proceedings

1698

[56

[57

[59

[60

[62

]

of the 2017 USENIX Conference on Usenix Annual Technical Conference (Santa
Clara, CA, USA) (USENIX ATC ’17). USENIX Association, USA, 335-347.

Cheng Xu, Ce Zhang, and Jianliang Xu. 2019. VChain: Enabling Verifiable Boolean
Range Queries over Blockchain Databases. In Proceedings of the 2019 International
Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).
Association for Computing Machinery, New York, NY, USA, 141-158. https:
//doi.org/10.1145/3299869.3300083

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:
Scaling Blockchain via Full Sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 931-948. https:
//doi.org/10.1145/3243734.3243853

Bo Zhang, Boxiang Dong, and Wendy Hui Wang. 2021. Integrity Authentication
for SQL Query Evaluation on Outsourced Databases: A Survey. IEEE Transactions
on Knowledge and Data Engineering 33, 4 (2021), 1601-1618. https://doi.org/10.
1109/TKDE.2019.2947061

Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron Choi. 2019. GEM2-
Tree: A Gas-Efficient Structure for Authenticated Range Queries in Blockchain.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE). 842-853.
https://doi.org/10.1109/ICDE.2019.00080

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over
Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy
(SP). 863-880. https://doi.org/10.1109/SP.2017.43

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. IntegriDB:
Verifiable SQL for Outsourced Databases. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (Denver, Colorado, USA)
(CCS ’15). Association for Computing Machinery, New York, NY, USA, 1480-1491.
https://doi.org/10.1145/2810103.2813711

Yanchao Zhu, Zhao Zhang, Cheqing Jin, Aoying Zhou, and Ying Yan. 2019.
SEBDB: Semantics Empowered BlockChain DataBase. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE). 1820-1831. https://doi.org/10.
1109/ICDE.2019.00198

https://doi.org/10.14778/3329772.3329775
https://doi.org/10.14778/3329772.3329775
https://doi.org/10.1145/3448016.3452789
https://doi.org/10.1145/3448016.3452789
https://github.com/scipr-lab/libsnark
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.1109/ICDE48307.2020.00121
https://doi.org/10.1109/ICDE48307.2020.00121
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://doi.org/10.1145/3318041.3355457
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1109/TKDE.2019.2947061
https://doi.org/10.1109/TKDE.2019.2947061
https://doi.org/10.1109/ICDE.2019.00080
https://doi.org/10.1109/SP.2017.43
https://doi.org/10.1145/2810103.2813711
https://doi.org/10.1109/ICDE.2019.00198
https://doi.org/10.1109/ICDE.2019.00198

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Blockchain Sharding
	2.2 Authenticated data structures

	3 System Model
	4 GriDB Overview
	4.1 System Overview
	4.2 Challenges

	5 System Design
	5.1 Strawman
	5.2 Cross-Shard Query Authentication
	5.3 Inter-Shard Load Balancing

	6 Design Refinement
	6.1 Cross-shard Query Efficiency
	6.2 Load Balancing Scheduler
	6.3 Cross-shard Insertion/Deletion/Update.
	6.4 Horizontal/Vertical Table Partition

	7 Discussion
	7.1 Permissioned and Permissionless Setting
	7.2 General Join

	8 Experimental Evaluation
	8.1 Overall Performance
	8.2 Performance of Cross-shard Query
	8.3 Performance of Inter-shard Balancing

	9 Related Work
	9.1 Blockchain Database
	9.2 Sharding
	9.3 Off-chain

	10 Conclusion
	Acknowledgments
	References

