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ABSTRACT

Cloud systems are now a prevalent platform to host large-scale
big-data analytics applications such as machine learning and rela-
tional database. However, data privacy remains as a critical concern
for public cloud systems. Existing trusted hardware could provide
an isolated execution domain on an untrusted platform, but also
suffers from access-pattern-based side channels at various levels
including memory, disks, and networking. Oblivious algorithms
can address these vulnerabilities by hiding the program data access
patterns. Unfortunately, current oblivious algorithms for data ana-
lytics are limited to single-machine execution, only support simple
operations, and/or suffer from significant performance overheads
due to the use of expensive global sort and excessive data padding.

In this work, we propose SODA, a set of efficient and oblivious
algorithms for distributed data analytics operators, including filter,
aggregate, and binary equi-join. To improve performance, SODA
completely avoids the expensive oblivious global sort primitive, and
minimizes the data padding overheads. SODA makes use of low-
cost (pseudo-)random communication instead of expensive global
sort to ensure uniform data traffic in oblivious filter and aggregate.
It also adopts a novel two-level bin-packing approach in oblivious
join to alleviate both input redistribution and join product skewness,
thus minimizing necessary data padding. Compared to the state-of-
the-art system, SODA not only extends the functionality but also
improves the performance. It achieves 1.1X to 14.6X speedups on
complex multi-operator data analytics workloads.
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1 INTRODUCTION

Cloud-based data analytics now become prevalent. The cloud offers
great computation capabilities at relatively low prices to process
vast amounts of data, using both high-performance hardware re-
sources and highly optimized distributed data analytic frameworks
like Spark [68]. Many entities, both large companies and individual
users, are willing to outsource their data and computation tasks to
the cloud, including machine learning [1, 45], graph processing [25],
and relational data analytics [7]. However, cloud computing also
brings serious challenges of data privacy, where users’ sensitive
data might be eavesdropped or tampered with by malicious attack-
ers on such publicly shared platforms.

Cloud platforms are currently adopting various system-level
solutions to address security issues. Hardware-based trusted exe-
cution environments (TEEs), such as Intel SGX [5, 29, 44], ARM
TrustZone [3], and AMD SEV [57], have been proposed for years,
and also seen real-world deployment in the cloud. They aim to
provide a secure and isolated domain for sensitive computations
on the untrusted cloud platform. Unfortunately, TEEs are not a
panacea. Various side channels have been demonstrated in existing
TEEs [22, 27, 35, 42, 55, 61, 67, 69], allowing attackers to bypass
the protection mechanisms. Many known side channels can be
attributed to data access pattern leakage in the memory and disk
hierarchy [27, 61, 67]. Furthermore, TEEs are only limited to a sin-
gle machine. With large-scale distributed execution, the network
traffic among server nodes also becomes a source of leakage [49].

Protecting against such memory, disk, and networking access
pattern vulnerabilities requires the system to perform oblivious
execution, meaning that the externally visible behaviors (e.g., mem-
ory accesses and networking transfers) of the program should be
deterministic and independent of the sensitive data. Generic crypto-
graphic protocols like oblivious RAM (ORAM) can achieve this goal
and prevent access pattern leakage [21, 23, 24, 50, 52, 60], but they
usually incur substantial performance overheads. Customized obliv-
ious algorithms are tailored to a particular application domain and
thus offer better performance. We focus on oblivious algorithms
for data analytics in this work. However, most existing propos-
als only considered single-node execution [6, 12, 19, 34, 41] and
cannot be securely generalized to distributed scenarios. The few
distributed solutions either only supported a limited set of simple
operations [18, 49], or incurred excessive performance cost [70].
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For example, Opaque [70], the state-of-the-art distributed data
analytics framework, relied on a general but expensive primitive,
oblivious global sort, to construct oblivious filter, aggregate, and
join operators. The specific implementation of global sort, namely
column sort [36], required four rounds of local oblivious sort on
each node, interleaved with four rounds of global data shuffle across
all nodes. Both the computation and communication cost was sig-
nificant. In addition, it only supported primary-foreign join where
one of the two input tables does not contain duplicated keys. The
more general equi-join cannot be executed securely on this system.
A straightforward extension to support equi-join would require a
significant amount of data padding to hide the data distribution
information (Section 3). Therefore, better oblivious algorithms must
effectively alleviate the global sort cost and the padding overheads.

In this paper, we propose SODA, a set of efficient and oblivious
algorithms for distributed data analytics operators, including fil-
ter, aggregate, and binary equi-join. SODA completely avoids the
expensive oblivious global sort primitive and minimizes the data
padding overheads to improve performance. SODA achieves its
efficiency with two key insights. First, we leverage (pseudo-)random
communication, where the records in an input partition are sent to
each destination node in a (pseudo-)random manner. Such low-cost
communication can be made fully oblivious by applying a small
amount of padding (e.g., 10%) to ensure the exact same data volume
is sent to each node under negligible failure rates (e.g., 2 x 107>7).
Therefore, in oblivious filter, SODA uses such random communi-
cation to distribute both the valid and invalid records evenly across
all nodes before local filtering, in order to avoid per-partition out-
put size leakage. In oblivious aggregate, SODA makes use of the
other records that do not store the aggregated results, and changes
their keys into randomly assigned dummy keys, in order to apply
(pseudo-)random communication to hide data distribution, while
still ensuring correct aggregate results.

Second, to also support efficient oblivious join, SODA utilizes
the aforementioned aggregate operator to first find out the overall
data distribution, and then applies a novel two-level bin-packing
assignment to decide how to group the records with the same key
across the server nodes. The two-level bin-packing is conducted in
an oblivious manner and ensures that both the two input tables and
the output join result table are evenly spread without exposing any
input redistribution and join product skewness of the data records.

We evaluate SODA on real-world benchmarks and datasets, in-
cluding BigDataBench [64], diverse join queries on TPC-H and
social graphs [12], and other complex workloads consisting of
multiple operators. On single-operator benchmarks, SODA oblivi-
ous filter and aggregate outperform the Opaque-like baseline [70]
by about 2%, and oblivious join achieves 1.1X to 18X speedups
depending on the join type and data distribution. For complex
multi-operator benchmarks, SODA offers performance benefits
ranging from 1.1X to 14.6X. We have open sourced SODA at https:
//github.com/tsinghua-ideal/flare/tree/oblivious_soda.

2 BACKGROUND
2.1 Trusted Execution Environments

A promising hardware technique used nowadays for secure data
processing is trusted execution environments (TEEs), such as Intel
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SGX [5, 29, 31, 44], Intel TDX [32], ARM TrustZone [3], and AMD
SEV [57]. TEEs can create a trusted domain (called an enclave) on an
untrusted platform and allow computing directly on plaintext data
in it. The hardware prohibits illegal access to the trusted memory
from the untrusted part, guaranteeing isolation. The integrity (i.e.,
correctness) of the code in the enclave is ensured through attesta-
tion [5]. When leaving the processor, data in the trusted domain
are automatically encrypted and authenticated by hardware, e.g.,
a Memory Encryption Engine (MEE) [28] or a Total Encryption
Engine (TME) [30] in SGX, so they cannot be eavesdropped or
tampered with when stored in the external memory.

However, the security of existing TEEs has been questioned due
to various side-channel vulnerabilities at the microarchitectural
and physical levels [22, 27, 35, 42, 55, 61, 67, 69], among which an
important one is related to the leakage of access patterns. In other
words, TEEs do not hide the addresses of sensitive data accesses.
Such exposed access traces may leak certain information. Conse-
quently, even inside enclaves, we still need oblivious techniques,
such as oblivious RAM (ORAM) [52, 60] or customized oblivious
algorithms [6, 9]. Many existing designs [19, 46, 53, 70] on TEEs
achieve such a doubly oblivious property, i.e., ensuring obliviousness
in both the trusted and untrusted domains. They either integrate
the generic ORAM protocols into TEEs, or utilize a limited space
(e.g., a few MBs) of hardware oblivious memory (OM) [20, 59].
In this work, we design customized oblivious algorithms that are
more efficient than ORAM and do not rely on hardware OM whose
implementation requires subtle hardware modifications.

2.2 Oblivious Distributed Data Analytics

A non-oblivious program may expose the data access patterns at
multiple levels, including memory, disks, and networking. Most
existing oblivious data analytics algorithms [6, 12, 19, 34, 41, 46]
only protect access patterns on a single machine, where the main
consideration is at the memory and disk levels. On distributed
platforms such as MapReduce [16], Hadoop [16], and Spark [68],
data traffic across multiple machines through network becomes
another attack surface. In fact, because the network traffic is visible
to the cloud provider as well as other cloud tenants even if they are
not on the same physical machine, it is a more vulnerable threat.

Ohrimenko et al. [49] were the first to realize obliviousness in a
distributed MapRduce system. They proposed two provably secure
and practical solutions, corresponding to two levels of security
definitions. The weaker solution prevented attackers from tracing
the traffic between individual mappers and reducers, by conducting
secure shuffle on all the key-value pairs. Nevertheless, attackers
could still obverse the distinct intermediate data volume of each
mapper/reducer, and thus learn the distribution of keys. To further
protect against this issue, the stronger solution used offline pre-
processing to achieve a uniform distribution for the intermediate
traffic, i.e., the data volume from each mapper to each reducer was
the same. However, it still made a tradeoff between performance
and security, by allowing to leak the frequency of the most popular
key in the dataset [49]. Otherwise, we would need to pad the traffic
between each mapper and reducer to the worst case, which could
be the entire data volume if all records have the same key, obviously
diminishing any advantage of distributed execution.
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Opaque [70] is the state-of-the-art oblivious distributed com-
puting platform based on Spark [68]. Spark supports distributed
execution through an important abstraction named resilient dis-
tributed datasets (RDDs). An RDD consists of several partitions.
During execution, the scheduler in Spark dispatches computing
tasks to multiple worker nodes, where each node typically pro-
cesses one RDD partition in memory. Spark supports flexible query
types including filter, aggregate, and primary-foreign join. Opaque
proposed distributed oblivious algorithms for these operators, im-
plemented using TEEs like Intel SGX. Its main building block was
a relatively expensive, oblivious global sort primitive. We describe
the detailed design of Opaque in Section 3 as our baseline.

2.3 Threat Model

In this work, we consider a scenario where a client would like to
perform data analytics queries on the outsourced data in a remote
and untrusted server cluster with multiple server machines. The
dataset has been securely (e.g., with encryption and authentication)
uploaded and distributed across the cluster. The server machines
are untrusted, and a powerful adversary can control the whole
software stack, including the operating systems (OSes) and the
hypervisors. We assume the hardware processors on the servers
are trusted and equipped with hardware TEEs. The adversary still
controls the software running on the processors, but the code inside
the enclaves can be verified through attestation to ensure integrity.
The adversary can snoop or tamper with everything outside the pro-
cessors, including data transfers at the memory, disks, and network
devices. In particular, access address traces and network traffic are
exposed, from which the adversary can infer secret information
even if data encryption has been applied [49].

Following common practice, we do not consider denial-of-service
attacks, as well as physical attacks that exploit other side channels
such as electromagnetic [22], thermal [42], and power [69]. We do
not assume the availability of hardware oblivious memory in our
algorithm designs. It is possible to incorporate hardware oblivious
memory into our algorithms to further improve the performance,
which we leave as future work.

2.4 Security Definition

We adopt encryption and authentication techniques to ensure con-
fidentiality, integrity, and freshness, both during execution and
when data are statically stored, following common practice in pre-
vious work [49, 70]. We mainly focus on the obliviousness issue of
executing a set of operators on the distributed dataset, including
filter, aggregate, and binary equi-join. Below we clearly state the
definition of obliviousness in our work, which is extended from
Opaque [70] by also integrating the concepts in Ohrimenko et
al. [49]. The main improvement beyond Opagque is to cover general
binary equi-join since Opaque only supports primary-foreign join.

Generally speaking, to ensure obliviousness, we need to restrict
what the adversary could observe. Similar to [19, 49], we only allow
for minimum leakage of the input and output dataset sizes, which
are usually considered harmless and inevitable because these data
must be transferred in and out of the system. We denote the input
dataset (or table) as D, and the output result as R, which is produced
by running an oblivious program P on D, i.e., R = P(D). P can be
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viewed as a physical plan of the query after query optimization.
We assume that each attribute value in a table has a fixed size;
otherwise, it is padded to a constant size. For filter and aggregate,
the access patterns only depend on

1)
@)
®)
4)

The specific algorithm P being computed;

The input dataset size (the number of table rows) f of D;
The output dataset size (the number of table rows) y of R;
The schemas of D and R, respectively denoted as Schema(D)
and Schema(R), including the table names, the attribute
names, and the attribute value sizes;

(5) The number of partitions (the number of machines) N.
This set of information leakage is the same as assumed in Opaque [70].
For binary equi-join, the access patterns additionally depend on

(6) The number of the most popular key « in the input D [49].

Note that binary equi-join involves two input datasets A and B, so
the above leakage on the input dataset D includes both tables.
More formally, we define Trace to be the execution trace of a sen-
sitive operator. Obliviousness means that there exists a probabilistic
polynomial-time algorithm Sim (a simulator) such that

Sim(params) = Trace(params, D)

where params = (P, f, Schema(D), y, Schema(P(D)), [«]); @ is only
included for join. = means the two sides are indistinguishable. We
remark we allow the full input/output dataset size (the number of
rows in a full table) to be revealed to the adversary, but not that in
an individual partition if the partition size is related to the sensitive
content. For example, when using hash-based partitioning, the indi-
vidual partition size reveals the record key distribution. We assume
the initial partitioning scheme already satisfies this requirement
and evenly splits data onto the servers. The oblivious operator exe-
cution ensures the output partitioning is still irrelevant to record
content, and the result can be used as the input for another operator.

3 BASELINE AND CHALLENGES

In this section, we describe our baseline design in detail. The base-
line is an extension of Opaque [70]. Opaque supported a set of
distributed oblivious operators. It relied on a key primitive, column
sort [36], which realized an oblivious global sort across all server
nodes. One column sort requires 4 rounds of local oblivious sort
(e.g., bitonic sort [48]) on each node, interleaved with 4 rounds
of global shuffle on the entire dataset across all nodes. Each local
oblivious sort works on the local partition (called a column). Each
global shuffle exchanges data among columns in a deterministic
way. As long as the relationship between the number of partitions s
and the number of records per partition r satisfies r > 2(s—1)? [36],
the number of rounds is constant for arbitrary data size. All the
oblivious operators in Opaque invoked such expensive column sort
1 or 2 times, which incurred high costs.

Our baseline directly uses the oblivious filter and aggregate
designs in Opaque [70]. More concretely, for filter, to avoid revealing
which rows are filtered and how many rows in a partition are
filtered, the baseline firstly marks the to-be-filtered rows with a
sequential scan and performs a global oblivious sort to put these
rows together at the end of the table. Then, removing them only
leaks the total number of rows in the output result, satisfying our
security definition in Section 2.4. For aggregate, we need to prevent
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Figure 1: An example showing the communication in the
Opaque primary-foreign join, and the extended design of
generic equi-join in the baseline.

the adversary from tracking which output partition each individual
input record goes to. A global oblivious sort is first performed, thus
the records with the same group key are located contiguously from
the view of the entire table. Because the table is physically separated
into several partitions across multiple nodes, some groups may
be split across partitions. Therefore, after performing scan-based
local aggregate within each partition, the nodes need to further
communicate with each other to obtain the partially aggregated
values and finally derive the correct aggregate results. To ensure
obliviousness, this communication may involve dummy records,
which need to be discarded by a final filter.

Opaque only supports primary-foreign join [12, 34], where one of
the involved tables is required to be the primary key table, and each
join key can at most have a single record in it (there is no restriction
on the other foreign key table). Opaque first unions the two tables,
and conducts a global sort on the join key. The sort ensures that for
the same join key, the single primary table record is always in front
of those foreign table records. Then, a per-partition scan propagates
the primary table record and uses it to join with every foreign table
record in each join group. The partition boundaries require special
handling similar to the aggregate case, i.e., each node receives the
last primary table record from the previous node.

Our baseline extends Opaque to enable more general binary
equi-join using straightforward padding. The first change is in the
boundary processing, because more than one records may need
to be communicated from one node to another. For the example
in Figure 1, partition 0 needs to obliviously pass 3 records with
key 24 of table A to partition 1 for a binary equi-join. Therefore,
we need to pad the number of records sent and received at each
node to the same public volume. Instead of padding to the total
number of rows in a table to accommodate the worst case, our
security definition in Section 2.4 allows for revealing the maximum
frequency of the keys in a table, i.e., &, which is the upper bound of
communication traffic per node. However, obliviously extracting
those records would need another expensive local oblivious sort.
Our baseline design instead uses a simpler approach that trades
some extra communication traffic for less computation, by directly
sending the last @4 + ap records to the next node. The boundary
keys are guaranteed to be within these records.

The second issue is that the local processing within each parti-
tion is also complicated by the many-to-many record relationship
between the two tables, and the single-scan method in Opaque
cannot be used. We could apply a generic single-node oblivious
equi-join algorithm [12, 34], but we still need one more padding
to hide the output partition size on each node. This is because the
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different join degrees of the groups in each partition may lead to
output size skewness, i.e., the numbers of records after join are
not equal across the partitions. This skew allows the attacker to
learn some distribution information of the join key. We again cal-
culate the worst case for one partition that leads to the maximum
join output size. This happens when all join groups are maximally
sized (with a4 and ap) except for the last remainder group.! In this
scenario, the maximum output size is min(n’, y) where

nmod (ap + ag) 2
2

’
n

——— | - (aa0B) + (
ap+ap

Here n is the partition size after receiving the records of previous
partitions but before local join. The first term is the output size for
the maximum-sized join groups. The second term accounts for the
remainder group.? Roughly speaking, this padding introduces an
O(a) (if dominated by n’) or N (number of partitions, if dominated
by y) multiplicative factor to the partition size. The large output
size significantly increases the overheads of the final global sort for
filtering dummy records.

Summary of challenges. Our baseline design described in this
section suffers from two key inefficiencies. First, all the operators
heavily use the expensive oblivious global sort primitive, which itself
requires multiple rounds of global communication and local process-
ing. Both the local and global data movements become particularly
costly when the table has many attributes besides the key, which
only add to the total data volume without impacting the sort order.
Second, for oblivious join, there is significant data padding applied
throughout the processing, introducing a large amount of dummy
records in the intermediate results. Excessive dummy records would
greatly slow down many computations whose complexity is super-
linear with the data size. In particular, the aforementioned global
sort becomes even more expensive. We would like to minimize
the padding volume while still ensuring the security definition in
Section 2.4. To address these issues, we next propose more efficient
oblivious operators for distributed data analytics.

4 DESIGN

We propose SODA, a set of efficient and oblivious algorithms for
distributed data analytics operators, including filter, aggregate, and
binary equi-join. SODA does not rely on the expensive oblivious
global sort primitive and minimizes the data padding overheads
to improve performance. We first describe in Section 4.1 two basic
primitives used by SODA, oblivious sort and distribute. Section 4.2
then introduces (pseudo-)random communication, the key insight
we leverage to realize efficient oblivious global communication.
Finally, we elaborate the detailed algorithms for oblivious filter,
aggregate, and binary equi-join, respectively in Sections 4.3 to 4.5.

4.1 Basic Primitives

SODA makes use of two basic primitives, oblivious sort and distrib-
ute, to realize high-level oblivious operators. Both primitives are
local to one partition at a node, without global data movements.

! Assume there are two groups x and y that are not maximally sized. They have x4 +ya
records from table A and xp + yp records from table B. This case does not result in the
maximum output size because xaxp+ya yp < apap+(xa+ya—aa)(xp+yp—as).
2The remainder group has in total x4 + xg = n mod (a4 + ap) records from the two
tables A and B, so the output size xaxp < ((x4 +x5)/2)%.



Single-node oblivious sort has been well studied [2, 8, 26, 48]. We
choose bitonic sort [48] as our 0Sort implementation, which has a
time complexity of O(nlog? n). Although there exist asymptotically
better constructions with O(nlog n) [8], bitonic sort is practically
more efficient with smaller constant factors, and is more friendly
to parallel processing on modern processors.

A special case of sort is to merge multiple sorted sequences. It is
not necessary to perform the full bitonic sort procedure. We provide
a more efficient variant OMerge. Recall that bitonic sort runs on
arbitrary-size sequences (not just powers of two) in a recursive
manner. If we concatenate the input sorted sequences into one, we
can view each sub-sequence as already sorted by recursive small
bitonic sort, and then only need to apply the remaining steps. We
also use OMerge whenever possible in our baseline. It can replace
three out of the four local sort rounds in one column sort.

Krastnikov et al. [34] proposed an “oblivious distribute” algo-
rithm. Given an input data array D = {x1,...,xn}, m out of the
n elements are real, while the others are dummy. The expected
location of each real x;, denoted as f(x;) € {1,...,n}, is in the as-
cending order. If Vi, f(x;) > i, 0Distribute puts each real element
x; to the location f(x;), with a time complexity O(nlogn).

4.2 (Pseudo-)Random Communication

The major difficulty of designing SODA is how to realize oblivious
data communication without relying on the expensive global sort
and with minimum data padding. We observe that, if we could
ensure each node sends the same amount of data to all receiving nodes
during global communication, then the communication is trivially
oblivious. However, the traffic must follow certain constraints. For
example, aggregate and join require the records with the same key,
a.k.a., those in the same aggregate/join group, to be sent to the
same node for processing. With real datasets, data skewness would
cause communication imbalance and thus violate obliviousness.
Prior systems [49, 66, 70] either used oblivious global sort to collect
the groups instead of direct communication, or applied excessive
padding to the worst-case size, both incurring high overheads.

Our key insight is that (pseudo-)random communication among
the nodes, in which the destination of each record is chosen uni-
formly at (pseudo-)random, is nearly oblivious. More specifically,
when we need to globally shuffle data among all the N nodes, the
data partition P at each node is split into N buckets, each of which
is then sent to one other node. The bucket ID of each record in
should be assigned in a (pseudo-)random manner. Then the resul-
tant N buckets would have nearly the same size, representing a
nearly uniform communication volume to other nodes.

However, a simple (pseudo-)random bucket assignment does not
guarantee full obliviousness. The small size differences may leak
information in certain scenarios, in particular when there are both
valid and invalid records. Similar to previous systems [49, 66, 70],
the data partitions in SODA also contain invalid records, either
those marked to be filtered by a filter operator, or the dummy
records used for the padding purpose. Assume an example where
two nodes 0 and 1 are exchanging data, and each node sends slightly
more data to itself than to the other, i.e., traffic 0 — 0 is larger than
0 — 1, and traffic 1 — 1 is larger than 1 — 0. If the final data sizes
after filtering out invalid records at the two nodes are not the same,
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Algorithm 1: (Pseudo-)Random Communication Buckets

1 function BuildBuckets(?, N):
Input: Data partition # with (pseudo-)randomly assigned

bucket field per record, total number of partitions N.
Output: N buckets 8.

2 Compute the padding size [ « |P|/N + k+/|P|/N;
3 0Sort (P, (_.bucket, _.valid, _.key));

Assign locations in buckets.
be—1;p«1;
5 foreach d € P do

6 ¢ « d.bucket # b ; encounter a new bucket?
7 b « d.bucket;
8 cmov(c, p, I X b); starting location of a new bucket.
9 d.pos — p;p —p+1;
* Place records to assigned locations. *
10 Pad P to length I X N;

11 ODistribute (P, _.pos) ; invalid records at end of each bucket.
B « Chunk P into N buckets, each of size [;

return B;

12

13

e.g., node 0 has more final valid records than node 1, then we can
infer that originally node 0 is likely to have more valid records. In
the extreme case, if both nodes have only 1 record that is assigned
to local, and one is valid and the other is invalid, then we surely
know the original per-partition amount of filtering, which does not
satisfy our security requirements in Section 2.4.

Therefore, to ensure obliviousness, the N buckets built from one
partition must have exactly the same size. Given that we are ran-
domly assigning |P| records to N buckets, we set the padded bucket
sizeto | = |P|/N+k+/|P|/N, where the second term represents the
padding overhead. This leads to an exponentially decreasing failure
rate of N exp(—k?/3) according to the Chernoff bound (Chapter 4.2
in [47]). k is a tunable parameter that trades off between padding
size and failure rate. In SODA we set k = 20 to get a failure probabil-
ity of 2x107>7 when N = 16 (Section 6.3). This negligible probability
is lower than the typical distributed system failure rate, and is not
a concern in practice; we could simply re-run the program.

In summary, we construct a sub-routine BuildBuckets in SODA,
as in Algorithm 1. The destination bucket of each record should be
assigned in a (pseudo-)random manner before invoking this sub-
routine. We sort the partition into valid and invalid records assigned
to different buckets and determine the exact location in the padded
destination bucket for each record. Note that we use conditional
move (cmov) instructions to ensure oblivious processing. Finally,
we use ODistribute to obliviously form the buckets.

Next we describe how to turn data-dependent communication
in aggregate and join into (pseudo-)random communication.

4.3 Oblivious Filter

SODA has two types of oblivious filter operators, for local and
global, respectively. The local filter is meant to be used as a sub-
routine only invoked by high-level operators; it does not fully satisfy
our security requirements in Section 2.4.

Local filter. A simple implementation is to locally and oblivi-
ously sort the to-be-filtered records to the end of the local partition



Algorithm 2: Oblivious Local Filter

1 function OLocalFilter(D):
Input: Input array D to be filtered according to field valid.

Output: Output array R after filtering.

Count and annotate the valid records.
cnt «— 0;
foreach d € D do
d.pos «— 1; add new field pos.

cmov (d.valid, d.pos, cnt);
B cmov (d.valid, cnt, cnt + 1);
Re—[L,L,...,L];start « 0;
fori — 0to [|D]|/cnt] —1do
chunk « D[ixcnt: (i+1) X cnt];

* Assign locations to invalid records, to take the space before the

|R| = cnt.

valid records in the chunk. *
cur « 0; last « start — 1;
foreach d € chunk do

ced.pos# L; whether it is a valid record.
cmov (c, last, d.pos) ;
¢ « (cur < start) A (d.pos = 1);
cmov (¢, d.pos, cur);

update location of last valid record.

cmov (¢, cur, cur + 1);

start « last + 1;

* Obliviously sort the chunk; valid records are in their final

locations, with invalid records before and after.
chunk « 0Sort(chunk, _.pos);
Obliviously copy to the output array. *
for j «— 0to |R|do
L ¢ — (R[j] =1) A (chunk[j].pos # L);

cmov(c, R[], chunk[j]);
return R;

18

19
20

21

22

and then remove them. The sort overheads could be significant
for large partitions, especially when there are only a few valid
records that should be kept. We thus propose an optimized design.
As shown in Algorithm 2 and Figure 2, SODA first counts and an-
notates all the valid records with their final locations in the output
array (the new pos field). The input array is then chunked into
the size of the output array. In each chunk, the valid records are
sorted to the locations according to the annotation, with invalid
records filling in the space before and after them. Now the position
of each valid record in its current chunk is the same as its expected
position in the final output array. Finally, we obliviously copy the
valid records in the chunk to the output array while preserving
their relative positions within the chunk.

Global filter. We cannot directly use the local filter to remove
invalid records at each node independently; otherwise, it leaks per-
partition record information, which is prohibited in our security
model. Nevertheless, our key insight is that, if we first randomly
distribute both valid and invalid records across all nodes, then the
distribution of valid records, i.e., the number of valid records at
each node, is irrelevant to the data content and thus does not leak
sensitive information. Now we could apply local filter operators
to all partitions in parallel. Such random data distribution can be
directly realized by our random communication in Section 4.2.
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poS chunk@start 0 R
dvide Into @start 2 sortto
chunks final pos

Figure 2: Overall flow of SODA oblivious local filter. Records
in dark are invalid. The key step shown in the middle sorts
the valid records in each chunk to their final positions in the
result, e.g., record 0 at position 0 and record 1 at position 1
in their own chunks, respectively.

Consequently, we propose our optimized global filter, which is
divided into two stages with data communication in between. In
stage 1, we assign to each record in the local partition a randomly
chosen destination bucket ID between 0 and N, where N is the num-
ber of output partitions. Then we use BuildBuckets in Algorithm 1
to construct the buckets and conduct a random communication. In
stage 2, each node collects all the buckets sent to it and uses the
above oblivious local filter operator to remove the invalid records.

Efficiency. Our oblivious filter operator does not use any ex-
pensive global sort. It only uses one round of (pseudo-)random
communication, which greatly improves upon our baseline which
uses four rounds of data shuffling. The cost of local processing is
also smaller than the four 0Sort/OMerge calls in the baseline. It
now includes several sequential scans, two 0Sort/OMerge calls, and
one ODistribute [40]. This leads to O(nlog? n) time complexity
and O(n) space complexity, determined by the OSort primitive.

4.4 Oblivious Aggregate

To avoid expensive global sort, we design the oblivious aggregate
in SODA based on hash-based partitioning. Naive hash-based par-
titioning would leak the destination node of each record as well
as the size of each aggregate group (i.e., records of the same key).
We leverage the aggregate property to avoid these issues. For all
the records belonging to one group, only one record is responsible
for holding the aggregate value, while the others can be changed to
dummy records whose keys are freely set. Therefore, after local ag-
gregate, we turn these other records into random dummy ones that
contain different keys from each other and also different from any
real keys. With a uniform hash function applied on these different
keys to derive their destination partitions, the overall traffic satisfies
our pseudo-random communication requirement, and thus hides
the sensitive data distribution. Also, because the destination is fully
determined by the key, all records with the same real key will still
be directed to the same node, ensuring correct aggregate results.

Specifically, the SODA oblivious aggregate operator contains
two stages, as illustrated in Figure 3. In stage 1 as Algorithm 3,
each node independently aggregates the local records in its par-
tition. This can be done by first locally sorting all the records to
form consecutive aggregate groups, and then doing a sequential
scan to aggregate each group. The last record in each group holds
the (partially) aggregated result and is valid, while the others are
marked invalid. The valid records use their real keys to determine
the destination buckets, while the invalid records in the group use
randomly assigned different keys to calculate the buckets. Now we
could use the BuildBuckets method in Section 4.2 to conduct a
round of pseudo-random communication.



Algorithm 3: Oblivious Aggregate: Stage 1

Input: Local data partition #, total number of partitions N.
Output: N buckets B.

0Sort (P, _.key) ;

-

sort by key.

X

Aggregate P with a sequential scan; store the result in the last
record; mark other records as invalid.

* Assign buckets. *

()

nonce « 0;

foreach d € P do
h < Hash(d.key) ;
cmov (—d.valid, h, Hash(d.key||nonce)) ;
d.bucket «<— h mod N;

nonce <« nonce + 1;

9 B « BuildBuckets(P, N);
return B;

@ e

use real key.

£

use dummy key.

<

3

Figure 3: Overall flow of SODA oblivious aggregate. “k” and
“b” stand for key and bucket. Records in dark are those turned
into invalid. After stage 1, records are assigned into padded
buckets according to their (pseudo-random) bucket IDs “b”.

After shuffling the buckets, we continue with stage 2. Now, the
records holding the locally and partially aggregated values are in
the desired destinations following their keys, so they can be further
aggregated through a single scan. The other dummy records have
different keys from the real records and do not affect correctness.

Efficiency. Our design still has O (n log? n) time complexity and
O(n) space complexity for local processing, the same as the baseline.
However, instead of a global sort, our design requires a single round
of (pseudo-)random communication, plus a few times of local 0Sort
and ODistribute. Their cost is much smaller than the baseline.

4.5 Oblivious Binary Equi-Join
As discussed in Section 3, the major difficulty to support generic
binary equi-join in an oblivious way is to ensure uniform partition
sizes for both the input and output data before and after the join.
Similar to aggregate, join also requires the records with the same
key to form a group. But rather than a single aggregated result,
we now must collect all the original records from both tables in
a group, which have various amounts, to one node. Our trick in
implementing oblivious aggregate is thus not applicable anymore.
An intuitive solution is to manually arrange the groups into par-
titions to make all partitions have similar total sums of group sizes
and then apply small padding to compensate for the differences.
However, this is insufficient because the different join degrees in dif-
ferent groups still result in different output data sizes. For example,
a specific partitioning could result in one group with 2 records of ta-
ble A and 2 records of table B in partition 0, and another group with
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1 record of table A and 3 records of table B in partition 1. Although
both partitions have the same total number of 4 input records, the
join results would have different sizes, 2 X 2 = 4 records in partition
0 and 1 X 3 = 3 in partition 1. Such two types of skewness are due
to input redistribution and join product, respectively. They are also
critical issues that cause load imbalance in the conventional inse-
cure settings [10, 13, 14, 51, 62]. Our problem is more challenging
as we can only transform data in limited oblivious ways.

Our key idea in SODA is a method named two-level assignment.
The high-level idea is to first arrange all the various sized join
groups into a set of equally sized bins (the first-level assignment).
This simplifies the problem of addressing the input redistribution
skew, to a task of ensuring that each partition has the same number
of bins. Then, we calculate the sum of the join group products in
each bin, using the value as the weight of the bin, and then organize
the bins into partitions in the second-level assignment to address
the join product skew. The algorithm ensures that all partitions
have the same number of bins as well as the same total weight (i.e.,
join product) with proper padding.

Overall flow. As shown in Figure 4, we first random shuffle all
the data partitions among the nodes using our random commu-
nication method in Section 4.2 (step 1), similar to oblivious filter
(Section 4.3). The goal is to reach a sufficiently random key distri-
bution so that we can apply the aforementioned padding bound to
reduce the padding cost in later steps. Then we get the size of each
group by applying oblivious aggregate as described in Section 4.4
(step 2). After the aggregate, each node has the size information
for a non-overlapped subset of the join groups. They further com-
municate to derive the maximum group sizes a4 and ap in the two
tables, as well as their total numbers of records 4 and fg. Note
that the dummy records introduced in this aggregate step (shown
in red in Figure 4) do not affect correctness, which are specially
handled by our two-level assignment algorithm discussed below.

We then do the first-level assignment to pack groups into simi-
larly sized bins, which are padded to exactly the same size later (step
3). We reduce it to bin-packing, in which the group size is used as the
weight. We use practical approximate methods [15, 33], specifically
the Next-Fit algorithm, to find the solution. Next, the second-level
assignment further balances the join result sizes across the parti-
tions (step 4). The sum of the join product sizes of all groups in a
bin is used as the weight of this bin. We use an efficient method (de-
scribed below) to distribute the bins to N partitions with the same
number, and simultaneously ensure that the sum of join product
sizes in each destination partition is bounded. Our implementation
ensures obliviousness during the two-level assignment.

After finishing the two-level assignment, each group has its
destination partition assigned. We next patch this assignment infor-
mation back to the original tables (step 5). As all the original data
now know the destination partitions, we can do the data shuffling
according to the assignment (step 6). Each node then performs
a local single-node join algorithm (step 7), e.g., [12, 34], during
which the join product size in each output partition is padded to
Y/N + agap (see proof later), which is public information.

Now we explain the key steps 1, 3, and 4. Other steps are intuitive
(e.g., step 2 directly follows Section 4.4) and thus omitted.

Step 1: random shuffle. Consider an extreme case, where all
the records in a partition have the same key. Then the adversary
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Figure 4: Overall flow of SODA oblivious join. The two-level assignment (steps 3 & 4) is further illustrated in Figures 5 and 6.
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Figure 5: Oblivious join: first-level assignment. After apply-
ing aggregate to get the group sizes, we obliviously merge
the two result tables and use bin-packing to pack groups into
bins. “k” stands for key with subscripts denoting table A or
B. “v” contains the group sizes in tables A and B. “b” denotes
the bin ID assigned locally at first. After communication, the
bin ID is updated to the global “b(new)”.

can observe that all the records in this partition are going to the
same destination node when we actually exchange data after the
two-level assignment, which leaks information. To accommodate
the worst case, each node would need to send all its records to
every other node, which is too expensive. Randomly shuffling the
records at the beginning reduces this padding. Even though now
we introduce an additional round of communication, the total com-
munication traffic is still smaller than the baseline, as the random
communication only incurs small overheads (Section 4.2).

Step 3: first-level assignment. We use the Next-Fit bin-packing
algorithm in the first-level assignment to pack groups into bins.
Ohrimenko et al. [49] used bin-packing as offline pre-processing,
with the First-Fit-Decreasing algorithm [15] to get a better bound.
We instead aim for online processing and use Next-Fit to avoid any
global oblivious sort. We set the bin capacity to a public number
¢ = ay + ap to accommodate the largest group. For 4 + fp total
records, 2(f4 + fB)/c bins are enough to hold all the groups for any
group size distribution, as every 2 adjacent bins should have more
than ¢ records, or they could be combined. The concrete execution
is as follows, and illustrated in Figure 5. We first merge the result
partitions from the aggregate step of the two tables, and sort the
records by (key, table) locally at each node, so the same keys from
table A are before those from table B. Each node then does Next-Fit
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Figure 6: Oblivious join: second-level assignment. “a” stands

for bin weight (sum of join product sizes). Orange denotes
initial assignment; red denotes final assignment. Light green
to dark green means ascending order.

packing locally, with a simple scan from the bottom up, as shown
in Figure 5. During the scan, the current bin size is obliviously
recorded. If the current record (representing a group due to step
2 aggregate) cannot fit in the bin, a new bin is opened. When the
scan finishes, the last bin in each node may still have space. All
nodes then exchange their last bin information, in order to update
their local bin IDs to the globally unique bin IDs (by another scan).
They also possibly merge the half-full last bins during this process.
In Figure 5, the last bins in the two partitions PO and P1 cannot
merge, so the bins of P1 are numbered starting from 5, after the last
bin ID 4 of P0. The whole procedure is oblivious.

Step 4: second-level assignment (high-level idea). We first
calculate the weight of each bin, by summing up the join product
sizes of all groups in it (the leftmost part in Figure 6). Our goal is to
find a partitioning scheme to ensure all the partitions have the same
number of bins as well as similar weights (padded to exactly the
same later). We use the following algorithm to obtain the solution.
Notice that this is an abstract description that is different from our
implementation described later, so the description is not oblivious
and does not exclude expensive operations.

We first sort all the bins by their weights and organize the sorted
bins in the row-major order into an N-column matrix denoted
as M. Thus My; < My; < My V1 < i < j < N for any
row k. The matrix M forms a partitioning scheme, where the bins
in the ith column are assigned to the ith partition. The column
sum represents the total weight of each destination partition. We
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can prove that the column sum obtained in such a simple way is
bounded by y/N + agap, where y is the total weight of all bins,
i.e., the output table size (excluding padding). Assume M has R
rows. By accumulating the inequality above, we have Zf;ll My ; <
SRIM; < IR, M V1 < i < j < N. Adding the missing
Mg j and My; to the second and third terms yields Zle M <
Zle M ; + @pap, because g ap is the maximum bin weight (join
product size) for the maximum bin size ¢ = a4 + ap from the
first-level assignment. This means the difference of column sums is

bounded by a4 ap, and so the maximum is bounded by y/N + a4 ap.

Step 4: second-level assignment (oblivious and efficient
implementation). Now we illustrate how we obliviously achieve
the above assignment across all nodes, without using expensive
global sort and even without fully sorting each local partition. At the
beginning, following the results of the first-level assignment, each
node now holds its packed bins with a disjoint key range from each
other. Since the granularity of the second-level assignment is bins,
only one record in each bin is selected as the representative. To do so,
the idea is similar to that in local filter (Section 4.3). We first scan all
the records on the node to select each representative and write the
bin weight into it (the leftmost part in Figure 6, field “a”). The other
records keep dummy weights. We omit the last bin of a node if it

has been merged with other nodes during the first-level assignment.

Then the representative records are split into chunks of size Nyt
(the number of output partitions), and the ith representative is
obliviously placed at i mod Noyt in its corresponding chunk. As an
example, in Figure 6, the representatives of bins 4 to 0 from top to
bottom have weights of 2, 1, 2, 4, 1, respectively. They are alternately
placed at positions 0 and 1 in the size-2 (Nout = 2) chunks (®).

Next, a buffer t of size Noyut flows down the array of chunks
and collects the representatives in each chunk to fill in each of the
Nout slots (®). Then, we assign these Noyt representatives to the
Nout output partitions in a one-to-one manner, ensuring the same
number of bins for all nodes. To further ensure similar total weights
in all partitions, the assignment is based on the current weight
sums in all the partitions, denoted as S. Specifically, the bin with
the maximum weight in the buffer is assigned to the partition with
the minimum current weight sum (®). For example, with ¢t = [2, 4]
in the second buffer in the middle of Figure 6, the first bin with
weight 2 is added to partition 1 with sum 2, and the other bin with
weight 4 is added to partition 0 with sum 1. This updates S from
[1,2] to [4, 5]. If the buffer is not full when it flows to the end, the
remaining representatives are collected into Srem.

Now we have obtained the initial assignment of bins to partitions
independently at each node. Algorithm 4 shows the entire process
so far, which only uses oblivious operations. Next, we exchange
the remaining bins in Srey, among all nodes, merge and sort them,
and determine their assignments similarly as above (@). We omit
the details of this step, and only show in Figure 6 bottom where the

assignment of Syeyy = [1,0] on PO is [0, 1] (in red) for the two bins.

When finally combining the initial assignments S and Syem across
all nodes, we make some further cross-node adjustments to get a

better bound for the total weight sum on each destination partition.

Essentially, we apply the “maximum plus minimum” trick again,
but now across different nodes. We propagate the assignment S
across all nodes sequentially (®). Each node receives S, from its
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Algorithm 4: Oblivious Join: Second Assignment Init

Data: Merged aggregated data # from first-level assignment, with
fields b as bin ID and a as bin weight. Weight sum array S
and remaining weight sum array Srem, both of size Noyt,
assignment status / for last bin.

1 Obliviously set £ [0].a to L to ignore last bin £ [0], if it is merged
to another node;

2 [ <« UNASSIGNED ;

3 cmov(P[0].a = L, I, IGNORED) ;

initialize last bin status.

ignore if merged to another node.

14 be—1;

5 foreachd € P do

6 Set new field d.idx as original sequential index;
7 c—db#bArda+L;
8 d.wgt « L; cmov(c, d.wgt, d.a) ;
9 b — d.b;

condition for being representative.

set representative weight.

10 S« {(i,0)},

n ¢t {(i,L, 1)},

12 loc < 0;

13 fori <« 0to [|P|/Nouyt] — 1 do

ch «— PlixX Noyt : (i+1) X Nout | ;

* Fill in buffer ¢. *

foreach d € ch do
cmov (d.wgt # L, d.loc, loc mod Noyyt);

L cmov (d.wgt # L, loc, loc + 1);
0Sort(ch, _.loc); ODistribute(ch, _.loc);
cmov(ch.wgt # L A t.wgt = L, t.wgt, ch.wgt) ;

ie [05 Nout) 5
i€ [0, Nout) 5

two fields idx, wgt
three fields idx, wgt, part
in-chunk location of representative.

14 mutable reference of a chunk

15 set in-chunk location in buffer #
16

17

18
19 t‘lt‘lllf]lt’\\'iSt‘.
“If buffer # is fully filled, assign to weight sum S. *
¢ « loc > Nyut; loc « loc mod Noyt; whether ¢ is full.
0Sort(S, _.wgt); 0Sort (¢, —_.wgt) ;
cmov(c, S.wgt, S.wgt + t.wgt) ;
cmov (c, t.part, S.idx) ;

Record init assignment. *

20
21 in opposite order.
22 sum weights; element-wise.

23 init assignment; element-wise.

24 0Sort (¢, _.idx) ; restore to align with ch.
25 cmov (c, Ch.part, t.part) ; element-wise.
* Chunk may have remaining bins not filled into buffer yet. *

26 for j « 0to Nyyt — 1 do
27 cmov(c A j < loc, t[j].wgt, ch[j].wgt);
28 L cmov(c A j = loc, t[j].wgt, L);
* Record assignment for last bin if it has been assigned.
29 | cmov(c A P[0].part # L Al =UNASSIGNED, I, P[0].part);

* Remaining weight sums; to be assigned. *

@
=1

Srem-Wgt « t.wgt;

predecessor to combine with its local S, and generates a new S,
to be sent to the successor. The first node starts with S, = Syen.
The final S; is the total weight sums. As shown in Figure 6, when
combining Srem = [1, 0] with the local S = [4, 5] on PO, it is better
to switch the original adjustment of S from [1, 0] (in orange) to
[0, 1] (in red) to achieve a more balanced total weight distribution
of S, = [5,5] (®). On P1, in contrast, there is no need to adjust
the assignment. Despite being sequential, both the computation
and communication are lightweight since we only process S, which
only has Noyt elements. Algorithm 5 summarizes this cross-node
adjustment. It also correctly handles the assignment of the last bins
using both received [, and local I.



Algorithm 5: Oblivious Join: Second Assignment Adjust

Input: Local and received weight sums S and S, local and
received last bin assignments [ and [,..
Output: Weight sum S, and last bin assignment /, to be sent out.

0Sort (S, _.wgt); 0Sort (S, —_.wgt) ;

-

in opposite order.
S,.wgt «— S.wgt+ S,.wgt ; element-wise.
S.part « S,.idx;

0Sort (S, _.idx);

w

adjust local assignment.

'S

restore original order.

foreach s € S do
L ¢ « I has been assigned A I = s.idx;

cmov (I = UNASSIGNED, I, Syem [0].part) ;
cmov(l = IGNORED, L, I,-) ;

L —1;

o @

=

cmov (c, 1, s.part) ; adjust last bin assignment.
last bin in Syem.

last bin from other node.

©

10 send last bin assignment to next node.

We prove the bound of the “maximum plus minimum” trick.
Assume S; = Sx +Sy. Sx and Sy are sorted in opposite orders and
both satisfy max S — minS < asap. So for any i, j, Sx[i] — Sx[j]
and Sy[i] — Sy[j] have different signs. Therefore, |S;[i] — S;[j]| =
1SyLi] = SyLi] + Sli] = Sx[1| < max([y[il = Sy (11, IS¢i] -
Sx[J]l) € aaap. Given that all the initial S arrays satisfy the as-
sumption, the final S, still satisfies the same inequality by induction.
This means the difference between column sums in S, is bounded
by @qap, and so the maximum is bounded by y/N + aaap.

The final step of the second-level assignment is to write the
assignment results back to all the original representatives of the
bins (@), including the last bin that is assigned to partition . This
follows the reverse procedure of Algorithm 4. We omit the details.

Efficiency. We emphasize that SODA oblivious join does not
involve any expensive global sort. It requires 5 data communication
rounds, namely (1) one in step 1 random shuffle, (2) one in step 2
aggregate, (3) one to patch the assignment back in step 5, (4) one
to shuffle data for the single-node join in step 6, and (5) one at the
end to filter dummy records. Note that (2) and (3) do not involve
the entire rows of the original data tables. In contrast, the baseline
join (Figure 1) requires 9 communication rounds, including 8 from
2 column sorts (one for join and the other for filter) and 1 round for
the maximum group communication. The asymptotic complexity of
local processing remains the same as the baseline, i.e., O(nlog? n)
time and O(n) space.

For communication padding, the bound on the number of rows
in each bucket produced by each input partition for (4) is 1 + k+/u
following Section 4.2, where i = 2|P|/N = 2(f + fg)/N?. The
factor of 2 is from the first-level assignment. We could use the
(pseudo-)random communication bound in Section 4.2 because of
the random shuffle at the beginning. Different from communication
padding, join result padding is specific to join, greatly affecting
the performance. SODA reduces the final join result padding from

nmod (aa+ap)
2

2
min({mJ - (apap) + ( ) ,Y)toy/N +asap, re-

ducing the data volume in local sort during the single-node join.

5 SECURITY ANALYSIS

We prove the security of our designs by showing the existence of
a simulator Sim defined in Section 2.4, which only has access to
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the six public parameters. Since an adversary cannot distinguish
between the real trace and the simulated trace, it cannot learn extra
information from a real execution.

For local processing, we enforce the following properties in both
the high-level algorithms and our implementations (see details in
[40]): (1) all loop conditions depend only on public information irrel-
evant to sensitive data; (2) all branches are converted into cmov in-
structions to be oblivious to branch conditions; (3) all memory/disk
accesses either follow a sequential scan manner, or use oblivious
primitives OSort, OMerge, and ODistribute, which themselves are
oblivious according to Section 4.1. Therefore, the execution traces
are independent of the sensitive data content. For example, the trace
of a scan on some intermediate data (e.g., buckets, chunks) contains
sequential addresses with the length decided by the data size. Since
Sim knows the data size, it can generate an indistinguishable trace.

For network communication, as long as the communicated data
volume between each pair of source and destination nodes is inde-
pendent of the sensitive data, Sim can transfer the same amount
of data locally computed from random input (indistinguishable
if encrypted) between the nodes. This condition holds in SODA.
For each input partition, its outgoing data to each output partition
are either perfectly balanced or padded by our (pseudo-)random
communication primitive in Section 4.2. In both cases, the size is
fully determined by the input partition volume, which is initially
a public value (Section 2.4). More specifically, for global filter and
aggregate, there is only one round of data communication padded
by (pseudo-)random communication. For join, we first do a random
shuffle and an aggregate, both being oblivious. During the two-level
assignment, we send metadata among all partitions with a fixed
number of rounds. All metadata are in the form of vectors of a fixed
length Noyut. The next step sends buckets back to the senders to
patch the assignments to the original tables. This data communica-
tion is the inverse of the aggregate operation and is also oblivious.
In the final data shuffling, an input partition sends the same amount
of records to each output partition, after padded similarly to our
(pseudo-)random communication. Thus, communication during the
whole procedure is independent of sensitive data.

6 EVALUATION

6.1 Implementation

Both the baseline in Section 3 and SODA are implemented in Rust
on top of FLARE [39], an open-source, Rust-based, Spark-like se-
cure analytics framework with competitive performance and much
simpler code structures, making performance and security analysis
easier. We use Intel SGX as our TEE choice, with Rust SGX SDK
v1.1.3 [17, 63] for implementing the code in the trusted domain.
We remark that our proposed algorithms are not tied to Spark or
SGX. They are applicable to other frameworks and TEEs as well. All
the local processing stages in the algorithms described in Section 4
execute in the trusted domain, and are doubly oblivious [46].

6.2 Experimental Setup

Platform. We use multiple cloud instances of type ecs. g7t . 4xlarge
on the Alibaba Cloud, which are equipped with Scalable SGX pos-
sessors with GB-level trusted memory. The inter-machine network
bandwidth is up to 25 Gbps.
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Figure 7: Analysis of (pseudo-)random communication.

Workloads. We use both micro- and macro-benchmarks. The
micro-benchmarks include two suites. (1) Big Data Bench [64], simi-
lar to AMP Big Data Benchmark [4], which was used by Opaque [70].
We run Aggregation (A), Filter (F), and Cross-Project (CP) queries,
similarly as in Opaque. Here CP is actually a primary-foreign join.
(2) Queries TE1-TE3 and SE1-SE3 used in [12], on the TPC-H dataset
and the social graph dataset [11]. They are mainly used for evaluat-
ing binary equi-join with various join degrees. Same as in [12], we
generate three tables “popular-user”, “inactive-user” and “normal-
user”, and randomly sample 1 to 100 MB as our dataset.

While the micro-benchmarks only evaluate a single operator,
the macro-benchmarks involve more oblivious operators, which
are more complex. We construct them from a diverse set of bench-
marks in the domains of data analytics, graph processing, and
machine learning. Specifically, we include PageRank (PR), Tran-
sitive Closure (TC1), Dijkstra (Dij), Triangle Counting (TCo), K-
Means (KM), and Matrix Multiplication (MM). They are widely used
in many frameworks [18, 39, 54, 58, 70]. We run them on real-world
datasets [37, 38, 43]. For all the queries, we manually apply com-
monly used query optimizations (e.g., selection pushdown) and
generate optimized physical plans, due to current lack of support
in FLARE [39] and its insecure baseline Vega [56].

Baselines. We compare three systems. (1) Rust Spark, the origi-
nal Vega [56] as the insecure reference. (2) Rust Opaque, the baseline
in Section 3. (3) SODA, our proposal. Notice that we could not di-
rectly compare with the original Opaque framework [70] because
its oblivious mode is not open sourced. For all benchmarks, we
evaluate four system configurations with 2, 4, 8, and 16 nodes.

6.3 Performance on Micro-Benchmarks

We first compare (pseudo-)random communication against global
sort. Figure 7a shows the bucket padding overhead compared to the
original bucket size for various data partition sizes |#| and numbers
of nodes N, under the failure rate of 2x 1077, The overhead is only
moderate in typical setups, e.g., less than 8% when using N = 16 to
process 1 million records, or less than 32% even when N = 256. In
contrast, global sort is equivalent to having a 300% overhead due to
four communication rounds. Figure 7b shows the total execution
time of the two primitives and the portions of communication time,
when processing 1 GB data. With more nodes in the cluster, the
communication time becomes increasingly dominant. The speedup
of our primitive is significant, ranging from 2x to 6X.

Next, we evaluate micro-benchmark set (1). The results are
shown in Figure 8. For A, F, and CP, their speedups averaged over
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Figure 9: Performance on micro-benchmark set (2).

the four different system scales are 2.6%, 1.8X and 1.1X, respectively.
The speedups of SODA oblivious aggregate and filter are higher, be-
cause they both require small amounts of communication and local
sorts. For CP, it is expected that the performance of the baseline join
approaches that in SODA, since CP performs the primary-foreign
join, in which case the baseline would not generate much join result
padding. On the other hand, the communication volume of SODA
is relatively large due to the padding to the bound in the Next-Fit
algorithm, which is around 2X expansion. Nevertheless, SODA join
is still slightly better due to fewer communication rounds.

On the other hand, when compared to the insecure system, the
security overheads of SODA for these three workloads are 2.4X,
15.0%, and 6.2X, respectively. These numbers are only moderately
large, except for F (filter). This is because insecure filter does not
need cross-node data shuffle at all, while oblivious filter additionally
introduces a round of communication. For aggregate and join, both
the insecure and oblivious versions need global data exchange.

Then we evaluate micro-benchmark set (2), where all the join
queries are general binary equi-join. As shown in Figure 9, for TE1-
TE3, the speedups range from 1.6X to 2.0%, 1.8X to 2.8%, and 1.5X
to 2.2x as the number of nodes increases from 2 to 16. For SE1-SE3,
the speedups range from 1.8x to 2.2%, 2.9% to 3.7X, and 2.0X to 2.4X.
These performance improvements are more significant than the CP
workload because the baseline cannot efficiently handle general
binary equi-join, as discussed in Section 3. As the cluster size grows,
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missing bars are due to out-of-memory crashes.

Table 1: The relationship between padding reduction and
speedup in micro- and macro-benchmarks.

Micro-Benchmarks CP TE1 TE2 TE3 SE1 SE2 SE3
Padding reduction 95 1.1 12 12 39 114 17
Speedup 12 20 28 21 22 34 20
Macro-Benchmarks MM PR TCl TCo
Padding reduction 09 11 96 74
Speedup 20 1.7 109 76

the speedup slightly increases. The baseline sequentially passes
significant data from one node to the other (Figure 1), hindering
scalability, while SODA communicates only small metadata.

When compared to the insecure system, SODA still incurs large
overheads for join, due to several costly local sort primitives, which
are not needed in the insecure version. Fortunately, the sort primi-
tive could largely benefit from distributed execution, and the slow-
down of SODA over the insecure system reduces from 47.2X to
5.5X (in geometric mean) as the number of nodes increases from 2
to 16. This result demonstrates the good scalability of our proposed
oblivious join algorithm in SODA.

6.4 Performance on Macro-Benchmarks

Finally, we evaluate the macro-benchmarks that are consisted of
multiple oblivious operators. As shown in Figure 10, the perfor-
mance gains range from 1.1X to 14.6X. PR has the lowest speedup
since its join type is primary-foreign join, and the join dominates the
execution. SODA brings significant benefits on graph algorithms,
such as Dij with an average 4.7X speedup, TC1 with 10.9%, and TCo
with 7.6X. These algorithms involve more padding in the baseline
due to join on real-world graph datasets (see Section 6.5). Notice
that some workloads even crash on the baseline framework because
the excessively large amount of data padding exhausts memory.

6.5 Padding Reduction Analysis

We further illustrate the correlation between the padding reduction
of join results and the speedup in binary equi-join. The padding
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reduction is the ratio of padded join result volumes between the
baseline and SODA. Here we exclude the workloads that do not in-
volve join. As shown in Table 1, for most workloads, the speedup is
well correlated with the padding reduction. For MM, despite negative
padding reduction (< 1), SODA still achieves speedup thanks to
communication volume reduction and less computation. However,
CP and SE2 show significant padding reduction but small perfor-
mance gains. To find out the reason, we enlarge the datasets by
5%. The speedup in SE2 now grows to 18X, better matching the
padding reduction. However, CP still exhibits a low speedup. We
find that although the dataset is GB-level large, the join result of
CP is quite small, with only hundreds of output records. Padding on
such a small output does not affect the overall performance much.

7 RELATED WORK

Oblivious algorithms for data analytics have been widely studied
recently [6, 12, 18, 19, 34, 41, 46, 49, 66, 70]. For single-node query
processing, most work focused on join, the most challenging task.
Li et al. [41] were the first to construct oblivious join with secure
processors, including binary equi-join, band join, and acyclic multi-
way equi-join. Arasu et al. [6] also proposed other oblivious oper-
ators beyond join, but the details were missing [34]. OBliDB [19]
supported selection (a.k.a., filter), aggregate, and binary equi-join.
Krastnikov et al. [34] concentrated on building a more efficient
binary-equi join. The most recent state-of-the-art work [12] was
the first to integrate ORAM [52, 60, 65] to build oblivious join.

On the other hand, for distributed query processing, the leakage
would be more severe due to the additional network traffic side
channel. Ohrimenko et al. [49] defined two levels of obliviousness
and proposed corresponding algorithms under the MapReduce par-
adigm [16]. Another work M2R [18] also focused on MapReduce,
but only hided correlation information, which was the weaker level
in [49]. ObliDC [66] focused on security formalization rather than
performance. Opaque [70] was the state-of-the-art work based on
Spark. It utilized column sort to construct oblivious algorithms.
However, it did not support binary equi-join, and column sort is
performance-wise expensive.

8 CONCLUSIONS

We propose SODA, a set of efficient algorithms for oblivious data
analytics operators in distributed processing scenarios, including fil-
ter, aggregate, and equi-join. Compared to previous systems, SODA
completely eliminates the use of expensive global sort primitives,
and minimizes the necessary data padding, therefore achieving
significant performance improvements of 1.1X to 14.6X on com-
plex data analytics benchmarks. In addition, SODA also extends
the functionality, as its equi-join operator generalizes beyond the
primary-foreign join in the baseline system.
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