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ABSTRACT
The Shapley value (SV) is a fair and principled metric for contri-

bution evaluation in cross-silo federated learning (cross-silo FL),

wherein organizations, i.e., clients, collaboratively train prediction

models with the coordination of a parameter server. However, exist-

ing SV calculation methods for FL assume that the server can access

the raw FL models and public test data. This may not be a valid

assumption in practice considering the emerging privacy attacks on

FL models and the fact that test data might be clients’ private assets.

Hence, we investigate the problem of secure SV calculation for cross-
silo FL. We first propose HESV, a one-server solution based solely

on homomorphic encryption (HE) for privacy protection, which has

limitations in efficiency. To overcome these limitations, we propose

SecSV, an efficient two-server protocol with the following novel

features. First, SecSV utilizes a hybrid privacy protection scheme

to avoid ciphertext–ciphertext multiplications between test data

and models, which are extremely expensive under HE. Second, an

efficient secure matrix multiplication method is proposed for SecSV.

Third, SecSV strategically identifies and skips some test samples

without significantly affecting the evaluation accuracy. Our experi-

ments demonstrate that SecSV is 7.2-36.6× as fast as HESV, with a

limited loss in the accuracy of calculated SVs.
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1 INTRODUCTION
Personal data are perceived as the new oil of the data intelligence era.

Organizations (e.g., banks and hospitals) can use machine learning

(ML) on personal data to acquire valuable knowledge and intelli-

gence to facilitate improved predictions and decisions. However,

acquiring sufficient personal data for ML-based data analytics is

often difficult due to numerous practical reasons, such as the lim-

ited user scale and diversity; organizations face considerable risk of

privacy breaches by sharing user data. Consequently, large personal

data are stored as data silos with few opportunities to extract the

valuable information contained therein.
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To exploit the data silos in a privacy-preserving manner, cross-
silo federated learning (cross-silo FL, may be referred to as cross-
organization FL) [30, 33, 78] was introduced as a promising para-

digm for collaborative ML. It enables organizations, i.e., clients, to

train an ML model without sharing user data, thus largely protect-

ing privacy. Concretely, in a typical model-training process of FL,

each client trains a local model on her local side and uploads it to a

server. The server then aggregates all the local models into a global
model, which contains knowledge learned from clients’ data silos.

However, recent studies have shown that sharing the local models or

local updates may reveal private information [11, 79, 85, 88]. Thus,

some secure federated training systems [25, 41, 57, 60, 73, 81, 83]

have deployed homomorphic encryption (HE) to prevent the server

from accessing the raw models. As shown in Figure 1a, the clients

encrypt local models using HE, and the server aggregates the en-

crypted local models to obtain an encrypted global model that can

only be decrypted by the clients.

In typical cases of cross-silo FL, a small number of organizations

(e.g., banks and hospitals) collaboratively train an ML model for

their own use. Their data may substantially vary in size, quality,

and distribution, making their contributions to the model disparate.

Therefore, compensations are required to incentivize clients with

high contributions to cooperate. In such cases, the Shapley value

(SV) [62] is crucial to promoting fair cooperation, which is widely

adopted as a fair and principled metric of contribution evaluation.

The SV calculates the average impact of a client’s data on every

possible subset of other clients’ data as her contribution and can be

used for many downstream tasks in FL or collaborative ML, such

as data valuation [13, 22, 23, 34, 75, 76], revenue allocation [17, 36,

53, 69], reward discrimination [65, 70], and client selection [51].

However, existing studies on SV calculation for FL [38, 69, 75, 76]

assume that the server can access the raw local models and public

test data. This may not be a valid assumption given the emerging

privacy attacks on local models [11, 79, 85, 88] and that in practice,

test data may be private [9, 21, 53, 56, 74].

Example 1.1. Consider that some hospitals with different ge-

ographical distributions of patients collaboratively train an ML

model for disease diagnosis by FL. Each hospital provides a training

set of its patient data for federated training and a test set for SV-

based contribution evaluation. As shown in Figures 1a and 1b, they

should ensure the security of both the training and SV calculation

phases because the patient data are sensitive.

This study is the first to address secure Shapley value calculation
in cross-silo FL. Specifically, as depicted in Figure 1b, extending the

secure federated training for cross-silo FL [25, 41, 57, 60, 73, 81, 83],

we calculate SVs during the evaluation phase using homomorphi-

cally encrypted models. Solving this problem is significantly chal-

lenging because of the following two characteristics. First, secure

SV calculation in cross-silo FL involves protecting both local models
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(a) Secure federated training. (b) Secure SV calculation.

Figure 1: Secure federated training and SV calculation for cross-silo federated learning.

and client-side test data. Although the existing studies on SV calcu-

lation assume that a public test set is provided, in many practical

cases (e.g., [9, 21, 53, 56, 74]), the test data are owned by clients as

private assets (see Section 3 for more details). Consequently, we

protect both models and test data in our problem, which cannot be

supported by existing secure federated training methods because

they only protect the model aggregation process. Second, SV cal-

culation is an NP-hard task; it is computationally prohibitive to

calculate SVs securely. To calculate SVs in FL, we must aggregate

each subset of local models into an aggregated model and evaluate

its accuracy. This causes 𝑂 (2𝑛) models to be tested, where 𝑛 is the

number of clients. Although 𝑛 is relatively small in the cross-silo

setting, secure SV calculation is highly inefficient because even

testing only a single model is computationally expensive under

HE. Moreover, the existing methods for accelerating SV calculation

[10, 13, 23, 43] can hardly improve the efficiency in our setting (as

we will show in our experiments) because their strategies are based

on sampling and testing a subset of the models to approximate the

exact SVs, which is more suitable for large values of 𝑛.

1.1 Contributions
As a first step, we propose a one-server protocol for secure SV calcu-

lation, named HESV. HESV only requires one server to calculate SVs

and deploys a purely HE-based scheme for secure model testing,

which suggests that both models and test data are encrypted using

HE. However, the state-of-the-art (SOTA) homomorphic matrix

multiplication method [24] cannot multiply an encrypted matrix

of model parameters by an encrypted matrix of input features of a

batch of test samples when their sizes are large, which makes eval-

uating high-dimensional ML models infeasible. Hence, we propose

an extended version of the SOTA, namedMatrix Squaring, which fa-

cilitates testing a wider range of models under HESV. Nevertheless,

HESV has considerable limitations in efficiency: it involves com-

putationally expensive ciphertext–ciphertext (c2c) multiplications

between encrypted models and data; it cannot encrypt together

test samples from different clients in a single ciphertext to accel-

erate matrix multiplications; it evaluates the entire test set for all

aggregated models, which is time-consuming.

Subsequently, we propose SecSV, a two-server protocol that over-
comes the limitations of HESV. SecSV is considerably more efficient

than HESV, despite requiring an additional server to assist in secure

SV calculation. This can be attributed to the following features.

First, we design a hybrid protection scheme for SecSV: models are

encrypted using HE, whereas test data are protected by additive
secret sharing (ASS) [61]. Since test data protected by ASS are in

plaintext, SecSV only calls for ciphertext–plaintext (c2p) multiplica-

tions for model testing, which are significantly more efficient than

c2c multiplications. Second, owing to the use of ASS, this hybrid

scheme enables packing together and simultaneously evaluating

numerous test samples from different clients to enhance efficiency.

Leveraging this feature, we propose a matrix multiplication method,

Matrix Reducing, which is significantly more efficient than Matrix

Squaring when numerous test samples are batched together (i.e.,

the case under SecSV). Third, we propose an acceleration method

for secure SV calculation called SampleSkip. Our intuition is sim-

ple yet powerful: if some test samples can be correctly predicted

by two models, these samples are likely to be correctly predicted

by their aggregated model and thus skippable; otherwise, these

samples discriminate the models’ utilities and clients’ contribu-

tions. As test data are stored as plaintext under ASS, we can freely

drop skippable samples from the batch for the aggregated model to

considerably improve efficiency. Whereas existing SV acceleration

methods [10, 13, 23, 43] can hardly reduce the scale of model evalu-

ations in cross-silo FL, SampleSkip always skips massive samples

for testing and can be combined with these methods.

Finally, we extensively verify the efficiency and effectiveness of

our proposed techniques on diverse ML tasks such as image recog-
nition, news classification, bank marketing, and miRNA targeting.
SecSV achieves 7.2-36.6× speedup w.r.t. HESV in our experiments.

2 PRELIMINARY
Machine learning task. In this paper, we focus on classification,
which is an ML task commonly considered in FL and covers a

wide range of real-world applications. A 𝑐-class classifier is a pre-

diction function 𝑓 : 𝑅𝑑 → 𝑅𝑐 that given a 𝑑-sized feature vector 𝑥
of a data sample yields a 𝑐-sized score vector 𝑓 (𝑥); the argument

�̂� = arg max𝑗 𝑓 (𝑥) [ 𝑗] is assigned as the predicted label for features

𝑥 , where 𝑓 (𝑥) [ 𝑗] denotes the 𝑗-th entry of 𝑓 (𝑥). When a batch of𝑚

samples is given, we overload the prediction function 𝑓 for classify-

ing them: for a 𝑑 ×𝑚 feature matrix 𝑋 , where the 𝑘-th column is the

feature vector of the 𝑘-th sample, the output 𝑓 (𝑋 ) is a 𝑐 ×𝑚 score
matrix where the 𝑘-th column corresponds to the score vector for

the 𝑘-th sample, and the predicted labels are elements of an𝑚-sized

vector �̂� = Argmax(𝑓 (𝑋 )), where Argmax returns the indices of

the maximum values along columns of a given matrix.

A learning task of classification is to seek a classifier 𝑓\ in a

function space 𝐹 = {𝑓\ |\ ∈ Θ}, where \ is a set of parameters in a

space Θ. We refer to \ as model parameters or simply model. The
task essentially is to find a model \ that optimizes some objective.
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Federated learning. FL [44] is a framework for collaborative ML

consisting of 𝑛 clients and an FL server. Concretely, in each training

round 𝑡 , the server selects a subset 𝐼𝑡 of clients and broadcasts a

global model \𝑡 among selected clients. Each client 𝑖 ∈ 𝐼𝑡 then
trains \𝑡 using its own training data to derive a local model \𝑡

𝑖
and

uploads it to the server. The server aggregates all the local models

Θ𝐼𝑡 = {\𝑡
𝑖

⎪⎪⎪⎪𝑖 ∈ 𝐼𝑡 } into a new global model \𝑡+1 =
∑︁
𝑖∈𝐼𝑡 𝜔

𝑡
𝑖
\𝑡
𝑖
,

where 𝜔𝑡
𝑖
≥ 0 denotes the aggregation weight assigned to client

𝑖 for round 𝑡 . Finally, after finishing 𝑇 training rounds, all clients

obtain a final model \𝑇+1.

Shapley value. The SV [62] is a classic metric for evaluating a

player’s contribution to a coalition in collaborative game theory.

It satisfies certain plausible properties in terms of fairness, includ-

ing balance, symmetry, additivity, and zero element. Given clients

𝐼 = {1, ..., 𝑛}, the SV measures the expected marginal utility im-

provement by each client 𝑖 over all subsets 𝑆 of 𝐼 :

𝑆𝑉𝑖 =
∑︂

𝑆⊆𝐼\{𝑖 }
|𝑆 |!(𝑛 − |𝑆 | − 1)!

𝑛!

(︁
𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)

)︁
,

where 𝑣 (·) is some utility function of a set of clients.

Neural network. We provide an abstraction of neural network (NN),

the type of classifier considered throughout this paper. Consider a

batch of samples with a feature matrix 𝑋 . An NN 𝑓\ consists of 𝐿

layers, where the 𝑙-th layer is a linear function 𝑙𝑖𝑛 (𝑙) of the model

parameters \ (𝑙) ⊆ \ and input features 𝑋 (𝑙) of the layer, where
𝑋 (1) = 𝑋 . For example, convolutional layers and fully-connected

layers are typical linear layers. When 𝑙 < 𝐿, the output features

�̂�
(𝑙)

= 𝑙𝑖𝑛 (𝑙) (\ (𝑙) , 𝑋 (𝑙) ) is processed by an activation function 𝑎𝑐 (𝑙)

(e.g., the ReLU and SoftMax functions) that takes �̂�
(𝑙)

as input

and outputs 𝑋 (𝑙+1) , which is the input features of the (𝑙 + 1)-th
layer. Finally, �̂�

(𝐿)
is the score matrix for the given samples. Other

classifiers may also fit this abstraction, e.g., logistic classifiers and

SVM classifiers, which can be considered one-layer NNs.

Homomorphic encryption. HE is a cryptographic primitive that en-

ables arithmetic operations over encrypted data. Given a plaintext

𝑝𝑡 , we denote its ciphertext under HE as ⟦𝑝𝑡⟧. A fully HE (FHE)

system can support additions and multiplications between cipher-

texts or between a ciphertext and a plaintext. A modern HE system,

such as CKKS [5], usually provides the single instruction multiple

data (SIMD) functionality: a ciphertext of CKKS has 𝑁 ciphertext
slots to store scalars, where 𝑁 is a constant integer decided by the

parameters of the HE system; it supports homomorphic entrywise

addition ⊕ and multiplication (HMult) ⊙ between two encrypted

vectors (or between an encrypted vector and a plaintext vector),

which are almost as efficient as additions and multiplications be-

tween two encrypted scalars (or between an encrypted scalar and a

plaintext scalar), respectively; it can also rotate an encrypted vector

⟦𝑝𝑡⟧ 𝑗 steps by a homomorphic rotation (HRot) 𝑅𝑜𝑡 (⟦𝑝𝑡⟧, 𝑗).
As each layer of an NN is a linear function 𝑙𝑖𝑛 (𝑙) of input features

𝑋 (𝑙) and model parameters \ (𝑙) , we can homomorphically evaluate

it by implementing additions ⊕ and multiplications ⊙ between/with
⟦𝑋 (𝑙)⟧ and ⟦\ (𝑙)⟧. Using SIMD, we can pack a batch of test samples

as a matrix and simultaneously perform homomorphic operations

over them.
1
However, exactly evaluating an activation function

under HE is often difficult since it is usually nonlinear.

Secure matrix multiplication. Some types of linear layers involve

matrix multiplications, which HE does not directly support. For

example, a fully-connected layer is a matrix multiplication between

a matrix of model parameters and a matrix of input features. To

homomorphically evaluate a matrix multiplication, we need to

transform it into a series of entrywise additions and multiplications

that can be directly evaluated under HE.

Throughout this paper, when discussing secure matrix multipli-

cation, we consider evaluating 𝐴𝐵, where 𝐴 is a 𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛 matrix

of model parameters, and 𝐵 is a 𝑑𝑖𝑛 ×𝑚 matrix of input features of

𝑚 samples; 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 may be a linear layer’s input and output

sizes, respectively. For ease of discussion, we suppose 𝑑𝑜𝑢𝑡 ≤ 𝑑𝑖𝑛
without loss of generality.

Let us define some notations for matrix operations. Given a 𝑑1 ×
𝑑2 matrixM,M[ 𝑗, 𝑘] denotes the ((𝑘 − 1) mod 𝑑2 + 1)-th entry of

the (( 𝑗−1) mod 𝑑1+1)-th row ofM, andM[ 𝑗1 : 𝑗2, 𝑘1 : 𝑘2] denotes
the submatrix ofM derived by extracting its ((𝑘1−1) mod 𝑑2+1)-th
to ((𝑘2 − 1) mod 𝑑2 + 1)-th columns of its (( 𝑗1 − 1) mod 𝑑1 + 1)-
th to (( 𝑗2 − 1) mod 𝑑1 + 1)-th rows. We useM1;M2 to denote a

vertical concatenation of matricesM1 andM2 (if they have the

same number of columns) and M1

⎪⎪⎪⎪M2 to denote a horizontal

concatenation of them (if they have the same number of rows). We

also define four linear transformations 𝜎 , 𝜏 , b , and𝜓 that given a

matrixM yield a transformed matrix of the same shape:

∀𝑗, 𝑘, 𝜎 (M)[ 𝑗, 𝑘] =M[ 𝑗, 𝑗 + 𝑘], 𝜏 (M)[ 𝑗, 𝑘] =M[ 𝑗 + 𝑘, 𝑘],
b (M)[ 𝑗, 𝑘] =M[ 𝑗, 𝑘 + 1],𝜓 (M)[ 𝑗, 𝑘] =M[ 𝑗 + 1, 𝑘] .

Additionally, when a superscript number 𝑜 is assigned to a linear

transformation, it means applying the transformation 𝑜 times.

Additive secret sharing. ASS [61] protects a secret by splitting it into
multiple secret shares such that they can be used to reconstruct the

secret. In this paper, we only need to split a secret into two shares.

Concretely, given a secret 𝑠 in a finite field Z𝑝 , where 𝑝 is a prime,

we generate a uniformly random mask 𝑟 ∈ Z𝑝 . Therefore, 𝑠 ′ = 𝑟
and 𝑠 ′′ = (𝑠 − 𝑟 ) mod 𝑝 are the two shares of 𝑠 . To reconstruct

the secret, we simply need to add up the shares in the field, i.e.,

𝑠 ≡ (𝑠 ′ + 𝑠 ′′) mod 𝑝 . For a real-number secret, we can encode it

as an integer, split it into two integer secret shares, and finally

decode them to derive two real-number shares. The method for

implementing secret sharing on real numbers can be found in [59].

3 PROBLEM FORMULATION
System model. We study secure SV calculation in cross-silo FL.

We consider the scenario where 𝑛 organizations, i.e., clients 𝐼 =

{1, ..., 𝑛}, lack sufficient training data and join FL to train an accurate

prediction model for their own use. They run 𝑇 training rounds

with the help of a parameter server.

Considering that clients’ training data may vary in size, quality,

and distribution, the server needs to evaluate their contributions

to the accuracy of the final model \𝑇+1 after training. For fair

evaluation, each client 𝑖 contributes a test set of𝑚𝑖 samples 𝐷𝑖 =

(𝑋𝑖 , 𝑌𝑖 ), where 𝑋𝑖 is a 𝑑 ×𝑚𝑖 feature matrix and 𝑌𝑖 is an𝑚𝑖 -sized

1
A matrix’s ciphertext is derived by horizontally scanning it into a vector.
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vector of ground-truth labels; the 𝑘-th column of 𝑋𝑖 and 𝑘-th entry

of 𝑌𝑖 is the feature vector and ground-truth label of her 𝑘-th sample,

respectively. The server evaluates the contributions based on a

collective test setD= (𝐷1, ..., 𝐷𝑛), which has𝑀 =
∑︁𝑛
𝑖=1

𝑚𝑖 samples.

However, calculating the original SV is impractical in FL. Intu-

itively, to calculate the SV, we must enumerate all subsets of clients,

perform 𝑇 rounds of FL for each subset to obtain a final model,

and test all the final models. Retraining the models is significantly

expensive for computation and communication [75], let alone se-

curely training them; it may also cause extra privacy leakage owing

to the more models to be released. Moreover, the SV assumes that

the model utility is independent of the participation order of the

clients, which does not stand true because clients may participate

in or drop out from FL halfway [75].

Hence, we adopt the Federated SV (FSV) [75], a variant of the SV

that addresses the aforementioned limitations well and guarantees

the same advantageous properties as the SV. The FSV is based on

the concept that a client’s contribution to the final model \𝑇+1 is
the sum of her contribution to each training round. Let \𝑡

𝑆
denote

the model aggregated from the local models of a set 𝑆 of clients:

\𝑡𝑆 =

{︄∑︁
𝑖∈𝑆 𝜔

𝑡
𝑖 |𝑆 · \

𝑡
𝑖

if 𝑆 ≠ ∅,
\𝑡 if 𝑆 = ∅,

where 𝜔𝑡
𝑖 |𝑆 ≥ 0 is an aggregation weight assigned to client 𝑖 w.r.t.

set 𝑆 and determined by the training algorithm (e.g., FedAvg [44]).

When |𝑆 | > 1, we term \𝑡
𝑆
as an aggregated model. Then, for each

round 𝑡 , the server evaluates each client’ single-round SV (SSV):

𝜙𝑡𝑖 =

{︄∑︁
𝑆⊆𝐼 𝑡 \{𝑖 }

|𝑆 |!( |𝐼 𝑡 |− |𝑆 |−1)!
|𝐼𝑡 |!

(︁
𝑣 (\𝑆∪{𝑖 })−𝑣 (\𝑆 )

)︁
if 𝑖 ∈ 𝐼𝑡 ,

0 if 𝑖 ∉ 𝐼𝑡 ,

where 𝑣 (\𝑆 ) is the prediction accuracy of model \𝑆 . Finally, the

server aggregates each client 𝑖’ SSVs into her FSV: 𝜙𝑖 =
∑︁
𝑡 ∈[𝑇 ] 𝜙

𝑡
𝑖
.

Threat model. Similar to prior works [37, 63, 81], we assume that

all the parties are honest-but-curious and noncolluding because

they are organizations complying with laws. Our problem is to

design a protocol where the server coordinates the calculation of

FSVs given encrypted local models while no party learns other

parties’ private information. We may include an auxiliary server

to assist the principal server, which is a common model in secure

computation literature. In this case, we reasonably assume that both

servers, e.g., two cloud service providers, are honest-but-curious

and will not collude with each other because collusion puts their

business reputations at risk. Notably, a server is not a machine but

a party that may possess multiple machines for parallel computing.

Privacy model. The private information considered in this study

includes the test data and model parameters; the model structure

decided by the clients is commonly assumed nonsensitive [27].

Readers may consider the test data as public information and ques-

tion the need to protect them. Although a public test set is usually

available to researchers for evaluating an ML algorithm or model,

numerous practical cases exist where the test data are private:

• In collaborative ML marketplaces [17, 53, 65], clients submit

their own test data as a specification of the model they want to

collaboratively train and purchase.

ALGORITHM 1: One-Server Protocol: HESV
1: Server: Randomly select a leader client

2: Leader: Generate a public key 𝑝𝑘 and a private key 𝑠𝑘 of HE and

broadcast them among the other clients

3: Each client 𝑖 : Encrypt her test data and local models and upload them

4: for 𝑡 in {1, ...,𝑇 } do
5: for 𝑆 ⊆ 𝐼𝑡 s.t. |𝑆 | ≥ 1 do
6: Server: Compute ⟦\𝑡

𝑆
⟧ by aggregation under HE

7: Server: Run Π𝐻𝐸 (⟦\𝑡𝑆⟧, ⟦𝑋𝑖⟧, ⟦𝑌𝑖⟧) to obtain 𝑐𝑛𝑡𝑖 for all 𝑖 ∈ 𝐼
8: Server: Calculate 𝑣 (\𝑡

𝑆
) = (𝑐𝑛𝑡1 + ... + 𝑐𝑛𝑡𝑛)/𝑀

9: Server: Calculate SSVs 𝜙𝑡
1
, ..., 𝜙𝑡𝑛, ∀𝑡 ∈ [𝑇 ]

10: Server: Calculate FSVs 𝜙1, ..., 𝜙𝑛

ALGORITHM 2: Π𝐻𝐸 : Secure Testing for HESV

Input: encrypted model ⟦\⟧, features ⟦𝑋⟧, and labels ⟦𝑌⟧
Output: count 𝑐𝑛𝑡 of correct predictions

1: for each layer 𝑙 ∈ {1, ..., 𝐿} of model \ do
2: Server: Calculate ⟦�̂� (𝑙 )⟧ = 𝑙𝑖𝑛 (𝑙 ) (⟦\ (𝑙 )⟧, ⟦𝑋 (𝑙 )⟧) and send ⟦�̂� (𝑙 )⟧

to client 𝑖𝑙+1 ≠ 𝑖𝑙 , where ⟦𝑋 (1)⟧ = ⟦𝑋⟧
3: Client 𝑖𝑙+1: Decrypt ⟦�̂�

(𝑙 )⟧
4: if 𝑙 < 𝐿 then
5: Client 𝑖𝑙+1: Compute 𝑋 (𝑙+1) = 𝑎𝑐 (𝑙 ) (�̂� (𝑙 ) ) , and upload ⟦𝑋 (𝑙+1)⟧
6: else
7: Client 𝑖𝐿+1: Compute �̂� = Argmax(�̂� (𝐿) ) , and upload ⟦�̂�⟧
8: Server: Calculate ⟦�̃�⟧ = −1 ⊙ ⟦�̂�⟧ ⊕ ⟦𝑌⟧ and send it to client 𝑖𝐿+2
9: Client 𝑖𝐿+2: Decrypt ⟦�̃�⟧ and upload 𝑐𝑛𝑡 =

∑︁𝑚
𝑘=1

1( |�̃� [𝑘 ] | < 0.5)

• In federated evaluation [56, 74], Apple and Google let users

compute some performance metrics of FL models on their own

test sets to improve the user experience.

• For personalized cross-silo FL [9, 21], researchers assume that

clients possess non-IID test data.

The test data may contain clients’ private information and be their

proprietary assets, so they intuitively need to be protected.

4 ONE-SERVER PROTOCOL: HESV
In this section, we present a one-server solution to secure SV calcu-

lation, named HESV (HE-Based Shapley Value).

4.1 Secure testing based purely on HE
HESV employs a purely HE-based privacy protection scheme that

encrypts both model parameters and test data using HE, as de-

scribed in Algorithm 1. To begin, each client encrypts her test data

and local models using HE (Step 3). Then, for each training round 𝑡 ,

the server enumerates all subsets of the selected clients 𝐼𝑡 (Step 5);

for each subset 𝑆 , he aggregates the corresponding encrypted local

models into ⟦\𝑡
𝑆
⟧ (Step 6), runs Algorithm 2 to count the correct

predictions made by ⟦\𝑡
𝑆
⟧ (Step 7), and derives model utility 𝑣 (\𝑡

𝑆
)

(Step 8). Finally, clients’ SSVs and FSVs are computed based on the

utilities of local and aggregate models (Steps 9 and 10).

Considering that HE supports nonlinear activations poorly, HESV

adopts the globally-encrypted-locally-decrypted strategy [27, 82]:

linear layers are homomorphically evaluated on the server’s side,

whereas activation functions are calculated on the clients’ side with-

out encryption. As depicted in Algorithm 2, for each layer 𝑙 , there

is a client 𝑖𝑙 holding input features 𝑋 (𝑙) . The server then evaluates
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the linear function 𝑙𝑖𝑛 (𝑙) by applying c2c multiplications/additions

between/with the encrypted input ⟦𝑋 (𝑙)⟧ (Step 2) and model pa-

rameters ⟦\ (𝑙)⟧ and sends the output features ⟦�̂� (𝑙)⟧ to client 𝑖𝑙+1
for decryption (Step 3). Clients 𝑖𝑙 and 𝑖𝑙+1 should be different entities
owing to a security issue that will be discussed in Section 6.1.3. If

𝑙 < 𝐿, client 𝑖𝑙+1 applies the activation function 𝑎𝑐
(𝑙) (�̂� (𝑙) ) to obtain

the input𝑋 (𝑙+1) of the subsequent layer (Step 5); otherwise, she cal-
culates the predicted labels �̂� (Step 7). Finally, the server computes

the differences ⟦�̃�⟧ between the predictions ⟦�̂�⟧ and ground-truth
labels ⟦𝑌⟧ and counts correct predictions with the help of some

client 𝑖𝐿+2 (Steps 8 and 9). Considering that HE introduces slight

noise into ciphertexts, to tolerate the noise, we identify correct

predictions by judging whether the absolute difference |�̃� [𝑘] | is
smaller than 0.5 rather than whether |�̃� [𝑘] | = 0.

4.2 Matrix Squaring
We propose an extension to the SOTA method called Matrix Squar-
ing for homomorphic matrix multiplications under HESV.

4.2.1 SOTA method. When 𝑑𝑖𝑛 ≤ ⌊
√
𝑁 ⌋, the SOTA method [24]

supports computing the matrix product𝐴𝐵 under HE. Suppose that

𝑑𝑜𝑢𝑡 exactly divides 𝑑𝑖𝑛 .
2
This method evaluates 𝐴𝐵 as follows:

(1) Squaring: We obtain two square matrices �̄� and �̄� of order

𝑑𝑖𝑛 . The �̄� matrix vertically packs 𝑑𝑖𝑛/𝑑𝑜𝑢𝑡 copies of 𝐴, i.e.,
�̄� = (𝐴; ...;𝐴), while �̄� is derived by padding (𝑑𝑖𝑛 −𝑚) zero-
valued columns 0𝑑𝑖𝑛×(𝑑𝑖𝑛−𝑚) to the end edge of 𝐵, i.e., �̄� =

(𝐵⎪⎪⎪⎪0𝑑𝑖𝑛×(𝑑𝑖𝑛−𝑚) ).
(2) Linear transformation: We linearly transform �̄� and �̄� into

two sets of matrices {�̄�(𝑜) }𝑑𝑜𝑢𝑡
𝑜=1

and {�̄� (𝑜) }𝑑𝑜𝑢𝑡
𝑜=1

, respectively.

Matrices �̄�
(1)

and �̄�
(1)

are derived by rotating the 𝑗-th row of

�̄� 𝑗 − 1 steps for all 𝑗 ∈ [𝑑𝑖𝑛] and rotating the 𝑘-th column of

�̄� 𝑘 − 1 steps for all 𝑘 ∈ [𝑑𝑖𝑛], respectively, i.e., �̄�(1) = 𝜎 (�̄�),
and �̄�

(1)
= 𝜏 (�̄�). Then, for each 𝑜 ∈ [2, 𝑑𝑜𝑢𝑡 ], we can shift �̄�

(1)

𝑜 − 1 columns and �̄�
(1)

𝑜 − 1 rows to obtain the �̄�
(𝑜)

and �̄�
(𝑜)

matrices, i.e., �̄�
(𝑜)

= b (𝑜−1) (�̄�(1) ), and �̄� (𝑜) = 𝜓 (𝑜−1) (�̄� (1) ).
(3) Encryption: We encrypt the transformed matrices {�̄�(𝑜) }𝑑𝑜𝑢𝑡

𝑜=1

and {�̄� (𝑜) }𝑑𝑜𝑢𝑡
𝑜=1

and upload them to the server.

(4) Entrywise operations: The server computes ⟦𝐻⟧ = ⟦�̄�(1)⟧⊙
⟦�̄� (1)⟧ ⊕ ... ⊕ ⟦�̄�(𝑑𝑜𝑢𝑡 )⟧ ⊙ ⟦�̄� (𝑑𝑜𝑢𝑡 )⟧.

(5) Rotation and extraction: The matrix product 𝐴𝐵 can be ob-

tained by vertically splitting matrix 𝐻 into 𝑑𝑖𝑛/𝑑𝑜𝑢𝑡 subma-

trices, adding them up, and extracting the first 𝑚 columns

of the result, i.e., 𝐴𝐵 = �̃� [1 : 𝑑𝑜𝑢𝑡 , 1 : 𝑚], where ⟦�̃�⟧ =

⊕𝑑𝑖𝑛/𝑑𝑜𝑢𝑡−1

𝑜=0
𝑅𝑜𝑡 (⟦𝐻⟧, 𝑑𝑜𝑢𝑡 · 𝑑𝑖𝑛 · 𝑜).3

However, a ciphertext of HE does not have sufficient slots to

store a large matrix of order 𝑑𝑖𝑛 > ⌊
√
𝑁 ⌋. This is a typical case

because an NN’s input is usually large. Even if we can use multiple

ciphertexts to store the matrix, slot rotations across ciphertexts are

not supported, which makes the SOTA method fail.

2
If 𝑑𝑜𝑢𝑡 divides 𝑑𝑖𝑛 with a remainder, we can pad𝐴 with zero-valued rows to obtain

a 𝑑′𝑜𝑢𝑡 × 𝑑𝑖𝑛 matrix such that 𝑑′𝑜𝑢𝑡 exactly divides 𝑑𝑖𝑛 .
3
For computing ⟦�̃�⟧, the server can apply a repeated doubling approach to improve

efficiency [24].

Figure 2: SOTA method for matrix multiplication.

Example 4.1. Figure 2 shows how the SOTA method works for a

2×4 matrix𝐴 and a 4×3 matrix 𝐵 with 𝑁 = 16, where𝐴[𝑖, 𝑗] = 𝑎𝑖 𝑗 ,
and 𝐵 [𝑖, 𝑗] = 𝑏𝑖 𝑗 . First, we vertically pack two copies of 𝐴 and pad

𝐵 with zeros to derive 4× 4 matrices �̄� and �̄�, respectively. We then

apply entrywise operations over two pairs of transformed matrices

to obtain 𝐻 . Essentially, 𝐴𝐵 is derived by adding 𝐻 [1 : 2, 1 : 3] and
𝐻 [3 : 4, 1 : 3]. However, when 𝑁 = 12, the transformed matrices

are overly large to encrypt into a ciphertext.

4.2.2 Our improvement. To address this issue, Matrix Squaring

involves dividing matrices 𝐴 and 𝐵 into smaller submatrices that

can be stored in a ciphertext. Suppose that ⌊
√
𝑁 ⌋ exactly divides

𝑑𝑖𝑛 without loss of generality.
4
Concretely, when 𝑑𝑖𝑛 > ⌊

√
𝑁 ⌋,

we can vertically split 𝐴 every ⌊
√
𝑁 ⌋-th column to obtain 𝐾 sub-

matrices 𝐴( ·,1) , ..., 𝐴( ·,𝐾) and horizontally split 𝐵 every ⌊
√
𝑁 ⌋-th

row to derive 𝐾 submatrices 𝐵 (1,·) , ..., 𝐵 (𝐾,·) , where 𝐾 = 𝑑𝑖𝑛/⌊
√
𝑁 ⌋,

(𝐴( ·,1)
⎪⎪⎪⎪...⎪⎪⎪⎪𝐴( ·,𝐾) ) = 𝐴, and (𝐵 (1,·) ; ...;𝐵 (𝐾,·) ) = 𝐵. Then, we have

𝐴𝐵 =

𝐾∑︂
𝑘=1

𝐴( ·,𝑘)𝐵 (𝑘,·) .

Therefore, we can evaluate 𝐴𝐵 under HE by applying the SOTA

method over 𝑑𝑖𝑛/⌊
√
𝑁 ⌋ pairs of submatrices 𝐴( ·,𝑘) and 𝐵 (𝑘,·) and

aggregating the results. This inherently requires that𝑚 should not

exceed ⌊
√
𝑁 ⌋; otherwise, any square matrix transformed from a

⌊
√
𝑁 ⌋×𝑚matrix 𝐵 (𝑘,·) cannot be encrypted into a single ciphertext.

Furthermore, when 𝑑𝑜𝑢𝑡 > ⌊
√
𝑁 ⌋, we can horizontally split 𝐴( ·,𝑘)

every ⌊
√
𝑁 ⌋-th row into 𝐴(1,𝑘) , ..., 𝐴( 𝐽 ,𝑘) , where 𝐽 = ⌈𝑑𝑜𝑢𝑡/⌊

√
𝑁 ⌋⌉,

and (𝐴(1,𝑘) ; ...;𝐴( 𝐽 ,𝑘) ) = 𝐴( ·,𝑘) . Then, we have
𝐴( ·,𝑘)𝐵 (𝑘,·) = (𝐴(1,𝑘)𝐵 (𝑘,·) ; ...;𝐴( 𝐽 ,𝑘)𝐵 (𝑘,·) ) .

Hence, we can evaluate 𝐴( ·,𝑘)𝐵 (𝑘,·) by applying the SOTA method

over 𝐽 pairs of 𝐴( 𝑗,𝑘) and 𝐵 (𝑘,·) and vertically packing the results.

5 TWO-SERVER PROTOCOL: SECSV
HESV has three considerable drawbacks. First, it involves numerous

c2c multiplications, which are highly inefficient in computation.

Second, it cannot fully utilize the SIMD feature of HE. Since clients

encrypt test samples on their local sides, the server cannot pack

samples from different sources, which may waste some ciphertext

slots. Third, it fully evaluates the entire test set for all aggregated

models, which is time-consuming. In this section, we propose a

two-server protocol with an auxiliary server named SecSV (Secure

4
We can pad𝐴 and 𝐵 with zeros to ensure this condition.
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Figure 3: Secure testing for SecSV.

Shapley Value) to overcome the drawbacks of HESV. The features of

this protocol are (1) a hybrid secure testing scheme, (2) an efficient

homomorphic matrix multiplicationmethod, and (3) an acceleration

technique for SV calculation.

5.1 Hybrid Secure Testing Scheme
SecSV adopts a hybrid scheme for secure testing: it encrypts mod-

els by HE but protects test data by ASS. An auxiliary server A
is needed to help the principal server P test models on secretly

shared test data. Concretely, as shown in Algorithm 3, each client 𝑖

encrypts her local models by HE but protects her test data 𝐷𝑖 by

splitting it into two secret shares 𝐷 ′
𝑖
and 𝐷 ′′

𝑖
(Step 3). Thereafter,

the two servers evaluate the sharesD ′,D ′′ of the collective test set
D = (𝐷1, ..., 𝐷𝑛) by running Algorithm 4 (Step 10). Figure 4 shows

that because the shares 𝑋 ′(𝑙) , 𝑋 ′′(𝑙) of input features 𝑋 (𝑙) are in
plaintext form for all layers 𝑙 , c2c multiplications are avoided.

Algorithm 4 shows how SecSV evaluates an encrypted model.

For each model layer 𝑙 , server P holds a share 𝑋 ′(𝑙) of the input
features 𝑋 (𝑙) while serverA possesses the other share 𝑋 ′′(𝑙) . They
each evaluate the linear function 𝑙𝑖𝑛 (𝑙) over their own shares to

compute shares ⟦�̂� ′(𝑙)⟧ and ⟦�̂� ′′(𝑙)⟧, respectively (Steps 4 and

5). Then, after receiving ⟦�̂� ′′(𝑙)⟧ from server A, server P adds up

⟦�̂� ′(𝑙)⟧ and ⟦�̂� ′′(𝑙)⟧ to reconstruct the output features ⟦�̂� (𝑙)⟧ (Step
6), which is sent to client 𝑖𝑙+1 for decryption and modulo (Step 7). If

𝑙 < 𝐿, client 𝑖𝑙+1 activates the output features and generates shares

𝑋 ′(𝑙+1) , 𝑋 ′′(𝑙+1) of the activated features 𝑋 (𝑙+1) for evaluating the
next layer (Step 9); otherwise, client 𝑖𝐿+1 computes the predicted

labels �̂� and generates shares �̂�
′
, �̂�
′′
for comparison with the shares

𝑌 ′, 𝑌 ′′ of the ground-truth labels 𝑌 (Step 11). After obtaining the

absolute differences �̃� between �̂� and 𝑌 (Steps 12 and 13), server P
updates an ID set Φ that contains the IDs of the correctly predicted

samples with a tolerable difference �̃� [𝑘] < 0.5 (Step 14).

Example 5.1. Consider 4 clients and 3-layermodels.When testing

client 1’ local model \𝑡
1
, given shares 𝑋 ′(1) , 𝑋 ′′(1) of input features

from client 2, the servers evaluate layer 1 under HE, aggregate

shares �̂�
′(1)

, �̂�
′′(1)

of output features, and return �̂�
(1)

to client

3 for activation. Similarly, given 𝑋 ′(2) , 𝑋 ′′(2) from client 3, the

servers evaluate layer 2 and send �̂�
(2)

to client 4. Finally, client 3

obtains the output features �̂�
(3)

, computes the predicted labels �̂� ,

ALGORITHM 3: SecSV
1: Server P: Randomly select a leader client

2: Leader: Generate a public key 𝑝𝑘 and a private key 𝑠𝑘 of HE and

broadcast them among the other clients

3: Each client 𝑖: Encrypt her own local models and send them to the two

servers; then, generate secret shares 𝐷′
𝑖
, 𝐷′′

𝑖
of 𝐷𝑖 , send 𝐷

′
𝑖
to server

P, and send 𝐷′′
𝑖
to server A

4: for 𝑡 in {1, ...,𝑇 } do
5: if skipSamples == True then
6: Server P: Run SampleSkip({⟦\𝑡

𝑖
⟧}∀𝑖∈𝐼𝑡 , (D′,D′′)) to obtain

utilities {𝑣 (\𝑡
𝑆
) }∀𝑆⊆𝐼𝑡 ,|𝑆 |>0

7: else
8: for 𝑆 ⊆ 𝐼𝑡 , |𝑆 | > 0 do
9: Servers P,A: Compute ⟦\𝑡

𝑆
⟧ by aggregation under HE

10: Server P: Run Π𝑆𝑒𝑐 (⟦\𝑡𝑆⟧, (D
′,D′′)) to obtain Φ𝑡

𝑆

11: Server P: Calculate 𝑣 (\𝑡
𝑆
) = |Φ𝑡

𝑆
|/𝑀

12: Server P: Calculate SSVs 𝜙𝑡
1
, ..., 𝜙𝑡𝑛, ∀𝑡 ∈ [𝑇 ]

13: Server P: Calculate FSVs 𝜙1, ..., 𝜙𝑛

ALGORITHM 4: Π𝑆𝑒𝑐 : Secure Testing for SecSV
Input: encrypted model ⟦\⟧, and secret shares D′,D′′ of D
Output: IDs Φ of correctly predicted samples

1: Φ← ∅
2: for each 𝐷′ = (𝑋 ′, 𝑌 ′), 𝐷′′ = (𝑋 ′′, 𝑌 ′′) ∈ (D′,D′′) do
3: for each model layer 𝑙 ∈ {1, ..., 𝐿} do
4: Server A: Calculate ⟦�̂� ′′(𝑙 )⟧ = 𝑙𝑖𝑛 (𝑙 ) (⟦\ (𝑙 )⟧, 𝑋 ′′(𝑙 ) ) and send

⟦�̂� ′′(𝑙 )⟧ to server P, where 𝑋 ′′(1) = 𝑋 ′′

5: Server P: Calculate ⟦�̂� ′(𝑙 )⟧ = 𝑙𝑖𝑛 (𝑙 ) (⟦\ (𝑙 )⟧, 𝑋 ′(𝑙 ) ) , where
𝑋 ′(1) = 𝑋 ′

6: Server P: Send⟦�̂� (𝑙 )⟧=⟦�̂� ′(𝑙 )⟧⊕⟦�̂� ′′(𝑙 )⟧ to client 𝑖𝑙+1 ≠ 𝑖𝑙

7: Client 𝑖𝑙+1: Compute �̂�
(𝑙 )

= 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (⟦�̂� (𝑙 )⟧) mod 𝑝

8: if 𝑙 < 𝐿 then
9: Client 𝑖𝑙+1: Compute 𝑋 (𝑙+1) = 𝑎𝑐 (𝑙 ) (�̂� (𝑙 ) ) , generate shares

𝑋 ′(𝑙+1) , 𝑋 ′′(𝑙+1) , and distribute them to servers P and A
10: else
11: Client 𝑖𝐿+1: Calculate �̂� = Argmax(�̂� (𝐿) ) , generate shares

�̂�
′
, �̂�
′′
, and distribute them to servers P and A

12: Server A: Compute and send �̃�
′′
= �̂�
′′ −𝑌 ′′ to server P

13: Server P: Calculate �̃� = 𝑎𝑏𝑠 ( (�̂� ′ −𝑌 ′ + �̃� ′′) mod 𝑝) , where 𝑎𝑏𝑠
denotes taking the entrywise absolute value

14: Server P: Update the IDs of correctly predicted samples

Φ← Φ ∪ {𝑖𝑑 (𝐷 [𝑘 ]) |�̃� [𝑘 ] < 0.5}, where 𝑖𝑑 (𝐷 [𝑘 ]) is the ID of

test sample 𝐷 [𝑘 ]
15: return Φ

and returns shares �̂�
′
, �̂�
′′
to the servers for comparison with the

shares 𝑌 ′, 𝑌 ′′ of ground-truth labels.

5.2 Matrix Reducing
Our insight. We then propose a securematrix multiplicationmethod

named Matrix Reducing. To evaluate 𝐴𝐵 under HE, we have to

transform 𝐴 and 𝐵 such that they have the same shape because HE

only allows entrywise operations. For example, the SOTA method

squares and linearly transforms 𝐴 and 𝐵 to derive pairs of square

matrices, applies entrywise multiplications between each pair of

matrices, and aggregates the multiplication results. However, the

aggregated square matrix 𝐻 (see Section 4.2.1) is not the matrix

product 𝐴𝐵, and the SOTA method further needs to rotate 𝐻 to
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ALGORITHM 5:Matrix Reducing

Input: 𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛 matrix 𝐴, and 𝑑𝑖𝑛 ×𝑚 matrix 𝐵 (𝑚 ≤ ⌊𝑁 /𝑑𝑜𝑢𝑡 ⌋)
Output: encrypted matrix product ⟦𝐴𝐵⟧
1: Client: Horizontally pack ⌈𝑚/𝑑𝑖𝑛 ⌉ copies of 𝐴 into �̄� = (𝐴⎪⎪⎪⎪...⎪⎪⎪⎪𝐴)
2: Client: Run the first two steps of 𝛿 (�̄�, 𝐵) to obtain {�̃�(𝑜 ) , �̃� (𝑜 ) }𝑑𝑖𝑛

𝑜=1

3: Client: Encrypt {�̃�(𝑜 ) }𝑑𝑖𝑛
𝑜=1

and {�̃� (𝑜 ) }𝑑𝑖𝑛
𝑜=1

and upload them

4: Server: Return ⟦𝐴𝐵⟧=⟦�̃�(1)⟧⊙⟦�̃� (1)⟧⊕ ...⊕⟦�̃�(𝑑𝑖𝑛 )⟧⊙⟦�̃� (𝑑𝑖𝑛 )⟧

aggregate its submatrices, which is expensive under HE. This inef-

ficiency results from the need to square 𝐴 and 𝐵: the SOTA method

squares a rectangular 𝐴 by packing multiple copies of 𝐴 together,

which enables parallel computation over 𝐴 and avoids the waste of

some ciphertext slots.

Considering that the matrix product 𝐴𝐵 is a 𝑑𝑜𝑢𝑡 ×𝑚 matrix,

we introduce the concept of transforming 𝐴 and 𝐵 into 𝑑𝑜𝑢𝑡 ×𝑚
matrices to avoid homomorphic rotations. Concretely, in the unen-

crypted environment, to obtain each entry in the matrix product

𝐴𝐵, we need 𝑑𝑖𝑛 multiplications between entries in 𝐴 and 𝐵; this

suggests that we can somehow preprocess 𝐴 and 𝐵 to generate 𝑑𝑖𝑛
pairs of 𝑑𝑜𝑢𝑡 ×𝑚 matrices, apply entrywise multiplications between

each pair of matrices, and aggregate the multiplication results to

derive 𝐴𝐵. We design Matrix Reducing based on this idea.

Design details. To assist in understanding Matrix Reducing, we

introduce a function 𝑅 = 𝛿 (�̄�, �̄�) that takes as input a 𝑑𝑜𝑢𝑡 × 𝑑
matrix �̄� and a 𝑑𝑖𝑛 ×𝑚 matrix �̄� and outputs a 𝑑𝑜𝑢𝑡 ×𝑚 matrix 𝑅,

where 𝑑 ≥ 𝑚 and 𝑑𝑖𝑛 exactly divides 𝑑 . 𝛿 (�̄�, �̄�) runs as follows:
(1) Linear transformation:We linearly transform �̄� and �̄� into

two sets of matrices {�̄�(𝑜) }𝑑𝑖𝑛
𝑜=1

and {�̄� (𝑜) }𝑑𝑖𝑛
𝑜=1

, where �̄�
(𝑜)

=

b (𝑜−1) (𝜎 (�̄�)), and �̄� (𝑜) = 𝜓 (𝑜−1) (𝜏 (�̄�)).
(2) Reduction: For each 𝑜 ∈ [𝑑𝑖𝑛], we extract two 𝑑𝑜𝑢𝑡 ×𝑚 ma-

trices �̃�
(𝑜)

and �̃�
(𝑜)

from �̄�
(𝑜)

and �̄�
(𝑜)

, respectively, where

�̃�
(𝑜)

= �̄�
(𝑜) [1 : 𝑑𝑜𝑢𝑡 , 1 :𝑚], and �̃� (𝑜) = �̄� (𝑜) [1 : 𝑑𝑜𝑢𝑡 , 1 :𝑚].

(3) Element-wise operations: We apply entrywise multiplica-

tions and additions to compute 𝑅 =
∑︁𝑑𝑖𝑛
𝑜=1

�̃�
(𝑜) · �̃� (𝑜) .

When 𝑚 ≤ 𝑑𝑖𝑛 , according to lemma 5.2, we have 𝐴𝐵 = 𝛿 (𝐴, 𝐵).
Therefore, we can encrypt matrices {�̃�(𝑜) }𝑑𝑖𝑛

𝑜=1
and {�̃� (𝑜) }𝑑𝑖𝑛

𝑜=1
and

apply homomorphic entrywise multiplications and additions over

them to compute ⟦𝐴𝐵⟧.

Lemma 5.2 (Correctness). We have𝐴𝐵 = 𝛿 (𝐴, 𝐵) for any 𝑑𝑜𝑢𝑡×
𝑑𝑖𝑛 matrix 𝐴 and 𝑑𝑖𝑛×𝑚 matrix 𝐵, where𝑚≤𝑑𝑖𝑛 , and 𝑑𝑜𝑢𝑡 ≤𝑑𝑖𝑛 .5

Then, when𝑚 ∈ (𝑑𝑖𝑛, ⌊𝑁 /𝑑𝑜𝑢𝑡 ⌋], Matrix Reducing evaluates𝐴𝐵

by horizontally packing multiple copies of𝐴 into a 𝑑𝑜𝑢𝑡 ×𝑚 matrix.

Suppose that 𝑑𝑖𝑛 exactly divides𝑚 when𝑚 > 𝑑𝑖𝑛 for ease of discus-

sion. Thematrix product𝐴𝐵 can be vertically split into𝑑𝑜𝑢𝑡×𝑑𝑖𝑛 ma-

trices {𝐴𝐵 ( ·,𝑜) }
𝑚/𝑑𝑖𝑛
𝑜=1

, i.e., 𝐴𝐵 =
(︁
𝐴𝐵 ( ·,1)

⎪⎪⎪⎪...⎪⎪⎪⎪𝐴𝐵 ( ·,𝑚/𝑑𝑖𝑛) )︁ , where
𝐵 ( ·,𝑜) =𝐵

[︁
1 :𝑑𝑖𝑛, (𝑜 − 1) ·𝑑𝑖𝑛 + 1 :𝑜 ·𝑑𝑖𝑛

]︁
,∀𝑜 ∈ [𝑚/𝑑𝑖𝑛]. According to

lemma 5.2, we have 𝐴𝐵 =
(︁
𝛿 (𝐴, 𝐵 ( ·,1) )

⎪⎪⎪⎪...⎪⎪⎪⎪𝛿 (𝐴, 𝐵 ( ·,𝑚/𝑑𝑖𝑛) ))︁ . Then,
according to Lemma 5.3, we can conclude that𝐴𝐵 = 𝛿 (�̄�, 𝐵), where
�̄� = (𝐴⎪⎪⎪⎪...⎪⎪⎪⎪𝐴) is a 𝑑𝑜𝑢𝑡 ×𝑚 matrix that contains𝑚/𝑑𝑖𝑛 copies of𝐴.

Hence, as shown in Algorithm 5, Matrix Reducing evaluates ⟦𝐴𝐵⟧
5
See our extended report [87] to find all the missing proofs.

Figure 4: Matrix Reducing for matrix multiplication.

by homomorphically computing 𝛿 (�̄�, 𝐵), which involves only 𝑑𝑖𝑛
homomorphic multiplications and no homomorphic rotation.

Lemma 5.3 (Composition). Given any 𝑑𝑜𝑢𝑡 ×𝑑𝑖𝑛 matrix𝐴, 𝑑𝑖𝑛 ×
𝑑𝑖𝑛 matrix 𝐵1, and 𝑑𝑖𝑛 ×𝑚′ matrix 𝐵2, where 𝑑𝑖𝑛 ≥ 𝑚′, we have

(𝛿 (𝐴, 𝐵1)⎪⎪⎪⎪𝛿 (𝐴, 𝐵2)) = 𝛿 ((𝐴⎪⎪⎪⎪𝐴), (𝐵1

⎪⎪⎪⎪𝐵2))

Example 5.4. Figure 4 depicts how Matrix Reducing works for

a 2 × 4 matrix 𝐴 and a 4 × 6 matrix 𝐵, where 𝐴[𝑖, 𝑗] = 𝑎𝑖 𝑗 , and

𝐵 [𝑖, 𝑗] = 𝑏𝑖 𝑗 . First, we horizontally pack two copies of 𝐴 to derive

a 2 × 8 matrix �̄�. Then, we linearly transform �̄� and 𝐵 and reduce

the transformed matrices into 2 × 6 matrices. Finally, we apply

entrywise operations over the reduced matrices to derive 𝐴𝐵.

5.3 SampleSkip
Finally, we propose to further accelerate secure SV calculation

by reducing the number of test samples for secure model testing.

Concretely, if some test samples are highly likely to be correctly

predicted by a model, which we refer to as skippable samples, we
can skip these samples during model testing to save time. We then

identify skippable samples: If a sample can be correctly predicted by
two models, it can also be correctly predicted by their aggregation,
and thus, it is skippable; otherwise, it is a discriminative sample that
distinguishes the models’ utilities and the clients’ contributions.

Hence, we propose SampleSkip to speed up secure SV calculation

by skipping test samples. Let Φ𝑡
𝑆
denote an ID set that contains the

IDs of the test samples that can be correctly predicted by model

\𝑡
𝑆
, where 𝑆 ⊆ 𝐼𝑡 is a subset of clients. As shown in Algorithm 6, in

each round 𝑡 , server P first initializes a dictionary 𝚽
𝑡
to record Φ𝑡

𝑆

for all subsets 𝑆 ⊆ 𝐼𝑡 (Step 1). For each local model \𝑡
𝑖
, 𝑖 ∈ 𝐼𝑡 , the

servers test it on the entire test set (D ′,D ′′) and record Φ𝑡{𝑖 } (Step
3). Then, for each aggregated model \𝑡

𝑆
, |𝑆 | ≥ 2, the servers drop

the skippable samples Ψ𝑡
𝑆
from (D ′,D ′′) and test the model on the

discriminative samples (D ′−Ψ𝑡
𝑆

,D ′′−Ψ𝑡
𝑆

) (Steps 8-10); the skippable
samples Ψ𝑡

𝑆
are counted as correctly predicted samples (Step 11).

Note that SampleSkip also applies to nonsecure SV calculation.

We also propose Algorithm 7 that identifies skippable samples

for aggregated models. Given that an aggregated model \𝑡
𝑆
can be

aggregated frommultiple pairs of models, we need to find the union

of the skippable samples determined by each pair of models. Hence,

Algorithm 7 enumerates all possible pairs of nonempty subsets

(𝑆 ′, 𝑆 \ 𝑆 ′) of the given set 𝑆 , identifies skippable samples for each
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ALGORITHM 6: SampleSkip

Input: encrypted models {⟦\𝑡
𝑖
⟧}∀𝑖∈𝐼𝑡 , secret shares D′,D′′ of D

Output: model utilities {𝑣 (\𝑡
𝑆
) }∀𝑆⊆𝐼𝑡 ,|𝑆 |>0

1: Server P: Initialize a dictionary 𝚽
𝑡
.

2: for 𝑖 ∈ 𝐼𝑡 do
3: Server P: Run Π𝑆𝑒𝑐 (⟦\𝑡𝑖 ⟧, (D′,D′′)) to obtain Φ𝑡

{𝑖}
4: Server P: Calculate 𝑣 (\𝑡

𝑖
) = |Φ𝑡

{𝑖} |/𝑀
5: for 𝑗 = 2 to 𝑗 = |𝐼𝑡 | do
6: for 𝑆 ⊆ 𝐼𝑡 , |𝑆 | = 𝑗 do
7: Servers P,A: Calculate ⟦\𝑡

𝑆
⟧ under HE

8: Server P: Compute IDs Ψ𝑡
𝑆
= FindSkippable(𝑆,𝚽𝑡 ) .

9: Servers P,A: Drop skippable samples Ψ𝑡
𝑆
from (D′,D′′) to

obtain discriminative samples (D′−Ψ𝑡
𝑆

,D′′−Ψ𝑡
𝑆

)

10: Server P: Run Π𝑆𝑒𝑐 (⟦\𝑡𝑆⟧, (D
′
−Ψ𝑡

𝑆

,D′′−Ψ𝑡
𝑆

)) to obtain Φ𝑡
𝑆

11: Server P: Φ𝑡
𝑆
← Φ𝑡

𝑆
∪ Ψ𝑡

𝑆

12: Server P: Calculate 𝑣 (\𝑡
𝑆
) = |Φ𝑡

𝑆
|/𝑀

13: return {𝑣 (\𝑡
𝑆
) }∀𝑆⊆𝐼𝑡 ,|𝑆 |>0

ALGORITHM 7: FindSkippable
Input: a set 𝑆 of clients, a dictionary Φ𝑡

Output: IDs Ψ𝑡
𝑆
of skippable samples for model \𝑡

𝑆

1: Ψ𝑡
𝑆
← ∅

2: for each pair of nonempty subsets (𝑆′, 𝑆 \ 𝑆′) of 𝑆 do
3: if Φ𝑡

𝑆′ ,Φ
𝑡
𝑆\𝑆′ exist then

4: Ψ𝑡
𝑆
← Ψ𝑡

𝑆
∪ (Φ𝑡

𝑆′ ∩ Φ
𝑡
𝑆\𝑆′ )

5: return Ψ𝑡
𝑆

pair, and returns the union set of skippable samples; this suggests

that SampleSkip should iterate over all the subsets 𝑆 ⊆ 𝐼𝑡 , |𝑆 | > 1 in

ascending order of their sizes such that Φ𝑡
𝑆′ and Φ𝑡

𝑆\𝑆′ are already

recorded in Φ𝑡 for identifying Ψ𝑡
𝑆
. Notably, although this algorithm

takes𝑂 (2 |𝑆 |) complexity, it hardly burdens SecSV because the time

for running it is far less than that for evaluating models under HE.

Example 5.5. Consider 3 clients and 4 test samples 𝑥1, ..., 𝑥4. If

models \𝑡{1}, \
𝑡
{2,3} correctly predict 𝑥1, 𝑥2, models \𝑡{2}, \

𝑡
{1,3} cor-

rectly predict 𝑥2, 𝑥3, and models \𝑡{3}, \
𝑡
{1,2} correctly predict 𝑥3, 𝑥4,

then the servers can skip all the test samples when testing \𝑡{1,2,3} .

6 THEORETICAL ANALYSIS AND DISCUSSION
6.1 Theoretical Analysis
6.1.1 Time cost. Table 1 summarizes the time complexities of Ma-

trix Squaring and Matrix Reducing. Note that the batch size𝑚 is a

hyperparameter set by the server(s); the requirements on𝑚 sug-

gest the maximum batch size such that a batch of samples can be

stored in a ciphertext, which maximizes computation efficiency.

Considering that the maximum batch size may differ between the

two methods, the complexities should be averaged over the max-

imum batch sizes for a fair comparison. Evidently, Matrix Reduc-

ing outperforms Matrix Squaring. First, unlike Matrix Squaring,

Matrix Reducing does not require any homomorphic rotation. Re-

garding homomorphic multiplications, Matrix Squaring and Ma-

trix Reducing take 𝑂 (𝑑𝑖𝑛 · 𝑑𝑜𝑢𝑡/
√
𝑁 ) and 𝑂 (𝑑𝑖𝑛) complexity for

Table 1: Comparison of time cost for evaluating 𝐴𝐵.

Matrix Squaring Matrix Reducing

Batch size𝑚 𝑚 ≤ min{𝑑𝑖𝑛, ⌊
√
𝑁 ⌋ } 𝑚 ≤ ⌊𝑁 /𝑑𝑜𝑢𝑡 ⌋

Complexity of HMult 𝑂 (𝑑𝑖𝑛 · 𝑑𝑜𝑢𝑡 /
√
𝑁 ) 𝑂 (𝑑𝑖𝑛)

Complexity of HRot 𝑂 (𝑑𝑖𝑛/(𝑑𝑜𝑢𝑡 mod

√
𝑁 )) 0

evaluating𝑚 ≤ min{𝑑𝑖𝑛, ⌊
√
𝑁 ⌋} and𝑚 ≤ ⌊𝑁 /𝑑𝑜𝑢𝑡 ⌋ samples, re-

spectively; thus, when we batch min{𝑑𝑖𝑛, ⌊
√
𝑁 ⌋} samples for the

former method and ⌊𝑁 /𝑑𝑜𝑢𝑡 ⌋ samples for the latter, the latter’s

complexity 𝑂 (𝑑𝑖𝑛 · 𝑑𝑜𝑢𝑡/𝑁 ) for each sample is better than the for-

mer’s complexity 𝑂 (𝑑𝑖𝑛 · 𝑑𝑜𝑢𝑡/
√
𝑁 /min{𝑑𝑖𝑛, ⌊

√
𝑁 ⌋}). The uses of

the different matrix multiplication methods result in the different

time costs of HESV and SecSV, as characterized below.

Lemma 6.1. Consider models with 𝐿 layers of matrix multiplication
where the input and output sizes of layer 𝑙 are 𝑑 (𝑙)

𝑖𝑛
and 𝑑 (𝑙)𝑜𝑢𝑡 , respec-

tively. For secure SV calculation, HESV needs𝑂 ( 2
𝑛 ·𝑀 ·𝑇 · (∑︁𝐿

𝑙=1
𝑑
(𝑙 )
𝑖𝑛
·𝑑 (𝑙 )𝑜𝑢𝑡 )

min{𝑑 (1)
𝑖𝑛
,...,𝑑

(𝐿)
𝑖𝑛
,
√
𝑁 }·
√
𝑁
)

HMults and 𝑂 (
2
𝑛 ·𝑀 ·𝑇 ·∑︁𝐿

𝑙=1

𝑑𝑖𝑛

𝑑𝑜𝑢𝑡 mod

√
𝑁

min{𝑑 (1)
𝑖𝑛
,...,𝑑

(𝐿)
𝑖𝑛
,
√
𝑁 }
) HRots, while SecSV needs

𝑂 ( 2
𝑛 ·𝑀 ·𝑇 ·max{𝑑 (1)𝑜𝑢𝑡 ,...,𝑑

(𝐿)
𝑜𝑢𝑡 }

∑︁𝐿
𝑙=1
𝑑
(𝑙 )
𝑖𝑛

𝑁
) HMults and no HRot.

6.1.2 Error of SampleSkip. According to Theorem 6.3, for linear
classifiers, e.g., the widely-used logistic classifiers and linear SVM

classifiers, the intuition behind SampleSkip holds.

Definition 6.2 (Linear classifier). A linear classifier 𝑓 : 𝑅𝑑 → 𝑅𝑐

is of the form 𝑓\ (𝑥) = [ (\𝑤𝑥 + \𝑏 ), where model \ = (\𝑤⎪⎪⎪⎪\𝑏 )
consists of a 𝑐 × 𝑑 matrix \𝑤 of weights and a 𝑐-sized vector \𝑏 of

biases, and [ : 𝑅𝑐 → 𝑅𝑐 can be any entrywise strictly increasing

function: given any 𝑐-sized vector 𝑣 , for any 𝑗1, 𝑗2 ∈ [𝑐], if 𝑣 [ 𝑗1] >
𝑣 [ 𝑗2], we have [ (𝑣) [ 𝑗1] > [ (𝑣) [ 𝑗2].

Theorem 6.3. For any linear classifier 𝑓 , any test sample (𝑥,𝑦),
and any two models \𝑆1

, \𝑆2
, if they satisfy arg max𝑗 𝑓\𝑆

1

(𝑥) [ 𝑗] =
arg max𝑗 𝑓\𝑆

2

(𝑥) [ 𝑗] = 𝑦, then for any \𝑆1∪𝑆2
= 𝜔𝑆1

· \𝑆1
+ 𝜔𝑆2

· \𝑆2

where 𝜔𝑆1
, 𝜔𝑆2

≥ 0, we have arg max𝑗 𝑓\𝑆
1
∪𝑆

2

(𝑥) [ 𝑗] = 𝑦.

For nonlinear classifiers, this intuition is almost correct according

to our experiments, and Lemma 6.4 demonstrates the impact of the

incorrectness on the estimated FSVs. Let 𝑣 (\𝑡
𝑆
) denote the utility

of aggregated model \𝑡
𝑆
estimated under SampleSkip. Then, for

all aggregated models \𝑡
𝑆
, the incorrectness of SampleSkip can be

measured by the percentageΔ𝑣𝑡
𝑆
= 𝑣 (\𝑡

𝑆
)−𝑣 (\𝑡

𝑆
) ofwrongly skipped

test samples, which is upper bounded by Δ𝑣𝑚𝑎𝑥 . Lemma 6.4 implies

that Δ𝑣𝑚𝑎𝑥 affects the error |𝜙ˆ 𝑖 − 𝜙𝑖 | of the estimated FSV 𝜙ˆ 𝑖 , and

clients can infer the upper bound of the error by estimating Δ𝑣𝑚𝑎𝑥
with a small test set. Note that this upper bound is loose, and the

exact error might be considerably smaller than it.

Lemma 6.4. For each client 𝑖 , the error |𝜙ˆ 𝑖 − 𝜙𝑖 | of her FSV 𝜙ˆ 𝑖
estimated under SampleSkip is upper bounded by 𝑇 · Δ𝑣𝑚𝑎𝑥 .

6.1.3 Security. Ensuring that no private information can be learned

from our system is impossible because the FSVs themselves are

knowledge of clients’ private models and test data. Conversely,
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we focus on some well-known attacks. A recent survey [40] sug-

gests that the test phase of FL is threatened by model stealing and

membership inference. Hence, we analyze the security of our sys-

tems against the membership inference attacks (simply MI attacks
[19, 64]), the equation-solving model stealing attacks (simply ES at-
tacks [71]), and the retraining-based model stealing attacks (simply

retraining attacks, e.g., [26, 54, 55, 71]). The ES attacks can also be

adapted for stealing test data (see Definition 6.5).

Definition 6.5 (Equation-solving attack). Let 𝑓 (𝑙1:𝑙2)
denote the

inference function that given input features for layer 𝑙1 yields output

features for layer 𝑙2, where 𝑙1 ≤ 𝑙2. Given input features 𝑋 (𝑙1) for

layer 𝑙1 and output features �̂�
(𝑙2)

for layer 𝑙2, an ES attack obtains

the model parameters \ (𝑙1) , ..., \ (𝑙2) of layers 𝑙1, ..., 𝑙2 by solving a

system of equations �̂�
(𝑙2)

= 𝑓 (𝑙1:𝑙2) (𝑋 (𝑙1) ; {\ (𝑙) }𝑙2
𝑙=𝑙1
). We refer to it

as a single-layer ES attack if 𝑙1 = 𝑙2; otherwise, as a multi-layer ES

attack. Given model parameters \ (1) , ..., \ (𝑙2) for layers 1, ..., 𝑙2 and

output features �̂�
(𝑙2)

for layer 𝑙2, an ES data stealing attack learns

the input features 𝑋 (1) by solving �̂�
(𝑙2)

= 𝑓 (1:𝑙2) (𝑋 (1) ; {\ (𝑙) }𝑙2
𝑙=1
).

Definition 6.6 (Membership inference attack). Given a test sample

(𝑥,𝑦) and its predicted label �̂� = arg max𝑗 𝑓\ (𝑥) [ 𝑗], an MI attack

determines whether (𝑥,𝑦) was in the training data of model \ .

Definition 6.7 (Retraining attack). Given the features 𝑋 of some

test samples and the predicted labels �̂� = Argmax(𝑓\ (𝑋 )), a retrain-
ing attack learns a clone model 𝑓 ′ such that Argmax(𝑓 ′(𝑋 )) ≈ �̂� .

Proposition 6.8. Assume that linear layers are one-way functions,
i.e., for all PPT adversaries A and for all linear layers 𝑙 , there is a

negligible 𝜖 such that 𝑃𝑟 [A(�̂� (𝑙) ) = \ (𝑙) ] ≤ 𝜖 and 𝑃𝑟 [A(�̂� (𝑙) ) =
𝑋 (𝑙) ] ≤ 𝜖 over all possible (\ (𝑙) , 𝑋 (𝑙) ), where �̂� (𝑙) =𝑙𝑖𝑛 (𝑙) (\ (𝑙) , 𝑋 (𝑙) ).
Under SecSV or HESV, if𝑛 ≥ 4, all PPT adversaries cannot apply single-
layer ES attacks, ES data stealing attacks, MI attacks, or retraining
attacks; if 𝑛 ≥ 𝐿 + 2, they cannot apply multi-layer ES attacks.

Proposition 6.8 characterizes different security levels of our

protocols with different numbers of clients. Intuitively, to defend

against single-layer ES attacks, for each layer 𝑙 , HESV and SecSV

should ensure that clients 𝑖𝑙 , 𝑖𝑙+1 are different entities such that

they cannot know both the input 𝑋 (𝑙) and output �̂�
(𝑙)

to infer

model parameters \ (𝑙) . Similarly, clients 𝑖1, ..., 𝑖𝐿+1 should not be

the owner of the model under testing, which prevents ES data steal-

ing attacks; client 𝑖𝐿+1 who obtains the predicted labels �̂� should be

different from client 𝑖1 (the owner of the batch of samples) such that

they cannot apply MI and retraining attacks. Note that if we have

sufficient clients, SecSV can batch samples from different clients

together; in this case, client 𝑖1 represents the owners of the batched

samples. For multi-layer ES attacks, HESV and SecSV require at

least 𝐿 + 2 clients to participate, which may be infeasible when 𝐿 is

large. However, because our clients are honest-but-curious, we can

consider a lower security level where only 4 clients are required by

ignoring the multi-layer ES attack whose success relies on a large

number of random queries over the inference function 𝑓 (𝑙1:𝑙2)
by

an active attacker; we can also slightly modify HESV and SecSV by

applying garbled circuits to evaluate activation functions securely

[27], which prevents the above attacks for any number of clients.

6.2 Discussion
6.2.1 Connection with secure federated training. The protocol for
secure SV calculation is generic and independent of the protocol

for secure federated training, as the local models are assumed to be

given. Thus, the training method is out of the scope of this study.

Additionally, owing to the use of the FSV, secure SV calculation can

be inserted into secure federated training, giving the server flexibil-

ity to decide when to perform contribution evaluation. For instance,

the server may promptly calculate SSVs after each training round

to identify clients with negative contributions at an early stage; if

the training task is urgent, the clients can prioritize finishing all

the training rounds over secure SV calculation.

6.2.2 Parallelization. There are two basic strategies for paralleliz-

ing secure SV calculation. First, because the FSV is the sum of

multiple rounds of SSVs, which are independent of each other, the

server(s) can recruit a process for each round of SSV calculation to

parallelize FSV calculation. Second, the server(s) can further par-

allelize each round of secure model testing by distributing the nu-

merous models or test samples to multiple processes for evaluation.

However, this strategy cannot be easily adopted for SampleSkip,

under which the workload of testing a model may depend on the

evaluation result of anothermodel. Developing parallelizationmeth-

ods that are compatible with SampleSkip would be interesting.

6.2.3 Accelerating SV calculation. To calculate SSVs in a single

round of FL, the server has to evaluate 𝑂 (2𝑛) models on 𝑀 test

samples, which requires testing models𝑂 (2𝑛 ·𝑀) times. Therefore,

we can reduce the scale of (1) models or (2) samples to be tested. The

existing SV estimation methods [10, 13, 23, 43] use the first strategy:

they sample and test only a subset of models for SV calculation.

Skipping a portion of models does not introduce a significant esti-

mation error because these methods assume that numerous clients

participate in collaborative ML. However, in cross-silo FL, the num-

ber 𝑛 of clients is relatively small, causing the failure of the above

methods in skipping models. SampleSkip instead adopts the second

strategy and is effective in those cases where model testing is a

significant bottleneck, e.g., when HE is used. Moreover, we can use

both strategies and easily combine SampleSkip with an existing

model-skipping estimation method. Note that although 𝑛 is small

and our task is parallelizable, accelerating secure SV calculation is

crucial because HE slows down SV calculation drastically.

6.2.4 Dynamic scenarios. Our methods also work when clients join

in or leave FL halfway. For each client, we only need to calculate

SSVs for the rounds she attended and add them up as her FSV.

6.2.5 Other variants of SV. Our techniques also support other FL-

oriented variants of SV, including the Contribution Index [69],

Group SV [42], GTG-Shapley [38], andWT-Shapley [77]. Intuitively,

these metrics are functions of the utilities of local and aggregate

models; thus, after securely testing model utilities by our methods,

we can easily calculate them. This characterization also suggests

that our methods could be adapted to other model utility-based

contribution metrics for FL.
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Table 2: Running time and error in detail. Brackets are used to indicate results under parallelization.

Dataset

(model)

Protocol

Running time (s) Speedup w.r.t.

HESV (par.)

Slowdown w.r.t.

NSSV (par.)

Error

Total (par.) Arithmetic Enc. Dec. Comm. Shares gen.

AGNEWS

(LOGI)

HESV 4400 (460) 3860 121 50.48 96.25 0.00 1× (1×) 28.3× (29.0×) 2.84 × 10
−3

SecSV 1054 (126) 1005 6.61 1.77 8.53 7.84 4.2× (3.6×) 6.8× (8.0×) 9.64 × 10
−4

SecretSV 3698 (376) 146 0.00 0.00 256 1713 1.2× (1.2×) 23.8× (23.7×) 2.46 × 10
−3

BANK

(LOGI)

HESV 2934 (302) 2255 149 64.99 124 0.00 1× (1×) 13.5× (12.5×) 2.13 × 10
−3

SecSV 137 (18.75) 113 1.08 1.14 4.06 7.81 21.4× (16.1×) 0.6× (0.8×) 8.86 × 10
−4

SecretSV 791 (81.04) 26.64 0.00 0.00 55.17 376 3.7× (3.7×) 3.6× (3.3×) 1.00 × 10
−3

MNIST

(CNN)

HESV 274470 (27600) 76384 87610 290 29658 0.00 1× (1×) 276.9× (274.2×) 6.98 × 10
−4

SecSV 39310 (3992) 32468 11.27 199 592 2299 7.0× (6.9×) 39.7× (39.7×) 9.28 × 10
−4

SecretSV 158407 (16003) 3751 0.00 0.00 8933 121393 1.7× (1.7×) 159.8× (159.0×) 1.20 × 10
−3

miRNA-mRNA

(RNN)

HESV 411628 (41691) 190190 61528 738 21481 0.00 1× (1×) 47.9× (48.4×) 1.40 × 10
−2

SecSV 77081 (7825) 30215 656 321 1288 3050 5.3× (5.3×) 9.0× (9.1×) 1.70 × 10
−2

SecretSV 38567 (3902) 1935 0.00 0.00 2796 22346 10.7× (10.7×) 4.5× (4.5×) 1.87 × 10
−0

Table 3: Comparisons of SV estimationmethods under SecSV.

Dataset

(model)

Method

Speedup w.r.t. HESV Error (×10
−2
)

SampleSkip

off/on

SampleSkip

off/on

AGNEWS

(LOGI)

SecSV 4.2 × 7.2× 0.10 0.10

SecSV+PS 4.2 × 7.2× 2.00 2.01

SecSV+GT 3.5 × 5.5× 3.41 3.39

SecSV+KS 5.3 × 8.6× 17.63 17.63

BANK

(LOGI)

SecSV 21.4 × 36.6× 0.09 0.09

SecSV+PS 21.3 × 36.5× 1.25 1.24

SecSV+GT 8.9 × 10.8× 3.40 3.40

SecSV+KS 27.0 × 44.1× 7.67 7.66

MNIST

(CNN)

SecSV 7.0 × 25.8× 0.09 0.64

SecSV+PS 7.0 × 25.8× 2.69 2.88

SecSV+GT 6.9 × 25.3× 3.58 3.80

SecSV+KS 9.0 × 27.2× 15.46 15.65

miRNA-mRNA

(RNN)

SecSV 5.3 × 11.8× 1.70 1.82

SecSV+PS 5.3 × 11.8× 3.03 3.25

SecSV+GT 5.3 × 11.7× 3.67 3.50

SecSV+KS 7.0 × 14.0× 20.77 20.49

7 EXPERIMENTS
7.1 Setup
Research questions. We experiment to answer these questions.

• Evaluation efficiency (RQ1): How efficient are SecSV and HESV

for secure SV calculation? How much can SampleSkip accelerate

SecSV? How efficient are Matrix Squaring and Matrix Reducing

for secure matrix multiplication?

• Evaluation accuracy (RQ2): How accurately do SecSV and HESV

calculate FSVs? How many test samples are wrongly identified

as skippable samples by SampleSkip?

• Parameters’ effects (RQ3): What are the effects of the size 𝑀 of

test samples, number 𝑛 of clients, and number 𝐿 of layers on

evaluation efficiency and accuracy?

Baselines. For secure SV calculation, we compare SecSV with HESV

and Nonsecure SV (NSSV), which calculates exact FSVs in a non-

secure environment. In addition, we design a two-server baseline

Table 4: Speedup ofMatrix Reducing w.r.t. Matrix Squaring in
the time per sample spent onHE computations for evaluating
𝐴𝐵. The shape of matrix 𝐴 is varied. "Full" means both 𝐴 and
𝐵 are encrypted, whilst "Half" means only 𝐴 is encrypted.

Shape 4×300 2×48 64×256 10×64 32×64 32×32 2×32

Full 1.69× 6.10× 1.99× 2.30× 2.66× 2.85× 2.45×
Half 3.24× 11.39× 3.92× 4.49× 5.23× 3.71× 2.87×

protocol named SecretSV for comparison, which protects models

and test data purely by ASS. See our extended report [87] to check

the details of NSSV and SecretSV. For SV estimation, we compare

SampleSkip with three widely adopted methods: Permutation Sam-
ples (PS) [43], Group Testing (GT) [23], and KernelSHAP (KS) [39].

Datasets and classifiers. We use the AGNEWS [84], BANK [50],

MNIST [31], andmiRNA-mRNA [47] datasets, which cover the news

classification, bank marketing, image recognition, and miRNA tar-

get prediction tasks, for experiments. By default, we consider logis-

tic classifiers (LOGI) for AGNEWS and BANK, a convolutional NN

(CNN) [24] for MNIST, and a recurrent NN (RNN) [32] for miRNA-

mRNA; when evaluating the effect of the number 𝐿 of layers, we

rather focus on the deep NN (DNN) to easily vary 𝐿, which consists

of an input layer, an output layer, and 𝐿 − 2 hidden layers. See our

extended report [87] for details of the datasets and classifiers.

Federated training. We allocate each label of training and test sam-

ples to clients according to the Dirichlet distribution of order 𝑛 with

scaling parameters of 0.5 to construct non-IID local data, following

[80]. Subsequently, 𝑛 = 5 clients perform 𝑇 = 10 rounds of the

FedAvg algorithm [44] to train the above classifiers.

Evaluation metrics. The computation efficiency of a secure SV cal-

culation protocol is measured by its speedup w.r.t. the baseline

HESV. Subsequently, following [23], we use the Euclidean distance

to measure the error of the estimated FSVs. Concretely, let �̂� and 𝝓
denote the vectors of the estimated FSVs and the exact FSVs for all

the clients. The (expected) error of �̂� is defined as E𝝓 [| |�̂� − 𝝓 | |2].
Note that both HE and ASS introduce noise into messages, and the

exact FSVs are calculated by the nonsecure protocol NSSV.
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Figure 5: Skipped samples. Figure 6: Effect of𝑀 . Figure 7: Effect of 𝑛. Figure 8: Effect of 𝐿.

Environment. We implement the server and clients on a workstation

with a 3.0GHz 16-core processor and 128GB RAM and logically sim-

ulate 1 Gbps communication channels between the parties. When

evaluating efficiency under parallelization, we allocate a dedicated

CPU core for each round of SSV calculation. We use TenSEAL [3],

a Python wrapper for Microsoft’s SEAL library, to implement HE

operations and select the parameters of HE and ASS for 128-bit se-

curity based on the Homomorphic Encryption Security Standard [1],

which results in 𝑁 = 2048 ciphertext slots. We run each experiment

10 times and present the average results.

7.2 Experimental Results
7.2.1 Evaluation efficiency (RQ1). Table 2 shows the running time

of different protocols spent on secure SV calculation. We can see

that HESV requires a considerably long running time even under

parallelization and is dramatically less efficient than NSSV because

the use of HE is extremely expensive in computation. This verifies

the importance of SV estimation in our setting. The slowdown effect

could be more significant if we run NSSV on GPUs. SecSV spends

considerably less time than HESV on HE computations owing to

the avoidance of c2c multiplications; the time it takes to generate

secret shares is insignificant compared with the total running time.

Although SecSV requires communication with an auxiliary server, it

may consume less communication time than HESV because the size

of a message’s secret shares is significantly smaller than that of its

ciphertext. SecretSV performs arithmetic operations efficiently as

models and test data are not encrypted. However, shares generation

and communication are time-consuming because a triplet of random

masks should be secretly shared between the two servers for every

multiplication under ASS.

Table 3 compares SampleSkip with the existing SV estimation

methods in terms of acceleration. Whereas SampleSkip and KS

significantly speed up SecSV, the PS and GT methods hardly ac-

celerate it because they fail to skip any models. For the logistic

classifiers, GT significantly slows down SecSV because it needs to

calculate FSVs by solving an optimization problem, which is expen-

sive for light classifiers. Furthermore, SampleSkip can be combined

with all these baselines to significantly improve efficiency. This

marvelous performance is caused by the high percentage of test

samples skipped by SampleSkip, as shown in Figure 5.

Finally, we evaluate the efficiency of Matrix Squaring and Ma-

trix Reducing. As seen in Table 4, we evaluate secure matrix mul-

tiplications between a 𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛 matrix 𝐴 and a 𝑑𝑖𝑛 × 𝑚 ma-

trix 𝐵; we set batch size𝑚 = ⌊𝑁 /𝑑𝑜𝑢𝑡 ⌋ for Matrix Reducing and

𝑚 = min{𝑑𝑖𝑛, ⌊
√
𝑁 ⌋} for Matrix Squaring. Subsequently, we enu-

merate all the matrix multiplications involved in the four classifiers

considered in our experiments and present the speedup of Matrix

Reducing w.r.t. Matrix Squaring in each case. When numerous ho-

momorphic rotations are required for Matrix Squaring, e.g., when

𝐴 is of shapes 2 × 48, the computation time per sample under Ma-

trix Reducing is considerably less than that under Matrix Squaring.

Additionally, compared with the case where both 𝐴 and 𝐵 are en-

crypted, when only𝐴 is encrypted, the speedup of Matrix Reducing

is higher because the computation time required for homomorphic

multiplications becomes less whereas that required for homomor-

phic rotations remains the same.

7.2.2 Evaluation accuracy (RQ2). As shown in Table 2, both SecSV

and HESV can accurately calculate FSVs for all datasets. The error

of the FSVs calculated by SecretSV is passable for the logistic and

CNN classifiers but overly large for RNN. This may be because

RNN has numerous linear layers in sequence, through which ASS

introduces accumulated truncation errors into prediction results.

Table 3 suggests that SampleSkip introduces only an insignifi-

cant error for SecSV even when combined with other estimation

methods. The PS and GT methods vastly increase the error because

they approximate the FSVs even if they skip no models. The KS

method skips some models and accelerates SecSV to some extent

but also results in an unacceptable error for all the datasets because

it works poorly when the number 𝑛 of clients is small.

We also present the percentages of the samples skipped by Sam-

pleSkip in Figure 5. It is evident that no samples are wrongly skipped

for the linear logistic classifiers, which experimentally demonstrates

the correctness of Theorem 6.3. For the nonlinear CNN and RNN

classifiers, only a tiny portion of samples are wrongly skipped,

which results in a minor error.

7.2.3 Parameters’ effects (RQ3). First, we vary the size 𝑀 of test

samples to evaluate its effect on the efficiency of SecSV. As depicted

in Figure 6, when more test samples are used for evaluation, Sam-

pleSkip becomes more effective in accelerating SecSV. This effect

may be due to two reasons. First, SecSV usually requires a large

batch size to perform at its best owing to the use of Matrix Reduc-

ing. When the size is small, and the majority of the samples are

skipped, the remaining discriminative samples might be overly few

to fulfill the batch, which causes a waste of ciphertext slots. Second,

SampleSkip needs to preprocess discriminative samples for each

aggregated model, which is relatively time-consuming, particularly

for light classifiers. Thus, for the BANK and AGNEWS datasets with

logistic models, when only a few samples are evaluated, SampleSkip

may slow down SecSV. Note that we can easily avoid this problem

by adaptively turning off SampleSkip.
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We then vary the number 𝑛 of clients to test its effect on the

efficiency of SecSV. In this case, we use 10% of the entire test sam-

ples. In Figure 7, we can see that when 𝑛 increases, SampleSkip

accelerates SecSV more for MNIST and miRNA-mRNA but prob-

ably less for AGNEWS and BANK. The reason for this effect is as

follows. An increase of 𝑛 implies a higher percentage of aggregated

models w.r.t. all models because the number of aggregated models

increases exponentially w.r.t. 𝑛. The increase in the percentage of

aggregated models can amplify the speedup and slowdown effects

of SampleSkip. Therefore, because SampleSkip speeds up SecSV

for MNIST and miRNA-mRNA in Figure 6, a larger 𝑛 results in a

higher speedup. However, because SampleSkip slows down SecSV

when only 10% of the test samples are used owing to the need to

preprocess discriminative samples, a larger 𝑛 may cause a higher

slowdown. Note that the lines for AGNEWS and BANK in Figure

7 may rise because more models need to be securely tested; this

makes the speedup approach 1.0.

Finally, we vary the number 𝐿 of layers in the DNN classifier.

Figure 8 shows that when 𝐿 = 1, which means DNN is reduced

to a logistic classifier because no hidden layer exists, no sam-

ples are wrongly skipped, which verifies Theorem 6.3. When 𝐿

increases, DNN becomes "more nonlinear"; thus, more samples

may be wrongly skipped. However, the percentages of the wrongly

skipped samples remain small even when 𝐿 = 10.

8 RELATEDWORK
Secure FL. There are two typical FL settings: cross-device and

cross-silo [30]. In the cross-device setting, the clients are numer-

ous unreliable mobile or IoT devices with limited computation

and communication resources, making using lightweight crypto-

graphic techniques to protect clients’ privacy reasonable. There-

fore, existing secure cross-device FL systems [2, 4, 6, 16, 28, 66–68]

usually protect privacy using secure aggregation: they mask the

clients’ updates using secret sharing, and the mask for each update

will be canceled by aggregating the masked updates. Nevertheless,

secure aggregation can only protect the local updates; the final

model is still leaked to the FL server or a third party. Some studies

[12, 15, 20, 29, 35, 45, 52, 72, 86] protect privacy against a third

party using differential privacy (DP) [7] or even against the server

using local DP [8]. However, the uses of DP and local DP signifi-

cantly compromise the final model’s utility. Conversely, the clients

in cross-silo FL are a small number of organizations with abundant

communication and computing resources. Considering that the pur-

pose of the clients is to train an accurate model for their own use,

they might not allow releasing the final model to external parties,

including the server, and/or tolerate a nontrivial loss of model utility

[81]. Consequently, HE is a natural choice for cross-silo FL, which

is advocated by many works [25, 41, 57, 60, 73, 81, 83]. Although HE

largely increases the computation and communication overhead,

it is acceptable to those powerful clients. However, the existing

HE-based FL systems cannot support secure SV calculation because

they only protect the model aggregation process, which inspires

this paper. Additionally, Ma et al. [42] studied a similar problem

to ours; however, they aimed to make the contribution evaluation

process transparent and auditable using blockchain, whereas we

focus on the security of this process.

SV for collaborative ML. The SV has been widely adopted in collab-

orative ML for contribution evaluation and numerous downstream

tasks. Concretely, because the value of data is task-specific, the

contribution metric SV can be considered a data valuation metric

[13, 23, 75, 76]. Some studies [17, 36, 53, 69] proposed SV-based pay-

ment schemes that allocate monetary payments to clients based on

their respective SVs. The evaluated SVs can also be used to decide

the qualities of models [65] or synthetic data [70] that are rewarded

to clients and to identify irrelevant clients who may have negative

contributions to the final model [51].

Given that SV calculation requires exponential times of model

retraining and evaluation to accelerate SV calculation, various esti-

mation methods [10, 13, 23, 38, 43, 69, 75, 76] were proposed, and

they can be categorized into two: retraining-skipping and model-
skipping. The former class of methods reduces the complexity of

or even eliminates the redundant retraining process. For example,

the FSV [75], MR [69], Truncated MR [76], and GTG-Shapley [38]

methods use the local and aggregated models for SV calculation,

which avoids retraining FL models. The model-skipping methods,

e.g., the PS [43] and GT [23] methods used in our experiments,

approximate the SV by sampling a sufficient number of models for

evaluation. Our SampleSkip method skips test samples to accelerate

the model evaluation process, which does not belong to the above

classes and opens up a new direction: sample-skipping estimation.

Secure inference. This problem regards securely making predictions

given a client’s encrypted input features for prediction-as-a-service

(PaaS). The majority of existing studies (e.g., [14, 27, 46, 48, 58])

assumed that the prediction model is not outsourced because the

server of PaaS is usually the model owner himself and thus do not

encrypt the model, which is different from our privacy model. Sev-

eral studies [18, 24, 49] examined the scenario of secure outsourced
inference where the model is outsourced to and should be protected

against an untrusted server, which is similar to our scenario. Nev-

ertheless, in our problem, we need to ensure security against more

untrusted parties, and the server(s) should securely evaluate nu-

merous models on massive test samples, which calls for estimation

methods to reduce the scale of the task.

9 CONCLUSION
In this paper, we introduced the problem of secure SV calculation for

cross-silo FL and proposed two protocols. The one-server protocol

HESV had a stronger security guarantee because it only required a

single server to coordinate secure SV calculation, whereas the two-

server protocol SecSV was considerably more efficient. Solving this

problem facilitates many downstream tasks and is an essential step

toward building a trustworthy ecosystem for cross-silo FL. Future

directions include studying secure SV calculation in the vertical

FL setting, where clients possess different attributes of the same

data samples, and developing secure protocols for other types of

prediction models and more effective acceleration techniques.
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